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MONOIDS OF MODULES AND ARITHMETIC
OF DIRECT-SUM DECOMPOSITIONS

NICHOLAS R. BAETH AND ALFRED GEROLDINGER

Let R be a (possibly noncommutative) ring and let C be a class of finitely
generated (right) R-modules which is closed under finite direct sums, direct
summands, and isomorphisms. Then the set V.C/ of isomorphism classes of
modules is a commutative semigroup with operation induced by the direct
sum. This semigroup encodes all possible information about direct sum
decompositions of modules in C. If the endomorphism ring of each mod-
ule in C is semilocal, then V.C/ is a Krull monoid. Although this fact was
observed nearly a decade ago, the focus of study thus far has been on ring-
and module-theoretic conditions enforcing that V.C/ is Krull. If V.C/ is
Krull, its arithmetic depends only on the class group of V.C/ and the set
of classes containing prime divisors. In this paper we provide the first sys-
tematic treatment to study the direct-sum decompositions of modules using
methods from factorization theory of Krull monoids. We do this when C
is the class of finitely generated torsion-free modules over certain one- and
two-dimensional commutative Noetherian local rings.

1. Introduction

The study of direct-sum decompositions of finitely generated modules is a classical
topic in module theory dating back over a century. In the early 1900s, Wedderburn,
Remak, Krull, and Schmidt proved unique direct-sum decomposition results for
various classes of groups (see [Maclagan-Wedderburn 1909; Remak 1911; Krull
1925; Schmidt 1929]). A few decades later Azumaya [1950] proved uniqueness
of (possibly infinite) direct-sum decomposition of modules provided that each
indecomposable module has a local endomorphism ring. In the commutative setting,
Evans [1973] gave an example due to Swan illustrating a nonunique direct-sum
decomposition of a finitely generated module over a local ring. The past decade has
seen a new semigroup-theoretical approach. This approach was first introduced by
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Facchini and Wiegand [2004] and has been used by several authors (for example,
see [Baeth 2007; 2009; Baeth and Luckas 2011; Baeth and Saccon 2012; Diracca
2007; Facchini 2002; 2006; 2012; Facchini and Halter-Koch 2003; Facchini et al.
2006; Facchini and Wiegand 2004; Hassler et al. 2007; Herbera and Příhoda 2010;
Levy and Odenthal 1996]). Let R be a ring and let C be a class of right R-modules
which is closed under finite direct sums, direct summands, and isomorphisms. For a
module M in C, let ŒM � denote the isomorphism class of M . Let V.C / denote the
set of isomorphism classes of modules in C. (We assume here that V.C / is indeed
a set, and note that this hypothesis holds for all examples we study.) Then V.C/ is
a commutative semigroup with operation defined by ŒM �C ŒN �D ŒM ˚N � and all
information about direct-sum decomposition of modules in C can be studied in terms
of factorization of elements in the semigroup V.C/. In particular, the direct-sum
decompositions in C are (essentially) unique (in other words, the Krull–Remak–
Schmidt–Azumaya theorem — KRSA — holds) if and only if V.C / is a free abelian
monoid. This semigroup-theoretical point of view was justified by Facchini [2002]
who showed that V.C/ is a reduced Krull monoid provided that the endomorphism
ring EndR.M / is semilocal for all modules M in C. This result allows one to
describe the direct-sum decomposition of modules in terms of factorization of
elements in Krull monoids, a well-studied class of commutative monoids.

However, thus far much of the focus in this direction has been on the study
of module-theoretic conditions which guarantee that all endomorphism rings are
semilocal, as well as on trying to describe the monoid V.C/ in terms of various
ring- and module-theoretic conditions. Although some factorization-theoretic com-
putations have been done in various settings (e.g., the study of elasticity in [Baeth
2009; Baeth and Luckas 2011; Baeth and Saccon 2012] and the study of the !-
invariant in [Diracca 2007]), the general emphasis has not been on the arithmetic
of the monoid V.C/. Our intent is to use known module-theoretic results along
with factorization-theoretic techniques in order to give detailed descriptions of the
arithmetic of direct-sum decompositions of finitely generated torsion-free modules
over certain one- and two-dimensional local rings. We hope that this systematic
approach will not only serve to inspire others to consider more detailed and abstract
factorization-theoretic approaches to the study of direct-sum decompositions, but to
provide new and interesting examples for zero-sum theory over torsion-free groups.
We refer to [Facchini 2003] and to the opening paragraph in the recent monograph
[Leuschke and Wiegand 2012] for broad information on the Krull–Remak–Schmidt–
Azumaya theorem, and to the surveys [Facchini 2012; Baeth and Wiegand 2013]
promoting this semigroup-theoretical point of view. More details and references
will be given in Section 3.

Krull monoids, both their ideal theory and their arithmetic, are well-studied;
see [Geroldinger and Halter-Koch 2006] for a thorough treatment. A reduced
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Krull monoid is uniquely determined (up to isomorphism) by its class group G,
the set of classes GP � G containing prime divisors, and the number of prime
divisors in each class. Let V.C / be a monoid of modules and suppose V.C/ is
Krull with class group G and with set of classes containing prime divisors GP .
We are interested in determining what this information tells us about direct-sum
decompositions of modules. Let M be a module in C and let M DM1˚� � �˚M`

where M1; : : : ;M` are indecomposable right R-modules. Then ` is called the
length of this factorization (decomposition into indecomposables), and the set
of lengths L.M / � N is defined as the set of all possible factorization lengths.
Then KRSA holds if and only if jGj D 1. Moreover, it is easy to check that
jL.M /j D 1 for all M in C provided that jGj � 2. Clearly, sets of lengths are a
measure how badly KRSA fails. Assuming that V.C/ is Krull, M has at least one
direct-sum decomposition in terms of indecomposable right R-modules, and, up to
isomorphism, only finitely many distinct decompositions. In particular, all sets of
lengths are finite and nonempty. Without further information about the class group
G and the subset GP �G, this is all that can be said. Indeed, there is a standing
conjecture that for every infinite abelian group G there is a Krull monoid with
class group G and set GP such that every set of lengths has cardinality one (see
[Geroldinger and Göbel 2003]). On the other hand, if the class group of a Krull
monoid is infinite and every class contains a prime divisor, then every finite subset
of N�2 occurs as a set of lengths (see Proposition 6.2).

Thus an indispensable prerequisite for the study of sets of lengths (and other
arithmetical invariants) in Krull monoids is detailed information about not only the
class group G, but also on the set GP � G of classes containing prime divisors.
For the monoid V.C/, this is of course a module-theoretic task which depends on
both the ring R and the class C of R-modules. Early results gave only extremal
sets GP and thus no further arithmetical investigations were needed. In Sections 4
and 5 we determine, based on deep module-theoretic results, the class group G of
V.C/. We then exhibit well-structured sets GP providing a plethora of arithmetically
interesting direct-sum decompositions. In particular, we study the classes of finitely
generated modules, finitely generated torsion-free modules, and maximal Cohen–
Macaulay modules over one- and two-dimensional commutative Noetherian local
rings. We restrict, if necessary, to specific families of rings in order to obtain explicit
results for GP , since it is possible that even slightly different sets GP can induce
completely different behavior in terms of the sets of lengths. Given this information,
we use transfer homomorphisms, a key tool in factorization theory and introduced
in Section 3, which make it possible to study sets of lengths and other arithmetical
invariants of general Krull monoids instead in an associated monoid of zero-sum
sequences (see Lemma 3.4). These monoids can be studied using methods from
additive (group and number) theory (see [Geroldinger 2009]).
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Factorization theory describes the nonuniqueness of factorizations of elements
in rings and semigroups into irreducible elements by arithmetical invariants such as
sets of lengths, catenary, and tame degrees. We will define each of these invariants in
Section 2. The goal is to relate the arithmetical invariants with algebraic parameters
(such as class groups) of the objects under consideration. The study of sets of lengths
in Krull monoids is a central topic in factorization theory. However, since much
of this theory was motivated by examples in number theory (such as holomorphy
rings in global fields), most of the focus so far has been on Krull monoids with
finite class group and with each class containing a prime divisor. This is in contrast
to Krull monoids stemming from module theory which often have infinite class
group (see Section 4). A key result in Section 6 shows that the arithmetic of these
two types of Krull monoids can have drastically different arithmetic.

In combination with the study of various arithmetical invariants of a given
Krull monoid, the following dual question has been asked since the beginning of
factorization theory: Are arithmetical phenomena characteristic for a given Krull
monoid (inside a given class of Krull monoids)? Affirmative answers have been
given for the class of Krull monoids with finitely generated class groups where
every class contains a prime divisor. Since sets of lengths are the most investigated
invariants in factorization theory, the emphasis in the last decade has been on the
following question: Within the class of Krull monoids having finite class group and
such that every class contains a prime divisor, does the system of sets of lengths
of a monoid H characterize the class group of H? A survey of these problems
can be found in [Geroldinger and Halter-Koch 2006, Sections 7.1 and 7.2]. For
recent progress, see [Schmid 2009b; 2009a; Baginski et al. 2013]. In Theorem 6.8
we exhibit that for many Krull monoids stemming from the module theory of
Sections 4 and 5, the system of sets of lengths and the behavior of absolutely
irreducible elements characterizes the class group of these monoids.

In Section 2 we introduce some of the main arithmetical invariants studied in
factorization theory as well as their relevance to the study of direct-sum decomposi-
tions. Our focus is on sets of lengths and on parameters controlling their structure,
but we will also need other invariants such as catenary and tame degrees. Section 3
gives a brief introduction to Krull monoids, monoids of modules, and transfer homo-
morphisms. Sections 4 and 5 provide explicit constructions stemming from module
theory of class groups and distribution of prime divisors in the classes. Finally, in
Section 6, we present our results on the arithmetic of direct-sum decomposition in
the Krull monoids discussed in Sections 4 and 5.

We use standard notation from commutative algebra and module theory (see
[Leuschke and Wiegand 2012]) and we follow the notation of [Geroldinger and
Halter-Koch 2006] for factorization theory. All monoids of modules V.C/ are
written additively, while all abstract Krull monoids are written multiplicatively.
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This follows the tradition in factorization theory, and makes sense also here because
our crucial tool, the monoid of zero-sum sequences, is written multiplicatively. In
particular, our arithmetical results in Section 6 are written in a multiplicative setting
but they are derived for the additive monoids of modules discussed in Sections 4
and 5. Since we hope that this article is readable both for those working in ring and
module theory as well as those working in additive theory and factorization theory,
we often recall concepts of both areas which are well known to the specialists in
the respective fields.

2. Arithmetical preliminaries

In this section we gather together the concepts central to describing the arithmetic
of nonfactorial monoids. In particular, we exhibit the arithmetical invariants which
will be studied in Section 6 and which will give a measure of nonunique direct sum
decompositions of classes of modules studied in Sections 4 and 5. When possible,
we recall previous work in the area of direct-sum decompositions for which certain
invariants have been studied. For more details on nonunique factorization, see
[Geroldinger and Halter-Koch 2006]. First we record some preliminary terminology.

Notation. We denote by N the set of positive integers and set N0 D N[f0g. For
every n2N, Cn denotes a cyclic group of order n. For real numbers a; b 2R we set
Œa; b�Dfx2Z Wa�x�bg. We use the convention that sup∅Dmax∅Dmin∅D0.

Subsets of the integers. Let L;L0�Z. We denote by LCL0DfaCb Wa2L; b2L0g

the sumset of L and L0. If ∅¤L� N, we call

�.L/D sup
�

m

n
Wm; n 2L

�
D

sup L

min L
2Q�1[f1g

the elasticity of L. In addition, we set �.f0g/D 1. Distinct elements k; l 2L are
called adjacent if L\ Œminfk; lg;maxfk; lg�D fk; lg. A positive integer d 2 N is
called a distance of L if there exist adjacent elements k; l 2 L with d D jk � l j.
We denote by �.L/ the set of distances of L. Note that �.L/D∅ if and only if
jLj � 1, and that L is an arithmetical progression with difference d 2N if and only
if �.L/� fdg.

Monoids and rings. By a monoid H we always mean a commutative semigroup
with identity 1 which satisfies the cancellation law; that is, if a, b, and c are elements
of the H with ab D ac, then b D c.

Let H be a monoid. We denote by A.H / the set of atoms (irreducible elements)
of H , by q.H / a quotient group of H with H � q.H /D fa�1b W a; b 2H g, and
by H� the set of invertible elements of H . We say that H is reduced if H� D f1g,
and we denote by HredDH=H�D faH� W a 2H g the associated reduced monoid.
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Let H 0�H be a subset. We say that H 0 is divisor-closed if a2H 0 and b 2H with
b j a implies that b 2H 0. Denote by ŒH 0��H the submonoid generated by H 0.

A monoid F is called free abelian with basis P � F if every a 2 F has a unique
representation of the form

aD
Y

p2P
pvp.a/ with vp.a/ 2 N0 and vp.a/D 0 for almost all p 2 P :

If F is free abelian with basis P , we set F D F.P/ and call

jaj D
X
p2P

vp.a/

the length of a, and
supp.a/D fp 2 P W vp.a/ > 0g

the support of a. The multiplicative monoid F.P/ is, of course, isomorphic to the
additive monoid .N.P/

0
;C/.

Throughout this manuscript, all rings have a unit element and, apart from a few
motivating remarks in Section 3, all rings are commutative. Let R be a ring. Then
we let R� DRn f0g denote the nonzero elements of R and let R� denote its group
of units. Note that if R is a domain, then R� is a monoid as defined above. By the
dimension of a ring we always mean its Krull dimension.

Abelian groups. Let G be an additive abelian group and let G0 � G a subset.
Then �G0 D f�g W g 2G0g, G�

0
DG0 n f0g, and hG0i �G denotes the subgroup

generated by G0. A family .ei/i2I of elements of G is said to be independent if
ei ¤ 0 for all i 2 I and, for every family .mi/i2I 2 Z.I /,X

i2I

miei D 0 implies miei D 0 for all i 2 I:

The family .ei/i2I is called a basis for G if G D
L

i2I heii. The total rank
r�.G/ is the supremum of the cardinalities of independent subsets of G. Thus
r�.G/D r0.G/C

P
p2P rp.G/, where r0.G/ is the torsion-free rank of G and rp.G/

is the p-rank of G for every prime p 2 P.

Factorizations. Let H be a monoid. The free abelian monoid Z.H /DF.A.Hred//

is called the factorization monoid of H , and the unique homomorphism

� W Z.H /!Hred satisfying �.u/D u for each u 2A.Hred/

is called the factorization homomorphism of H . For a 2H and k 2 N,

� ZH .a/D Z.a/D ��1.aH�/� Z.H / is the set of factorizations of a,

� Zk.a/D fz 2 Z.a/ W jzj D kg is the set of factorizations of a of length k,
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� LH .a/D L.a/D
˚
jzj W z 2 Z.a/

	
� N0 is the set of lengths of a, and

� L.H /D fL.b/ W b 2H g is the system of sets of lengths of H .

By definition, we have Z.a/ D f1g and L.a/ D f0g for all a 2 H�. If H is
assumed to be Krull, as is the case in the monoids of modules we study, and a 2H ,
then the set of factorizations Z.a/ is finite and nonempty and hence L.a/ is finite
and nonempty. Suppose that there is a 2H with jL.a/j> 1 with distinct k; l 2 L.a/.
Then for all N 2N, L.aN /� f.N � i/kC i l W i 2 Œ0;N �g and hence jL.aN /j>N .
Thus, whenever there is an element a 2H that has at least two factorizations of
distinct lengths, there exist elements of H having arbitrarily many factorizations of
distinct lengths. This motivates the need for more refined measures of nonunique
factorization.

Several invariants such as elasticity and the �-set measure nonuniqueness in
terms of sets of lengths. Other invariants such as the catenary degree provide an
even more subtle measurement in terms of the distinct factorizations of elements.
However, these two approaches cannot easily be separated and it is often the case
that a factorization-theoretical invariant is closely related to an invariant of the set
of lengths. Thus the exposition that follows will introduce invariants as they are
needed and so that the relations between these invariants can be made as clear as
possible.

The monoid H is called

� atomic if Z.a/¤∅ for all a 2H ,

� factorial if jZ.a/j D 1 k for all a 2H (equivalently, Hred is free abelian), and

� half-factorial if jL.a/j D 1 for all a 2H .

Let z; z0 2 Z.H /. Then we can write

z D u1�:::�ulv1�:::�vm and z0 D u1�:::�ulw1�:::�wn;

where l;m; n 2 N0 and u1; : : : ;ul ; v1; : : : ; vm; w1; : : : ; wn 2A.Hred/ satisfy

fv1; : : : ; vmg\ fw1; : : : ; wng D∅:

Then gcd.z; z0/D u1�:::�ul , and we call

d.z; z0/Dmaxfm; ng Dmax
˚
jz gcd.z; z0/�1

j; jz0 gcd.z; z0/�1
j
	
2 N0

the distance between z and z0. If �.z/D �.z0/ and z ¤ z0, then clearly

2C
ˇ̌
jzj � jz0j

ˇ̌
� d.z; z0/:

For subsets X;Y � Z.H /, we set

d.X;Y /Dminfd.x;y/ W x 2X; y 2 Y g;

and thus d.X;Y /D 0 if and only if (X \Y ¤∅, X D∅, or Y D∅).
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From this point on, we will assume all monoids to be atomic. Since the monoids
described in Sections 4 and 5 are of the form V.C/ for C a subclass of finitely
generated modules over a commutative Noetherian ring, they are Krull and hence
atomic.

The set of distances and chains of factorizations. We now recall the �-set of a
monoid H , an invariant which describes the sets of lengths of elements in H , and
illustrate its relationship with distances between factorizations of elements in H .
We denote by

�.H /D
[

L2L.H /

�.L/� N

the set of distances of H . By definition, �.H / D ∅ if and only if H is half-
factorial. For a more thorough investigation of factorizations in H , we will need
a distinguished subset of the set of distances. Let ��.H / denote the set of all
d D min�.S/ for some divisor-closed submonoid S � H with �.S/ ¤ ∅. By
definition, we have ��.H /��.H /.

Suppose that H is not factorial. Then there exists an element a 2 H with
jZ.a/j > 1, and so there exist distinct z; z0 2 Z.a/. Then, for N 2 N, we have
Z.aN / � fzN�i.z0/i W i 2 Œ0;N �g. Although d.zN ; .z0/N / D Nd.z; z0/ > N

suggests that the factorizations zN and .z0/N of aN are very different,

d.zN�i.z0/i ; zN�iC1.z0/i�1/D d.z; z0/

for each i 2 Œ1;N �. This illustrates that the distance alone is too coarse of an
invariant, and motivates the study of the catenary degree as a way of measuring
how distinct two factorizations are. As will be described below, there is a structure
theorem for the set of lengths of a Krull monoid. However, except in very simple
situations, there is no known structure theorem for the set of factorizations of an
element in a Krull monoid. Thus we use the catenary degree, its many variations,
the tame degree, and other invariants help to measure the subtle distinctions between
factorizations.

Let a 2 H and N 2 N0 [ f1g. A finite sequence z0; : : : ; zk 2 Z.a/ is called
a .monotone/ N -chain of factorizations if d.zi�1; zi/ � N for all i 2 Œ1; k� and
(jz0j � � � � � jzk j or jz0j � � � � � jzk j respectively). We denote by c.a/ (or by
cmon.a/ respectively) the smallest N 2 N0[f1g such that any two factorizations
z; z0 2 Z.a/ can be concatenated by an N -chain (or by a monotone N -chain
respectively). Then

c.H /D supfc.b/ W b 2H g 2 N0[f1g;

cmon.H /D supfcmon.b/ W b 2H g 2 N0[f1g
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denote the catenary degree and the monotone catenary degree of H . The monotone
catenary degree is studied by using the two auxiliary notions of the equal and the
adjacent catenary degrees. Let ceq.a/ denote the smallest N 2 N0 [ f1g such
that any two factorizations z; z0 2 Z.a/ with jzj D jz0j can be concatenated by a
monotone N -chain. We call

ceq.H /D supfceq.b/ W b 2H g 2 N0[f1g

the equal catenary degree of H . We set

cadj.a/D supfd.Zk.a/;Zl.a// W k; l 2 L.a/ are adjacentg;

and the adjacent catenary degree of H is defined as

cadj.H /D supfcadj.b/ W b 2H g 2 N0[f1g:

Obviously, we have

c.a/� cmon.a/D supfceq.a/; cadj.a/g � sup L.a/ for all a 2H;

and hence
c.H /� cmon.H /D supfceq.H /; cadj.H /g:

Note that cadj.H /D 0 if and only if H is half-factorial, and if H is not half-factorial,
then 2C sup�.H / � c.H /. Moreover, ceq.H / D 0 if and only if for all a 2 H

and all k 2 L.a/ we have jZk.a/j D 1. Corollary 2.12 of [Coykendall and Smith
2011] implies that if D is a domain, we have that ceq.D

�/D 0 if and only if D� is
factorial.

We call

�H ;eq D
˚
.x;y/ 2 Z.H /�Z.H / W �.x/D �.y/ and jxj D jyj

	
the monoid of equal-length relations of H . Let Z � Z.H / be a subset. We say that
an element x 2Z is minimal in Z if for all elements y 2Z with y jx it follows that
x D y. We denote by Min.Z/ the set of minimal elements in Z. Let x 2Z. Since
the number of elements y 2 Z with y jx is finite, there exists an x� 2 Min.Z/
with x� jx.

Lemma 2.1. Let H be an atomic monoid.

(1) ceq.H /� sup
˚
jxj W .x;y/ 2A.�H ;eq/ for some y 2 Z.H / n fxg

	
.

(2) For d 2 �.H / let Ad D fx 2 Z.H / W jxj � d 2 L.�.x//g. Then cadj.H / �

supfjxj W x 2Min.Ad /; d 2�.H /g.

Proof. See [Blanco et al. 2011, Proposition 4.4]. �
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Unions of sets of lengths and the refined elasticities. We now return to studying
sets of lengths. We note that the elasticity of certain monoids of modules were
studied in [Baeth and Luckas 2011; Baeth and Saccon 2012], but that in Section 6
we will provide results which generalize these results to larger classes of Krull
monoids. In addition, we will fine tune these results by also computing the refined
elasticities. Let k; l 2 N. If H ¤H�, then

Uk.H /D
[
k2L

L2L.H /

L

is the union of all sets of lengths containing k. In other words, Uk.H / is set of
all m 2 N for which there exist u1; : : : ;uk ; v1; : : : ; vm 2A.H / with u1�:::�uk D

v1�:::�vm. When H�DH , we set Uk.H /Dfkg. In both cases, we define �k.H /D

supUk.H /2N[f1g and �k.H /DminUk.H /2 Œ1; k�. Clearly, we have U1.H /D

f1g, k 2 Uk.H /, and since Uk.H /CUl.H /� UkCl.H /, it follows that

�kCl.H /� �k.H /C�l.H /� kC l � �k.H /C �l.H /� �kCl.H /:

The elasticity �.H / of H is defined as

�.H /D supf�.L/ WL 2 L.H /g 2 R�1[f1g;

and it is not difficult to verify that

�.H /D sup
�
�k.H /

k
W k 2 N

�
D lim

k!1

�k.H /

k
:

The structure of sets of lengths. To describe the structure of sets of lengths and
of their unions, we need the concept of arithmetical progressions as well as various
generalizations. Let l;M 2 N0, d 2 N, and f0; dg �D � Œ0; d �. We set

Pl.d/D dZ\ Œ0; ld �D f0; d; 2d; : : : ; ldg:

Thus a subset L�Z is an arithmetical progression (with difference d 2N and length
l 2 N0) if LD min LCPl.d/. A subset L � Z is called an almost arithmetical
multiprogression (AAMP for short) with difference d , period D, and bound M , if

LD yC .L0[L�[L00/ � yCDC dZ;

where

� L� is finite and nonempty with min L�D 0 and L�D .DCdZ/\Œ0;max L��,

� L0 � Œ�M;�1� and L00 �max L�C Œ1;M �, and

� y 2 Z.

Note that an AAMP is finite and nonempty, and that an AAMP with period f0; dg
and bound M D 0 is a (usual) arithmetical progression with difference d .
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The !-invariant and the tame degrees. We now study the !-invariant as well as
local and global tame degrees. We note that these notions have been studied in
specific noncommutative module-theoretic situations in terms of the so-called
semiexchange property (see [Diracca 2007]). Moreover, when describing the
sets of lengths of elements within a Krull monoid H in terms of AAMPs (see
Proposition 6.2), the bound M (described above) is a tame degree related to the
monoid H . We begin with the definition. For an atom u 2H , let !.H;u/ denote
the smallest N 2 N[f1g having the following property:

For any multiple a of u and any factorization a D v1 �:::�vn of a, there
exists a subset �� Œ1; n� such that j�j �N and

u divides
Q
�2�

v� :

Furthermore, we set

!.H /D supf!.H;u/ W u 2A.H /g 2 N[f1g:

An atom u 2H is prime if and only if !.H;u/D 1, and thus H is factorial if and
only if !.H /D 1. If H satisfies the ascending chain condition on divisorial ideals
(in particular, H is a Krull monoid or a Noetherian domain), then !.H;u/ <1
for all u 2A.H / [Geroldinger and Hassler 2008, Theorem 4.2]. Roughly speaking,
the tame degree t.H;u/ is the maximum of !.H;u/ and a factorization length of
u�1

Q
�2� v� in H . More precisely, for an atom u 2 H , the local tame degree

t.H;u/ is the smallest N 2 N0[f1g having the following property:

For any multiple a of u and any factorization aD v1�:::�vn of a which
does not contain u, there is a short subproduct which is a multiple of u,
say v1�:::�vm, and a refactorization of this subproduct which contains u,
say v1 �:::�vm D uu2 �:::�u`, such that maxf`;mg �N .

Thus the local tame degree t.H;u/ measures the distance between any factorization
of a multiple a of u and a factorization of a which contains u. As before, we set

t.H /D supft.H;u/ W u 2A.H /g 2 N0[f1g:

We conclude this section with the following lemma (see [Geroldinger and Halter-
Koch 2006, Chapter 1; Geroldinger and Kainrath 2010]) which illustrates how the
primary invariants measure the nonuniqueness of factorizations and show that all
of these invariants are trivial if the monoid is factorial.

Lemma 2.2. Let H be an atomic monoid.

(1) H is half-factorial if and only if �.H /D 1 if and only if �k.H /D k for every
k 2 N.

(2) H is factorial if and only if c.H /D t.H /D 0 if and only if !.H /D 1.
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(3) c.H /D 0 or c.H /� 2, and if c.H /� 2, then H is half-factorial.

(4) c.H /� !.H /� t.H /� !.H /2, and if H is not factorial, then

maxf2; �.H /g � !.H /:

(5) If c.H /D 3, every L 2 L.H / is an arithmetical progression with difference 1.

3. Krull monoids, monoids of modules, and transfer homomorphisms

The theory of Krull monoids is presented in detail in the monographs [Halter-Koch
1998; Geroldinger and Halter-Koch 2006]. Here we gather the terminology required
for our treatment. We then present an introduction to monoids of modules — the
key objects of our study. Finally, we recall important terminology and results about
monoids of zero-sum sequences and transfer homomorphisms — the key tools in
our arithmetical investigations.

Krull monoids. Let H and D be monoids. A monoid homomorphism ' WH !D

is called

� a divisor homomorphism if '.a/ j'.b/ implies that a j b for all a; b 2H .

� cofinal if for every a 2D there exists some u 2H such that a j'.u/.

� a divisor theory (for H ) if DDF.P/ for some set P , ' is a divisor homomor-
phism, and for every a 2 F.P/, there exists a finite nonempty subset X �H

satisfying aD gcd.'.X //.

We call C.'/D q.D/=q.'.H // the class group of ', use additive notation for this
group, and for a 2 q.D/, we denote by Œa�D a q.'.H // 2 q.D/=q.'.H // the class
containing a. Clearly D=H D fŒa� W a 2Dg � C.'/ is a submonoid with quotient
group C.'/. The homomorphism ' is cofinal if and only if C.'/DD=H and, by
definition, every divisor theory is cofinal. Let ' W H ! D D F.P/ be a divisor
homomorphism. Then '.H /D fa 2D W Œa�D Œ1�g and

GP D fŒp�D pq.'.H // W p 2 Pg � C.'/

is called the set of classes containing prime divisors. Moreover, hGPi D C.'/ and
ŒGP �D fŒa� W a 2Dg.

The monoid H is called a Krull monoid if it satisfies one of the following
equivalent conditions:

(a) H is completely integrally closed and satisfies the accending chain condition
on divisorial ideals.

(b) H has a divisor theory.

(c) H has a divisor homomorphism into a free abelian monoid.
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If H is a Krull monoid, then a divisor theory is unique up to unique isomorphism,
and the class group associated to a divisor theory depends only on H . It is called the
class group of H and will be denoted by C.H /. Moreover, a reduced Krull monoid
H with divisor theory H ,! F.P/ is uniquely determined up to isomorphism
by its characteristic .G; .mg/g2G/ where G is an abelian group together with
an isomorphism ˆ W G ! C.H / and with family .mg/g2G of cardinal numbers
mg D jP \ˆ.g/j (see [Geroldinger and Halter-Koch 2006, Theorem 2.5.4], and
the forthcoming Lemma 3.4).

It is well known that a domain R is a Krull domain if and only if its multiplicative
monoid R� is a Krull monoid, and we set the class group of R to be C.R/D C.R�/.
Property (a) shows that a Noetherian domain is Krull if and only if it is integrally
closed. In addition, many well-studied classes of commutative monoids such as
regular congruence monoids in Krull domains and Diophantine monoids are Krull.
The focus of the present paper is on Krull monoids stemming from module theory.

Monoids of modules. Let R be a (not necessarily commutative) ring and C a class
of (right) R-modules. We say that C is closed under finite direct sums, direct
summands, and isomorphisms provided the following holds: Whenever M;M1 and
M2 are R-modules with M ŠM1˚M2, we have M 2C if and only if M1;M2 2C.
We say that C satisfies the KRSA theorem if the following holds:

If k; l 2N and M1; : : : ;Mk ;N1; : : : ;Nl are indecomposable modules in
C with M1˚� � �˚Mk ŠN1˚� � �˚Nl , then l D k and, after a possible
reordering of terms, Mi ŠNi for all i 2 Œ1; k�.

Suppose that C is closed under finite direct sums, direct summands, and isomor-
phisms. For a module M 2 C, we denote by ŒM � its isomorphism class, and by V.C/
the set of isomorphism classes. (For our purposes here, we tacitly assume that this
is actually a set. For the classes of modules studied in Sections 4 and 5 this is indeed
the case. For the involved set-theoretical problems in a more general context, see
[Facchini 2012, Section 2].) Then V.C/ is a commutative semigroup with operation
ŒM �C ŒN � D ŒM ˚N � and all information about direct-sum decompositions of
modules in C can be studied in terms of factorizations in the semigroup V.C/. By
definition, C satisfies KRSA if and only if V.C/ is a free abelian monoid, which
holds if EndR.M / is local for each indecomposable M in C (see [Leuschke and
Wiegand 2012, Theorem 1.3]).

If the endomorphism ring EndR.M / is semilocal for all modules M in C, then
V.C/ is a Krull monoid ([Facchini 2002, Theorem 3.4]). There is an abundance of
recent work which provides examples of rings and classes of modules over these
rings for which all endomorphism rings are semilocal (see [Facchini 2004; 2006;
2012]. For monoids of modules, a characterization of when the class group is a
torsion group is given in [Facchini and Halter-Koch 2003]).
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Suppose that V.C/ is a Krull monoid. Then to understand the structure of direct-
sum decompositions of modules in C is to understand the arithmetic of the reduced
Krull monoid V.C/. Since any reduced Krull monoid H is uniquely determined by
its class group and by the distribution of prime divisors (that is, the characteristic
of H ), one must study these parameters.

In the present paper we will focus on the following classes of modules over a
commutative Noetherian local ring S , each closed under finite direct sums, direct
summands, and isomorphisms. For a commutative Noetherian local ring S , we
denote by

� M.S/ the semigroup of isomorphism classes of finitely generated S -modules,

� T .S/ the semigroup of isomorphism classes of finitely generated torsion-free
S -modules, and

� C.S/ the semigroup of isomorphism classes of maximal Cohen–Macaulay
(MCM) S -modules.

Note that in order to make C.S/ a semigroup, we insist that Œ0S � 2 C.S/, even
though the zero module is not MCM. We say that a commutative Noetherian local
ring S has finite representation type if there are, up to isomorphism, only finitely
many indecomposable MCM S-modules. Otherwise we say that S has infinite
representation type.

Throughout, let .R;m/ be a commutative Noetherian local ring with maximal
ideal m, and let . yR; ym/ denote its m-adic completion. Let V.R/ and V. yR/ be any
of the above three semigroups. If M is an R-module such that ŒM � 2 V.R/, then
yM ŠM ˝R

yR is an yR-module with Œ yM � 2 V. yR/, and every such yR-module is
called extended. Note that R has finite representation type if and only if yR has
finite representation type (see [Leuschke and Wiegand 2012, Chapter 10]), and that
the dimension of R is equal to the dimension of yR. The following crucial result
shows that the monoid V.R/ is Krull.

Lemma 3.1. Let .R;m/ be a commutative Noetherian local ring with maximal
ideal m, and let . yR; ym/ denote its m-adic completion.

(1) For each indecomposable finitely generated yR-module M , End yR.M / is local,
and therefore M. yR/, T . yR/, and C. yR/ are free abelian monoids.

(2) The embedding M.R/ ,!M. yR/ is a divisor homomorphism. It is cofinal
if and only if every finitely generated yR-module is a direct summand of an
extended module.

(3) The embeddings T .R/ ,! T . yR/ and C.R/ ,! C. yR/ are divisor homomor-
phisms.
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In particular, M.R/; T .R/, and C.R/ are reduced Krull monoids. Moreover, the
embeddings in (2) and (3) are injective and map R-modules onto the submonoid of
extended yR-modules.

Proof. Property (1) holds by the KRSA theorem (see [Leuschke and Wiegand 2012,
Chapter 1]).

Wiegand [2001] proved that the given embedding is a divisor homomorphism (see
also [Baeth and Wiegand 2013, Theorem 3.6]). The characterization of cofinality
follows from the definition and thus (2) holds.

Let M;N be R-modules such that either ŒM �; ŒN � 2 V.R/ where V.R/ denotes
either T .R/ or C.R/ and suppose that Œ yM � divides Œ yN � in V. yR/. Then we have
divisibility in M. yR/, and hence in M.R/ by (2). Since V.R/�M.R/ is divisor-
closed, it follows that ŒM � divides ŒN � in V.R/, proving (3).

Together, (2) and (3) show that M.R/; T .R/, and C.R/ satisfy Property (c) in
the definition of Krull monoids. Since each of these monoids is reduced, the maps
induced by ŒM � 7! Œ yM � are injective. �

Note that the embedding M.R/ ,!M. yR/ is not necessarily cofinal, as is shown
in [Hassler and Wiegand 2009; Frankild et al. 2008]. In Sections 4 and 5 we
will study in detail the class group and the distribution of prime divisors of these
Krull monoids, in the case of one-dimensional and two-dimensional commutative
Noetherian local rings.

Monoids of zero-sum sequences. We now introduce Krull monoids having a com-
binatorial flavor which are used to model arbitrary Krull monoids. Let G be an
additive abelian group and let G0 � G be a subset. Following the tradition in
additive group and number theory, we call the elements of F.G0/ sequences over
G0. Thus a sequence S 2 F.G0/ will be written in the form

S D g1�:::�gl D

Y
g2G0

gvg.S/:

We will use all notions (such as the length) as in general free abelian monoids. We
set �S D .�g1/�:::�.�gl/, and call �.S/D g1C� � �Cgl 2G the sum of S . The
monoid

B.G0/D fS 2 F.G0/ W �.S/D 0g

is called the monoid of zero-sum sequences over G0, and its elements are called
zero-sum sequences over G0. Obviously, the inclusion B.G0/ ,!F.G0/ is a divisor
homomorphism, and hence B.G0/ is a reduced Krull monoid by Property (c) in the
definition of Krull monoids. By definition, the inclusion B.G0/ ,!F.G0/ is cofinal
if and only if for every g 2 G0 there is an S 2 B.G0/ with g jS ; equivalently,
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there is no proper subset G0
0
¨ G0 such that B.G0

0
/ D B.G0/. If jGj ¤ 2, then

C.B.G//ŠG, and every class contains precisely one prime divisor.
For every arithmetical invariant �.H /, as defined for a monoid H in Section 2,

it is usual to write �.G0/ instead of �.B.G0// (whenever the meaning is clear
from the context). In particular, we set A.G0/DA.B.G0//, L.G0/D L.B.G0//,
cmon.G0/D cmon.B.G0//, etc.

The study of sequences, subsequence sums, and zero-sums is a flourishing sub-
field of additive group and number theory (see, for example, [Gao and Geroldinger
2006; Geroldinger and Ruzsa 2009; Grynkiewicz 2013]). The Davenport constant
D.G0/, defined as

D.G0/D supfjU j W U 2A.G0/g 2 N0[f1g;

is among the most studied invariants in additive theory and will play a crucial role
in the computations of arithmetical invariants (see the discussion after Lemma 3.4).
We will need the following two simple lemmas which we present here so as to not
clutter the exposition of Section 6.

Lemma 3.2. Suppose that the inclusion B.G0/ ,!F.G0/ is cofinal. The following
are equivalent.

(a) There exist nontrivial submonoids H1;H2�B.G0/ such that B.G0/DH1�H2.

(b) There exist nonempty subsets G1;G2 � G0 such that G0 D G1 ] G2 and
B.G0/D B.G1/�B.G2/.

(c) There exist nonempty subsets G1;G2 � G0 such that G0 D G1 ] G2 and
A.G0/DA.G1/]A.G2/.

Proof. Clearly (b) implies (a). The converse follows from [Geroldinger and Halter-
Koch 2006, Proposition 2.5.6]. The implication (b) implies (c) is obvious. We now
show that (c) implies (b). Let B 2 B.G0/. Since B.G0/ is a Krull monoid, it is
atomic and hence B D U1�:::�Ul with U1; : : : ;Ul 2A.G0/. After renumbering (if
necessary), we can find k 2 Œ0; l � such that U1; : : : ;Uk 2A.G1/ and UkC1; : : : ;Ul 2

A.G2/. Thus B.G0/D B.G1/B.G2/. If B 2 B.G1/\B.G2/, then B is a product
of atoms from A.G1/ and a product of atoms from A.G2/. Since their intersection
is empty, both products are empty. Therefore B D 1 and hence B.G0/D B.G1/�

B.G2/. �

Lemma 3.2.(c) shows that B.G�/ is not a direct product of submonoids. Suppose
that 0 2 G0. Then 0 2 B.G0/ is a prime element and B.G0/ D B.f0g/� B.G�

0
/.

But B.f0g/DF.f0g/Š .N0;C/, and thus all the arithmetical invariants measuring
the nonuniqueness of factorizations of B.G0/ and of B.G�

0
/ coincide. Therefore

we can assume that 0 62G0 whenever it is convenient.
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Lemma 3.3. Let G be an abelian group and let G0 � G be a subset such that
1< D.G0/ <1.

(1) For all k 2 N,

�.G0/� D.G0/=2; k � �k.G0/� k�.G0/; �.G0/
�1k � �k.G0/� k:

(2) Suppose that �2.G0/D D.G0/. Then �.G0/D D.G0/=2, and for all k 2 N,

�2k.G0/D kD.G0/ and kD.G0/C 1� �2kC1.G0/� kD.G0/C
D.G0/

2
:

Moreover, if j ; l 2 N0 are such that lD.G0/C j � 1, then

2l C
2j

D.G0/
� �lD.G0/Cj .G0/� 2l C j:

Proof. By definition, �k.G0/�k��k.G0/. Since �.G0/D supf�k.G0/=k Wk 2Ng,
it follows that �k.G0/� k�.G0/ and k � �.G0/�k.G0/. Furthermore, 2�k.G0/�

kD.G0/ for all k 2 N implies that �.G0/� D.G0/=2. This gives (1).
We now prove (2). Since �k.G0/C �l.G0/� �kCl.G0/ for every k; l 2 N, (1)

implies that

kD.G0/D k�2.G0/� �2k.G0/� .2k/
D.G0/

2
D kD.G0/;

and hence

kD.G0/C 1D �2k.G0/C �1.G0/� �2kC1.G0/� .2kC 1/�.G0/

� kD.G0/C
D.G0/

2
:

Letj; l 2N0 be such that lD.G0/Cj �1. For convenience, set �0.G0/D�0.G0/D0.
Since

2l D
2

D.G0/
lD.G0/� �lD.G0/.G0/ and �2l.G0/D lD.G0/;

it follows that �lD.G0/.G0/D 2l , and hence

2l C
2j

D.G0/
D

2

D.G0/

�
lD.G0/C j

�
D �.G0/

�1
�
lD.G0/C j

�
� �lD.G0/Cj .G0/� �lD.G0/.G0/C�j .G0/� 2l C j: �

Transfer homomorphisms. Transfer homomorphisms are a central tool in factor-
ization theory. In order to study a given monoid H , one constructs a transfer
homomorphism � W H ! B to a simpler monoid B, studies factorizations in B,
and then lifts arithmetical results from B to H . In the case of Krull monoids,
transfer homomorphisms allow one to study nearly all of the arithmetical invariants
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introduced in Section 2 in an associated monoid of zero-sum sequences. We now
gather the basic tools necessary for this approach.

A monoid homomorphism � WH ! B is called a transfer homomorphism if it
has the following properties:

(T1) B D �.H /B� and ��1.B�/DH�.

(T2) If u 2 H , b; c 2 B and �.u/ D bc, then there exist v; w 2 H such that
uD vw, �.v/' b and �.w/' c.

The next result provides the link between the arithmetic of Krull monoids and
additive group and number theory. This interplay is highlighted in the survey
[Geroldinger 2009].

Lemma 3.4. Let H be a Krull monoid, ' W H ! D D F.P/ a cofinal divisor
homomorphism, GD C.'/ its class group, and GP �G the set of classes containing
prime divisors. Let ž WD! F.GP/ denote the unique homomorphism defined by
ž.p/D Œp� for all p 2 P .

(1) The inclusion B.GP/ ,! F.GP/ is cofinal, and the homomorphism

ˇ D ž ı' WH ! B.GP/

is a transfer homomorphism.

(2) For all a 2 H , LH .a/ D LB.GP /.ˇ.a//. In particular, L.H / D L.GP/,
�.H /D�.GP/, Uk.H /DUk.GP/, �k.H /D�k.GP/, and �k.H /D�k.GP/

for each k 2 N.

(3) Suppose that H is not factorial. Then c.H / D c.GP/, cadj.H / D cadj.GP/,
cmon.H /D cmon.GP/, ��.H /D��.GP/, and !.H /� D.GP/.

Proof. See [Geroldinger and Halter-Koch 2006, Section 3.4] for details pertaining
to most of the invariants. For the statements on the monotone catenary degree,
see [Geroldinger et al. 2010]. Roughly speaking, all of the statements in (2) are
straightforward, but the statements in (3) are more subtle. Note that a statement
corresponding to (3) does not hold true for the tame degree (see [Gao et al. 2015]).

�

In summary, if the monoid of modules V.R/ is Krull with class group G and
set GP of classes containing prime divisors, then the arithmetic of direct-sum
decompositions can be studied in the monoid B.GP/ of zero-sum sequences over
GP . In particular, if H DM.R/ and DDM. yR/ as in Lemma 3.1 and all notation
is as in Lemma 3.4, then

D.GP/
D sup

˚
l W yM ŠN1˚ � � �˚Nl with ŒM � 2A.H / and ŒNi � 2A.D/ 8i 2 Œ1; l �

	
:
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4. Monoids of modules: class groups and distribution of prime divisors, I

Throughout this section we use the following setup:

(S) .R;m/ denotes a one-dimensional analytically unramified commutative Noe-
therian local ring with unique maximal ideal m, k D R=m its residue field,
yR its m-adic completion, and spl.R/ D jspec. yR/j � jspec.R/j the splitting

number of R.

In this section we investigate the characteristic of the Krull monoids M.R/

and T .R/ for certain one-dimensional local rings. This study is based on deep
module-theoretic work achieved over the past several decades. We gather together
module-theoretic information and proceed using a recent construction (see 4.4) to
obtain results on the class group and on the set GP of classes containing prime
divisors. The literature does not yet contain a systematic treatment along these
lines. Indeed, early results (see Theorem 4.2 below) indicated only the existence
of extremal sets GP which imply either trivial direct-sum decompositions or that
all arithmetical invariants describing the direct-sum decompositions are infinite. In
either case there was no need for further arithmetical study. Here we reveal that
finite and well-structured sets GP occur in abundance. Thus, as we will see in
Section 6, the arithmetical behavior of direct-sum decompositions is well-structured.

We first gather basic ring and module-theoretic properties. By definition, yR and
R are both reduced and the integral closure of R is a finitely generated R-module.
Moreover, we have C.R/D T .R/. Let M be a finitely generated R-module. If p is
a minimal prime ideal of R, then Rp is a field, Mp is a finite-dimensional Rp-vector
space, and we set rankp.M / D dimRp

.Mp/. If p1; : : : ; ps are the minimal prime
ideals of R, then rank.M /D .r1; : : : ; rs/ where ri D rankpi

.M / for all i 2 Œ1; s�.
The module M is said to have constant rank if r1 D � � � D rs .

We start with a beautiful result of Levy and Odenthall, which gives us a tool to
determine which finitely generated yR-modules are extended from R-modules.

Proposition 4.1 [Levy and Odenthal 1996, Theorem 6.2]. Let M be a finitely
generated torsion-free yR-module. Then M is extended if and only if rankp.M /D

rankq.M / whenever p and q are minimal prime ideals of yR with p\RD q\R. In
particular, if R is a domain, then M is extended if and only if its rank is constant.

We start our discussion with a result which completely determines the charac-
teristic of the Krull monoid M.R/. The arithmetic of this monoid is studied in
Proposition 6.2.2.

Theorem 4.2 [Hassler et al. 2007, Theorem 6.3]. Let G denote the class group of
M.R/ and let GP �G denote the set of classes containing prime divisors.

(1) If R is not Dedekind-like, then G is free abelian of rank spl.R/ and each class
contains jkj@0 prime divisors.
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(2) If R is a DVR, then G D 0.
(3) If R is Dedekind-like but not a DVR, then either

(a) spl.R/D 0 and G D 0, or
(b) spl.R/D 1, G is infinite cyclic with G D hei and GP D f�e; 0; eg. Each

of the classes e and �e contain @0 prime divisors and the class 0 contains
jkj@0 prime divisors.

Thus, for the rest of this section, we focus our attention on T .R/. To determine
if the divisor homomorphism T .R/ ,! T . yR/ is a divisor theory, we will require
additional information. For now, we easily show that it is always cofinal.

Proposition 4.3. The embedding T .R/ ,! T . yR/ is a cofinal divisor homomor-
phism.

Proof. By Lemma 3.1 the embedding is a divisor homomorphism. If M is a
finitely generated torsion-free yR-module, we can consider its rank, rank.M / D

.r1; : : : ; rt /, where t is the number of minimal primes of yR. If r1 D � � � D rt ,
then by Proposition 4.1 M is extended, say M D yN for some finitely generated
torsion-free R-module N and the result is trivial. If the rank of M is not constant,
set r Dmaxfr1; : : : ; rtg and consider the yR-module

LD . yR=q1/
r�r1 ˚ � � �˚ . yR=qt /

r�rt ;

where q1; : : : ; qt denote the minimal primes of yR. Then rank.N ˚L/D .r; : : : ; r/

is constant and hence N˚L is extended, say N˚LŠ yP for some finitely generated
torsion-free R-module P . Clearly M is isomorphic to a direct summand of yP and
the result follows. �

Since T . yR/ is free abelian, we can identify it with the free abelian monoid N
.P/
0

,
where P is an index set for the isomorphism classes of indecomposable finitely
generated torsion-free yR-modules. We then use Proposition 4.1 to describe T .R/ in
detail. The following construction has been used numerous times (see, for example,
[Baeth and Luckas 2011; Baeth and Saccon 2012; Facchini et al. 2006]).

Construction 4.4. � Let p1; : : : ; ps be the distinct minimal prime ideals of R. For
each i 2 Œ1; s�, let qi;1; : : : ; qi;ti

be the minimal primes of yR lying over pi . Note
that spl.R/D

Ps
iD1.ti � 1/.

� Let P be the set of isomorphism classes of indecomposable finitely generated
torsion-free yR-modules.

� Let A.R/ be the spl.R/� jPj matrix whose column indexed by the isomorphism
class ŒM � 2 P is�

r1;1� r1;2 � � � r1;1� r1;t1
� � � rs;1� rs;2 � � � rs;1� rs;ts

�T
;

where ri;j D rankqi;j
.M /.
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Then T .R/Š ker.A.R//\N.P/ � N
.P/
0

is a Diophantine monoid.

If one has a complete description of how the minimal prime ideals of yR lie over
the minimal prime ideals of R together with the ranks of all indecomposable finitely
generated torsion-free yR-modules, then Construction 4.4 completely describes
the monoid T .R/. In certain cases (e.g., Section 4A) we are able to obtain all
of this information. Other times we know only some of the ranks that occur for
indecomposable yR-modules and thus have only a partial description for T .R/.
However, as was shown in [Baeth and Saccon 2012], the ranks of indecomposable
cyclic yR-modules gives enough information about the columns of A.R/ to prove that
T .R/ ,! T . yR/ is nearly always a divisor theory. First we recall that if q1; : : : ; qt

are the minimal primes of yR, and E � Œ1; t �. Then

rank
�
yRT

i2E

qi

�
D .r1; : : : ; rt /; where ri D

�
1 if i 2E;

0 if i 62E:

Thus every nontrivial t-tuple of zeros and ones can be realized as the rank of
a nonzero (necessarily indecomposable) cyclic yR-module. Thus we have the
following:

Construction 4.5. Let all notation be as in Construction 4.4. After renumbering if
necessary, there is p 2 Œ0; s� such that t1; : : : ; tp � 2 and such that ti D 1 for each
i 2 ŒpC 1; s�. Then spl.R/D

Pp
jD1

tj �p. For each i 2 Œ1;p�, let Ai be the set of
.ti � 1/� 1 column vectors all of whose entries are either 0 or 1, and let Bi be the
set of .ti � 1/� 1 column vectors all of whose entries are either 0 or �1.

We now define T to be the spl.R/�
Qp

iD1
.2ti�1/matrix, each of whose columns

has the form 264 T1

:::

Tp

375 ; where Ti 2Ai [Bi for each i 2 Œ1;p�.

With the notation as in Constructions 4.4 and 4.5, we give a realization result
which shows that the matrix T occurs as a submatrix of A.R/.

Proposition 4.6 [Baeth and Saccon 2012, Proposition 3.7]. For each column ˛
of T , there exist nonnegative integers ri;j and an indecomposable torsion-free
yR-module M˛ of rank

.r1;1; : : : ; r1;t1
; : : : ; rp;1; : : : ; rp;tp ; rpC1;1; : : : ; rs;1/

such that

˛D
�
r1;1� r1;2 � � � r1;1� r1;t1

� � � rp;1� rp;2 � � � rp;1� rp;tp
�T
:
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In particular, the matrix A.R/ nearly always satisfies the hypotheses of the
following lemma.

Lemma 4.7 [Baeth and Saccon 2012, Lemma 4.1]. Fix an integer q � 1, and let
Iq denote the q � q identity matrix. Let P be an index set, and let D be a q � jPj
integer matrix whose columns are indexed by P . Assume DD

�
D1 jD2

�
, where D1

is the q � .2qC 2/ integer matrix264 1 �1

Iq �Iq

:::
:::

1 �1

375 ;
and D2 is an arbitrary integer matrix with q rows (and possibly infinitely many
columns). Let H D ker.D/\N

.P/
0

.

(1) The map D W Z.P/! Z.q/ is surjective.

(2) The natural inclusion H ,! N
.P/
0

is a divisor theory.

(3) ker.D/D q.H /.

(4) C.H /Š Z.q/, and this isomorphism maps the set of classes containing prime
divisors onto the set of distinct columns of D.

In particular, we observe the following: Given a fixed column ˛ of D, the cardinality
of fˇ W ˇ is a column of D and ˇ D ˛g is equal to the cardinality of prime divisors
in the class corresponding to ˛. Therefore, the characteristic of the Krull monoid
H is completely given by the matrix D.

Based on the previous results, one easily obtains the following theorem which
provides the framework for our study of the characteristic of T .R/.

Theorem 4.8. (1) If spl.R/D 0, then T .R/Š T . yR/ is free abelian.

(2) If spl.R/�2 then the embedding T .R/ ,!T . yR/ is a divisor theory. Moreover,

(a) T .R/Š ker.A.R//\N
.P/
0

,
(b) C.T .R//Š Z.spl.R//, and this isomorphism maps the set of classes con-

taining prime divisors onto the set of distinct columns of A.R/.

Suppose that spl.R/D 1. The embedding T .R/ ,! T . yR/ is a divisor theory if
and only if the defining matrix A.R/ contains at least two positive and at least two
negative entries (see Proposition 6.1.2).

In many cases, computing the ranks of indecomposable yR-modules and hence the
columns of the defining matrix A.R/ is difficult. However, an additional hypotheses
on R implies that the set of classes containing prime divisors satisfies GP D�GP ,
a crucial property for all arithmetical investigations (see Proposition 6.2 and the
subsequent remarks).
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Corollary 4.9. Suppose in addition that yRŠS=.f / where .S; n/ is a hypersurface,
that is, a regular Noetherian local ring of dimension two and where 0 6D f 2 n. If G

is the class group of T .R/ ,! T . yR/ and GP is the set of classes containing prime
divisors, then GP D�GP .

Proof. With the hypotheses given, we can apply [Baeth and Saccon 2012, Proposi-
tion 6.2] to see that if M is any indecomposable yR-module with rank .r1; : : : ; rt /,
then there is an indecomposable yR-module N with rank .m�r1;m�r2; : : : ;m�rt /

for some m�maxfr1; : : : ; rtg. Using Construction 4.4 we see that if ˛D
�
a1 � � � aq

�
is the column of A.R/ indexed by M , then �˛ is the column indexed by N .
Therefore, since GP corresponds to the distinct columns of A.R/, GP D�GP . �
Remark 4.10. Although the system of equations developed in Construction 4.4
is somehow natural, it is not the only system of equations which can be used to
define T .R/. Indeed, the matrix A.R/ can be adjusted by performing any set of
elementary row operations. If J is an elementary matrix corresponding to such
a set of row operations, then T .R/ Š ker.A.R//\N

.P/
0
Š ker.JA.R//\N

.P/
0

.
Moreover, this isomorphism gives rise to an automorphism of C.T .R// mapping
the set of classes containing prime divisors to another set of classes containing
prime divisors. Example 4.20 illustrates the usefulness of considering an alternate
defining matrix for T .R/.

4A. Finite representation type. Throughout this subsection, let R be as in Setup
(S), and suppose in addition that R has finite representation type.

Decades of work, going back to [Green and Reiner 1978], and including [Wiegand
and Wiegand 1994; Cimen 1998; Arnavut et al. 2007; Baeth 2007], culminated
in a precise classification of tuples that can occur as the ranks of indecomposable
torsion-free R-modules [Baeth and Luckas 2009]. We note that since R has finite
representation type, both R and yR have at most three minimal primes (see [Cimen
et al. 1995, Theorem 0.5]).

Proposition 4.11 [Baeth and Luckas 2009, Main Theorem 1.2]. (1) If yR is a
domain, then every indecomposable finitely generated torsion-free yR-module
has rank 1, 2 or 3.

(2) If yR has exactly two minimal prime ideals, then every indecomposable finitely
generated torsion-free yR-module has rank .0; 1/, .1; 0/, .1; 1/, .1; 2/, .2; 1/ or
.2; 2/.

(3) If yR has exactly two minimal prime ideals, then every indecomposable finitely
generated torsion-free yR-module has rank .0; 0; 1/, .0; 1; 0/, .1; 0; 0/, .0; 1; 1/,
.1; 0; 1/, .1; 1; 0/, .1; 1; 1/ or .2; 1; 1/.

Note the lack of symmetry in case (3): With a predetermined order on the minimal
prime ideals of yR, there is an indecomposable module of rank .2; 1; 1/, but not of
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rank .1; 2; 1/ or .1; 1; 2/. As is stated in [Baeth and Luckas 2009, Remark 5.2],
even for a fixed number of minimal primes, not each of these tuples will occur
as the rank of an indecomposable module for each ring. However, since when
applying Construction 4.4 we cannot distinguish between an indecomposable of
rank .2; 1/ and one of rank .1; 0/, and since all nontrivial tuples of zeros and ones
occur as ranks of indecomposable cyclic modules, we have [Baeth and Luckas 2011,
Proposition 3.3]:

(1) If spl.R/D 1, then A.R/D
�
1 � � � 1 �1 � � � �1 0 � � � 0

�
.

(2) If spl.R/D 2, then A.R/D

�
0 �1 1 �1 1 0 0 1 � � �

�1 0 1 �1 0 1 0 1 � � �

�
.

When spl.R/D 1, we are guaranteed at least one entry for each of 1, �1, and 0,
coming from the ranks of indecomposable cyclic yR-modules. If we have at most
one 1 or at most one �1 in the defining matrix A.R/, then it must be the case that
R is a domain, yR has exactly two minimal primes p and q, and up to isomorphism
either yR=p is the only indecomposable torsion-free yR-module of rank .r; s/ with
r � s D 1 or the yR=q is the only indecomposable torsion-free yR-module of rank
.r; s/ with r � s D�1. If this is the situation, we say that R satisfies condition (|).
In case spl.R/D 2, we are guaranteed that each column listed appears at least once
as a column of A.R/.

We then have the following refinement of Theorem 4.8 when R has finite rep-
resentation type. The arithmetic of this monoid is studied in Proposition 6.2.2,
Theorem 6.4, and Corollary 6.10.

Theorem 4.12 [Baeth and Luckas 2011, Proposition 3.3]. (1) If spl.R/D 1 and
R satisfies condition (|) then T .R/ ,! T . yR/ is not a divisor theory but T .R/
is free abelian.

(2) If spl.R/D 1 and R does not satisfy condition (|), then T .R/ ,! T . yR/ is a
divisor theory with infinite cyclic class group G D hei, and GP D f�e; 0; eg.

(3) If spl.R/D 2, then T .R/ ,! T . yR/ is a divisor theory and C.T .R//Š Z.2/.
Moreover, this isomorphism maps the set of classes containing prime divisors
onto ��

1

1

�
;

�
�1

�1

�
;

�
1

0

�
;

�
�1

0

�
;

�
0

1

�
;

�
0

�1

��
:

4B. Infinite representation type. Throughout this subsection, let R be as in Setup
(S), and suppose in addition that R has infinite representation type.

Unfortunately, in this case, there is no known complete list of the tuples that
can occur as ranks of indecomposable finitely generated torsion-free R-modules.
Thus we cannot give a full description of T .R/ using Construction 4.4. However,
with the additional assumption that yR=q has infinite representation type for some
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minimal prime ideal q of yR, we can produce a wide variety of interesting ranks
and can provide a partial description of T .R/. This information is enough to show
that, very much unlike the finite representation type case of Section 4A, all of the
arithmetical invariants we study are infinite.

Proposition 4.13 [Saccon 2010, Theorem 3.4.1]. Let S be a one-dimensional
analytically unramified commutative Noetherian local ring with residue field K, and
with t minimal prime ideals q1; : : : ; qt such that S=q1 has infinite representation
type. Let .r1; : : : ; rt / be a nonzero t -tuple of nonnegative integers with ri � 2r1 for
all i 2 Œ2; t �.

(1) There exists an indecomposable torsion-free S -module of rank .r1; : : : ; rt /.

(2) If the residue field K is infinite, then the set of isomorphism classes of inde-
composable torsion-free S -modules of rank .r1; : : : ; rt / has cardinality jKj.

By Proposition 4.13 the conditions of Lemma 4.7 are satisfied. Therefore the
map T .R/ ,! T . yR/ is a divisor theory and the class group C.T .R// is free abelian
of rank spl.R/. Our main result of this subsection is a refinement of Theorem 4.8.
Its arithmetical consequences are given in Proposition 6.2.1, strongly improving
the arithmetical characterizations given in [Baeth and Saccon 2012].

Theorem 4.14. Suppose that spl.R/ � 1 and that there is at least one minimal
prime ideal q of yR such that yR=q has infinite representation type. Then C.T .R// is
free abelian of rank spl.R/ and the set of classes containing prime divisors contains
an infinite cyclic subgroup.

Proof. Let p1; : : : ; ps denote the minimal primes of R and, for each i 2 Œ1; s�,
let qi;1; : : : ; qi;ti

denote the set of minimal primes of yR lying over pi . With-
out loss of generality, assume that yR=q1;1 has infinite representation type. If
t1 D 1, then without loss of generality, t2 > 1. From Proposition 4.13 there is,
for each pair .r; s/ of nonnegative integers (not both zero), an indecomposable
yR-module M with rankq2;1

.M / D r , rankq2;2
.M / D s, and rankqi;j

.M / D 0

for all .i; j / 62 f.1; 1/; .2; 1/; .2; 2/g. Now suppose that t1 > 1. Then we have,
from Proposition 4.13, for each pair .r; s/ of nonnegative integers (not both zero)
satisfying r � s � �s, an indecomposable yR-module M with rankq1;1

.M / D r ,
rankq1;2

.M / D s, and rankqi;j
.M / D 0 for all .i; j / 62 f.1; 1/; .1; 2/g. In either

case, using Construction 4.4 we see that the set˚�
x 0 � � � 0

�T
W x 2 Z

	
occurs as a set of columns for A.R/ and hence occurs as a subset of the set of
classes containing prime divisors. �
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4C. Divisor-closed submonoids of T .R/. Suppose that R has infinite representa-
tion type but, in contrast to Theorem 4.14, suppose that yR=q has finite representation
type for each minimal prime q of yR. Then there is no known classification of all
ranks of indecomposable finitely generated torsion-free R-modules. Specific rings
have been studied in the literature, but even in these settings, a complete solution
has been unattainable. We now give such an example which we will return to in
Section 4D.

Example 4.15. Let K be an algebraically closed field of characteristic zero. Con-
sider the ring S D KŒŒx;y��=.x4 � xy7/ which has exactly two minimal primes
xS and .x3�y7/S . Detailed constructions in [Karr and Wiegand 2011; Saccon
2010] show that S has indecomposable modules of ranks .m;m/, .mC 1;m/,
and .mC 2;m/ for each positive integer m. Moreover, [Baeth and Saccon 2012,
Proposition 6.2] guarantees indecomposable modules of ranks .s� .mC1/; s�m/

and .t � .mC 2/; t �m/, where s � mC 1 and t � mC 2 are positive integers.
Determining what other tuples occur as ranks of indecomposable torsion-free S-
modules appears to be quite difficult.

Thus, since studying T .R/ as a whole is out of reach at the present state of
knowledge, we pick finitely many R-modules M1; : : : ;Mn, and study the direct-
sum relations among them. In more technical terms, instead of studying the full Krull
monoid T .R/, we focus on divisor-closed submonoids. Suppose that H is a Krull
monoid and H ,! F.P/ a cofinal divisor homomorphism. If H 0 �H is a divisor-
closed submonoid, then H 0 ,!H ,! F.P/ is a divisor homomorphism. For each
of the arithmetical invariants �. � / introduced in Section 2, we have �.H 0/� �.H /

or �.H 0/ � �.H /; for example we have c.H 0/ � c.H /, L.H 0/ � L.H /, and so
on. Moreover, if H 0 is the smallest divisor-closed submonoid containing finitely
many elements a1; : : : ; ak 2H , it is also the smallest divisor-closed submonoid
containing a1�:::�ak .

For the rest of Section 4, we study divisor-closed submonoids of T .R/ generated
by a single R-module M , regardless of whether R has finite or infinite representation
type. We denote this monoid by add.M /. Before discussing specific examples in
Section 4D, we carefully recall the consequences of our main Construction 4.4 for
such submonoids.

Construction 4.16. Let R and yR be as in Construction 4.4. Let M be a finitely
generated torsion-free R-module. Then add.M / consists of all isomorphism classes
ŒN �2 T .R/ such that N is isomorphic to a direct summand of M .n/ for some finite
positive integer n.

Write yM D L
.n1/
1
˚ � � � ˚ L

.nk/

k
, where the Li are pairwise nonisomorphic

indecomposable finitely generated torsion-free yR-modules and the ni are posi-
tive integers. If ŒN � 2 add.M /, then Œ yN � 2 add. yM / and thus, since direct-sum
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decomposition is essentially unique over yR,

yN ŠL
.a1/
1
˚ � � �˚L

.ak/

k
;

with each ai a nonnegative integer at most ni . Thus there is a divisor homomorphism
‰ W add.M /! N

.k/
0

given by ŒN � 7! .a1; : : : ; ak/. We identify add.M / with the
saturated submonoid �.M /D‰.add.M // of N

.k/
0

.
Moreover, if A.M / is the spl.R/� k integer-valued matrix for which the l-th

column is the transpose of the row vector�
r1;1� r1;2 � � � r1;1� r1;t1

� � � rs;1� rs;2 � � � rs;1� rs;ts

�
;

where ri;j D rankqi;j
.Vl/, then add.M /Š �.M /D ker.A.M //\N

.k/
0

.

We now state a corollary of Theorem 4.8 for add.M /.

Corollary 4.17. Let M be a finitely generated torsion-free R-module as in Con-
struction 4.16.

(1) If spl.R/D 0, then add.M /Š add. yM / is free abelian.

(2) If spl.R/ � 1 and A.M / satisfies the conditions of Lemma 4.7, then the
inclusion �.M /� N

.k/
0

is a divisor theory. Moreover:

(a) add.M /Š ker.A.M //\N
.k/
0

.

(b) C.add.M // Š Z.spl.R//, and this isomorphism maps the set of classes
containing prime divisors onto the set of distinct columns of A.M /.

Before considering explicit examples, we give a realization result (see also
[Leuschke and Wiegand 2012, Chapter 1]).

Proposition 4.18. Let H be a reduced Krull monoid with free abelian class group
G of rank q and let GP � G denote the set of classes containing prime divisors.
Suppose that GP is finite and that G has a basis .e1; : : : ; eq/ such that

G0 D fe0 D e1C� � �Ceq; e1; : : : ; eq; �e0; : : : ; �eqg �GP :

Then there exists an analytically unramified commutative Noetherian local domain
S and a finitely generated torsion-free S -module M such that add.M /ŠH .

Proof. Let ˆ WG! Z.q/ denote the isomorphism which maps .e1; : : : ; eq/ onto the
standard basis of Z.q/. Let S be an analytically unramified Noetherian local domain
with completion yS having qC 1 minimal primes Q0; : : : ;Qq such that yS=Q0 has
infinite representation type. For sD Œs1 � � � sq �2ˆ.GP/, set r0D s1C� � �Csq and
riD

P
j 6Di sj for each i 2 Œ1; q�. By Proposition 4.13 there exists an indecomposable

finitely generated torsion-free yS -module Ns such that rank.Ns/D .r0; : : : ; rq/. Set

N D
M

s2ˆ.GP /

Ns ;



284 NICHOLAS R. BAETH AND ALFRED GEROLDINGER

and write rank.N /D .a0; : : : ; aq/. Set aDmaxfa0; : : : ; aqg and

LD

qM
iD0

. yS=Qi/
.a�ai /:

Then N ˚ L is a finitely generated torsion-free yS-module with constant rank
and is thus extended from a finitely generated torsion-free S-module M . By
Construction 4.16 and Corollary 4.17 we see that add.M / has class group isomor-
phic to Z.q/ and this isomorphism maps the set of prime divisors onto the elements
of the set ˆ.GP/. �

4D. Examples. In this section we provide the constructions of naturally occurring
monoids add.M / where M is a finitely generated torsion-free R-module. In
particular, we construct specific modules M , whose completion yM is often a direct
sum of indecomposable cyclic yR-modules and we determine the class group G

of add.M / and the set of classes GP � G containing prime divisors. Note that
the Krull monoids M.R/ of all finitely generated R-modules and T .R/ of all
finitely generated torsion-free R-modules have class groups G0 � G and a set
G0P of classes containing prime divisors such that G0P � GP . Since add.M / is a
divisor-closed submonoid of both M.R/ and of T .R/, a study of the arithmetic of
add.M / provides a partial description of M.R/ and T .R/. Moreover, the values
of arithmetical invariants of add.M / give lower bounds on the same arithmetical
invariants of M.R/ and T .R/.

In each of the following examples we construct an yR-module LDL
n1

1
˚� � �˚L

nk

k

of constant rank, where L1; : : : ;Lk are pairwise nonisomorphic indecomposable
yR-modules. Then, by Corollary 4.17 with yM ŠL for some R-module M ,

add.M /Š ker
�
A.M /

�
\N

.k/
0
� N

.k/
0
Š add.L/:

In particular, we do so in such a way that the natural map add.M / ,! add.L/ is a
divisor theory with class group isomorphic to Z.spl.R// and where the set of classes
containing prime divisors maps onto the distinct columns of A.M /.

Example 4.19. We now construct a monoid of modules whose arithmetic will
be studied in Proposition 6.12. Let S be as in Example 4.15. Then there are
indecomposable torsion-free S -modules M1, M�1, M2, M�2, N1, N�1, N2, and
N�2 with ranks (respectively) .2; 1/, .1; 2/, .3; 1/, .1; 3/, .3; 2/, .3; 2/, .2; 3/, .4; 2/,
and .2; 4/. Set L to be the direct sum of these eight indecomposable S -modules. By
Lech’s theorem [1986], there exists a Noetherian local domain .R;m/ with m-adic
completion yRŠS . Since L has constant rank, L is extended from some R-module
M , and add.M / ,! add.L/ Š N

.8/
0

is a divisor theory with infinite cyclic class
group G and with GP D f�2e;�e; e; 2eg where G D hei.
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Example 4.20. We now provide an example that illustrates the convenience of
choosing an alternate defining matrix for add.M /, as is described in Remark 4.10.
Its arithmetic is given in Theorem 6.4. Suppose that R has two minimal prime
ideals p1; p2 and that yR has five minimal prime ideals q.1;1/, q.1;2/, q.1;3/, q.2;1/,
and q.2;2/, with q.i;j/ lying over pi for each i 2 Œ1; 2� and for each j . Set

LD
yR

q.1;1/\q.1;3/\q.2;2/
˚

yR

q.1;1/\q.1;2/\q.2;1/
˚

yR

q.1;2/\q.2;1/

˚

yR

q.1;1/
˚

yR

q.1;3/\q.2;2/
˚

yR

q.1;2/\q.1;3/\q.2;1/\q.2;2/
:

Since L has constant rank 3, there is an R-module M such that yM Š L. Then
add.M /Š ker.A.M //\N

.6/
0

where

A.M /D

24 1 0 �1 1 0 �1

0 1 0 1 �1 �1

�1 1 1 0 �1 0

35
�

24 1 0 �1 1 0 �1

�1 1 1 0 �1 0

0 0 0 0 0 0

35�
241 0 �1 1 0 �1

0 1 0 1 �1 �1

0 0 0 0 0 0

35D JA.M /:

Thus

add.M /Š ker.JA.M //\N
.6/
0
Š ker

�
1 0 �1 1 0 �1

0 1 0 1 �1 �1

�
\N

.6/
0
:

Since the matrix A.M / has rank two, the representation of add.M / as a Diophantine
matrix defined by two equations more clearly describes this monoid. Moreover,
since the map from Z.6/ to Z.2/ is surjective (the map A.M / W Z.6/! Z.3/ is not
surjective), we immediately see that C.add.M // Š Z.2/, and this isomorphism
maps the set of classes containing prime divisors onto��

1

0

�
;

�
0

1

�
;

�
�1

0

�
;

�
0

�1

�
;

�
1

1

�
;

�
�1

�1

��
:

Example 4.21. We now consider a monoid add.M / which generalizes the monoid
T .R/ when R has finite representation type, and its arithmetic is studied in
Theorem 6.7 and Corollary 6.10. Suppose that yR has q C 1 minimal primes
q1; : : : ; qqC1, and set

LD
M

I�Œ1;qC1�
I 6D∅

yRT
i2I qi

:
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From the symmetry of the set of ranks of the indecomposable cyclic yR-modules

yRT
i2I

qi

we immediately see that L has constant rank .2q; : : : ; 2q/ and is therefore extended
from some R-module M . Then

add.M /Š ker.A.M //\N
.q/
0
;

where A.M / is an q � 2qC1� 1 integer-valued matrix with columns Œ�1 � � � �q �
T

where either �i 2 f0; 1g for all i 2 Œ1; q� or �i 2 f0;�1g for all i 2 Œ1; q�.
Since the columns of A.M / contain a basis for Z.q/, add.M / ,! add.L/ŠN

.q/
0

is a divisor theory with class group C.add.M //Š Z.q/, and this isomorphism maps
the set of classes containing prime divisors onto�˚

Œ�1 � � � �q �
T
W �i 2 f0; 1g

	
[
˚
Œ�1 � � � �q �

T
W �i 2 f0;�1g

	�
n
˚
Œ0 � � � 0�

	
:

Example 4.22. In this example we construct a monoid add.M / which generalizes
the monoid of Example 4.21 by including all vectors having entries in f�1; 0; 1g

in the set GP . This larger set of classes containing prime divisors adds much
complexity to the arithmetic. Suppose that R has q minimal primes and that yR has
2q minimal primes

q.1;1/; q.1;2/; q.2;1/; : : : ; q.q;2/ ;

where q.i;j/\RD q.i0;j 0/\R if and only if i D i 0. As in the previous example, let

LD
M

I�f.1;1/;:::;.q;2/g
I¤∅

yRT
.i;j/2I

q.i;j/
:

From the symmetry of the set of ranks of the indecomposable cyclic yR-modules
yR=
T
fi;jg2I qi;j ; we immediately see that L has constant rank .22q�1; : : : ; 22q�1/

and is therefore extended from some R-module M . Then

add.M /Š ker.A.M //\N
.q/
0
;

where A.M / is an q � 22q � 1 integer-valued matrix with columns of the form�
r.1;1/� r.1;2/ r.2;1/� r.2;2/ � � � r.q;1/� r.q;2/

�T
;

where .r.1;1/; r.1;2/; : : : ; r.q;2// is the rank of one of the 22q � 1 indecomposable
cyclic yR-modules — that is, any one of the q-tuples of 1s and 0s (not all 0). In
other words, the columns of A.M / are exactly the 3q columns Œ�1 � � � �q �

T , where
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�i 2 f�1; 0; 1g for all i 2 Œ1; q�, repeated with some multiplicity. For example, the
column of all zeros occurs for each of the indecomposable cyclic yR-modules

yRT
.i;j/2I

q.i;j/
;

where .i; 1/ 2 I if and only if .i; 2/ 2 I .
Since the columns of A.M / contain a basis for Z.q/,

add.M / ,! add.L/Š N
.22q�1/
0

is a divisor theory whose class group G Š Z.q/, and this isomorphism maps the set
of classes containing prime divisors onto˚

Œ�1 � � � �q �
T
W �i 2 f�1; 0; 1g

	
:

Example 4.23. In this example we consider add.M / when the completion of M

is isomorphic to a direct sum of some (but not all) of the indecomposable cyclic
yR-modules. In this case, the example is constructed in such a way that B.GP/ is a

direct product of nontrivial submonoids (see Lemma 3.2). Suppose that R has q

minimal primes and that yR has 3q minimal primes˚
q.i;j/ W i 2 Œ1; q�; j 2 Œ1; 3�

	
;

where q.i;j/\RD q.i0;j 0/\R if and only if i D i 0. Let L be the yR-module

qM
iD1

�
yR=q.i;1/˚ yR=q.i;2/˚ yR=q.i;3/

˚ yR=.q.i;1/\ q.i;2//˚ yR=.q.i;1/\ q.i;3//˚ yR=.q.i;2/\ q.i;3//
�
:

We see immediately that L has constant rank .3; : : : ; 3/ and thus L is extended
from some R-module M . Then add.M /Š ker.A.M //\N

.2q/
0

where A.M / is an
2q � 6q integer-valued matrix with columns˚

e2k�1; e2k ; e2k�1Ce2k ; �e2k�1; �e2k ; �e2k�1�e2k W k 2 Œ1; q�
	
;

where .e1; : : : ; e2q/ denotes the canonical basis of Z.2q/.
For k 2 Œ1; q�, we set

Gk D
˚
e2k�1; e2k ; e2k�1Ce2k ; �e2k�1; �e2k ; �e2k�1�e2k

	
:

Then GPD
U

k2Œ1;q�Gk is the set of classes containing prime divisors and B.GP/D

B.G1/ � � � � � B.Gq/. From Proposition 6.1 we will see that B.Gk/ ,! F.Gk/
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is a divisor theory, whence B.GP/ ,! F.GP/ and add.M / ,! add.L/ are divi-
sor theories. The arithmetic of this monoid is studied in Proposition 6.12 and
Corollary 6.15.

Example 4.24. As in Example 4.23, suppose that R has q minimal primes and
suppose that the completion yR of R has 3q minimal primes˚

q.i;j/ W i 2 Œ1; q�; j 2 Œ1; 3�
	
;

where q.i;j/ \R D q.i0;j 0/ \R if and only if i D i 0. Further suppose that yR D
S=.f / where .S; n/ is a regular Noetherian local ring of dimension two and where
0¤ f 2 n and that yR=q.i;j/ has infinite representation type for all pairs .i; j /. By
Proposition 4.13, for each k 2 Œ1; q� there are indecomposable finitely generated
torsion-free yR-modules Mk and Nk of ranks .r1;1; : : : ; rq;3/ and .s1;1; : : : ; sq;3/

where

ri;j D

8<:
0 if i 6D k;

2 if i D k; j 2 Œ1; 2� ;

0 if i D k; j D 3;

and si;j D

8̂̂̂<̂
ˆ̂:

0 if i 6D k;

3 if i D k; j D 1;

2 if i D k; j D 2;

0 if i D k; j D 3:

Moreover, by Corollary 4.9, for each k 2 Œ1; q� there are constant tk � 2 and t 0
k
� 3

and indecomposable finitely generated torsion-free yR-modules M 0
k

and N 0
k

having
ranks .r 0

1;1
; : : : ; r 0

q;3
/ and .s0

1;1
; : : : ; s0

q;3
/ where

r 0i;j D

8<:
tk if i 6D k;

tk � 2 if i D k; j 2 Œ1; 2� ;

tk if i D k; j D 3;

and s0i;j D

8̂̂̂<̂
ˆ̂:

t 0
k

if i 6D k;

t 0
k
� 3 if i D k; j D 1;

t 0
k
� 2 if i D k; j D 2;

t 0
k

if i D k; j D 3:

Let

LD yR˚

� qM
kD1

.Mk ˚Nk ˚M 0
k ˚N 0k/

˚ yR=.q.i;1/\q.i;3//˚ yR=.q.i;1/\q.i;2//˚ yR=q.i;2/˚ yR=q.i;3/

�
:

Since L has constant rank, L is extended from an R-module M . Then add.M /Š

ker.A.M //\N
.2q/
0

where A.M / is an 2q � .8qC 1/ integer-valued matrix with
columns 0 and˚
e2k�1;e2k ;2e2k ;e2k�1C2e2k ;�e2k�1;�e2k ;�2e2k ;�e2k�1�2e2k Wk 2 Œ1;q�

	
;

where .e1; : : : ; e2q/ denotes the canonical basis of Z.2q/.
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For k 2 Œ1; q�, we set

Gk D fe2k�1; e2k ; 2e2k ; e2k�1C2e2k ; �e2k�1; �e2k ; �2e2k ; �e2k�1�2e2kg:

Then GPD
U

k2Œ1;q�Gk is the set of classes containing prime divisors and B.GP/D

B.G1/ � � � � � B.Gq/. From Proposition 6.1 we will see that B.Gk/ ,! F.Gk/

is a divisor theory, whence B.GP/ ,! F.GP/ and add.M / ,! add.N / are divi-
sor theories. The arithmetic of this monoid is studied in Proposition 6.13 and
Corollary 6.15.

Example 4.25. In our final example we construct a tuple .G;GP/which generalizes
the monoid T .R/ when R has finite representation type (see Theorem 4.12). The
arithmetic of such Krull monoids is studied in Theorem 6.4 and Corollary 6.10.
Suppose that yR has qC 1 minimal primes q1; : : : ; qqC1, and set

LD

qC1M
jD1

��
yR
ıT

i 6Dj

qi

�
˚ . yR=qj /

�
:

Note that L has constant rank .q; : : : ; q/ and is hence extended from some R-module
M . Then add.M /Š ker.A.M //\N

.q/
0

where A.M / is an q � 2q integer-valued
matrix with columns

e1; : : : ; eq; e0 D e1Ce2C� � �Ceq; �e1; : : : ; �eq; �e0:

By Proposition 6.1, add.M / ,! add.L/ŠN
.2q/
0

is a divisor theory with class group
C.add.M //Š Z.q/, and this isomorphism maps the set of classes containing prime
divisors onto

fe0 D e1C� � �Ceq; e1; : : : ; eq; �e0; : : : ; �eqg:

5. Monoids of modules: class groups and distribution of prime divisors, II

In this section we investigate the characteristic of the Krull monoids T .R/ and
C.R/ for two-dimensional Noetherian local Krull domains (see Theorem 5.4). We
will show that, apart from a well-described exceptional case, their class groups are
both isomorphic to the factor group C. yR/=�.C.R//, where � W C.R/! C. yR/ is the
natural homomorphism between the class groups of R and yR. In a well-studied
special case where R is factorial and yR is a hypersurface with finite representation
type, this factor group is a finite cyclic group (see Theorem 5.5). This is in strong
contrast to the results on one-dimensional rings in the previous section where all
class groups are torsion-free.

Let S be a Krull domain and let I�v .S/ denote the monoid of nonzero divisorial
ideals. Then ' W S! I�v .S/, defined by a 7! aS , is a divisor theory. In this section
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we view C.S/ as the class group of this specific divisor theory. First we give a
classical result (see [Bourbaki 1988, Chapter VII, Section 4.7]).

Lemma 5.1. Let S be a Noetherian Krull domain. One can associate to each
finitely generated S -module M a class c.M / 2 C.S/ in such a way that

(1) If 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of finitely generated
S -modules, then c.M /D c.M 0/C c.M 00/.

(2) If I is a fractional ideal of S and Iv the divisorial ideal generated by I , then
c.I/D c.Iv/.

Note that if S is any Noetherian domain, every ideal of S is obviously an
indecomposable finitely generated torsion-free S-module. If, in addition, the ring
has dimension two, then we have the following stronger result.

Lemma 5.2. Let S be a Noetherian local Krull domain of dimension two.

(1) Every divisorial ideal of S is an indecomposable MCM S -module [Evans and
Griffith 1985, Lemma 1.1 and Theorem 3.6].

(2) In addition, assume that the m-adic completion yS of S is a Krull domain. Then
a finitely generated torsion-free yS -module N is extended from an S -module if
and only if c.N / is in the image of the natural homomorphism � W C.S/! C. yS/
[Rotthaus et al. 1999, Proposition 3].

We now give a result on abstract Krull monoids which encapsulates the structure
of the monoids of modules described in Theorem 5.4.

Lemma 5.3. Let DDF.P/ be a free abelian monoid, G an additive abelian group,
 WD!G a homomorphism, and H D  �1.0/�D.

(1) If H �D is cofinal, then the inclusion H ,!D is a divisor homomorphism
and  WD=H !  .D/�G given by  .Œa�/D  .a/ is an isomorphism.

(2) The inclusion H ,!D is a divisor theory if and only if h .P/i D Œ .P nfqg/�
for every q 2 P . If this is the case, then  WD=H !  .D/ is an isomorphism
and, for every g 2 .D/, the set P\ �1.g/ is the set of prime divisors in the
class  �1.g/.

(3) If the restriction  j P W P!G of  to P is an epimorphism, then H ,!D is
cofinal. Moreover, it is a divisor theory apart from the following exception:

G D f0;gg and jP \ �1.g/j D 1:

If H ,!D is not a divisor theory, then H is factorial.

Proof. For the proofs of (1) and (2), see [Geroldinger and Halter-Koch 2006,
Proposition 2.5.1]. We now consider the proof of (3).
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Let a 2 D. Since  j P W P ! G is an epimorphism, there exists p 2 P � D

such that  .p/D� .a/. Therefore ap 2H and the inclusion H ,!D is cofinal.
In order to show that H ,!D is a divisor theory we distinguish three cases. First
suppose that jGj D 1. Then jD=H j D 1, and hence H D D. Next suppose that
jGj> 2. By (2) we must verify that

 .q/ 2 Œ .P nfqg/� for every q 2 P :

Let q 2 P . Since jGj> 2, there exist g1;g2 2G n f0;  .q/g with  .q/D g1Cg2.
Since the restriction  j P WP!G is an epimorphism, there exist p1;p2 2P n fqg
with  .pi/D gi for i 2 Œ1; 2�. Therefore

 .q/D g D g1Cg2 D  .p1/C .p2/ 2 Œ .P nfqg/�:

Finally, suppose that jGj D 2. Then H ,!D is a divisor theory if and only if
h .P/i D Œ .P nfqg/� for every q 2P if and only if there exist distinct q1; q2 2P
such that  .qi/¤ 0 for i 2 Œ1; 2�. Clearly, if q 2P is the unique element of P with
 .q/¤ 0, then H is free abelian with basis P n fqg[ fq2g. �

We are now able to determine both the class group and the set of classes containing
prime divisors for the monoids T .R/ and C.R/. This generalizes and refines the
results of [Baeth 2009]. Since each divisorial ideal over a two-dimensional local
ring is MCM and thus finitely generated and torsion-free, Theorem 5.4 can be stated
in parallel both for T .R/ and C.R/.

Theorem 5.4. Let .R;m/ be a Noetherian local Krull domain of dimension two
whose m-adic completion yR is also a Krull domain. Let V.R/ (respectively V. yR/)
denote either T .R/ (respectively T . yR/) or C.R/ (respectively C. yR/), and let
� W C.R/! C. yR/ be the natural map.

(1) The embedding V.R/ ,! V. yR/ is a cofinal divisor homomorphism. The class
group of this divisor homomorphism is isomorphic to G D C. yR/=�.C.R// and
every class contains a prime divisor. Moreover the embedding is a divisor
theory except if yR satisfies the following condition:

(E) jGj D 2 and, up to isomorphism, there is precisely one nonextended
indecomposable yR-module M with ŒM � 2 V. yR/.

In particular, V.R/ satisfies KRSA if and only if either jGj D 1 or yR satisfies
(E).

(2) Suppose that the embeddings T .R/ ,! T . yR/ and C.R/ ,! C. yR/ are both
divisor theories. Then their class groups are isomorphic. If .G; .mg/g2G/

is the characteristic of T .R/ and .G; .ng/g2G/ is the characteristic of C.R/,
then mg � ng for all g 2G. Moreover,

P
g2G mg infinite.



292 NICHOLAS R. BAETH AND ALFRED GEROLDINGER

.An/ kŒŒx;y; z��=.x2Cy2C znC1/, n� 1

.Dn/ kŒŒx;y; z��=.x2zCy2C zn�1/, n� 4

.E6/ kŒŒx;y; z��=.x3Cy2C z4/

(E7) kŒŒx;y; z��=.x3Cxz3Cy2/

.E8/ kŒŒx;y; z��=.x2Cy3C z5/

Table 1. Two-dimensional rings with finite representation type.

Proof. We set D DF.P/D V. yR/. By (1) of Lemma 5.1 there is a homomorphism

 W V. yR/! C. yR/=�.C.R//DG given by ŒM � 7! c.M /C �.C.R//:

By (1) of Lemma 5.2, every divisorial ideal of yR is an indecomposable MCM yR-
module. That is, the class of each divisorial ideal of yR in C. yR/ is the image of some
ŒM � 2 V. yR/, where M is an indecomposable MCM yR-module. In other words,  
restricted to P DA.D/ is an epimorphism and  .A.D//D C. yR/=�.C.R//.

By Lemma 5.3, the inclusion H D  �1.0/�D is a cofinal divisor homomor-
phism. By (2) of Lemma 5.2, H is the image of the embedding V.R/ ,!V. yR/, and
thus the embedding V.R/ ,! V. yR/ is a divisor theory if and only if the inclusion
H ,! D is a divisor theory. By Lemma 5.3 this always holds apart from the
described Exception (E). A Krull monoid is factorial if and only if its class group
is trivial. Thus, if V.R/ ,! V. yR/ is a divisor theory then KRSA holds for V.R/ if
and only if jGj D 0. If V.R/ ,! V. yR/ is not a divisor theory, then the inclusion
H ,!D is not a divisor theory. By Lemma 5.3, H is factorial, whence V.R/ is
factorial.

Since each MCM R-module is finitely generated and torsion-free, it is clear
that mg � ng for each g 2 G. From [Bass 1962] we know that there infinitely
many nonisomorphic indecomposable finitely generated torsion-free yR-modules,
and therefore

P
g2G mg infinite. �

Let R be as in the above theorem and assume in addition that

� R contains a field and k D R=m is algebraically closed with characteristic
zero;

� yR is a hypersurface, that is, yR is isomorphic to a three-dimensional regular
Noetherian local ring modulo a regular element;

� R has finite representation type.

Such rings were classified in [Buchweitz et al. 1987; Knörrer 1987] and are given,
up to isomorphism, in Table 1. Note that since yR has finite representation type
and each divisorial ideal of yR is and indecomposable MCM yR-module, C. yR/ and
hence C.R/ is finite.
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An amazing theorem of Heitmann [1993] gives the existence of a local factorial
domain whose completion is a ring as in Table 1. In this situation we can determine
the characteristic of C.R/.

Theorem 5.5. Let .R;m/ be a Noetherian local factorial domain with m-adic
completion yR isomorphic to a ring in Table 1.

(1) If yR is a ring of type (An), then C.C.R// is cyclic of order nC 1 and each
class contains exactly one prime divisor.

(2) Suppose yR is a ring of type (Dn).

(a) If n is even, then C.C.R//ŠC2˚C2. The trivial class contains n=2 prime
divisors. Two nontrivial classes each contain a single prime divisor and
their sum contains .n� 2/=2 prime divisors.

(b) If n is odd, then C.C.R// is cyclic of order four. The classes of order four
each contain a single prime. The remaining classes each contain .n�1/=2

prime divisors.

(3) If yR is a ring of type (E6), then C.C.R// is cyclic of order three. The trivial
class contains three prime divisors, while each remaining class contains two
prime divisors.

(4) If yR is a ring of type (E7), then C.C.R// is cyclic of order two. The trivial
class contains five prime divisors and the nontrivial class contains three prime
divisors.

(5) If yR is a ring of type (E8), then C.C.R// is trivial, with the trivial class
containing all nine prime divisors.

Proof. The class groups C. yR/ for yR a ring listed in Table 1 were given in [Brieskorn
1967–1968]. Since R is factorial, C.R/D 0 and by Theorem 5.4, C.C.R//Š C. yR/.
Following the proof of [Baeth 2009, Theorem 4.3] one can compute the class of each
indecomposable yR-module in C. yR/ by using the Auslander–Reiten sequence for yR.
The result follows by considering the map defined in the proof of Theorem 5.4. �

The above theorem completely determines the characteristic of the monoid C.R/.
With this information, in addition to being able to completely describe the arithmetic
of C.R/ as we do in Theorem 6.8, we can easily enumerate the atoms of C.R/ (the
nonisomorphic indecomposable MCM modules). We now illustrate this ability with
an example. If ˇ W C.R/! B.GP/ is the transfer homomorphism of Lemma 3.4,
then A.C.R//D ˇ�1

�
A.B.GP//

�
. Suppose that yR is a ring of type (Dn) with n

even. Then yR has exactly nC 1 nonisomorphic indecomposable MCM modules. If
C2˚C2 D f0; e1; e2; e1C e2g, then
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A.C2˚C2/D f0; e
2
1 ; e

2
2 ; .e1C e2/

2; e1e2.e1C e2/g;

and hence R has exactly

jA.C.R//j D
n

2
C 1 � 1C 1 � 1C

n� 2

2
�
n� 2

2
C 1 � 1 �

n� 2

2
D

n2C 8

4

nonisomorphic indecomposable MCM modules.
We conclude this section by noting that a two-dimensional local Krull domain

.R;m/ having completion isomorphic to a ring in Table 1 may not be factorial.
However, Theorem 5.4 implies that C.C.R// is a factor group of a group given
in Theorem 5.5. In particular, C.C.R// is a finite cyclic group such that every
class contains a prime divisor, and thus the arithmetic of C.R/ is described in
Theorem 6.8.

6. The arithmetic of monoids of modules

In this section we study the arithmetic of the Krull monoids that have been discussed
in Sections 4 and 5. Thus, using the transfer properties presented in Section 2,
we describe the arithmetic of direct-sum decompositions of modules. Suppose
that H is a Krull monoid having a divisor homomorphism ' WH ! F.P/ and let
GP �C.'/ be the set of classes containing prime divisors. The first subsection deals
with quite general sets GP and provides results on the finiteness or nonfiniteness
of various arithmetical parameters. The second subsection studies three specific
sets GP , provides explicit results on arithmetical parameters, and establishes a
characterization result (Theorems 6.4, 6.7, 6.8, and Corollary 6.10). The third
subsection completely determines the system of sets of lengths in case of small
subsets GP . It shows that small subsets in torsion groups and in torsion-free groups
can have the same systems of sets of lengths, and it reveals natural limits for
arithmetical characterization results (Corollary 6.15).

6A. General sets GP of classes containing prime divisors. In this subsection we
consider the algebraic and arithmetic structure of Krull monoids with respect to GP .
We will often assume that GP D�GP , a property which has a strong influence on
the arithmetic of H . Recall that GP D�GP holds in many of the (finite and infinite
representation type) module-theoretic contexts described in Sections 4 and 5. More
generally, all configurations .G;GP/ occur for certain monoids of modules (see
Proposition 4.18, [Herbera and Příhoda 2010] and [Leuschke and Wiegand 2012,
Chapter 1]) and, by Claborn’s realization theorem, all configurations .G;GP/ occur
for Dedekind domains (see [Geroldinger and Halter-Koch 2006, Theorem 3.7.8]).
In addition, every abelian group can be realized as the class group of a Dedekind
domain which is a quadratic extension of a principal ideal domain, and in this case
we have GP D�GP (see [Leedham-Green 1972]).
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Proposition 6.1. Let H be a Krull monoid, ' WH!F.P/ a divisor homomorphism
with class group G D C.'/, and let GP � G denote the set of classes containing
prime divisors.

(1) If GP is finite, then A.GP/ is finite and hence D.GP/<1. If G has finite total
rank, then GP is finite if and only if A.GP/ is finite if and only if D.GP/ <1.

(2) If GP D �GP , then ŒGP � D G. Moreover, the map ' W H ! D and the
inclusion B.GP/ ,! F.GP/ are both cofinal.

(3) Suppose that G is infinite cyclic, say G D hei, and that f�e; eg � GP . Then
B.GP/ ,! F.GP/ is a divisor theory if and only if there exist k; l 2 N�2 such
that �ke; le 2GP .

(4) Let r; ˛ 2N with rC˛ > 2. Let .e1; : : : ; er /2Gr
P be independent and let e0 2

GP such that ˛e0D e1C� � �Cer , f�e0; : : : ;�er g�GP , and he0; : : : ; er iDG.
(a) The map ' WH ! F.P/ and the inclusion B.GP/ ,! F.GP/ are divisor

theories with class group isomorphic to G.
(b) If 0 62GP , then B.GP/ is not a direct product of nontrivial submonoids.

Proof. (1) follows from [Geroldinger and Halter-Koch 2006, Theorem 3.4.2].
If GP D �GP , then ŒGP � D hGPi D G. By Lemma 3.4, (2) follows once we

verify that ' is cofinal. If p 2 P , then there is a q 2 P with q 2 �Œp�, whence there
is an a 2H with '.a/D pq, and so ' is cofinal.

If f�ke W k 2 Ng \GP D f�eg or fke W k 2 Ng \GP D feg, then B.GP/ is
factorial. Since F.GP/¤ B.GP/, the inclusion B.GP/ ,! F.GP/ is not a divisor
theory. Conversely, suppose that there exist k; l 2 N�2 such that �ke; le 2 GP .
Let m 2 N. If me 2 GP , then me D gcd

�
.me/.�e/m; .me/k.�ke/m

�
, and if

�me 2 GP , then �me D gcd
�
.�me/em; .�me/l.le/m

�
. Thus every element of

GP is a greatest common divisor of a finite set of elements from B.GP/ and hence
B.GP/ ,! F.GP/ is a divisor theory.

We now suppose that G and GP are as in (4). To prove (a) it is sufficient to show
that B.GP/ ,! F.GP/ is a divisor theory. By [Geroldinger and Halter-Koch 2006,
Proposition 2.5.6] we need only verify that hGPi D ŒGP n fgg� for every g 2GP .
Let g 2G. We will show that

ŒGP n fgg�D ŒGP �D Œe0; : : : ; er ;�e0; : : : ;�er �:

If g 62 fe0; : : : ; er ;�e0; : : : ;�er g, the assertion is clear. By symmetry it suffices to
consider the case where g 2 fe0; : : : ; er g. If g D ei for some i 2 Œ1; r �, then

ei D˛e0C.�e1/C� � �C.�ei�1/C.�eiC1/C� � �C.�er /2 Œf˙e� W � 2 Œ0; r �nfig� ;

and hence

ŒGP n fgg�� Œf˙e� W � 2 Œ0; r � n figg�D Œ˙e0; : : : ;˙er �DG :
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If g D e0, then

e0 D e1C � � �C er C .˛� 1/.�e0/ 2 ŒGP n fe0g� ;

and hence ŒGP n fgg�D ŒGP �DG.
To prove (b) we use Lemma 3.2 and suppose that 0 62GP with GP DG1]G2

such that A.GP/DA.G1/]A.G2/. We must show that either G1 or G2 is empty.
Suppose that V D e1�:::�er .�e0/

˛ 2A.G1/. Since .�e0/e0; : : : ; .�er /er 2A.GP/,
it follows that f˙e0; : : : ;˙er g�G1. Let g2GP . Since GP �GD Œ˙e0; : : : ;˙er �,
there exists U 2 A.GP/ such that g 2 supp.U / � fg;˙e0; : : : ;˙er g, and hence
g 2G1. Thus G1 DGP and G2 D∅. �

For our characterization results, we need to recall the concept of an absolutely
irreducible element, a classical notion in algebraic number theory. An element u in
an atomic monoid H is called absolutely irreducible if u 2A.H / and jZ.un/j D 1

for all n 2 N; equivalently, the divisor-closed submonoid of H generated by u is
factorial. Suppose that H ,! F.P/ is a divisor theory with class group G and that
uDp

k1

1
�:::�p

km
m where m; k1; : : : ; km 2N and where p1; : : : ;pm 2P are pairwise

distinct. Then u is absolutely irreducible. if and only if .k1; : : : ; km/ is a minimal
element of the set

� D f.s1; : : : ; sm/ 2 Nl
0 W p

s1

1
�:::�psm

m 2H g n f0g

relative to the usual product ordering, and the torsion-free rank of hŒp1�; : : : ; Œpm�i in
G is m�1 (see [Geroldinger and Halter-Koch 2006, Proposition 7.1.4]). In particular,
if Œp1� 2G has finite order, then p

ord.Œp1�/
1

is absolutely irreducible, and if Œp1� 2G

has infinite order, then p1q1 is absolutely irreducible for all q1 2 P \ .�Œp1�/.

Proposition 6.2. Let H be a Krull monoid, ' W H ! F.P/ a cofinal divisor
homomorphism with class group G, and let GP � G denote the set of classes
containing prime divisors.

(1) Suppose that GP is infinite.

(a) If GP has an infinite subset G0 such that G0 [ .�G0/ � GP and hG0i

has finite total rank, then Uk.H / is infinite for each k � 2. Moreover,
D.GP/D �k.H /D !.H /D t.H /D1.

(b) If there exists e 2G such that GP \fke W k 2Ng and GP \f�ke W k 2Ng

are both infinite, then �.H / is infinite and c.H /D cmon.H /D1.

(c) If GP contains an infinite group, then every finite subset L� N�2 occurs
as a set of lengths.

(2) Suppose that GP is finite and that H is not factorial.

(a) The set �.H / is finite and there is a constant M1 2 N such that every set
of lengths is an AAMP with difference d 2��.H / and bound M1.
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(b) There is a constant M2 2 N such that, for every k � 2, the set Uk.H / is
an AAMP with period f0;min�.H /g and bound M2.

(c) c.H /� !.H /� t.H /� 1C 1
2
D.GP/.D.GP/� 1/ and

cmon.H / <
jG�P jC 2

2

�
.2jG�P jC 2/.jG�P jC 2/.D.GP/C 1/

�jG�P jC1
:

(d) Suppose that GP D �GP . Then !.H / D D.GP/, �.H / D D.GP/=2,
�2k.H / D kD.GP/ <1, and �kD.GP /Cj .H / D 2k C j for all k 2 N

and j 2 Œ0; 1�. If G is torsion-free, then D.GP/ is the maximal number s

of absolutely irreducible atoms u1; : : : ;us such that 2 2 L.u1�:::�us/.

(e) If , in particular, GP D�GP and D.GP/D 2, then Uk.H /D fkg for all
k 2 N and cmon.H /D c.H /D !.H /D t.H /D 2.

Proof. Throughout the proof we implicitly assume the results of Lemma 2.2 and of
Lemma 3.4. In particular, we have �.H /� !.H / and c.H /� !.H /� D.GP/.

For (1), suppose that GP is infinite. We first prove (a). Theorem 3.4.2 in
[Geroldinger and Halter-Koch 2006] implies that A.G0/ and D.G0/ are infinite.
Thus, for every k 2N, there is Uk 2A.G0/with jUk j�k and hence L

�
Uk.�Uk/

�
�

f2; jUk jg. This implies that U2.G0/ is infinite and thus Uk.G0/ is infinite for all
k � 2. Therefore �k.H /D �k.GP/D1 for all k � 2 and, since �.H /� !.H /�

t.H /, each of these invariants is infinite.
Item 1(b) follows from [Geroldinger et al. 2010, Theorem 4.2].
Item 1(c) is a realization result is due to Kainrath. See [Kainrath 1999] or

[Geroldinger and Halter-Koch 2006, Theorem 7.4.1].
Now, in order to prove (2), we suppose that GP is finite and that H is not factorial.

Then D.GP/ > 1 and 2 � c.H / � !.H / � t.H /. By Proposition 6.1, B.GP/ is
finitely generated and D.GP/ <1. The respective upper bounds given in (c) for
cmon.H / and t.H / can be found in [Geroldinger and Yuan 2013, Theorem 3.4] and
[Geroldinger and Halter-Koch 2006, Theorem 3.4.10].

We now consider (a). Since 2C sup�.H /� c.H / <1, (c) implies that �.H /

is finite. Since B.GP/ is finitely generated, the assertion on the structure of sets of
lengths follows from [Geroldinger and Halter-Koch 2006, Theorem 4.4.11].

Since t.H / <1 and �.H / is finite, [Gao and Geroldinger 2009, Theorems 3.5
and 4.2] imply the assertion in (b) on the structure of the unions of sets of lengths.

In order to prove (d), we suppose that GP D �GP . The statements about
�2k.H /, �.H /, and �kD.GP /Cj .H / follow from Lemma 3.3, and it remains to
show that !.H / D D.GP/. We have !.H / � D.GP/ <1. If D.GP/ D 2, then
!.H / D D.GP/. Suppose that D.GP/ � 3. If V D g1�:::�gl 2 A.GP/ with
jV j D l D D.GP/ and Ui D .�gi/gi for all i 2 Œ1; l �, then V jU1�:::�Ul but yet V

divides no proper subproduct of U1�:::�Ul . Thus D.GP/� !.GP/� !.H /.
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Let t denote the maximal number of absolutely irreducible atoms with the
required property. Since �.H /D D.GP/=2, it follows that t � D.GP/. Let V D

g1�:::�gl 2 A.GP/ with jV j D l D D.GP/. For i 2 Œ1; l � choose an element
pi 2 P \gi and an element qi 2 P \ .�gi/. Since G is torsion-free, the element
ui D piqi 2H is absolutely irreducible for each i 2 Œ1; l � and, by construction, we
have 2 2 L.u1�:::�ul/.

The statement in (e) follows immediately from (c) and (d). �

Let all notation be as in Proposition 6.2. We note that if GP is infinite but without
a subset G0 as in (1a), then none of the conclusions of (1a) need hold. A careful
analysis of the case where G is an infinite cyclic groups is handled in [Geroldinger
et al. 2010]. We also note that the description of the structure of sets of lengths
given in (2a) is best possible (see [Schmid 2009c]).

By Lemma 3.4, many arithmetical phenomena of a Krull monoid H are deter-
mined by the tuple .G;GP/. We now provide a first result indicating that conversely
arithmetical phenomena give us back information on the class group. Indeed,
our next corollary characterizes arithmetically whether the class group of a Krull
monoid is torsion-free or not. To do so we must study the arithmetical behavior of
elements similar to absolutely irreducible elements. Note that such a result cannot
be accomplished via sets of lengths alone (see Propositions 6.12 and 6.13 and (1c)
of Proposition 6.2; in fact, there is an open conjecture that every abelian group is
the class group of a half-factorial Krull monoid [Geroldinger and Göbel 2003]).

Proposition 6.3. Let H be a Krull monoid with class group G. Then G has an
element of infinite order if and only if there exists an irreducible element u 2 H

having the following two arithmetical properties.

(a) Whenever there are v 2H nH� and m 2 N with v jum, then u j vn for some
n 2 N.

(b) There exist l � 2 and a1; : : : ; al 2H such that u j a1�:::�al but yet

u − a�1
� .a1�:::�al/

N

for each � 2 Œ1; l � and for every N 2 N.

Proof. We may assume that H is reduced. Consider a divisor theory H ,! F.P/
and denote by GP �G the set of classes containing prime divisors.

First suppose that G is a torsion group and let u 2 A.H / have Property (a).
Then uD p

k1

1
�:::�p

km
m for some m; k1; : : : ; km 2 N and pairwise distinct elements

p1; : : : ;pm 2 P . Then (a) implies that k D 1 and hence u is absolutely irreducible.
Thus Property (b) cannot hold for any l � 2.

Conversely, suppose that G is not a torsion group. Since ŒGP �DG there exists a
p 2 P such that Œp� 2G has infinite order, and there is an element u0 2A.H / with
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p ju0. Suppose that u0 D p1�:::�pn � q1�:::�qr , where

p D p1;p2; : : : ;pn; q1; : : : ; qr 2 P;

Œp1�; : : : ; Œpn� have infinite order, and Œq1�; : : : ; Œqr � have finite order, each of which
divides some integer N . Then .q1�:::�qr /

N 2H , whence .p1�:::�pn/
N 2H . After

a possible reordering there is an atom uDp
k1

1
�:::�p

km
m 2A.H / dividing a power of

.p1�:::�pn/
N such that there is no atom v 2A.H / with suppP.v/¨ fp1; : : : ;pmg.

Thus u satisfies Property (a). Since H ,! F.P/ is a divisor theory, there exist
b1; : : : ; bs 2H such that

p
k1

1
�:::�p

km�1

m�1
D gcd.b1; : : : ; bs/:

Hence there is an i 2 Œ1; s�, say i D 1, such that pm − b1. Similarly, there are
c1; : : : ; ct 2H such that p

km
m D gcd.c1; : : : ; ct /. Without loss of generality, there

exists i 2 Œ1;m�1� such that pi − c1. Therefore u j b1c1, but yet u − bN
1

and u − cN
1

for any N 2 N, and so Property (b) is satisfied. �
Propositions 6.1, 6.2, and 6.3 provide abstract finiteness and nonfiniteness results.

To obtain more precise information on the arithmetical invariants, we require specific
information on GP . In the next subsection we will use such specific information to
give more concrete results.

6B. Specific sets GP of classes containing prime divisors and arithmetical char-
acterizations. We now provide an in-depth study of the arithmetic of three classes
of Krull monoids studied in Sections 4 and 5. Theorem 6.4 describes the arithmetic
of the monoids discussed in Examples 4.12, 4.20, 4.25 and in Theorem 4.12. Its
arithmetic is simple enough that we can more or less give a complete description.

Theorem 6.4. Let H be a Krull monoid with class group G and suppose that

GP D fe0; : : : ; er ;�e0; : : : ;�er g �G

is the set of classes containing prime divisors, where r; ˛ 2N with r C˛ > 2 and
.e1; : : : ; er / is an independent family of elements each having infinite order such
that e1C � � �C er D ˛e0. Then:

(1) A.GP/ D fV;�V;U� W � 2 Œ0; r �g, where V D .�e0/
˛e1�:::�er and U� D

.�e�/e� for all � 2 Œ0; r �. In particular, D.GP/D r C˛.

(2) Suppose that

S D

rY
iD0

e
ki

i .�ei/
li 2 F.GP/;

where k0; l0; : : : ; kr ; lr 2 N0. Then S 2 B.GP/ if and only if

li D ˛
�1.k0� l0/C ki
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for all i 2 Œ1; r �. If S 2 B.GP/ with k0 � l0 and k� Dminfk1; : : : ; kr g, then

Z.S/D

�
V �.�V /˛

�1.k0�l0/C�U
l0�˛�
0

rY
iD1

U
ki��
i W � 2 Œ0;minf˛�1l0; k

�
g�

�
and

L.S/D
˚
˛�1.k0�l0/Cl0Ck1C� � �Ckr�.rC˛�2/� W�2 Œ0;minf˛�1l0; k

�
g�
	
:

(3) The system of sets of lengths of H can be described as follows.

(a) �.H /D fr C˛� 2g.
(b) �.H /D D.GP/=2.
(c) For each k 2N, the set Uk.H / is an arithmetical progression with differ-

ence r C˛� 2.
(d) For each k 2 N and each j 2 Œ0; 1�, �2kCj .H /D kD.GP/C j .
(e) For each l 2 N0, �lD.GP /Cj .H /D 2l C j whenever j 2 Œ0;D.GP/� 1�

and lD.GP/C j � 1.
(f) Finally,

L.H /D
˚
mCf2k�C .r C˛� 2/� W � 2 Œ0; k��g Wm; k� 2 N0

	
:

(4) c.H /D cmon.H /D !.H /D t.H /D D.GP/D r C˛.

Proof. By Lemma 3.4, all assertions on lengths of factorizations and on catenary
degrees can be proved working in B.GP/ instead of H .

Obviously, fU� W � 2 Œ0; r �g �A.GP/ and to prove (1) it remains to verify that
if W 2 A.GP/ with W 6D U� , then W D V . Note that e0 2 he1; : : : ; er i but that
he0i \ hei W i 2 Ii D f0g for any proper subset I ¨ Œ1; r �. Thus, if

W D
Y
i2I

e
ki

i .�e0/
k0 2A.GP/ n fU� W � 2 Œ0; r �g;

where ∅¤I � Œ1; r � and k0; ki 2N for all i 2I , then k0e0D
P

i2I kiei 2hei W i 2Ii

and hence I D Œ1; r �. Assume to the contrary that there is i 2 Œ1; r � such that ki > 1.
Since V 2 B.GP/ and W 2A.GP/, it follows that k0 2 Œ1; ˛� 1�. Then

0¤ .k1�1/e1C� � �C.kr�1/er D .k0�˛/e0 2 Œe1; : : : ; er �\Œ�e1; : : : ;�er �Df0g;

a contradiction. Thus k1 D � � � D kr D 1 and we obtain that k0 D ˛, whence
W D V 2A.GP/.

To prove (2), suppose that S 2 B.GP/ and that l0 � k0. Then

S 0 D .�e0/
l0�k0

rY
iD1

e
ki

i .�ei/
li 2 B.GP/;

whence l0� k0 D ˛m0 2 ˛N0, S 00 D
rQ

iD1

e
ki�m0

i .�ei/
li 2 B.GP/, and
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li D ki �m0 D ki �
l0� k0

˛
D

k0� l0

˛
C ki for each i 2 Œ1; r �:

The same holds true if l0�k0. Conversely, if l1; : : : ; lr satisfy the asserted equations,
then obviously �.S/D 0.

Suppose that S 2 B.GP/ and that k0 � l0. Then

S D e
k0

0
.�e0/

l0

rQ
iD1

e
ki

i .�ei/
kiC˛

�1.k0�l0/

D
�
.�e0/e0

�l0
�
e0
˛.�e1/�:::�.�er /

�˛�1.k0�l0/
rQ

iD1

�
.�ei/ei

�ki

D
�
.�e0/e0

�l0�˛�
�
e0
˛.�e1/�:::�.�er /

�˛�1.k0�l0/C�
�
.�e0/

˛e1�:::�er

��
�

rQ
iD1

�
.�ei/ei

�ki��

D U
l0�˛�
0

.�V /˛
�1.k0�l0/C�V �

rQ
iD1

U
ki��
i

for each � 2 Œ0;minf˛�1l0; k
�g�. Therefore Z.S/ and hence L.S/ have the given

forms.
We now consider the statements of (3). The assertion on �.GP/ follows im-

mediately from (2). Since �.GP/D fr C˛� 2g, all sets Uk.GP/ are arithmetical
progressions with difference r C˛� 2. The assertion on each �2k.GP/ and each
�.GP/ follow from Proposition 6.2.

In order to determine L.GP/, let S 2 B.GP/ be given with all parameters as in
(2). First suppose that l0 � ˛k�. Then

L.S/D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/k�Cf.r C˛/k�� .r C˛� 2/� W � 2 Œ0; k��g

D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/k�Cf2k�C .r C˛� 2/� W � 2 Œ0; k��g:

Thus L.S/ has the form

L.S/DmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

for some m; k� 2 N0. Conversely, for every choice of m; k� 2 N0, there is an
S 2 B.GP/ such that L.S/ has the given form.

Now suppose that l0 � ˛k�� 1 and set m0 D bl0=˛c. Then

L.S/D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/m0Cf.r C˛/m0� .r C˛� 2/� W � 2 Œ0;m0�g
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D .˛�1.k0� l0/C l0C k1C � � �C kr /

�.r C˛/m0Cf2m0C .r C˛� 2/� W � 2 Œ0;m0�g;

and hence L.S/ has the form

L.S/DmCf2m0C .r C˛� 2/� W � 2 Œ0;m0�g

for some m 2 N and m0 2 N0.
Next we verify that, for every k 2N, �2kC1.GP/�kD.GP/C1. By [Geroldinger

and Halter-Koch 2006, Proposition 1.4.2], for all k 2 N,

�k.GP/D supfsup L WL 2 L.GP/; k Dmin Lg:

Thus we may choose k 2 N and L 2 L.GP/ with min L D 2k C 1. Then, there
exist l;m; k� 2 N0 such that

LDmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

with mD 2l C 1 and 2kC 1Dmin LD 2.k�C l/C 1. Now

max LDmC .r C˛/k� D 2l C 1C .r C˛/.k � l/

D .r C˛/kC 1� .r C˛� 2/l � kD.GP/C 1;

and thus �2kC1.GP/� kD.GP/C 1.
It remains to verify the assertions on the �lD.GP /Cj .GP/. Let l 2 N0 and

j 2 Œ0;D.GP/� 1�. Then Lemma 3.3 implies �lD.Gp/Cj .GP/ � 2l C j , and that
equality holds if j 2 Œ0; 1�. It remains to verify that �lD.Gp/Cj .GP/ � 2l C j

when j 2 Œ2;D.GP/� 1�. Let L 2 L.GP/ with lD.GP/C j 2L. Then there exist
m; k� 2 N0 such that

LDmCf2k�C .r C˛� 2/� W � 2 Œ0; k��g

DmC k�D.GP/�f.D.GP/� 2/� W � 2 Œ0; k��g:

Suppose lD.GP/C j Dmax L��.D.GP/�2/DmCk�D.GP/��.D.GP/�2/

for some � 2 Œ0; k��. Then j �mC 2� mod D.GP/ and hence mC 2� � j . This
implies

.k�� �/D.GP/C j �mC k�D.GP/� �.D.GP/� 2/D lD.GP/C j ;

and hence l � k�� �. Therefore we obtain

min LD lD.GP/C j � .k�� �/.D.GP/� 2/

D .l � k�C �/D.GP/C j C 2.k�� �/� 2l C j ;

and thus �lD.Gp/Cj .GP/� 2l C j .
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Finally we consider the catenary degrees of H and prove the statements given
in (4). Using Proposition 6.2 we infer

D.GP/D r C˛ D 2Cmax�.GP/� c.GP/D c.H /� !.H /� t.H /:

Since c.GP/ � cmon.GP/, it remains to show that cmon.GP/ � D.GP/ and that
t.H /� D.GP/.

We proceed in two steps. First we verify that

cmon.GP/Dmaxfceq.GP/; cadj.GP/g � r C˛:

Since

A.�B.GP /;eq/D f.�V;�V /; .V;V /; .U� ;U�/; .�U� ;�U�/ W � 2 Œ0; r �g;

it follows that ceq.GP/D 0. If ArC˛�2Dfx 2Z.GP/ W jxj�.rC˛�2/2 L.�.x//g,
then Min.ArC˛�2/D fU

˛
0

U1�:::�Ur g, and hence cadj.GP/� r C˛ by Lemma 2.1.
In order to show that t.H /�D.GP/, we must verify the following assertion (see

[Geroldinger and Hassler 2008, Theorem 3.6]).

(A) Let j 2 N and w;w1; : : : ; wj 2 A.H / be such that w divides the product
w1�:::�wj yet w divides no proper subproduct of w1�:::�wj . Then

min L.w�1w1�:::�wj /� D.GP/� 1:

Proof of (A). We use the transfer homomorphism ˇ WH ! B.GP/ as defined in
Lemma 3.4. Set W D ˇ.w/ and Wi D ˇ.wi/ for each i 2 Œ1; j �. Then j � jW j

and W;W1; : : : ;Wj 2A.GP/. Clearly

min L.w�1w1�:::�wj /�max L.W �1W1�:::�Wj /�
jW1�:::�Wj j � jW j

2
:

Thus, if jW j D 2, then

min L.w�1w1�:::�wj /�
jW1jC jW2j � jW j

2
� D.GP/� 1:

It remains to consider the case W 2 f�V;V g, and by symmetry we may suppose
that W D V . If jW1j D � � � D jWj j D 2, then j D jV j and w�1w1�:::�wj 2A.H /.
Suppose there is � 2 Œ1; j �, say �D1, such that ˇ.w1/2f�V;V g. Sincew does not
divide a subproduct of w1�:::�wj and gcd.V;�V /D 1, it follows that ˇ.w1/D V .
Then L.w�1w1�:::�wj /D L.W �1W1�:::�Wj /D L.W2 �:::�Wj / and hence

min L.w�1w1�:::�wj /� j � 1� jV j � 1D D.GP/� 1: �

The next corollary again reveals that certain arithmetical phenomena characterize
certain algebraic properties of the class group.
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Corollary 6.5. Let H be a Krull monoid as in Theorem 6.4 with class group G and
set GP of classes containing prime divisors. Then rC1 is the minimum of all s 2N

having the following property:

(P) There are absolutely irreducible elements w1; : : : ; ws 2 A.H / such that
2;D.GP/ 2 L.w

k1

1
�:::�w

ks
s / for some .k1; : : : ; ks/ 2 Ns

0
.

Proof. First we verify that r C1 satisfies property (P). For i 2 Œ0; s�, let pi 2 P \ ei

and qi 2 P \ .�ei/ and set wi D piqi . Then w0; : : : ; ws are absolutely irreducible
elements and, by Theorem 6.4, it follows that 2;D.GP/ 2 L.w

˛
0
w1�:::�wr /:

Conversely, let s2N, and letw1; : : : ; ws and k1; : : : ; ks be as above. For i 2 Œ1; s�,
we set Wi D ˇ.wi/. Since �.GP/D D.GP/=2 and 2;D.GP/ 2 L.W

k1

1
�:::�W

ks
s /;

it follows that
Ps

iD1 ki jWi j D D.GP/, jW1j D � � � D jWsj D 2 and Wi D .�gi/gi

for i 2 Œ1; s�, and that S D g
k1

1
�:::�g

ks
s 2 A.GP/. Now Theorem 6.4 implies

S D .�e0/
˛e1 �:::�er , whence fW1; : : : ;Wsg D f.�e0/e0; : : : ; .�er /er g. Thus

jfw1; : : : ; wsgj � jfW1; : : : ;Wsgj D r C 1;

and so r C 1 is minimal with Property (P). �
We now begin collecting information in order to study the arithmetic of the Krull

monoid presented in Example 4.21. In spite of the simple geometric structure of GP
(the set consists of the vertices of the unit cube and their negatives), the arithmetic
of this Krull monoid is highly complex. We get only very limited information.
Nevertheless, this will be sufficient to give an arithmetical characterization.

Lemma 6.6. Let G be an abelian group and let .en/n�1 be a family of independent
elements each having infinite order. For r 2 N, set

GCr D fa1e1C � � �C ar er W a1; : : : ; ar 2 Œ0; 1�g;

G�r D�GCr ; Gr DGCr [G�r :

(1) Let s 2 Œ2; r �, f0 D e1 C � � � C es , and fi D f0 � ei for all i 2 Œ1; s�. Then
.f1; : : : ; fs/ is independent, f1C � � �Cfs D .s� 1/f0, and

�.ff0; : : : ; fs;�f0; : : : ;�fsg/D f2s� 3g:

(2) Let s 2 Œ3; r �, f0 D e1C � � � C es , fi D f0 � ei for each i 2 Œ1; s � 1�, and set
f 0s D�es . Then .f1; : : : ; fs�1; f

0
s / is independent,

f1C � � �Cfs�1Cf
0

s D .s� 2/f0;

and

�.ff0; : : : ; fs�1; f
0

s ;�f0; : : : ;�fs�1;�f
0

s g/D f2s� 4g:

(3) If s � Œ1; r�1�, then D.Gr /�D.Gs/CD.Gr�s/�1. In particular, D.G1/D 2

and D.Gr / > D.Gr�1/ for r � 2.
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Proof. Since .e1; : : : ; es/ is a basis, there is a matrix As with .f1; : : : ; fs/ D

.e1; : : : ; es/As . Since det.As/¤ 0, it follows that .f1; : : : ; fs/ is independent. By
definition, we have f1C� � �Cfs D .s�1/f0. The assertion on the set of distances
then follows from Theorem 6.4 and we have proved (1).

We now consider (2). Note that f 0s D fs �f0. Using (1) we infer that

0D .f1C � � �Cfs/� .s� 1/f0 D .f1C � � �Cfs�1/C .fs �f0/� .s� 2/f0;

and hence f1 C � � � C fs�1 C f
0

s D .s � 2/f0. Since .f1; : : : ; fs�1;�es/ D

.e1; : : : ; es/Bs for some matrix Bs with det.Bs/D .�1/2s det.As�1/¤0, it follows
that .f1; : : : ; fs�1; f

0
s / is independent. The assertion on the set of distances follows

from Theorem 6.4.
It is clear that D.G1/D2 and that D.Gr />D.Gr�1/whenever r �2. To prove the

remaining statements of (3), suppose that s 2 Œ1; r � 1�. After a change of notation,
we may suppose that Gr�s � hesC1; : : : ; er i such that hGr i D hGsi ˚ hGr�si.
If U D a1�:::�ak 2 A.Gs/ with k D D.Gs/ and V D b1�:::�bl 2 A.Gr�s/ with
l DD.Gr�s/, then W D .a1Cb1/ �a2 �:::�akb2 �:::�bl 2A.Gr /, and hence D.Gr /�

jW j D kC l � 1D D.Gs/CD.Gr�s/� 1. �

In Theorem 6.7 we restrict to class groups of rank r � 3 because when r � 2

we are in the setting of Theorem 6.4 where we have precise information about
arithmetical invariants. For r 2 N0, we denote by Fr the r -th Fibonacci number.
That is, F0 D 0, F1 D 1, and Fr D Fr�1C Fr�2 for all r � 2.

Theorem 6.7. Let H be a Krull monoid with free abelian class group G of rank
r � 3 and let GP �G denote the set of classes containing prime divisors. Suppose
that there is a basis .e1; : : : ; er / of G such that G�P DGCP [G�P , where

GCP D f�1e1C � � �C �r er W �1; : : : ; �r 2 Œ0; 1�g and G�P D�GCP :

(1) FrC2 � D.GP/.

(2) c.H /�!.H /DD.GP/, �.H /DD.GP/=2, and �2k.H /D kD.GP/ for each
k 2 N.

(3) Œ1; 2r � 3����.H /��.H /� Œ1; c.H /� 2�.

Proof. See [Baeth et al. 2014] for the proof of assertion (1). Assertion (2) follows
from Proposition 6.2.

Note that for every s 2 Œ2; r � we have 2s� 3 2��.H / and, by Lemma 6.6, for
all s 2 Œ3; r � we have 2s � 4 2��.H /. This implies that the interval Œ1; 2r � 3� is
contained in ��.H /, giving (3). �

The third class of Krull monoids studied in this subsection are Krull monoids
with finite cyclic class group having prime divisors in each class. Thus Theorem 6.8
describes the arithmetic of the monoids constructed in Theorem 5.5. Holomorphy



306 NICHOLAS R. BAETH AND ALFRED GEROLDINGER

rings in global fields are Krull monoids with finite class group and prime divisors
in all classes. For this reason this class of Krull monoids has received a great deal
of attention.

Theorem 6.8. Let H be a Krull monoid with finite cyclic class group G of order
jGj D n� 3, and suppose that every class contains a prime divisor. Then:

(1) c.H /D !.H /D D.G/D n and �.H /D Œ1; n� 2�.

(2) For every k 2 N the set Uk.H / is a finite interval, whence

Uk.H /D Œ�k.H /; �k.H /�:

Moreover, for all l 2 N0 with lnC j � 1,

�2kCj .H /D knC j for j 2 Œ0; 1� ;

�lnCj .H /D

�
2l C j for j 2 Œ0; 1� ;

2l C 2 for j 2 Œ2; n� 1�:

(3) max��.H /D n� 2 and max.��.H / n fn� 2g/D bn
2
c� 1.

Proof. The proof of (1) can be found in [Geroldinger and Halter-Koch 2006,
Theorem 6.7.1] and the proof of (3) can be found in [Geroldinger and Halter-Koch
2006, Theorem 6.8.12]. For (2) see [Geroldinger 2009, Corollary 5.3.2]. �

Much recent research is devoted to the arithmetic of Krull monoids discussed
in Theorem 6.8. We briefly address some open questions. Let H be as above and
suppose that n� 5. The precise values of t.H / and of cmon.H / are unknown. It is
easy to check that D.G/D n< t.H / (in contrast to what we have in Theorem 6.4).
For recent results on lower and upper bounds of the tame degree, see [Gao et al.
2015]. We remark that there is a standing conjecture that the monotone catenary
degree is that nD c.H /D cmon.H / (this coincides what we have in Theorem 6.4;
see [Geroldinger and Yuan 2013]). For recent progress on ��.H / we refer to
[Plagne and Schmid 2013].

Having at least a partial description of the arithmetic of the three monoids
described in Theorems 6.4, 6.7, and 6.8, we now work to show that except for in a
small number of exceptions, these monoids have vastly different arithmetic. After
some preliminary work this distinction is made clear in Corollary 6.10.

Lemma 6.9. Let G be an abelian group with finite total rank and let G0 �G be a
subset with G0 D�G0. Suppose that L.G0/D L.Cn/ for some n� 5. Then there
exists an absolutely irreducible element U 2A.G0/ with jU j D D.G0/.

Proof. First observe that D.G0/ D �2.G0/ D �2.Cn/ D D.Cn/ D n and, by
[Geroldinger and Halter-Koch 2006, Theorem 3.4.2], A.G0/ is finite, say A.G0/D
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fU1;�U1; : : : ;Uq;�Uqg. If g 2 Cn with ord.g/D n, then for all k 2 N we have

Lk D f2kC �.n� 2/ W � 2 Œ0; k�g D L
�
gnk.�g/nk

�
2 L.Cn/D L.G0/:

Since �.Lk/D �.G0/D D.G0/=2, there exists, for every k 2 N, a tuple

.k1; : : : ; kq/ 2 N
.q/
0

such that k1C � � �C kq D k and

Lk D L
�
.�U1/

k1U
k1

1
�:::�.�Uq/

kq U
kq

q

�
:

Therefore there exists �2 Œ1; q� such that L
�
.�U�/

kU k
�

�
DLk for every k 2N. Set

U DU� and note that for every V 2A.G0/ with V j .�U /kU k for some k 2N, it
follows that jV j 2 f2; ng. After changing notation if necessary, we may suppose that
there is no V 2A.G0/ such that jV j D n, supp.V /¨ supp.U /, and V jU k.�U /k

for some k 2 N.
In order to show that U is absolutely irreducible, it remains to verify that the

torsion-free rank of hsupp.U /i is jsupp.U /j � 1. Assume to the contrary that there
exist t 2 Œ2; jsupp.U /j�1� and g1; : : : ;gt 2 supp.U / which are linearly dependent.
Then there are s 2 Œ1; t �, m1; : : : ;ms 2 N, and msC1; : : : ;mt 2 �N such that

m1g1C � � �CmsgsC .�msC1/.�gsC1/C � � �C .�mt /.�gt /D 0:

Then
V D g

m1

1
�:::�gms

s .�gsC1/
�msC1 �:::�.�gt /

�mt 2 B.G0/:

Without restriction we may suppose that the above equation is minimal and that
V 2 A.G0/. Since V jU k.�U /k for some k 2 N and jV j > 2, we obtain a
contradiction to the minimality of supp.U /. �

The following corollary highlights that the observed arithmetical phenomena in
our case studies — Theorems 6.4, 6.7, and 6.8 — are characteristic for the respective
Krull monoids. In particular, this illustrates that the structure of direct-sum decom-
positions over the one-dimensional Noetherian local rings with finite representation
type studied in Section 4 can be quite different from the structure of direct-sum
decompositions over the two-dimensional Noetherian local Krull domains with
finite representation type studied in Section 5. As characterizing tools we use the
system of sets of lengths along with the behavior of absolutely irreducible elements.

Corollary 6.10. For i 2 Œ1; 3�, let Hi and H 0i be Krull monoids with class groups
Gi and G0i . Further suppose that

� G1 and G0
1

are finitely generated and torsion-free of rank r1 and r 0
1

with sets of
classes containing prime divisors as in Theorem 6.4 .with parameters ˛; ˛0 2N

such that ˛C r1 � ˛
0C r 0

1
> 2/.
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� G2 and G0
2

are finitely generated and torsion-free of rank r2 � r 0
2
� 3 with sets

of classes containing prime divisors as in Theorem 6.7.

� G3 and G0
3

are finite cyclic of order jG3j � jG
0
3
j � 5 such that every class

contains a prime divisor.

Then:

(1) L.H1/DL.H 0
1
/ if and only if r1C˛D r 0

1
C˛0. If this holds, then the arithmetic

behavior of the absolutely irreducible elements of H1 and H 0
1

coincide in the
sense of Corollary 6.5 if and only if r1 D r 0

1
.

(2) L.H2/D L.H 0
2
/ if and only if r2 D r 0

2
.

(3) L.H3/D L.H 0
3
/ if and only if jG3j D jG

0
3
j.

(4) L.H1/¤ L.H2/ and L.H1/¤ L.H3/.

(5) For i 2 Œ2; 3�, let si denote the maximal number of absolutely irreducible
elements u1; : : : ;usi

2Hi such that 2 2 L.u1�:::�usi
/. Then either L.H2/¤

L.H3/ or s2 ¤ s3.

Proof. The if and only if statement in (1) follows immediately from Theorem 6.4.
Suppose that L.H1/D L.H 0

1
/. Then the assertion in (1) on the arithmetic behavior

of absolutely irreducible elements follows from Corollary 6.5.
To prove (2), first note that one implication is clear, both for H2 and H3. Suppose

that L.H2/ D L.H 0
2
/, and let GP � G2 and G0P � G0

2
denote the set of classes

containing prime divisors. Theorem 6.7 implies that

D.GP/D �2.H /D �2.H
0/D D.G0P/;

and thus Lemma 6.6 implies r2 D r 0
2
. Now consider (3). If L.H3/D L.H 0

3
/, then

Theorem 6.8 implies that

jG3j � 2Dmax�.H3/Dmax�.H 03/D jG
0
3j � 2:

For (4), note that L.H1/ is distinct from both L.H2/ and L.H3/ since

j�.H1/j D 1; j�.H2/j> 1; j�.H3/j> 1:

For (5) we assume that L.H2/D L.H3/ and let GP �G2 denote the set of classes
containing prime divisors. Theorems 6.7 and 6.8 imply that

D.GP/D �2.H2/D �2.H3/D jG3j:

By Proposition 6.3 we obtain that D.GP/D s2. Now assume to the contrary that
s2 D s3. If jG3j D n, then there are absolutely irreducible elements u1; : : : ;un and
atoms v1; v2 2A.H3/ such that v1v2 D u1�:::�un. Without restriction, we suppose
H3 is reduced and we consider a divisor theory H ,! F.P/. Since a minimal
zero-sum sequence of length n over G3 consists of one element of order n repeated
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n times, the factorization of the atoms v1; v2;u1; : : : ;un in F.P/ must have the
following form: v1Dp1�:::�pn, v2Dq1�:::�qn, and uiDpiqi for all i 2 Œ1; n�, where
p1; : : : ;pn; q1; : : : ; qn 2 P , Œp1�D � � � D Œpn� 2G3, and Œq1�D � � � D Œqn�D Œ�p1�.
But [Geroldinger and Halter-Koch 2006, Proposition 7.1.5] implies that the elements
u1; : : : ;un are not absolutely irreducible, a contradiction. �

Remark 6.11. Let H2 and H3 be as in Corollary 6.10. We set nD jG3j, r D r2,
and let GP;r �G2 denote the set of classes containing prime divisors. Assume that
L.H2/D L.H3/. Then

FrC2 � D.GP;r /D �2.H2/D �2.H3/D n:

That is, the orders of the cyclic groups for which L.H2/ D L.H3/ grow faster
than the sequence of Fibonacci numbers. We conjecture that L.H2/ and L.H3/ are
always distinct but have not further investigated this (rather delicate combinatorial)
problem which would require a more detailed investigation of D.GP;r /.

Now suppose that H is a Krull monoid with class group G such that every class
contains a prime divisor. If L.H /D L.H3/, then following Theorem 6.8, one can
show that G is isomorphic to the finite cyclic group G3 (see [Geroldinger 2009,
Corollary 5.3.3]). Therefore sets of lengths characterize Krull monoids with finite
cyclic class group having the property that every class contains a prime divisor.

6C. Small sets GP of classes containing prime divisors and limits of arithmetical
characterizations. In this final subsection we study the arithmetic of Krull monoids
having small sets of classes containing prime divisors. This study pertains to
the monoids of Theorem 4.12, Example 4.19, Example 4.20, and Theorem 5.5.
The most striking phenomenon here is that these systems of sets of lengths are
additively closed (see Proposition 6.14). As a consequence, if L.H / is such a
system and H 0 is a monoid with L.H 0/ � L.H /, then L.H �H 0/D L.H / (see
Example 4.23, Example 4.24, and Corollary 6.15). These phenomena are in strong
contrast to the results in the previous subsection, and they show up natural limits for
obtaining arithmetical characterization results. Recall that, for l 2 N0 and d 2 N,
Pl.d/D f0; d; : : : ; ldg.

Proposition 6.12. Let H be a Krull monoid with infinite cyclic class group G and
suppose that

GP D f�2e;�e; 0; e; 2eg �G D hei

is the set of classes containing prime divisors. Then there is a transfer homomor-
phism � WH ! B.C3/, and hence

L.H /D L.C3/D L.C2˚C2/D fyC 2kCPk.1/ W y; k 2 N0g:
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Moreover, L.H / coincides with the system of sets of lengths of the Krull monoid
studied in Theorem 6.4 with parameters r D 2 and ˛ D 1.

Proof. By Lemma 3.4 there is a transfer homomorphism ˇ WH ! B.GP/. Since
the composition of two transfer homomorphisms is a transfer homomorphism, it
is sufficient to show that there is a transfer homomorphism � 0 W B.GP/! B.C3/.
Write C3 D f0;g;�gg. Since

B.GP/D F.f0g/�B.G�P/ and B.C3/D F.f0g/�B.f�g;gg/;

it suffices to show that there is a transfer homomorphism � W B.G�P/! B.f�g;gg/.
In this case, L.H /DL.GP/DL.C3/. Moreover, L.C3/DL.C2˚C2/ has the form
given in [Geroldinger and Halter-Koch 2006, Theorem 7.3.2] and this coincides
with the system of sets of lengths in Theorem 6.4, provided .r; ˛/D .2; 1/.

Note that A.G�P/ D fV;�V;U1;U2g , where V D e2.�2e/, U1 D .�e/e, and
U2D .�2e/.2e/, and A.f�g;gg/D fV ;�V ;U g , where V D g3 and U D .�g/g.
Then there is a monoid epimorphism

z� W F.G�P/! F.f�g;gg/

satisfying z�.e/D z�.�2e/D g and z�.�e/D z�.2e/D�g. If

AD ek1.�e/k
0
1.2e/k2.�2e/k

0
2 2 F.G�P/ with k1; k

0
1; k2; k

0
2 2 N0;

then A 2 B.G�P/ if and only if k1 � k 0
1
C 2.k2 � k 0

2
/ D 0. If this holds, then

k1C k 0
2
� .k 0

1
C k2/� 0 mod 3 and hence

z�.A/D gk1Ck0
2.�g/k

0
1
Ck2 2 B.f�g;gg/:

Thus � D z� j B.G�P / W B.G
�

P/! B.f�g;gg/ is a monoid epimorphism satisfying
�.V /D V , �.�V /D�V , �.U1/D �.U2/D U and ��1.1/D f1g D B.G�P/�.

Thus in order to show that � is a transfer homomorphism, it remains to verify
Property (T2). Let A 2 B.G�P/ be as above and suppose that

�.A/D zB zC

with zB; zC 2 B.f�g;gg/ and zB D gm.�g/m
0

such that m 2 Œ0; k1 C k 0
2
�, m0 2

Œ0; k 0
1
C k2� and m � m0 mod 3. Our goal is to find B;C 2 B.G�P/ such that

AD BC , �.B/D zB, and �.C /D zC . Clearly it is sufficient to find B 2 B.G�P/
with B jA and �.B/D zB, that is, to find parameters

m1 2 Œ0; k1� ; m01 2 Œ0; k
0
1� ; m2 2 Œ0; k2� ; m02 2 Œ0; k

0
2� ;

such that

(C1) m1Cm02 Dm; m01Cm2 Dm0; m1�m01C 2.m2�m02/D 0:
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To do so we proceed by induction on j zBj. If j zBj D jAj, then

k1C k 01C k2C k 02 D jAj D j
zBj DmCm0;

and hence mD k1C k 0
1

and m0 D k 0
1
C k2. Thus we set

m1 D k1; m01 D k 01; m2 D k2; m02 D k 02;

and the assertion is satisfied with B D A. Suppose now that the quadruple
.m1;m

0
1
;m2;m

0
2
/ satisfies (C1) with respect to the pair .m;m0/. Dividing zB

by an atom of B.f�g;gg/ (if possible) shows that we must verify that there are
solutions to (C1) with respect to each of the pairs .m�1;m0�1/, .m�3;m0/, and
.m;m0�3/ in N

.2/
0

. One checks respectively that at least one of the following
quadruples satisfy (C1).

� .m1�1;m0
1
�1;m2;m

0
2
/ or .m1;m

0
1
;m2�1;m0

2
�1/;

� .m1�2;m0
1
;m2;m

0
2
�1/ or .m1�3;m0

1
�1;m2C1;m0

2
/;

� .m1;m
0
1
�2;m2�1;m0

2
/ or .m1�1;m0

1
�3;m2;m

0
2
C1/.

Now the assertion follows by the induction hypothesis. �

Proposition 6.13. Let H be a Krull monoid with free abelian class group G of rank
2. Let .e1; e2/ be a basis of G and suppose that

GP D f0; e1; e2; 2e2; e1C2e2; �e1; �e2; �2e2; �e1�2e2g

is the set of classes containing prime divisors. Then there is a transfer homomor-
phism � WH ! B.C4/ and hence

L.H /D L.C4/

D
˚
yC kC 1CPk.1/ W y; k 2 N0

	
[
˚
yC 2kCPk.2/ W y; k 2 N0

	
� L.C3/:

Proof. As in Proposition 6.12, it suffices to show that there is a transfer homomor-
phism � W B.G�P/! B.C �

4
/. Then L.H / D L.GP/ D L.C4/ and L.C4/ has the

form given in [Geroldinger and Halter-Koch 2006, Theorem 7.3.2]. Proposition 6.12
shows that L.C3/� L.C4/.

We note that A.G�P/D fW;�W;V1;�V1;V2;�V2;U1;U2;U3;U4g, where

W D e1e2e2.�e1� 2e2/; U3 D .�e1� 2e2/.e1C 2e2/;

U1 D .�e1/e1; V1 D e1.2e2/.�e1� 2e2/;

U2 D .�e2/e2; V2 D e2e2.�2e2/;

U4 D .�2e2/.2e2/:
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We set C4D f0;g; 2g;�gg and observe that A.C �
4
/D fW ;�W ;V ;�V ;U 1;U 2g,

where

W D g4; V D g2.2g/; U 1 D .�g/g and U 2 D .2g/.2g/:

There is a monoid epimorphism z� W F.G�P/! F.C �
4
/ satisfying

z�.e1/D z�.e2/D z�.�e1� 2e2/D g;

z�.�e1/D z�.�e2/D z�.e1C 2e2/D�g;

z�.2e2/D z�.�2e2/D 2g:

If

AD e
k1

1
.�e1/

k0
1e

k2

2
.�e2/

k0
2.2e2/

k3.�2e2/
k0

3.e1C2e2/
k4.�e1�2e2/

k0
4 2F.G�P/;

with k1; k
0
1
; : : : ; k4; k

0
4
2 N0, then A 2 B.G�P/ if and only if

k1� k 01C k4� k 04 D 0 and k2� k 02C 2k3� 2k 03C 2k4� 2k 04 D 0:

If this holds, then

k1� k 01C k2� k 02� .k4� k 04/C 2k3C 2k 03 � 0 mod 4;

and hence

z�.A/D gk1Ck2Ck0
4.�g/k

0
1
Ck0

2
Ck4.2g/k3Ck0

3 2 B.C �4/:

Thus � D z� j B.G�P / W B.G
�

P/! B.C �
4
/ is a monoid epimorphism satisfying

�.W /DW ; �.�V1/D �.�V2/D�V ;

�.�W /D�W ; �.U1/D �.U2/D �.U3/D U 1;

�.V1/D �.V2/D V ; �.U4/D U 2;

��1.1/D f1g D B.G�P/
�:

Thus in order to show that � is a transfer homomorphism, it remains to verify
Property (T2). Let A 2 B.G�P/ be as above and suppose that

�.A/D zB zC

with zB; zC 2 B.C �
4
/ and zB D gm.�g/m

0

.2g/m
00

such that

m 2 Œ0; k1C k2C k 04� ; m0 2 Œ0; k 01C k 02C k4� ; m00 2 Œ0; k3C k 03� ;

and
m�m0C 2m00 � 0 mod 4:
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Our goal is to find B;C 2 B.G�P/ such that AD BC , �.B/D zB, and �.C /D zC .
It will suffice to find B 2 B.G�P/ with B jA and �.B/ D zB. Thus we must find
parameters

m� 2 Œ0; k� � and m0� 2 Œ0; k
0
� � for � 2 Œ1; 4� ;

such that

(C2)
m1Cm2Cm04 Dm; m01Cm02Cm4 Dm0; m3Cm03 Dm00;

m1�m01Cm4�m04 D 0; m2�m02C 2m3� 2m03C 2m4� 2m04 D 0:

We proceed by induction on j zBj DmCm0Cm00. If j zBj D jAj, then we set m� D k�
and m0� D k 0� for all � 2 Œ1; 4�, and the assertion is satisfied with B DA. Suppose
now that the octuplet .m1;m

0
1
; : : : ;m4;m

0
4
/ satisfies (C2) with respect to the triple

.m;m0;m00/. Dividing zB by an element of A.C �
4
/ (if possible) shows that we must

verify that there are solutions to (C2) with respect to each of the triples

.m� 1;m0� 1;m00/; .m� 2;m0;m00� 1/; .m;m0� 2;m00� 1/;

.m;m0;m00� 2/; .m� 4;m0;m00/; .m;m0� 4;m00/;

provided that they lie in N
.8/
0

. As in proof of the previous proposition, one finds the
required solutions and hence the assertion follows by the induction hypothesis. �

Let L be a family of subsets of Z. We say that L is additively closed if the sumset
LCL0 2 L for all L;L0 2 L.

Proposition 6.14. Let G be a finite cyclic group. Then L.G/ is additively closed if
and only if jGj � 4.

Proof. We suppose that jGj D n and distinguish four cases.
First assume that n� 2. Since B.G/ is factorial, it follows that

L.G/D ffmg Wm 2 N0g;

which is obviously additively closed.
Next assume that nD 3. By Proposition 6.12 we have

L.C3/D fyC 2kCPk.1/ W y; k 2 N0g:

If y1;y2; k1; k2 2 N0. Then

.y1C 2k1CPk1
.1//C .y2C 2k2CPk2

.1//

D .y1Cy2/C 2.k1C k2/CPk1Ck2
.1/ 2 L.C3/;

and hence L.C3/ is additively closed.
Now assume that nD 4. By Proposition 6.13 we have

L.C4/D fyC kC 1CPk.1/ W y; k 2 N0g[ fyC 2kCPk.2/ W y; k 2 N0g:
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Clearly, the sumset of two sets of the first form is of the first form again, and the
sumset of two sets of the second form again the second form. Thus it remains to
consider the sumset L1CL2 where L1 has the first form, L2 has the second form,
and both L1 and L2 have more than one element. If y1;y2 2 N0 and k1; k2 2 N,
then

.y1C k1C 1CPk1
.1//C .y2C 2k2CPk2

.2//

D .y1Cy2/C .k1C 2k2/C 1CPk1C2k2
.1/ 2 L.C4/:

Finally, assume that n � 5 and assume to the contrary that L.G/ is additively
closed. Let d 2 Œ1; n�2�. Then f2; dC2g 2L.G/ by [Geroldinger and Halter-Koch
2006, Theorem 6.6.2], and hence the k-fold sumset

f2; d C 2gC � � �C f2; d C 2g D 2kCPk.d/

lies in L.G/ for all k 2 N. Then [Geroldinger and Halter-Koch 2006, Corol-
lary 4.3.16] implies that n � 3 divides some d 2 ��.G/. By Theorem 6.8 we
have

max��.G/D n� 2 and max.��.G/ n fn� 2g/D
j

n

2

k
� 1;

a contradiction to n� 5. �

Corollary 6.15. (1) Let H be an atomic monoid such that L.H / is additively
closed, and let H 0 be an atomic monoid with L.H 0/� L.H /. Then

L.H �H 0/D L.H /:

(2) Let H be an atomic monoid with L.H / D L.Cn/ for n 2 Œ3; 4�. For k 2

N and i 2 Œ1; k�, let Hi be an atomic monoid with L.Hi/ � L.Cn/. Then
L.H �H1 � � � � �Hk/D L.Cn/.

Proof. Since L.H �H 0/D fLCL0 WL 2 L.H /;L0 2 L.H 0/g, (1) follows.
For (2), we set H 0 D H1 � � � � � Hk . Since L.Cn/ is additively closed by

Proposition 6.14, it follows that

L.H 0/D fL1C � � �CLk WLi 2 L.Hi/; i 2 Œ1; k�g � L.Cn/:

Finally (1) implies that L.H �H 0/D L.H /. �

We conclude this manuscript by suggesting a rich program for further study.
Any progress in these directions will lead to a better understanding of direct-sum
decompositions of classes of modules where each module has a semilocal endomor-
phism ring. Moreover, this program could stimulate new studies in combinatorial
factorization theory where much of the focus has been on Krull monoids having
finite class group.
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Program for further study

A. Module-theoretic aspect. Let R be a ring and let C be a class of right R-modules
which is closed under finite direct sums, direct summands, and isomorphisms, and
such that the endomorphism ring EndR.M / is semilocal for each module M in
C (such classes of modules are presented in a systematic way in [Facchini 2004]).
Then V.C/, the monoid of isomorphism classes of modules in C is a reduced Krull
monoid with class group G and set GP �G of classes containing prime divisors.

Since the long-term goal — to determine the characteristic of V.C/— is out of
reach in most cases, the focus of study should be on those properties of GP which
have most crucial influence on the arithmetic of direct-sum decompositions. In
particular,

� Is GP finite or infinite?

� Is GP well-structured in the sense of Proposition 6.2?

B. Arithmetical aspect of direct-sum decompositions. Let H be a Krull monoid
with finitely generated class group G and let GP � G denote the set of classes
containing prime divisors.

1. Finiteness conditions.

(a) Characterize the finiteness of arithmetical invariants (introduced in Section 2)
and the validity of structural finiteness results (as given in Proposition 6.2, items
(2a) and (2b)).

For infinite cyclic groups much work in this direction can be found done in
[Geroldinger et al. 2010].

(b) If GP contains an infinite group, then every finite subset L� N�2 occurs
as a set of lengths in H (see Proposition 6.2) and hence �.H / D N, and
Uk.H /D N�2 for all k � 2. Weaken the assumption on GP to obtain similar
results.

A weak condition on GP enforcing that �.H /D N can be found in [Hassler
2002].

2. Upper bounds and precise formulas. Suppose that G is torsion-free, say GP �

G D Z.q/ � .R.q/; j � j/, where j � j W R.q/! R�0 is a Euclidean norm.

(a) If GP � fx 2 R W jxj �M g for some M 2 N, then derive upper bounds for
the arithmetical invariants in terms of M .

(b) If GP has a simple geometric structure (e.g., the set of vertices in a cube; see
Examples 4.21 and 4.22), derive precise formulas for the arithmetical invariants,
starting with the Davenport constant.

A first result in this direction can be found in [Baeth et al. 2014].
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(c) Determine the extent to which the arithmetic of a Krull monoid with GP as
in (b) is characteristic for GP . In particular, determine how this compares with
the arithmetic of a Krull monoid H 0 where G0P has the same geometric structure
as GP with different parameters and how this compares with the arithmetic of a
Krull monoid having finite class group and prime divisors in all classes.
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