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NONCONCORDANT LINKS WITH HOMOLOGY COBORDANT
ZERO-FRAMED SURGERY MANIFOLDS

JAE CHOON CHA AND MARK POWELL

We use topological surgery theory to give sufficient conditions for the zero-
framed surgery manifold of a 3-component link to be homology cobordant
to the zero-framed surgery on the Borromean rings (also known as the 3-
torus) via a topological homology cobordism preserving the free homotopy
classes of the meridians.

This enables us to give examples of 3-component links with unknotted
components and vanishing pairwise linking numbers, such that any two of
these links have homology cobordant zero-surgeries in the above sense, but
the zero-surgery manifolds are not homeomorphic. Moreover, the links are
not concordant to one another, and in fact they can be chosen to be height h
but not height h + 1 symmetric grope concordant, for each h which is at
least three.

1. Introduction

It is well known that the study of homology cobordism of 3-manifolds is essential
for understanding the concordance of knots and links: homology cobordism of the
exteriors of links in S3 is equivalent to concordance in a homology S3

× I , and
an additional mild normal generation condition for π1 is equivalent to topological
concordance in S3

× I (this also holds modulo the 4-dimensional Poincaré conjecture
in the smooth case).

We recall the definitions: two m-component links L0 and L1 in S3 are said to
be topologically (respectively smoothly) concordant if there exist m locally flat
(respectively smoothly embedded) disjoint annuli in S3

× [0, 1] cobounded by
components of L0×{0} and −L1×{1}. Two 3-manifolds M0 and M1 bordered by
a 2-manifold 6, that is, endowed with a marking µi :6

'
−→ ∂Mi , are topologically

(respectively smoothly) homology cobordant if there is a topological (respectively
smooth) 4-manifold W with

∂W = M0 t−M1 t6×[0, 1]/(µ0(x)∼ x ×{0}, µ1(x)∼ x ×{1}, x ∈6),
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such that the inclusions Mi → W (i = 0, 1) induce isomorphisms on integral
homology groups. In this paper links are oriented, and link exteriors are always
bordered by

⊔
m S1
× S1 under the zero framing.

In high dimensions, concordance classification results were obtained by studying
homology surgery, with the aim of surgeries being to produce a homology cobordism
of the exteriors (for example, see [Cappell and Shaneson 1974; 1980; Le Dimet
1988]). On the other hand, for knots and links in dimension three, the zero-surgery
manifolds and their 4-dimensional homology cobordisms have been extensively
used in the literature in order to understand the structure peculiar to low dimensions,
especially in the topological category. Recall that performing zero-framed surgery
on a link in S3 yields a closed 3-manifold, called the zero-surgery manifold.

The classical invariants such as the knot signature and Levine’s algebraic knot
concordance class [Levine 1969a; 1969b] are obtained from the zero-surgery man-
ifold of a knot, via the Blanchfield form. Also, higher-order knot concordance
obstructions, such as Casson–Gordon invariants [Casson and Gordon 1978; 1986],
and Cochran–Orr–Teichner L2-signatures [Cochran et al. 2003] are obtained from
the zero-surgery manifold (often together with the homology class of the meridian).

A natural interesting question is whether the homology cobordism class of a
zero-surgery manifold determines the concordance class of a knot or link or if it
determines the homology cobordism class of the exterior.

In this paper we show, in a strong sense involving homotopy of meridians, that
the answer is negative for a large class of links satisfying a certain nonvanishing
condition on Milnor’s µ-invariants, even in the framework of symmetric grope and
Whitney tower generalisations of concordance and homology cobordism in the
sense of [Cochran et al. 2003; Cha 2014]. Also, we employ topological surgery in
dimension 4 to give a new construction of homology cobordisms of zero-surgery
manifolds. Next we state our main theorems, after which we will discuss these
aspects further.

Theorem 1.1. Suppose h ≥ 3. Then there are infinitely many 3-component links
L0, L1, . . . , with vanishing pairwise linking numbers and with unknotted compo-
nents, satisfying the following for any i 6= j :

(1) The zero-surgery manifolds ML i and ML j are not homeomorphic.

(2) There is a topological homology cobordism between ML i and ML j in which
the k-th meridians of L i and L j are freely homotopic for each k = 1, 2, 3.

(3) The links L i and L j are height h but not height h+ 1 symmetric grope concor-
dant. In particular, L i and L j are not concordant.

For a definition of height h symmetric grope concordance, see Definition 4.2. Our
links are obtained from the Borromean rings by performing a satellite construction
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along a curve lying in the kernel of the map π1(S3 r L)→ π1(ML) induced by
inclusion.

As a counterpoint to Theorem 1.1, we show that there are infinite families of
links with the same nonvanishing Milnor invariants, with homeomorphic zero-
surgery manifolds preserving the homotopy classes of the meridians, but which are
not concordant.

The Milnor invariant of an m-component link associated to a multi-index I =
i1i2 · · · ir with i j ∈ {1, . . . ,m}, as defined in [Milnor 1957], will be denoted by
µL(I ). We denote its length by |I | := r . Define k(m) := blog2(m− 1)c.

Theorem 1.2. Let I be a multi-index with nonrepeating indices with length m ≥ 2.
For any h ≥ k(m)+2 there are infinitely many m-component links L0, L1, . . . , with
unknotted components, satisfying the following:

(1) The L i have identical µ-invariants, µL i (I )= 1, and µL i (J )= 0 for |J |< |I |.

(2) There is a homeomorphism between the zero-surgery manifolds ML i and ML j

which preserves the homotopy classes of the meridians.

(3) The links L i and L j are height h but not height h+ 1 symmetric grope concor-
dant. In particular, L i and L j are not concordant.

The case when m ≥ 3 should be compared with Theorem 1.1 since then the
links L i have vanishing pairwise linking numbers. To construct such links we start
with certain iterated Bing doubles constructed using T. Cochran’s algorithm, which
realise the Milnor invariant required. We then perform satellite operations which
affect the concordance class of the link but do not change the homeomorphism type
of the zero-surgery manifold.

We remark that we could also phrase Theorems 1.1 and 1.2 in terms of symmetric
Whitney tower concordance instead of grope concordance.

In the three subsections below, we discuss some features of Theorem 1.1, re-
garding (i) the use of topological surgery in dimension 4, (ii) link concordance
versus zero-surgery homology cobordism, and (iii) link exteriors and the homology
surgery approach.

1A. Topological surgery for 4-dimensional homology cobordism. An interesting
aspect of the proof of Theorem 1.1 is that we employ topological surgery in
dimension 4 to give a sufficient condition for certain zero-surgery manifolds of
3-component links to be homology cobordant. It is well known that topological
surgery in dimension 4 is useful for obtaining homology cobordisms (and con-
sequently concordances), although the current state of the art in terms of “good”
groups, for which the π1-null disc lemma is known, is still insufficient for the
general case. M. Freedman showed that knots of Alexander polynomial one are
concordant to the unknot [Freedman and Quinn 1990, Theorem 11.7B]. J. Davis
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[2006] extended the program to show that 2-component links with Alexander
polynomial one are concordant to the Hopf link. These two cases use topological
surgery over fundamental groups Z and Z2, respectively. Due to the rarity of good
groups for 4-dimensional topological surgery, there are not many other situations
where such positive results on knot and link concordance can currently be proven. As
another case, S. Friedl and P. Teichner [2005] found sufficient conditions for a knot
to be homotopy ribbon, and in particular slice, with a certain ribbon group ZnZ

[ 1
2

]
.

We give another instance of the utility of topological surgery for constructing
homology cobordisms, using the group Z3, which is manageable from the point
of view of topological surgery in dimension 4. Indeed, our sufficient condition
for zero-surgery manifolds to be homology cobordant focuses on the Borromean
rings as a base link. The zero-surgery manifold MBor of the Borromean rings is the
3-torus T 3

= S1
× S1
× S1, whose fundamental group is Z3.

To state our result, we with the following notation: Let

3 := Z[Z3
] = Z[t±1

1 , t±1
2 , t±1

3 ].

Denote the zero-surgery manifold of a link L by ML as before. For a 3-component
link L with vanishing pairwise linking numbers, there is a canonical homotopy
class of maps fL : ML → MBor = T 3 which send the homotopy class of the i-th
meridian of L to that of the Borromean rings, namely the i-th circle factor of T 3.
After choosing an identification of π1(T 3)= Z3, we can use this to define the 3-
coefficient homology H1(ML;3). We say that a map f :ML→T 3 is a3-homology
equivalence if f is homotopic to fL and f induces isomorphisms on H∗(−;3).

Theorem 1.3. Suppose L is a 3-component link whose components have trivial
Arf invariants and there exists a 3-homology equivalence ML → T 3. Then there
is a homology cobordism W between ML and T 3

= MBor for which the inclusion-
induced maps π1(ML)→ π1(W )

'
←− π1(T 3) are such that the composition from left

to right takes meridians to meridians.

1B. Link concordance versus zero-surgery homology cobordism. We review the
general question of whether links with homology cobordant zero-surgery manifolds
are concordant. The answer to the basic question is easily seen to be no, once one
knows of a result of C. Livingston [1983] that there are knots not concordant to
their reverses. Note that a knot and its reverse have the same zero-surgery manifold.
This leads us to consider some additional conditions on the homology cobordism,
involving the meridians. In what follows, meridians are always positively oriented.

First, observe that the exteriors of two links are homology cobordant if and
only if the zero-framed meridians cobound framed annuli disjointly embedded in a
homology cobordism of the zero-surgery manifolds. (For the if direction, note that
the exterior of the framed annuli is a homology cobordism of the link exteriors.)
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In particular, it holds if two links (or knots) are concordant.
Regarding the knot case, in [Cochran et al. 2013], T. Cochran, B. Franklin,

M. Hedden and P. Horn considered homology cobordisms of zero-surgery manifolds
in which the meridians are homologous: in the smooth category, they showed that the
existence of such a homology cobordism is insufficient for knots to be concordant.
In the topological case this is still left unknown.

Concerning a stronger homotopy analogue, the following is unknown in both the
smooth and topological cases:

Question 1.4. If there is a homology cobordism of zero-surgery manifolds of
two knots in which the meridians are homotopic, are the knots concordant? Or
concordant in a homology S3

× I ?

For the link case, results in the literature give nonconcordant examples whose
zero-surgery manifolds admit a homology cobordism with homotopic meridians.
As a generic example in the topological category, consider a 2-component link
with linking number one. The zero-surgery manifold is a homology 3-sphere,
which bounds a contractible topological 4-manifold by [Freedman and Quinn 1990,
Corollary 9.3C]. Taking the connected sum of such 4-manifolds, one obtains the
following: the zero-surgery manifolds of any two linking number one 2-component
links cobound a simply connected topological homology cobordism. Note that
in this case the meridians are automatically homotopic. There are many linking
number one 2-component links which are not concordant, as can be detected, for
example, by the multivariable Alexander polynomial [Kawauchi 1978; Nakagawa
1978]. For related in-depth study, the reader is referred to, for instance, [Cha and
Ko 1999; Friedl and Powell 2011; Cha 2014]. With our respective coauthors, we
gave nonconcordant linking number one links with two unknotted components, for
which abelian invariants such as the multivariable Alexander polynomial are unable
to obstruct them from being concordant.

There are other examples which have knotted components: in [Cochran et al.
2013, end of Section 1], the authors discuss 2-component linking number zero links
with homeomorphic zero-surgery manifolds which have nonconcordant (knotted)
components. These links are obviously not concordant, and it can be seen that the
homeomorphisms preserve meridians up to homotopy.

By contrast with the above examples, our links have unknotted components
and vanishing pairwise linking numbers. Another feature exhibited by the links of
Theorems 1.1 and 1.2 is that the entire subtlety of symmetric grope concordance of
links can occur, within a single homology cobordism/homeomorphism class of the
zero-surgeries, even modulo local knot tying.

We remark that all the links of Theorems 1.1 and 1.2 lie in the same “k-solv-
equivalence class” for all k in the sense of [Cochran and Kim 2008, Definition 2.5].



6 JAE CHOON CHA AND MARK POWELL

1C. Link exteriors and the homology surgery approach. Our results serve to un-
derline the philosophy that when investigating the relative problem of whether
two links are concordant, and neither of them are the unlink, one should consider
obstructions to homology cobordism of the link exteriors viewed as bordered mani-
folds, rather than to homology cobordism of the zero-surgery manifolds, even in low
dimensions. This was implemented in, for example, [Kawauchi 1978; Nakagawa
1978; Cha 2014] (see also [Friedl and Powell 2011] for a related approach).

Although we stated our results in terms of grope concordance of links in The-
orems 1.1 and 1.2 given above, in fact we show more: the link exteriors are far
from being homology cobordant, as measured in terms of Whitney towers. A more
detailed discussion is given in Section 5. For the purpose of distinguishing exteriors,
we use the amenable Cheeger–Gromov ρ-invariant technology for bordered 3-
manifolds (particularly for link exteriors) developed in [Cha 2014], generalising
applications of ρ-invariants to concordance and homology cobordism in [Cochran
et al. 2003; 2009; Cha and Orr 2012].

We will now discuss our results from the viewpoint of the homology surgery
approach to link concordance classification, initiated by S. Cappell and J. Shaneson
[1974; 1980] and implemented in high dimensions by J. Le Dimet [1988] using
P. Vogel’s homology localisation of spaces [1978]. The strategy consists of two
parts. Consider the problem of comparing two given link exteriors. First we decide
whether the exteriors have the same “Poincaré type”, which roughly means that
they have homotopy-equivalent Vogel homology localisations. If so, there is a
common finite target space, into which the exteriors are mapped by homology
equivalences rel. boundary. Once this is the case, a surgery problem is defined,
and one can try to decide whether homology surgery gives a homology cobordism
of the exteriors. The first step is obstructed by homotopy invariants (including
Milnor µ-invariants in low dimension). The failure of the second step is measured
by surgery obstructions, which are not yet fully formulated in low dimension (even
modulo the fact that 4-dimensional surgery might not work), since the fundamental
group plays a more sophisticated central rôle; see [Powell 2012] for the beginning
of an algebraic surgery approach to this problem in the context of knot slicing.

Our examples illustrate that for many Poincaré types, namely those in Theorems
1.1 and 1.2, we get a rich theory of surgery obstructions within each Poincaré
type, which is invisible via zero-surgery manifolds. We remark that for our links
L i in Theorems 1.1 and 1.2, there is a homology equivalence of the exterior of
each L i into that of a fixed one, say L1, since we use satellite constructions (see
Section 4). It follows that the exteriors have the same Poincaré type in the above
sense. In this paper, (parts of the not yet fully formulated) homology surgery
obstructions in dimension 4 have their incarnation in Theorem 5.2, the Amenable
Signature Theorem.
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Organisation of the paper. In Section 2, we explore the implications of the hy-
pothesis that a homology equivalence f : ML → T 3 as in Theorem 1.3 exists, and
we prove Theorem 1.3 in Section 3. In Section 4, we construct links with a given
Milnor invariant with nonrepeating indices, and perform satellite operations on the
links to construct the links of Theorems 1.1 and 1.2, which are height h symmetric
grope concordant. In Section 5, we show that none of these links are height h+ 1
grope concordant to one another.

2. Homology type of zero-surgery manifolds and the 3-torus

This section discusses the hypotheses of Theorem 1.3. We begin the section by
briefly reminding the reader who is familiar with Kirby calculus of a nice way to
see the following fact.

Lemma 2.1. The zero-surgery manifold of the Borromean rings is homeomorphic
to the 3-torus.

Proof. Place dots on two components of the Borromean rings and a zero near the
other. Each component of the Borromean rings is a commutator in the meridians of
the other two components, so this is a Kirby diagram for T 2

×D2, whose boundary
is T 3. The 1-handles (dotted circles) can be replaced with zero-framed 2-handles
without changing the boundary. �

In the following proposition we expand on the meaning and implications of
the condition in Theorem 1.3. Denote the exterior of a link L by X L := S3 r νL
as before.

Proposition 2.2. Suppose that L is a 3-component link. Then the following are
equivalent:

(1) There is a 3-homology equivalence f : ML → T 3.

(2) The preferred longitudes generate the link module H1(X L;3).

(3) The pairwise linking numbers of L vanish and H1(ML;3)= 0.

Furthermore, (any of ) the above conditions imply that L has multivariable Alexan-
der polynomial 1L = (t1 − 1)(t2 − 1)(t3 − 1), and this implies that the Milnor
invariant µL(123) is equal to ±1.

Proof. First we will observe that (2) and (3) are equivalent. Longitudes of L
represent elements in H1(X L;3) ∼= π1(X L)

(1)/π1(X L)
(2) if and only if they are

zero in H1(X L;Z)∼=Z3; that is, the pairwise linking numbers are zero. If this is the
case, H1(ML;3) is isomorphic to H1(X L;3)/〈longitudes〉, since ML is obtained
by attaching three 2-handles to EL along the longitudes and then attaching three
3-handles along the boundary. It follows that longitudes generate H1(X L;3) if and
only if H1(ML;3)= 0.
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Suppose (1) holds. Denote the meridians of L by µi (i = 1, 2, 3) and the linking
number of the i-th and j-th components by `i j . The i-th longitude λi , which is
homologous to

∑
j 6=i `i jµi , is zero in H1(ML;Z)∼= H1(T 3

;Z). Since { f∗([µi ])}

forms a basis of H1(T 3
;Z)∼= Z3, it follows by linear independence that `i j = 0 for

any i and j . Also, H1(ML;3)∼= H1(T 3
;3)= 0. This shows that (3) holds.

Suppose (3) holds. Start with a map g : ∂X L =
⊔

3 S1
× S1
→ T 3 that sends µi

to the i-th S1 factor and λi to a point. Observe that g∗ : H1(∂X L;Z)→ H1(T 3
;Z)

factors through the inclusion-induced map i∗ : H1(∂X L;Z)→ H1(ML;Z) and the
identifications H1(ML;Z)

'
−→ Z3 '

←− H1(T 3
;Z); this follows from the fact that

H1(∂X L;Z)∼= Z6 is generated by the µi and λi and that both g∗ and i∗ are quotient
maps, with their kernels generated by the λi . Since T 3 is a K (Z3, 1), elementary
obstruction theory shows that g extends to a map f : ML → T 3.

Consider the universal coefficient spectral sequence (see, e.g., [Levine 1977,
Theorem 2.3]) E2

p,q = Extp
3(Hq(ML;3),3)⇒ H n(ML;3). We have E2

0,1 = 0
since H1(ML;3) = 0, and E2

1,0 = Ext13(Z,3) = H 1(T 3
;3) = 0. It follows

that H 1(ML;3) = 0. By duality, H2(ML;3) = 0. Also, H3(ML;3) = 0 since
the Z3-cover of ML is noncompact. Since H0(ML;3) ∼= Z ∼= H0(T 3

;3) and
Hi (T 3

;3) = 0 for i > 0, it follows that f is a 3-homology equivalence. This
completes the proof of the equivalence of (1), (2) and (3).

Suppose (1), (2) and (3) hold. Recall that the scalar multiplication of a loop
by ti in the module H1(X L;3) is defined to be conjugation by µi . Since λi and µi

commute, we have (ti − 1)λi = 0 in H1(X L;3). From this and (2), it follows that
there is an epimorphism of A :=

⊕3
i=13/〈ti −1〉 onto H1(X L;3). Since the zero-

th elementary ideal of A is the principal ideal generated by (t1− 1)(t2− 1)(t3− 1),
it follows that 1L is a factor of (t1− 1)(t2− 1)(t3− 1). We now invoke the Torres
condition (see, e.g., [Kawauchi 1996, Theorem 7.4.1]):

1L(1, t2, t3)= (t
`12
2 t`13

3 − 1)1L ′(t2, t3),

where L ′ is the sublink of L with the first component deleted and `i j is the pairwise
linking number. Since `i j = 0 by (3), we have 1L(1, t2, t3) = 0. It follows
that t1 − 1 is a factor of 1L . Similarly t2 − 1 and t3 − 1 are factors. Therefore
1L(t1, t2, t3)= (t1− 1)(t2− 1)(t3− 1).

To show the last part, suppose that 1L(t1, t2, t3)= (t1− 1)(t2− 1)(t3− 1). By
[Kawauchi 1996, Proposition 7.3.14], the single-variable Alexander polynomial
1L(t) of L is given by

1L(t)= (t − 1)1L(t, t, t)= (t − 1)4 .= ((
√

t)−1
−
√

t)4.

It follows that L has Conway polynomial ∇L(z)= z4, by the standard substitution
z = (
√

t)−1
−
√

t . Cochran [1985, Theorem 5.1] identified the coefficient of z4
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in ∇L(z) with (µL(123))2 for 3-component links with pairwise linking number
zero. Applying this to our case, it follows that µL(123)=±1. �

3. Construction of homology cobordisms using topological surgery

This section gives the proof of Theorem 1.3. The proof will use surgery theory, and
will parallel the proof given by Davis [2006] (see also [Hillman 2002, Section 7.6]).
We will provide some details in order to fill in where the treatment in [Davis 2006]
was terse, and to convince ourselves that the analogous arguments work in the case
of interest.

For the convenience of the reader we restate Theorem 1.3 here.

Theorem 1.3. Suppose L is a 3-component link whose components have trivial
Arf invariants and there exists a 3-homology equivalence ML → T 3. Then there
is a homology cobordism W between ML and T 3

= MBor for which the inclusion-
induced maps π1(ML)→ π1(W )

'
←− π1(T 3) are such that the composition from left

to right takes meridians to meridians.

Remark 3.2. It is an interesting question to determine whether there are extra
conditions which can be imposed in order to see that the Arf invariants of the
components are forced to vanish by the homological assumptions. In the cases of
knots and 2-component links with Alexander polynomial one, the Arf invariants
of the components are automatically trivial. For knots, 1K (−1) computes the Arf
invariant, by [Levine 1966]. For 2-component links one observes that 1L(t, 1)
and 1L(1, t) give the Alexander polynomials of the components, by the Torres
condition, and then applies Levine’s theorem. These arguments do not seem to
extend to the 3-component case of current interest.

The proof of Theorem 1.3 will occupy the rest of this section. In order to produce
a homology cobordism, we will first show that there is a normal cobordism between
normal maps f : ML → T 3 and Id : T 3

→ T 3. Interestingly, we can work with
smooth manifolds in order to establish the existence of a normal cobordism. This
will make arguments which invoke tangent bundles and transversality easier to
digest. Only at the end of the proof of Theorem 1.3, where we take connected
sums with the E8-manifold, and where we claim that the vanishing of a surgery
obstruction implies that surgery can be done, do we need to leave the realm of
smooth manifolds.

Definition 3.3. Let X be an n-dimensional manifold with a vector bundle ν→ X .
A degree-one normal map (F, b) over X is an n-manifold M with a map F :M→ X
which induces an isomorphism F∗ : Hn(M;Z)

'
−→ Hn(X;Z), together with a stable

trivialisation b : TM ⊕ F∗ν⊕ εl ∼= εk .
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A degree-one normal cobordism (J, e) between normal maps (F : M→ X, b)
and (G : N → X, c) is an (n+ 1)-dimensional cobordism between M and N with
a map J :W → X × I extending F : M→ X ×{0} and G : M→ X ×{1}, which
induces an isomorphism

J∗ : Hn+1(W, ∂W ;Z)
'
−−→ Hn+1(X × I, X ×{0, 1};Z),

together with a stable trivialisation e : TW ⊕ J ∗(ν× I )⊕ εl ′ ∼= εk′ .

For us, let X = T 3, and let ν be its tangent bundle. We fix a framing on the stable
tangent bundle of the target torus T 3 once and for all. Note that this canonically
determines a trivialisation of the tangent bundle of F∗ν, for any map F : M→ X ,
by the following diagram, in which the bottom composition is the constant map,
denoted ∗, and the top composition is the pull back F∗ν. The middle composition
is the induced framing.

M ×{0}

��

F×Id // T 3
×{0} ν //

��

BO(n)

��
M × I

F×Id // T 3
× I // BO

M ×{1}

OO

F×Id // T 3
×{1} ∗ //

OO

BO(n)

OO

A framing of the tangent bundle of the domain therefore determines a normal map.

Lemma 3.4. Let L be a link whose components have trivial Arf invariants, and
let f : ML → T 3 be a degree-one normal map which induces a Z-homology
isomorphism and which maps a chosen meridian µi to the i-th S1 factor of T 3 for
i = 1, 2, 3. We can make a homotopy of f and choose a framing on ML so that
f : ML → T 3 and Id : T 3

→ T 3 are degree-one normal cobordant.

Proof. We need to show that we can choose a framing on ML such that the
disjoint union ML t−T 3 represent the trivial element of �fr

3 (T
3). We compute this

bordism group:

�̃fr
3 (T

3)∼= �̃
fr
4 (6T 3)∼= �̃

fr
4 (S

2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4),

with this last isomorphism induced by a homotopy equivalence of spaces. There
is a copy of Si+1 for each i-cell of T 3, for i = 1, 2, 3. To see this homotopy
equivalence, we need to see that the attaching maps of the cells are null-homotopic.
The suspension of the 1-skeleton of T 3 is S2

∨ S2
∨ S2. The Hilton–Milnor theorem

[Hilton 1955, Theorem A] computes the homotopy groups of a wedge of spheres.
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The attaching maps for the 2-cells of T 3 become the attaching maps for the 3-cells
of 6T 3, namely maps in

π2(S2
∨ S2
∨ S2)∼=

⊕
3

π2(S2)∼=
⊕

3

Z,

where the first isomorphism is by the Hilton–Milnor theorem. The commutator
attaching maps become trivial in the abelian π2(S2). Therefore the 3-skeleton
of 6T 3 is a wedge S2

∨ S2
∨ S2
∨ S3
∨ S3
∨ S3. The attaching map for the 3-cell

of T 3 becomes the attaching map for the 4-cell of 6T 3, a map in

π3(S2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3)∼=

⊕
1≤i≤3

π3(S3)⊕
⊕

3

π3(S2)⊕
⊕

1≤i< j≤3

π3(S3),

again by the Hilton–Milnor theorem, where the last three π3(S3) summands include
into π3(S2

∨ S2
∨ S2
∨ S3
∨ S3
∨ S3) via composition with the Whitehead product:

let fi : S2
→ S2

i be a generator of π2(S2
i ), where S2

i is the i-th S2 component
in the wedge. Then the Whitehead product is the homotopy class of the map
[ fi , f j ] ∈ π3(S2

i ∨ S2
j ), which is the attaching map for the 4-cell in a standard

cellular decomposition of S2
× S2. Since π2(S1)∼= π2(S1

∨ S1)∼= 0, the summands
associated to the S2 components of the wedge do not arise from a suspension. The
summands associated to the S3 components are null-homotopic since the 3-cell
of T 3 is attached to each 2-cell twice, once on either side. This completes the
explanation of the claimed homotopy equivalence:

6T 3
' S2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4.

By Mayer–Vietoris, the bordism group �̃fr
4 (S

2
∨ S2
∨ S2
∨ S3
∨ S3
∨ S3
∨ S4) is

a direct sum⊕
3

�̃fr
4 (S

2)⊕
⊕

3

�̃fr
4 (S

3)⊕ �̃fr
4 (S

4)∼=
⊕

3

�̃fr
2 (S

0)⊕
⊕

3

�̃fr
1 (S

0)⊕ �̃fr
0 (S

0)

∼=

⊕
3

�fr
2 ⊕

⊕
3

�fr
1 ⊕�

fr
0

∼=

⊕
3

Z2⊕
⊕

3

Z2⊕Z.

Therefore

�fr
3 (T

3)∼=�
fr
3 ⊕

⊕
3

Z2⊕
⊕

3

Z2⊕Z∼= Z24⊕
⊕

3

Z2⊕
⊕

3

Z2⊕Z.

The isomorphism is given as follows. Let

pri : T
3
= S1
× S1
× S1
−→ S1
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be given by projection onto the i-th factor. Similarly, let

qri : T
3
= S1
× S1
× S1
−→ S1

× S1

be given by forgetting the i-th factor. Let F : M→ T 3 be an element of �fr
3 (T

3).
Making all maps transverse to a point, we obtain an 8-tuple(
[M], (pr1 ◦F)

−1(∗), (pr2 ◦F)
−1(∗), (pr3 ◦F)

−1(∗),

(qr1 ◦F)
−1(∗), (qr2 ◦F)

−1(∗), (qr3 ◦F)
−1(∗), F−1(∗)

)
∈�fr

3 ⊕
⊕

3

�fr
2 ⊕

⊕
3

�fr
1 ⊕�

fr
0
∼= Z24⊕

⊕
3

Z2⊕
⊕

3

Z2⊕Z.

We consider each of the summands in turn.
By choosing the appropriate orientation on ML and making the degree-one normal

maps transverse to a point, one can arrange for the disjoint union f −1(∗)t− Id−1(∗)

to be equal to {pt} t−{pt} = 0 ∈�fr
0 .

As observed in [Davis 2006, proof of the lemma], we can change the framing
so that the elements of �fr

1 agree. First, we change the framing on each of three
chosen meridians µi to the link components L i .

Orientable k-plane vector bundles over S1 are classified by homotopy classes of
maps [S1,BSO(k)]. Consider the exact sequence

π2(BSO)−→ π2(BSO,BSO(k))−→ π1(BSO(k))
γ
−−→ π1(BSO).

A stably trivial vector bundle over S1 gives us an element of ker(γ ). A choice of
trivialisation of the vector bundle gives us a null homotopy and therefore an element
of π2(BSO,BSO(k)). The possible choices of stable trivialisations, or framings,
are indexed by π2(BSO)∼= π1(SO)∼= Z2.

We can therefore, if necessary, change the framing on each µi to be the bounding
framing using an element of π1(SO(2)) which maps to the nontrivial element of
π1(SO). Use the element of π1(SO(2)) to change the framing on the normal bundle
of µi in ML . We claim that these changes in the framing can be extended to the
whole of ML . To see this, we argue as follows. The dual of the inclusion map
H 1(ML;Z)→ H 1(µi ;Z) is surjective, since each [µi ] is a generator of H1(ML;Z).
The change of framing map µi → SO(2) represents a homotopy class of maps in
[µi , S1

] and therefore an element of H 1(µi ;Z). Since this pulls back to an element
of H 1(ML;Z), which can in turn produce a map ML → SO(2), the change of
framing map can be extended as claimed.

Let Ni ⊂ ML be the submanifolds given by (qri ◦ f )−1(∗), after perturbing f to
make qri ◦ f transverse to a point. As the inverse image of the i-th S1 factor of T 3

(e.g., f −1(S1
×{∗}× {∗})), Ni is a collection of circles. After a homotopy of f , it

can be arranged, by the assumption on f , that Ni is a single meridian µi , which has
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the bounding framing and therefore represents the zero element in �fr
1 . To make

this arrangement, it suffices to be able to remove circles Ni whose image in T 3

is null-homologous. But in T 3, a null-homologous curve is also null-homotopic.
Therefore we can make a homotopy of f so that Ni misses S1

×{∗}× {∗}.
After another homotopy, the inverse image (pri ◦ f )−1(∗) can be arranged to be

a capped-off Seifert surface Fi ∪ D2, where Fi is a Seifert surface for L i (possibly
with closed connected components). To see this, we again use our assumption
that f sends the i-th meridian µi to the i-th circle. This assumption enables us
to homotope f so that pri ◦ f sends a regular neighbourhood µi × D2 to S1 by
projection onto the first factor. Then the inverse image is as desired. A homotopy
of f preserves the framed bordism class of (pri ◦ f )−1(∗), and the class [Fi ∪D2

] ∈

�fr
2 is determined by the Arf invariant of L i . By hypothesis, this vanishes.
Finally, again following [Davis 2006] (see also [Freedman and Quinn 1990,

proof of Lemma 11.6B]), the framing can be altered in the neighbourhood of
a point to change the element [M] ∈ �fr

3 to the trivial element. We recall the
definition of the J -homomorphism J : π3(SO)→ π S

3
∼=�fr

3 , for the convenience of
the reader, where π S

k is the k-th stable homotopy group of spheres. (Incidentally,
π3(SO) ∼= Z and π S

3
∼= Z24.) Given θ : S3

→ SO, choose a k sufficiently large so
that we can represent θ by a map θ : S3

→ SO(k). We proceed to construct a map
(J (θ) : Sk+3

→ Sk) ∈ π S
3 . So:

Sk+3
= S3
× Dk

∪S3×Dk−1 D4
× Sk−1.

Define a map
j (θ) : S3

× Dk
→ S3

× Dk

(x, y) 7→ (x, θ(x)(y)),

since θ(x) ∈ SO(k) acts on Dk by identifying Dk with the unit ball in Rk . This
map extends to a homeomorphism j (θ) of S3

× Dk
∪S3×Dk−1 D4

× Sk−1. Form the
composition

Sk+3
= S3
× Dk

∪S3×Dk−1 D4
× Sk−1 j (θ)

−−→ S3
× Dk

∪S3×Dk−1 D4
× Sk−1

col
−−→ S3

× Sk proj1
−−→ Sk,

where col is the collapse map which squashes D4
× Sk−1 and proj1 is the projection

onto the first factor. This gives an element of π S
3 , which is the image of θ under

J : π3(SO)→ π S
3
∼=�fr

3 .
This J -homomorphism is onto [Adams 1966, Example 7.17], so that composing

the framing in a neighbourhood D3 of a point with the choice of map θ ∈ π3(SO)=
[(D3, ∂D3), (SO, ∗)] such that −J (θ) = [M] ∈ �fr

3 changes the class in �fr
3 as

desired.
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This shows the existence of a normal cobordism W ′. To see that this is of degree
one, note that the map to T 3 which extends over W ′ can be used to define a map
to T 3

× I , by defining a map g :W ′→ I such that g(ML)= {0} and g(T 3)= {1}.
Now consider the commutative diagram

H4(W ′, ∂W ′;Z) //

��

H3(∂W ′;Z)

��
H4(T 3

× I, T 3
×{0, 1};Z) // H3(T 3

×{0, 1};Z)

Going right, then down, the fundamental class [W ′, ∂W ′] maps to

(1,−1) ∈ H3(T 3
×{0, 1};Z)∼= Z⊕Z.

By commutativity, the relative fundamental class [W ′, ∂W ′]must map to a generator
of H4(T 3

× I, T 3
×{0, 1};Z). �

A 3-homology equivalence is also an integral homology equivalence, by the
following argument. By definition (see above the statement of Theorem 1.3), a
3-homology equivalence induces an isomorphism on H1(−;Z). By duality, we
also have an isomorphism on H2(−;Z). It remains to see that f : ML → T 3 is a
degree-one map. The assumption that

f∗ : H∗(ML;3)
'
−−→ H∗(T 3

;3)

is an isomorphism implies that the relative homology vanishes: H∗(T 3,ML;3)∼= 0.
The universal coefficient spectral sequence then implies that H∗(T 3,ML;Z)∼= 0
since all the E2 terms Tor3p (Hq(T 3,ML;3),Z) vanish. Therefore a 3-homology
equivalence as in Theorem 1.3 is a degree-one map.

Lemma 3.4 then establishes the existence of a choice of stable framing b on ML

such that there is a degree-one normal cobordism

(F ′ :W ′ −→ T 3
× I, e′)

between ( f : ML → T 3, b) and (Id : T 3
→ T 3, c). Choosing such a framing, we

proceed to apply surgery theory to alter W ′ into a homology cobordism. Davis’
observation [2006] was that the framing on W ′ is not an intrinsic part of the
concordance problem, but rather necessary additional data which is required in
order to be able to apply surgery theory. Without the information provided by the
self-intersection form, it is not possible to obtain algebraic sufficient conditions
which ensure that surgery can be performed. Nevertheless, as we shall see, there is
a certain amount of freedom in the choice of framing data.

Before giving the proof of Theorem 1.3, we first give the definition of the Wall
even-dimensional surgery obstruction groups, which we will use in the proof.
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Definition 3.5 [Wall 1999, Chapter 5]. Let A be a ring with involution. A (−1)k-
Hermitian sesquilinear quadratic form on a free based A-module M is a (−1)k-
Hermitian sesquilinear form λ :M×M→ A together with a quadratic enhancement.
A quadratic enhancement of a form λ : M × M → A is a function µ : M →
A/{a− (−1)ka | a ∈ A} such that

(1) λ(x, x)= µ(x)+µ(x),

(2) µ(x + y)−µ(x)−µ(y)= λ(x, y),

(3) µ(ax)= aµ(x)a,

for all x, y ∈ M and for all a ∈ A.
A hyperbolic quadratic form is a direct sum of standard hyperbolic forms, where

the standard hyperbolic form (H, χ, ν) is given by(
A⊕ A,

(
0 1

(−1)k 0

)
, ν((1, 0)T )= 0= ν((0, 1)T )

)
.

The even-dimensional surgery obstruction group L2k(A) is defined to be the Witt
group of nonsingular (−1)k-Hermitian sesquilinear quadratic forms on free based A-
modules, where addition in the Witt group is by direct sum, and the equivalence class
of the hyperbolic forms is the identity element, where the equivalence relation is as
follows. Quadratic forms (M, λ, µ) and (M ′, λ′, µ′) are said to be equivalent if there
are hyperbolic forms (H, χ, ν) and (H ′, χ ′, ν ′) such that there is an isomorphism
of forms (M⊕H, λ⊕χ,µ⊕ν)∼= (M ′⊕H ′, λ′⊕χ ′, µ′⊕ν ′). This completes the
definition of L2k(A).

For us, A will be the group ring Z[π ] of some group π ; initially π will be Z3,
so that we take A = Z[Z3

] = 3. We omit the definition of the odd-dimensional
L-groups since they will only play a peripheral rôle in the proof of Theorem 1.3.

Proof of Theorem 1.3. First, do surgery below the middle dimension [ibid., Chap-
ter 1] on (W ′, F ′, e′) to create a normal cobordism (F :W → T 3

× I, e) which is
2-connected, i.e., W is connected and π1(W ) ∼= π1(T 3) ∼= Z3. The induced map
F∗ : π2(W )→ π2(T 3

× I ) is automatically surjective since T 3 is aspherical.
The Wall surgery obstruction [ibid., Chapter 5] of the normal cobordism (F :

W → T 3
× I, e) is now defined in L4(Z[Z

3
]) to be given by the intersection form

λW ′ : H2(W ′;3)× H2(W ′;3)−→3,

together with the quadratic enhancement

µ : H2(W ;3)−→ Z[Z3
]/{a = a | a ∈ Z[Z3

]}

defined by counting the self-intersections of an immersion of a sphere S2 # W
representing an element of H2(W ;3)∼= π2(W ), where the regular homotopy class
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of the immersion is fixed by the framing e to be the unique class of immersions for
which the induced trivialisation of TS2 extends over the null-homotopy of S2 in T 3.

The fact that the homology of the boundary H j (ML;3)∼= H j (T 3
;3) vanishes

for j = 1, 2, is used crucially here to see that the intersection form λW is nonsingular,
as observed by the surgeon in the “dialogue” of [Davis 2006].

By [Wall 1999, Proposition 13B.8], which is based on Shaneson’s formula
Ln(Z[π × Z]) ∼= Ln(Z[π ])⊕ Ln−1(Z[π ]), when π has trivial Whitehead group
[Shaneson 1969] we have that

L4(Z[Z
3
])∼=

3⊕
i=0

(3
i

)
L4−i (Z)∼= L4(Z)⊕

⊕
3

L3(Z)⊕
⊕

3

L2(Z)⊕ L1(Z)

∼= L0(Z)⊕
⊕

3

L2(Z),

where the last isomorphism is by periodicity of the L-groups and the fact that
the odd-dimensional simply connected L-groups vanish. The even-dimensional
simply connected L-groups L2k(Z) are computed [Kervaire and Milnor 1963], when
k = 0 mod 2, as

L0(Z)
'
−→ Z

(M, λ, µ) 7→ σ(R⊗Z M, Id⊗λ)/8,

while for the dimensions where k = 1 mod 2 they are computed via

L2(Z)
'
−→ Z2

(M, λ, µ) 7→ Arf(Z2⊗Z M, Id⊗λ, Id⊗µ).

We need to see that we can make further alterations to W in order to make the
surgery obstruction vanish.

First, we take the connected sum with −σ(W )/8 copies of the E8 manifold,
namely the simply connected 4-manifold which is constructed by plumbing disc
bundles D2

× D2 according to the E8 lattice. It turns out that the boundary of
the resulting 4-manifold is the Poincaré homology sphere. One then caps off with
the contractible topological 4-manifold whose boundary is the Poincaré homology
sphere [Freedman and Quinn 1990, Corollary 9.3C]. This produces the E8 manifold,
a closed topological 4-manifold. It has a nonsingular intersection form, with a
quadratic enhancement induced from a normal map to S4, and its signature is 8.
By a negative copy of this 4-manifold we of course mean the same manifold but
with the opposite choice of orientation. By making such a modification to W , we
obtain a new normal map, which by abuse of notation we again denote by (W, F, e),
for which the obstruction in L0(Z) is trivial. Note that W still has fundamental
group Z3 since π1(E8 manifold)∼= {1}, and moreover ∂W is unchanged.
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Next, we may need to alter W again, so that the three Arf invariant obstructions
in L2(Z) vanish. For i = 1, 2, 3, define maps

qri : T
3
× I = S1

× S1
× S1
× I −→ S1

× S1

which forget the i-th S1 factor and the I factor. Perform a homotopy of F to ensure
that qri ◦F is transverse to ∗ ∈ S1

× S1, and such that

F−1(S1
×{∗}× {∗}× {∂I })−→ S1

×{∗}× {∗}× {∂I }

is a homotopy equivalence (and similarly with the ∗ terms moved appropriately
for i = 2, 3). This homotopy equivalence was already arranged in the proof of
Lemma 3.4, when we saw that the elements of �fr

1 can be removed. Let Si be the
surfaces (qri ◦F)

−1(∗); each surface has boundary ∂Si given by the meridian µi

and the corresponding S1 factor of T 3.
Let pri : T

3
× I = S1

× S1
× S1
× I → S1

× I be the map which remembers the
i-th S1 factor and the I factor. Making F transverse to a point, (pri ◦F)

−1(∗) is a
surface 6i ⊂W . Since F(Si ∩6i ) is a single point and F is of degree one, we can
assume that Si and 6i intersect in a single point. By choosing different points in
the I factor, we can ensure that the 6i are all distinct.

Now, as in [Davis 2006], for each i with nonzero-surgery obstruction in the
corresponding L2(Z) summand of L4(Z[Z

3
]), remove a neighbourhood 6i × D2

of 6i and replace it with 6i × cl(S1
× S1 r D2). That is, replace the D2 factor

with a punctured torus, but define the framing on the torus to be the framing which
yields Arf invariant one, that is, the Lie framing on both S1 factors. Since 6i is
dual to Si , this adds one to the Arf invariant of the element of L2(Z) represented
by Si , and so changes the Arf invariant one summands to having Arf invariant zero.

After these alterations we have a normal map (G ′ : V ′ → T 3
× I, k ′), with

vanishing surgery obstruction. Since the fundamental group Z3 is good in the
sense of Freedman (polycyclic groups are good [Freedman and Quinn 1990, Theo-
rem 5.1A]), the surgery sequence is exact in the topological category — see [ibid.,
Theorem 11.3A]. We can therefore find embedded two-spheres representing a
half-basis for π2(G ′), perform surgery, and obtain a topological 4-manifold V
which is homotopy equivalent to T 3

× I ; in particular, V is a homology cobordism
between ML and T 3.

Moreover, the following diagram commutes:

π1(ML) //

f∗
��

π1(V )

∼=

��

π1(T 3)oo

∼=Id
��

π1(T 3)
∼= // π1(T 3

× I ) π1(T 3)
∼=oo
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Since the meridians µi of L are mapped to standard generators of π1(T 3), an easy
diagram chase shows that the homotopy classes of the meridians are preserved in
the homology cobordism V . �

4. Construction of links and grope concordance

In this section we give constructions of certain links with a given Milnor invariant,
and construct grope concordances, using the methods of [Cochran 1990] and [Cha
2014].

4A. Iterated Bing doubles with a prescribed Milnor invariant. Let I be a multi-
index with nonrepeating indices with length m := |I | ≥ 2. We describe a rooted
binary tree T (m) associated to m ≥ 2, which has m leaves: the right subtree of
the root just consists of a single vertex, and the left subtree T †(m) is the complete
binary tree of height h(m) := dlog2(m− 1)e with the rightmost 2(m− h(m)− 1)
pairs of leaves (and edges ending at these) removed. (By convention, a binary tree is
always embedded in a plane with the root on the top.) That is, T †(m) is a minimal
height binary tree with m − 1 leaves. For example, T (m) for m = 7 is shown in
Figure 1.

•

• •
7

• •

• • •
5

•
6

•
1

•
2

•
3

•
4

Figure 1. The tree T (m) for m = 7, labelled with I = 1234567.

Following the proof of [Cochran 1990, Theorem 7.2], a rooted binary tree T
describes a link with components corresponding to the leaves of T . First, a complete
binary tree of height one is associated to a Hopf link. If T is obtained from T ′ by
attaching two new leaves to a leaf v of T ′, then the link associated to T is obtained
from that of T by Bing doubling the component corresponding to v.

Consider the link described by the tree T (m). Labelling the leaves of T (m) from
left to right with the multi-index I (see Figure 1 for I = 1234567), the components
of the link are ordered. We denote this ordered link by L I . Then, by [Cochran
1990, Theorem 8.1], the link L I has µL I (I )=±1 and µL I (I

′)= 0 for |I ′|< |I |.

4B. Satellite construction and grope concordance of links. To construct links
which are grope concordant, we employ the method of [Cha 2014, Section 4]. We
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begin by giving the definition of grope concordance. The use of gropes in this
context first appeared in [Cochran et al. 2003].

Definition 4.1 [Freedman and Teichner 1995]. A grope is a pair (2-complex, base
circle) of a certain type described below. A grope has a height h ∈N. For h = 1 a
grope is precisely a compact oriented surface 6 with a single boundary component
which is the base circle. A grope of height h+ 1 is defined inductively as follows:
let {αi | i = 1, . . . , 2 · genus} be a standard symplectic basis of circles for 6. Then
a grope of height h+ 1 is formed by attaching gropes of height h to each αi along
the base circles.

An annular grope is defined by replacing the bottom stage surface by a surface
with two boundary components.

Definition 4.2 [Cha 2014, Definition 2.16]. Two m-component links L and L ′ in
S3 are height n grope concordant if there are m framed annular gropes Gi of height
n, i = 1, . . . ,m, disjointly embedded in S3

× [0, 1], with the boundary of Gi the
zero-framed i-th component of L i ⊂ S3

×{0} and −L ′i ⊂ S3
×{1}.

As mentioned in the introduction, we could also phrase our theorems in terms
of Whitney towers, but for simplicity of exposition we stick to gropes. See [ibid.,
Section 2] for an exposition on gropes, Whitney towers, and n-solvable cobordisms
(our Section 5 also contains a limited discussion of n-solvable cobordisms).

We recall that a capped grope of height k is a grope of height k together with
2-discs attached along each of the standard symplectic basis curves of the top-layer
surfaces. The attached 2-discs are called caps, and the grope itself is called the
body. We always assume that a capped grope embedded in a 4-manifold is framed.

We denote the exterior of a link L by X L . If L is a link in S3, η is an unknotted
circle in S3 disjoint from L , and K is a knot, then we denote the satellite link
of L with axis η and companion K by L(η, K ); this is the image of L under the
homeomorphism Xη ∪∂ X K

≈
−→ S3, where the gluing identifies the longitude of η

with the meridian of K , and vice versa.
Following [ibid., Definition 4.2], we call (L , η) a satellite configuration of

height k if L is a link in S3, η is an unknotted circle in S3 disjoint from L , and
the 0-linking parallel of η in Xη = Xη × {0} bounds a capped grope of height k
embedded in Xη× [0, 1] with body disjoint from L × [0, 1]. The caps should be
embedded in Xη×[0, 1] but may intersect L ×[0, 1].

Lemma 4.3, stated below, describes how iterated satellite constructions using
satellite configurations give us grope concordant links. The setup is as follows.
Fix n. (To obtain Theorems 1.1 and 1.2, set h = n+ 2.) Suppose that (L0, η) is a
satellite configuration of height k ≤ n. (Later we will use the link L I described
above as L0.) Suppose that (Ki , αi ) is a satellite configuration of height one,
with Ki a slice knot, for i = 0, . . . , n − k − 1. Let J j

0 be the connected sum
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of N j copies of the knot described in [Cochran and Teichner 2007, Figure 3.6],
where {N j } is an increasing sequence of integers which will be specified later.
(Indeed, these will be given in terms of the Cheeger–Gromov bound on the ρ-
invariants and, for the links of Theorem 1.1, in terms of the Kneser–Haken bound
on the number of disjoint nonparallel incompressible surfaces. See Section 5,
just before the proof of Theorem 5.3, and Section 4D, just before Lemma 4.7.)
Define J j

i := Ki−1(αi−1, J j
i−1) inductively for i = 1, . . . , n − k. Finally define

L j := L0(η, J j
n−k).

Lemma 4.3 [Cha 2014, Proposition 4.7]. The link L j is height n+ 2 grope concor-
dant to L0 for all j .

Proof. The same as the proof of [loc. cit.], except that L0 replaces the Hopf link in
the last sentence. �

The following observation on the satellite construction is useful.

Lemma 4.4. If L ′ = L(η, K ) is obtained from L by a satellite construction, then L
and L ′ have the same Milnor µ-invariants.

Proof. It is well known that a satellite construction L ′ = L(η, K ) comes with
an integral homology equivalence f : (X L ′, ∂X L ′)→ (X L , ∂X L) which restricts
to a homeomorphism on the boundary preserving longitudes and meridians (see,
e.g., [Cha 2010, proof of Proposition 4.8; Cha and Orr 2013, Lemma 5.3]). As
in [Cha et al. 2012, Lemma 2.1], by [Stallings 1965] it follows that f induces
an isomorphism π1(X L)/π1(X L)q ∼= π1(X L ′)/π1(X L ′)q that preserves the classes
of meridians and longitudes for any q, and consequently L and L ′ have identical
µ-invariants. �

4C. Satellite configuration of iterated Bing doubles. Now we consider again the
link L I described in Section 4A. Recall that k(m) := blog2(m−1)c, where m = |I |.
Let η be the zero-framed longitude of the component of L I labelled with m, namely
the component of the original Hopf link that is never Bing doubled in the construction
of L I .

Lemma 4.5. (1) The pair (L I , η) is a satellite configuration of height k(m).

(2) The curve η is nonzero in π1(L I )/π1(L I )m .

(3) For any knot K , the link L I (η, K ) has zero-surgery manifold homeomorphic
to the zero-surgery manifold of L I .

We remark that Lemma 4.5(2) will be used in Section 5.

Proof. Denote L := L I for this proof.

(1) We go back to the construction of L , and construct the grope as we construct L .
We begin with the Hopf link (i.e., m = 2), and the curve η as a longitude of L2.



NONCONCORDANT LINKS WITH HOMOLOGY COBORDANT ZERO-SURGERIES 21

We also begin with a thickened cap D2
× [−1, 1], such that ∂D2

×{0} = η. This
intersects the other component of the Hopf link in a single point.

Every time a component K is Bing doubled in the construction of L , we arrange
that one of the clasps lies in D2

×[−1, 1], and then replace the thickened cap that
intersected K with a genus-one capped surface with a single boundary component,
whose body surface misses the new Bing doubled components, and such that each
cap intersects one of the two new components. See Figure 2, which is somewhat
reminiscent of a figure in [Freedman and Quinn 1990, Chapter 2.1].

Figure 2. Replacing a cap with a capped surface.

Since a complete binary tree of height k(m) can be embedded in T (m), we obtain
a symmetric embedded capped grope of the required height, with the body lying in
the link exterior X L and the caps intersecting the link transversely.

(2) The nonvanishing of the Milnor invariant µL(I ) implies that all of the longitudes
of L are nontrivial in π1(X L)/π1(X L)|I |.

(3) A Kirby diagram for the 3-manifold ML given by zero-framed surgery on L can
be produced by putting a 0 next to every component of L . If we perform a satellite
construction with pattern K and with η as axis, this is equivalent to tying all the
strands of L which intersect a disc D, whose boundary is η, in the knot K , with
framing zero. In other words, replace the trivial string link in D×[0, 1] with the
string link obtained by taking suitably many parallel copies of K .

But we can make a crossing change of these parallel copies of K at will, by
performing handle slides, sliding the parallel strands over the zero-framed 2-handle
attached along the component parallel to η. This gives a Kirby presentation of a
homeomorphic 3-manifold.

By making sufficiently many such crossing changes/handle slides, all the par-
allel strands which the satellite construction ties in the knot K can be unknotted,
recovering the link L . Thus the zero-surgery manifolds of the satellite link and the
original link are homeomorphic. It is easy to see that the homotopy classes of the
meridians of L are preserved under such homeomorphisms. �
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Now, let n ≥ k(|I |)= k(m). Let L j be the links obtained by the construction just
before Lemma 4.3, using our (L I , η) as (L0, η), and using the Stevedore satellite
configuration described in [Cha 2014, Figure 6], which for the reader’s convenience
is shown in Figure 3, as the (Ki , αi ). Then by Lemma 4.3 and Lemma 4.5(1), the
links L j are height n+ 2 grope concordant to the link L0 = L I .

Ki αi

Figure 3. Stevedore satellite configuration (Ki , αi ).

Lemma 4.4 shows that the links L j satisfy Theorem 1.2(1). They also satisfy
Theorem 1.2(2) by Lemma 4.5(3). We have also proved, in Lemma 4.3, the first
part of Theorem 1.2(3): the links L j are mutually height n+ 2 grope concordant.
The second part of Theorem 1.2(3), namely the failure of the links to be pairwise
height n+ 3 grope concordant, will be shown in Section 5.

4D. Examples with nonhomeomorphic zero-surgery manifolds. In order to pro-
duce examples satisfying Theorem 1.1(1), we alter the construction of Sections 4B
and 4C to give examples with nonhomeomorphic zero-surgery manifolds. We
consider the case of m = 3 and I = 123 only. Then the link L := L I described in
Section 4A is the Borromean rings. Let η be the simple closed curve in S3 r L
shown in Figure 4; x , y, and z denote the components of L .

The pair (L , η) also has two of the properties stated in Lemma 4.5, for m = 3:

Lemma 4.6. (1) The pair (L , η) is a satellite configuration of height one.

(2) In π1(X L), η = [x, y][[x, y], x], where x , y, and z are the Wirtinger gener-
ators corresponding to the dotted arcs in Figure 4. Also, η is nontrivial in
π1(X L)/π1(X L)3.

Here [a, b] denotes the commutator aba−1b−1.

Proof. (1) Tubing the obvious disc bounded by η along the components of L that
intersect it, we obtain a genus-two surface V with boundary η which is shown in
Figure 5. This is the body of the desired capped grope. The whole capped grope is
the body taken together with the four caps shown in Figure 5 as shaded discs.

(2) The claim that η= [x, y][[x, y], x] follows from a straightforward computation
in terms of the Wirtinger generators, reading undercrossings of η starting from the
dot on η in Figure 4. Since L has vanishing linking number, due to Milnor [1957]
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x

y

z

η

Figure 4. A satellite configuration on the Borromean rings.

(see also [Stallings 1965]), π1(X L)/π1(X L)3 is isomorphic to F/F3, where F is
the free group generated by x , y, and z. Consequently, [[x, y], x] ∈ π1(X L)3 and
[x, y] /∈ π1(X L)3. From this the second conclusion follows. �

As in Section 4C, we apply the construction described just before Lemma 4.3, us-
ing our (L , η) as the seed link (L0, η) and using the Stevedore satellite configuration
described in [Cha 2014, Figure 6] (see our Figure 3) as (Ki , αi ) for i = 0, . . . , n−2
as above. Let the resulting links be the L j . Then by Lemma 4.3, the L j are height

Figure 5. The capped grope bounded by η.
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n+ 2 grope concordant to the Borromean rings L , so these satisfy the first part of
Theorem 1.1(3). The second part of Theorem 1.1(3), on the failure of the links to
be pairwise height n+ 3 grope concordant, will be shown in Section 5.

Furthermore, the links L j satisfies the hypothesis of Theorem 1.3. First note that
since our satellite operation does not change the knot type of the components, L j has
unknotted components. In particular, the Arf invariants of the components vanish.
Recall from the proof of Lemma 4.4 that there is a homology equivalence f : X L j→

X L0 obtained from the satellite construction L j = L0(η, J j
n−1); indeed, f is obtained

by gluing the identity map of X L0tη with the standard homology equivalence

(X J j
n−1
, ∂X J j

n−1
)−→ (S1

× D2, S1
× S1)

along S1
× S1. Since our curve η ⊂ S3

− L0 lies in the commutator subgroup of
π1(S3

− L0), f is indeed a 3-homology equivalence X L j → X L0 , by a Mayer–
Vietoris argument. Filling it in with 3 solid tori, we obtain a 3-homology equiva-
lence ML j → T 3

= ML0 as desired. Therefore, by applying Theorem 1.3, it follows
that the links L j satisfy Theorem 1.1(2). We need to confirm that the L j satisfy
Theorem 1.1(1), namely, that the ML j are not homeomorphic. The underlying idea
is as follows. Recall that L j is defined by a satellite construction, starting with
a knot J j

0 . In many cases, the JSJ pieces of the exterior of J j
0 become parts of

the JSJ decomposition of ML j , so that the ML j have distinct JSJ decompositions.
Since a complete proof of this seems to require complicated arguments (a technical
issue is that an essential torus might not be parallel to a JSJ torus, because of
Seifert fibred pieces), we will present a simpler argument using only the number of
incompressible tori; this is enough for our purpose.

We need the following. The Kneser–Haken finiteness theorem [Haken 1961]
states that for each 3-manifold M , there is a bound, say CK H (M), on the number of
disjoint pairwise nonparallel incompressible surfaces that can be embedded in M .
Recall that the knot J j

0 used in the construction of the link L j is a connected sum of
N j knots, where {N j } was an increasing sequence to be specified (see the paragraph
before Lemma 4.3). Here is the first requirement on the N j : we choose the N j

inductively in such a way that N j >max{CK H (MLk ) | k = 0, 1, . . . , j − 1}.

Lemma 4.7. The zero-surgery manifolds ML i and ML j are not homeomorphic
for i 6= j .

Proof. Recall that ML0 = ML is the 3-torus T 3. Consider Y := ML r ν(η), where
ν(η) is an open tubular neighbourhood of η. For notational convenience, denote the
exterior of J j

n−1 by X := X J j
n−1

. The 3-manifold ML j is obtained by glueing Y and
X along their boundaries. Let T = ∂Y = ∂X be the common boundary torus. Note
that ML0 can also be described in the same way, using J 0

n−1 := unknot; in this case,
the torus T is compressible in ML0 since X is a solid torus.



NONCONCORDANT LINKS WITH HOMOLOGY COBORDANT ZERO-SURGERIES 25

Claim. For j ≥ 1, the torus T is incompressible in Y .

Using the claim, we will show that the 3-manifolds ML j are not pairwise home-
omorphic. Suppose j ≥ 1. Since the knot J j

n−1 is obtained from an iterated satellite
construction with the first-stage knot J j

0 a connected sum of N j nontrivial knots, the
exterior X of J j

n−1 has at least N j incompressible tori, including the boundary T .
Since ML j = Y ∪T X and T is incompressible in Y , it follows that there are N j

nonparallel incompressible tori in ML j . For any k < j , since N j > CK H (MLk ), it
follows that ML j is not homeomorphic to MLk .

Now, to complete the proof, we will verify the claim. If there is an essential
curve on T which bounds a disc in Y , then it must be a zero-linking longitude,
say η′, of η, since the meridian of η is a generator of H1(Y r η) = Z4. By the
following lemma, we have a contradiction. �

Lemma 4.8. The class of η′ is nontrivial in the fundamental group π1(Y r η).

Proof. We consider a Wirtinger presentation of π1(Y r η) given as follows: it
has 24 generators, denoted by x1, . . . , x24, associated to arcs in Figure 4. Here
(x1, . . . , x10), (x11, x12), (x13, . . . , x16), and (x17, . . . , x24) are those associated to
the arcs of the components x , y, z, and η, respectively. In each component, the arc
with a dot on it is the first one, and other arcs are ordered along the orientation.
There are 27 relators:

x1x11x1x12, x11x1x11x2, x2x18x2x19, x19x2x19x3, x3x20x3x21,

x3x23x3x22, x22x4x22x3, x21x4x21x5, x5x16x5x13, x13x5x13x6,

x11x7x11x6, x7x11x7x12, x13x8x13x7, x8x16x8x15, x21x9x21x8,

x22x9x22x10, x10x23x10x24, x10x20x10x19, x19x1x19x10, x1x18x1x17,

x15x22x15x21, x22x15x22x14, x24x13x24x14, x13x24x13x17,

x11x19x22x21x13x11x13x21x22x19, x1x7, x24x22x8x5.

Indeed, the first 24 are the standard Wirtinger relators for the 4-component link
L t η (thus one of these may be omitted), and the last 3 relators arise from the
zero-surgery performed along L . It is straightforward to read off the curve η′:

η′ = x1x2x10x3x15x3x10x13.

We define a representation ρ : π1(Y rη)→ SL(2,Z5) by mapping the above 24
generators, respectively, to:[

0 4
1 3

]
,
[

4 0
1 4

]
,
[

0 4
1 3

]
,
[

4 4
0 4

]
,
[

2 1
1 1

]
,
[

4 0
1 4

]
,
[

0 4
1 3

]
,
[

4 0
4 4

]
,[

1 1
1 2

]
,
[

1 1
1 2

]
,
[

4 1
4 0

]
,
[

3 1
2 1

]
,
[

4 3
2 3

]
,
[

1 3
0 1

]
,
[

2 2
2 0

]
,
[

4 2
3 3

]
,[

0 1
4 2

]
,
[

0 1
4 2

]
,
[

1 1
0 1

]
,
[

3 4
4 4

]
,
[

2 1
4 0

]
,
[

4 4
4 3

]
,
[

0 4
1 2

]
,
[

1 0
1 1

]
.
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It can be verified that all the relators are sent to the identity, by a straightforward
computation. (We found the representation ρ using a computer program.) Also, we
have that

ρ(η′)=

[
3 1
4 0

]
is not the identity. This completes the proof. �

5. Grope concordance and amenable signatures

In this section we show that the links described in Sections 4C and 4D are not
height n+ 3 grope concordant by using amenable signature obstructions from [Cha
2014]. In fact, the amenable signatures we use are obstructions to being n-solvably
cobordant, which is a relative analogue for manifolds with boundary, or bordered
manifolds, of the notion of n-solvability of [Cochran et al. 2003]. For our purpose
it suffices to consider the case of link exteriors; an n-solvable cobordism between
the exteriors X and X ′ of two links with the same number of components is a
4-manifold W with ∂W = X ∪∂ −X ′ satisfying the conditions described in [Cha
2014, Definition 2.8], where the boundary tori of X and X ′ are identified along
the zero framing. Since we do not use the defining condition right now, instead
of spelling it out here, we begin with its relationship to grope concordance. The
following theorem originates from [Cochran et al. 2003, Theorem 8.11], and was
given in our context in [Cha 2014].

Theorem 5.1 [ibid., Theorems 2.16 and 2.13, and Remark 2.11]. If two links are
height n + 2 grope concordant, then their exteriors are n-solvably cobordant as
bordered 3-manifolds.

As our key ingredient to detect nonsolvably cobordant 3-manifolds and therefore
non-grope-concordant links, we will use the Amenable Signature Theorem, which
was first introduced in [Cha and Orr 2012] for homology cobordism of closed
3-manifolds and then generalised to n-solvable cobordisms of bordered 3-manifolds
in [Cha 2014]. We state a special case which will be sufficient for our purpose.
For a closed 3-manifold M and a homomorphism φ : π1(M)→ G, denote the von
Neumann–Cheeger–Gromov ρ-invariant by ρ(2)(M, φ) ∈ R. See, e.g., [Cochran
et al. 2003, Section 5] as well as [Chang and Weinberger 2003; Harvey 2008;
Cha 2008; Cha and Orr 2012] for definitions and useful properties of ρ(2)(M, φ).
Precise references for the properties that we need will be recalled as we go along.

Theorem 5.2 (A special case of [Cha 2014, Amenable Signature Theorem 3.2]).
Suppose W is an (n+ 1)-solvable cobordism between two bordered 3-manifolds X
and X ′, and G admits a subnormal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃ Gn+1 = {e}
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with each quotient Gi/Gi+1 torsion-free abelian. Then ρ(2)(X ∪∂ −X ′, φ)= 0 for
any φ : π1(X ∪∂ −X ′)→ G which factors through π1(W ).

Recall that in our construction of the links L j , the knot J j
0 was the connected sum

of N j copies of Cochran and Teichner’s knot, say J . Now we proceed to specify
the integers N j . Denote by ρ(2)(K ) :=

∫
S1 σK (ω) dω the integral of the Levine–

Tristram signature function over the circle normalised to length one. We have
ρ(2)(J j

0 )= N jρ
(2)(J )= 4N j/3 by additivity under connected sum and [Cochran

and Teichner 2007, Lemma 4.5]. Due to Cheeger and Gromov [1985], for any
closed 3-manifold Y there is a constant CY > 0 such that |ρ(2)(Y, ψ)| < CY for
any ψ . From now on we abbreviate ` := n− k(m). Define

R := CX L0∪∂−X L0
+ 2

`−1∑
i=0

CMKi
.

We choose the large integers N j inductively in such a way that

N j > 3R/4+max{Nk | k < j}.

Then we have
ρ(2)(J j

0 ) > R+ ρ(2)(J k
0 )

whenever j > k. For Theorem 1.1, we make these choices so that the condition in
the preamble to Lemma 4.7 relating to the Kneser–Haken bound is simultaneously
satisfied.

Now we start the proof that our links L j are not height n+ 3 grope concordant
to one another. Let X and X ′ be the exteriors of L j and Lk , respectively. To
distinguish them in the notation, we denote the axis curve η in X by η j , and we
denote the corresponding axis curve in X ′ by ηk .

Recall that m = |I | and that k(m)= blog2(m− 1)c. Also note that k(m)+ 1=
dlog2(m)e. By Theorem 5.1, it suffices to show the following:

Theorem 5.3. For n ≥ k(m), the bordered 3-manifolds X and X ′ are not (n+ 1)-
solvably cobordant when j 6= k.

By Theorem 5.1, it then follows that our links L j and Lk are not height n+ 3
grope concordant when j 6= k.

Proof. The proof proceeds almost identically to that of [Cha 2014, Theorem 4.8],
which combines the Amenable Signature Theorem of that reference with a higher-
order Blanchfield duality argument for a certain 4-dimensional cobordism introduced
in [Cochran et al. 2009] (see our W0 below). So we will give an outline for our
case and discuss differences from [Cha 2014, Theorem 4.8].

Suppose W is an (n+1)-solvable cobordism with ∂W = X ∪∂ −X ′. Similarly to
[ibid., Section 4.3] (see the paragraph entitled “Cobordism associated to an iterated
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satellite construction”), we consider a cobordism V with

∂V = MJ j
0
t−MJ k

0
tMK0 t−M ′K0

t · · · tMK`−1 t−M ′K`−1

t(X L0 ∪∂ −X L0)t−(X ∪∂ −X ′)

which is built by stacking cobordisms associated to satellite constructions [Cochran
et al. 2009, p. 1429], where M ′Ki

is a copy of MKi , and then construct a cobordism
W0 with

∂W0 = MJ j
0
t−MJ k

0
tMK0 t−M ′K0

t · · · tMK`−1 t−M ′K`−1
t (X L0 ∪∂ −X L0)

by attaching V to W along X ∪∂ −X ′. We omit the detailed construction of V
and W0 but state a couple of useful facts which can be verified as in [Cha 2014,
Section 4.3]. Let {Pr G} be the rational derived series of a group G, i.e., P0G := G
and Pr+1G is the kernel of Pr G → H1(P

r G;Q). Let φ0 be the quotient map
π1(W0)→G := π1(W0)/P

n+1π1(W0). Also we denote by φ0 the restrictions of φ0

to the components of ∂W0 and to W ⊂W0, as an abuse of notation. Then we have
the following facts:

(1) ρ(2)(MJ j
0
, φ0)− ρ

(2)(MJ k
0
, φ0)+ ρ

(2)(X L0 ∪∂ −X L0, φ0)

+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)= ρ

(2)(X ∪∂ −X ′, φ0).

(2) The image of the meridian of J j
0 in MJ j

0
⊂ ∂W0 under φ0 is a nontrivial element

in the torsion-free abelian subgroup Pnπ1(W )/Pn+1π1(W ) of G. Similarly
for k instead of j .

The proof of (1) is completely identical to that given in [Cha 2014, Section 4.3] (see
the paragraphs entitled “Cobordism associated to an iterated satellite construction”
and “Applications of Amenable Signature Theorem”): briefly, the ρ(2)-invariant
of ∂W0, which is the left-hand side of (1), is equal to the L2-signature defect of
W0= V ∪X∪∂−X ′ W (this is a standard fact from index theory, or can be taken as the
definition of ρ(2)). It turns out that V has no contribution to the L2-signature defect,
by [Cochran et al. 2009, Lemma 2.4]. So the left-hand side of (1) is equal to the
L2-signature defect of W , which is the ρ(2)-invariant of ∂W , namely the right-hand
side of (1).

The proof of (2) is almost identical to that given in [Cha 2014, Theorem 4.10].
Only the following change is required: in the initial step of the inductive argument
in that result, it was shown that the image of (a parallel copy of) η ⊂ X ⊂ ∂W
is nontrivial under the quotient map π1(W )→ π1(W )/P2π1(W ) (see the fourth
paragraph of the proof) using a Blanchfield duality argument.
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In our case, instead we use Lemma 5.4 below, which is a generalisation of
[Cha et al. 2012, Lemma 3.5], to show that the image of η is nontrivial in the
quotient π1(W )/P(k(m)+1)π1(W ). The argument used in Lemma 5.4 is essentially
an application of Dwyer’s theorem.

Lemma 5.4. If W is an n-solvable cobordism between two link exteriors (or, more
generally, bordered 3-manifolds) X and X ′, then the inclusions induce isomorphisms

π1(X)/π1(X)q ∼= π1(W )/π1(W )q ∼= π1(X ′)/π1(X ′)q

for q ≤ 2n
+ 1.

Proof. Recall Dwyer’s theorem [1975]: if f : X → Y induces an isomorphism
H1(X;Z)∼= H1(Y ;Z) and an epimorphism

H2(X;Z)−→ H2(Y ;Z)/ Im{H2(Y ;Z[π1(W )/π1(W )q ])→ H2(Y ;Z)},

then f induces an isomorphism π1(X)q/π1(X)q+1 ∼= π1(Y )q/π1(Y )q+1.
In our case, by the definition of an n-solvable cobordism [Cha 2014, Defini-

tion 2.8], we have H1(X;Z)∼=H1(W ;Z)∼=H1(X ′;Z). Also, by the same definition,
there are elements `1, . . . , `r , d1, . . . , dr lying in H2(W ;Z[π1(W )/π1(W )(n)]) such
that the images of `i and d j generate H2(W ;Z). Since π1(W )(n) is contained in
π1(W )2n , the H2 condition of Dwyer’s theorem is satisfied. Therefore, it follows that

π1(X)q/π1(X)q+1 ∼= π1(W )q/π1(W )q+1 ∼= π1(X ′)q/π1(X ′)q+1

for q ≤ 2n by Dwyer’s theorem. From this the desired conclusion follows by the
five lemma. �

Recall that Lemma 4.5(2) implies that η ⊂ X represents a nontrivial element in
π1(X)/π1(X)m . Since the above isomorphisms preserve longitudes (and meridians),
η j ⊂ X represents a nontrivial element in π1(W )/π1(W )m . Since L j has vanishing
Milnor invariants of length less than |I | = m, we have π1(X)/π1(X)m ∼= F/Fm ,
where F is the free group with rank m, by [Milnor 1957, Theorem 4]. Consequently
π1(W )/π1(W )m is torsion-free.

We note that for any group π , we have π (k(q)+1)
= π (dlog2(q)e) ⊆ πq . Therefore

there is a quotient map π1(W )/π1(W )(k(m)+1)
→ π1(W )/π1(W )m , and this map

factors through π1(W )/P(k(m)+1)π1(W ) by the definition of P(k(m)+1) and the fact
that the codomain is torsion-free. Since η j is nontrivial in π1(W )/π1(W )m , η j is
also nontrivial in π1(W )/P(k(m)+1)π1(W ). By replacing j with k and X with X ′

we obtain the corresponding fact for ηk in X ′.
To complete the proof of Theorem 5.3, we proceed as in [Cha 2014, Section 4.3].

Observe that for the normal subgroups Gi :=Piπ1(W0)/P
n+1π1(W0) of our G, the

quotient Gi/Gi+1 is torsion-free abelian. So by Amenable Signature Theorem 5.2
we have ρ(2)(X ∪∂ −X ′) = 0. Since the curve η j represents a nontrivial element
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in a torsion-free abelian normal subgroup of G, the image of π1(MJ j
0
) in G under

φ0 is the infinite cyclic group. By L2-induction (see, e.g., [Cheeger and Gromov
1985, page 8(2.3); Cochran et al. 2003, Proposition 5.13]) and [Cochran et al. 2004,
Proposition 5.1], we have ρ(2)(MJ j

0
, φ0) = ρ

(2)(J j
0 ), and similarly for J k

0 . Now,
combining these two facts with (1), we obtain

(3) ρ(2)(J j
0 )− ρ

(2)(J k
0 )+ ρ

(2)(X L0 ∪∂ −X L0, φ0)

+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)= 0.

Recall that∣∣∣∣ρ(2)(X L0 ∪∂ −X L0, φ0)+

`−1∑
i=0

ρ(2)(MKi , φ0)−

`−1∑
i=0

ρ(2)(M ′Ki
, φ0)

∣∣∣∣
< R := CX L0∪∂−X L0

+ 2
`−1∑
i=0

CMKi
,

and in the preamble to Theorem 5.3, we chose N j so that
∣∣ρ(2)(J k

0 )−ρ
(2)(J j

0 )
∣∣> R

whenever k 6= j . Therefore (3) implies that j = k. Thus the existence of the
(n+ 1)-solvable cobordism W implies that j = k, which is the contrapositive of
the desired statement. �
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