Vol. 271, No. 2, 2014

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Eigenvalue estimate and compactness for closed $f$-minimal surfaces

Xu Cheng, Tito Mejia and Detang Zhou

Vol. 271 (2014), No. 2, 347–367
Abstract

Let Ω be a bounded domain with convex boundary in a complete noncompact Riemannian manifold with Bakry–Émery Ricci curvature bounded below by a positive constant. We prove a lower bound on the first eigenvalue of the weighted Laplacian for closed embedded f-minimal hypersurfaces contained in Ω. Using this estimate, we prove a compactness theorem for the space of closed embedded f-minimal surfaces with uniform upper bounds on genus and diameter in a complete 3-manifold with Bakry–Émery Ricci curvature bounded below by a positive constant and admitting an exhaustion by bounded domains with convex boundary.

Keywords
Riemannian manifold, eigenvalue, drifted Laplacian, minimal surface
Mathematical Subject Classification 2010
Primary: 58J50
Secondary: 58E30
Milestones
Received: 4 July 2013
Revised: 14 May 2014
Accepted: 30 July 2014
Published: 20 September 2014
Authors
Xu Cheng
Instituto de Matemática e Estatística
Universidade Federal Fluminense - UFF
24020-140 Centro, Niterói-RJ
Brazil
Tito Mejia
Instituto de Matemática e Estatística
Universidade Federal Fluminense - UFF
24020-140 Centro, Niterói-RJ
Brazil
Detang Zhou
Instituto de Matemática e Estatística
Universidade Federal Fluminense - UFF
24020-140 Centro, Niterói-RJ
Brazil