Vol. 271, No. 2, 2014

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Categorification of a parabolic Hecke module via sheaves on moment graphs

Martina Lanini

Vol. 271 (2014), No. 2, 415–444
Abstract

We investigate certain categories, associated by Fiebig with the geometric representation of a Coxeter system, via sheaves on Bruhat graphs. We modify Fiebig’s definition of translation functors in order to extend it to the singular setting and use it to categorify a parabolic Hecke module. As an application we obtain a combinatorial description of indecomposable projective objects of (truncated) noncritical singular blocks of (a deformed version of) category O, using indecomposable special modules over the structure algebra of the corresponding Bruhat graph.

Keywords
sheaves on moment graphs, parabolic Hecke module
Mathematical Subject Classification 2010
Primary: 17B67, 20C08
Milestones
Received: 2 June 2013
Revised: 25 July 2013
Accepted: 25 August 2013
Published: 20 September 2014
Authors
Martina Lanini
Department Mathematik
Friedrich-Alexander-Universität Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
Germany