Vol. 272, No. 1, 2014

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On a Liu–Yau type inequality for surfaces

Oussama Hijazi, Sebastián Montiel and Simon Raulot

Vol. 272 (2014), No. 1, 177–199
Abstract

Let Ω be a compact mean-convex domain with smooth boundary Σ := Ω, in an initial data set (M3,g,K), which has no apparent horizon in its interior. If Σ is spacelike in a spacetime (4,g) with spacelike mean curvature vector such that Σ admits an isometric and isospin immersion into 3 with mean curvature H0, then

Σ||dΣ ΣH02 ||dΣ.

If equality occurs, we prove that there exists a local isometric immersion of Ω in 3,1 (the Minkowski spacetime) with second fundamental form given by K. We also examine, under weaker conditions, the case where the spacetime is the (n + 2)-dimensional Minkowski space n+1,1 and establish a stronger rigidity result.

Keywords
manifolds with boundary, Dirac operator, Einstein equations, initial data set, mean curvature, holographic principle
Mathematical Subject Classification 2010
Primary: 53C27, 53C40, 53C80
Milestones
Received: 30 June 2013
Revised: 17 September 2013
Accepted: 1 October 2013
Published: 9 October 2014
Authors
Oussama Hijazi
Institut Élie Cartan de Lorraine
Université de Lorraine
Nancy I, Boîte Postale 239
54506 Vandoeuvre-Lès-Nancy Cedex
France
Sebastián Montiel
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada
Spain
Simon Raulot
Laboratoire de Mathématiques Raphaël Salem UMR 6085 CNRS
Université de Rouen Avenue de l’Université
Boîte Postale 12 Technopôle du Madrillet
76801 Saint-Étienne-du-Rouvray
France