
Pacific
Journal of
Mathematics

ON THE ATKIN POLYNOMIALS

AHMAD EL-GUINDY AND MOURAD E. H. ISMAIL

Volume 272 No. 1 November 2014





PACIFIC JOURNAL OF MATHEMATICS
Vol. 272, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.272.111

ON THE ATKIN POLYNOMIALS

AHMAD EL-GUINDY AND MOURAD E. H. ISMAIL

We identify the Atkin polynomials in terms of associated Jacobi polynomi-
als. Our identification then takes advantage of the theory of orthogonal
polynomials and their asymptotics to establish many new properties of the
Atkin polynomials. This shows that corecursive polynomials may lead to
interesting sets of orthogonal polynomials.

1. Introduction

In unpublished work, Oliver Atkin introduced a family of orthogonal polynomials
with fascinating number-theoretic properties: They are the unique family of monic
orthogonal polynomials corresponding to a unique scalar product on the space
of polynomials in the modular j-invariant for which all Hecke operators are self-
adjoint. Furthermore, their reductions modulo a prime p≥5 are also very significant
in the theory of elliptic curves, as they match the supersingular polynomial at p
whenever the degrees agree. For all the number-theoretic definitions, as well as
beautiful proofs of these and other facts about the Atkin polynomials, we refer
the reader to the excellent [Kaneko and Zagier 1998], where Atkin’s results were
popularized, simplified, and expanded upon.

The Atkin polynomials are generated by the recurrence relation

(1-1) An+1(x)=
[

x−24
144n2

−29
(2n+1)(2n−1)

]
An(x)

−36
(12n−13)(12n−7)(12n−5)(12n+1)

n(n−1)(2n−1)2
An−1(x), n > 1,

through the initial conditions

(1-2) A0(x)= 1, A1(x)= x−720, A2(x)= x2
−1640x+269280.
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The polynomials {An(x)} are orthogonal with respect to an absolutely continuous
measure supported on [0, 1728] (see Section 7).

In this paper we show that the Atkin polynomials are related to the associ-
ated Jacobi polynomials of Wimp [1987] and of Ismail and Masson [1991]. This
identification leads to many new properties of the polynomials {An(x)}.

It is worth pointing out that the way the Atkin polynomials are defined, that
is, defining P0(x), P1(x) and P2(x), then using a recurrence relation to generate
the rest, is not unusual in the literature on orthogonal polynomials. The idea is
to start with two monic polynomials, Pk(x) and Pk+1(x), of degrees k and k+1,
respectively, with real, simple and interlacing zeros. Then use the division algorithm
to generate the monic polynomials Pn(x), 0≤ n < k; we are guaranteed to have a
sequence of monic orthogonal polynomials {Pj (x) : 0≤ j ≤ k+1}. Now use any
three-term recurrence relation of the form

(1-3) Pn+1(x)= (x−αn)Pn(x)+βn Pn−1(x),

where αn ∈R and βn >0 for n> k, to generate the polynomials {Pn(x)} for n> k+1.
The construction above is referred to as “Wendroff’s Theorem” in the orthogonal
polynomial literature. The interested reader may consult [Ismail 2009] or [Chihara
1978] for the precise statement and the detailed proof of Wendroff’s theorem. This
is also related to the concept of corecursive polynomials [Chihara 1978].

In Section 2, we recall some preliminary facts about associated Jacobi polynomi-
als and orthogonal polynomials in general. In Section 3, we obtain a representation
of (a scaled version of) the Atkin polynomials as a linear combination of the
associated Jacobi polynomials of Wimp [1987] and of Ismail and Masson [1991].
Building on that, we provide an explicit representation of the coefficients of the
Atkin polynomials in Section 4, a representation in terms of certain hypergeometric
functions and an asymptotic expansion in Section 5, and a generating function
identity in Section 6. Lastly, in Section 7 we give an explicit description of the
weight function in terms of certain 2 F1 functions.

We shall follow the standard notation for hypergeometric functions and orthog-
onal polynomials as in [Andrews et al. 1999; Ismail 2009; Luke 1969; Rainville
1960; Szegő 1975]. In particular we use F

(a,b
c

∣∣ z
)

to mean to mean 2 F1
(a,b

c

∣∣ z
)
.

2. Preliminaries

Let {λn} and {µn} be the birth and death rates of a birth and death process; that
is, λn > 0 and µn+1 > 0 for all n ≥ 0, with µ0 ≥ 0. Such a process generates a
sequence of orthogonal polynomials through a three-term recurrence relation

(2-1) −x Qn(x)= λn Qn+1(x)−(λn+µn)Qn(x)+µn Qn−1(x), n > 0,
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with the initial conditions

(2-2) Q0(x)= 1, Q1(x)= (λ0+µ0−x)/λ0.

The corresponding monic polynomials satisfy

(2-3) x Q̃n(x)= Q̃n+1+(λn+µn)Q̃n(x)−λn−1µn Q̃n−1(x),

with Q̃0(x) = 1, Q̃1(x) = x −λ0−µ0. When µ0 6= 0 there is a second natural
birth and death process with birth rates {λn} and death rates {µ̃n} with µ̃n = µn

for n > 0 but µ̃0 = 0 [Ismail et al. 1988]. The latter birth and death generate a
second family of orthogonal polynomials satisfying (2-1) but with initial conditions
Q0(x)= 1, Q1(x)= (λ0−x)/λ0. This observation is due to Ismail, Letessier and
Valent [Ismail et al. 1988].

The associated polynomials of {Qn(x)} correspond to the birth and death rates
{λn+c} and death rates {µn+c}, when such rates are well defined. Since we consider
c≥ 0, usually µc > 0. Thus we usually have two families of associated polynomials.
One is defined when µc is defined from the pattern of µn . When µc 6= 0, a second
family arises if µn+c, when n = 0 is interpreted as zero.

Recall that the Jacobi polynomials {P (α,β)n (x)} can be defined by the three-term
recurrence relation

(2-4) 2(n+1)(n+α+β+1)(α+β+2n)P (α,β)n+1 (x)

= (α+β+2n+1)
[
(α2
−β2)+x(α+β+2n+2)(α+β+2n)

]
P (α,β)n (x)

−2(α+n)(β+n)(α+β+2n+2)P (α,β)n−1 (x),

for n ≥ 0, with P (α,β)
−1 (x)= 0, P (α,β)0 (x)= 1. We now set

(2-5) V (α,β)
n (x)=

n! (α+β+1)n
(α+β+1)2n

P (α,β)n (2x−1)

=
n!

(n+α+β+1)n
P (α,β)n (2x−1).

One can easily verify that the polynomials {V (α,β)
n (x)} are monic birth and death

process polynomials Q̃n , with rates

(2-6)
λn =

(n+β+1)(n+α+β+1)
(2n+α+β+1)(2n+α+β+2)

,

µn =
n(n+α)

(2n+α+β)(2n+α+β+1)
.

Wimp [1987] considered the recurrence relation obtained by formally replacing n
by n+c in (2-4), and he showed that the new relation has two linearly independent
solutions P (α,β)n (x; c) and P (α,β)n−1 (x; c+1). Ismail and Masson [1991] identified



114 AHMAD EL-GUINDY AND MOURAD E. H. ISMAIL

the birth and death rates corresponding to that three-term recurrence relation and
provided two linearly independent solutions P (α,β)n (x; c) and P

(α,β)
n (x; c). They

then used the notation

(2-7) R(α,β)n (x; c)= P (α,β)n (2x−1; c), R(α,β)
n (x; c)= P(α,β)

n (2x−1; c).

We shall use the notation

(2-8)
V (α,β)

n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

R(α.β)n (x; c),

V(α,β)
n (x; c)=

(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

R(α.β)
n (x; c).

To lighten our notation, we shall occasionally omit the parameters when the context
is clear. We consider the birth and death rates

(2-9)
λn =

(n+c+β+1)(n+c+α+β+1)
(2n+2c+α+β+1)(2n+2c+α+β+2)

, n ≥ 0,

µn =
(n+c)(n+c+α)

(2n+2c+α+β)(2n+2c+α+β+1)
, n > 0,

with

(2-10) µ0 :=


c(c+α)

(2c+α+β)(2c+α+β+1)
for V,

0 for V.

3. The Atkin polynomials

In order to compare the Atkin polynomials with other results in the literature we
need to renormalize them. Let

(3-1) An(1728y)= (1728)nAn(y).

The polynomials An are now generated by the recurrence

(3-2) An+1(x)

=

[
x−

2
(
n2
−

29
144

)
4n2−1

]
An(x)−

(
n− 13

12

)(
n− 7

12

)(
n− 5

12

)(
n+ 1

12

)
2n(2n−1)2(2n−2)

An−1(x)

for n > 1. The initial conditions are

(3-3) A0(x)= 1, A1(x)= x− 5
12 , A2(x)= x2

−
205
216 x+ 935

10368 .

Kaneko and Zagier [1998] wrote the recurrence relation (1-1) in the monic form (2-3).
Indeed their (19), when written in terms of the An , corresponds to (2-3) with

(3-4) λn =

(
n− 1

12

)(
n+ 5

12

)
2n(2n+1)

, µn =

(
n− 5

12

)(
n+ 1

12

)
2n(2n−1)

.
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From (2-8), we see that V (α,β)
n (x; c) and V

(α,β)
n (x; c) satisfy the second-order

difference equation

(3-5) Tn+1(x)=
(

x+
α2
−β2
− (2n+2c+α+β)(2n+2c+α+β+2)

2(2n+2c+α+β)(2n+2c+α+β+2)

)
Tn(x)

−
(n+ c)(n+ c+α)(n+ c+β)(n+ c+α+β)

(2n+2c+α+β−1)(2n+2c+α+β)2(2n+2c+α+β+1)
Tn−1(x)

for n ≥ 1, with the initial conditions V0 = V0 = 1 and

(3-6)
V (α,β)

1 (x; c)= x−(λ0+µ0),

V
(α,β)

1 (x; c)= x−λ0,

where λn and µn are defined as in (2-9)–(2-10). On the other hand, we see that the
sequence {An+1(x)}∞n=−1 is a solution of the second-order difference equation

(3-7) Tn+1(x)=
(

x−
7+36(2n+1)(2n+3)

72(2n+1)(2n+3)

)
Tn(x)

−

(
n− 1

12

)(
n+ 5

12

)(
n+ 7

12

)(
n+ 13

12

)
(2n)(2n+1)2(2n+2)

Tn−1(x)

for n ≥ 1. It is not hard to check that (3-7) is identical to (3-5) in exactly four cases,
namely,

(α, β, c) ∈ S :=
{(
−

1
2 ,−

2
3 ,

13
12

)
,
( 1

2 ,−
2
3 ,

7
12

)
,
(
−

1
2 ,

2
3 ,

5
12

)
,
(1

2 ,
2
3 ,−

1
12

)}
.

Theorem 3.1. For n ≥ 0 and (α, β, c) ∈ S, we have the following representations
for An+1(x):

An+1(x)=
(
x− 5

12

)
V (α,β)

n (x; c)− 91
384 V (α,β)

n−1 (x; c+1),(3-8)

An+1(x)= (x−8)V (−1/2,2/3)
n

(
x; 5

12

)
+

91
12 V(−1/2,2/3)

n
(
x; 5

12

)
,(3-9)

An+1(x)= xV (1/2,−2/3)
n

(
x; 7

12

)
−

5
12 V(1/2,−2/3)

n
(
x; 7

12

)
.(3-10)

Proof. It is straightforward to check that for any (α, β, c) ∈ S,

{V (α,β)
n (x; c),V(α,β)

n (x; c)}

is a basis of solutions of (3-7), and the same is true for

{V (α,β)
n (x; c), V (α,β)

n−1 (x; c+1)}.

The results follow by simple linear algebra on the equations corresponding to n = 0
and n = 1. �
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We note that V (α,β)
n (x; c) is the same for the four triples in S, whereas we have

two possibilities for V
(α,β)
n (x; c), depending on whether β = 2

3 or β = −2
3 . For

convenience we explicitly write down the first few of these polynomials:

V (α,β)

0 (x; c)= 1,

V (α,β)

1 (x; c)= x− 115
216 ,

V (α,β)

2 (x; c)= x2
−

187
180 x+ 11621

55296 ;

(3-11)

V (α,β)

−1 (x; c+1)= 0,

V (α,β)

0 (x; c+1)= 1,

V (α,β)

1 (x; c+1)= x− 547
1080 ;

(3-12)

V
(1/2,−2/3)
0

(
x; 7

12

)
= V

(−1/2,−2/3)
0

(
x; 13

12

)
= 1,

V
(1/2,−2/3)
1

(
x; 7

12

)
= V

(−1/2,−2/3)
1

(
x; 13

12

)
= x− 187

864 ,

V
(1/2,−2/3)
2

(
x; 7

12

)
= V

(−1/2,−2/3)
2

(
x; 13

12

)
= x2
−

347
480 x+ 124729

2488320 ;

(3-13)

V
(1/2,2/3)
0

(
x; −1

12

)
= V

(−1/2,2/3)
0

(
x; 5

12

)
= 1,

V
(1/2,2/3)
1

(
x; −1

12

)
= V

(−1/2,2/3)
1

(
x; 5

12

)
= x− 475

864 ,

V
(1/2,2/3)
2

(
x; −1

12

)
= V

(−1/2,2/3)
2

(
x; 5

12

)
= x2
−

169
160 x+ 108965

497664 .

(3-14)

One can check the first few cases of Theorem 3.1 using the equalities

(3-15)

A1(x)= x− 5
12 ,

A2(x)= x2
−

205
216 x+ 935

10368 ,

A3(x)= x3
−

131
90 x2
+

28277
55296 x− 124729

5971968 .

4. Explicit representations

Wimp [1987, p. 987] gave an explicit formula for R(α,β)n (x; c). When translated in
terms of the Vn polynomials it becomes

(4-1) V (α,β)
n (x; c)= (−1)n

(c+1)n(β+c+1)n
(α+β+2c+n+1)n n!

×

n∑
k=0

(−n)k(n+2c+α+β+1)k
(c+1)k(c+β+1)k

xk

×4 F3

(
k−n, n+k+α+β+2c+1, c+β, c

k+β+c+1, k+c+1, α+β+2c

∣∣∣∣ 1
)
.
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On the other hand, Ismail and Masson [1991, Theorem 3.3] gave a similar formula
for R

(α,β)
n (x; c), which leads to

(4-2) V(α,β)
n (x; c)

= (−1)n
(c+1)n(β+c+1)n

(α+β+2c+n+1)n n!

×

n∑
k=0

(−n)k(n+2c+α+β+1)k
(c+1)k(c+β+1)k

xk

×4 F3

(
k−n, n+k+α+β+2c+1, c+β+1, c

k+β+c+1, k+c+1, α+β+2c+1

∣∣∣∣ 1
)
.

The following theorem establishes an analogous representation of An+1(x):

Theorem 4.1. For n ≥ 0, we have

(4-3) An+1(x)=( 19
12

)
n

(11
12

)
n

(n+2)n(−n)n

×

[
3 F2

(
−n, n+2, 7

12
19
12 , 2

∣∣∣∣ 1
)

+

n∑
k=0

(−n)k(n+2)k( 19
12

)
k

( 11
12

)
k

xk+1
{

6
5 4 F3

(
k−n, n+k+2, 11

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)

−
1
5 4 F3

(
k−n, n+k+2, −1

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)}]

.

Proof. From (3-10) we have

An+1(x)= xV (1/2,−2/3)
n

(
x; 7

12

)
−

5
12 V(1/2,−2/3)

n
(
x; 7

12

)
, n ≥ 0;

we see that the coefficient of xk+1 in An+1(x) is given by

(4-4) (−1)n
( 19

12

)
n

( 11
12

)
n

(n+2)n n!
(−n)k(n+2)k( 19

12

)
k

( 11
12

)
k

×

[
4 F3

(
k−n, n+k+2, −1

12 ,
7
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ 1
)

−
5
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7

12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ 1
)]
.
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The coefficient of ym in

4 F3

(
k−n, n+k+2, −1

12 ,
7

12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
5y
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7

12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ y
)

is

(k−n)m(n+k+2)m
(
−1
12

)
m

( 7
12

)
m(

k+ 11
12

)
m

(
k+19

12

)
m(m!)

2

−
5m
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) (k−n+1)m−1(n+k+3)m−1
( 11

12

)
m−1

( 7
12

)
m−1(

k+1+ 11
12

)
m−1

(
k+1+ 19

12

)
m−1(2)m−1(m)!

.

Using the identity (z)m = z(z+1)m−1, we get that this coefficient is

(4-5)
(k−n)m(n+k+2)m

(
−1
12

)
m

( 7
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
1+

(
−5
12

)
(−12m)( 7

12+m−1
) )

=
(k−n)m(n+k+2)m

(
−1
12

)
m

(
−5
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
1− 72

5 m
)

=
1
5

(k−n)m(n+k+2)m
(
−5
12

)
m(

k+ 11
12

)
m

(
k+ 19

12

)
m(m!)

2

(
6
( 11

12

)
m−

(
−1
12

)
m

)
.

In the last equality, we used(
−1
12

)
m

(
m− 5

72

)
=
(
−1
12

)
m

[(
m− 1

12

)
+

1
72

]
=−

1
12

(11
12

)
m+

1
72

(
−1
12

)
m .

It now follows that

(4-6)
[

4 F3

(
k−n, n+k+2, −1

12 ,
7
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
5y
12
(k−n)(n+k+2)(

k+ 19
12

)(
k+ 11

12

) 4 F3

(
k+1−n, n+k+3, 11

12 ,
7

12

k+1+ 11
12 , k+1+ 19

12 , 2

∣∣∣∣ y
)]

=
6
5 4 F3

(
k−n, n+k+2, 11

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)

−
1
5 4 F3

(
k−n, n+k+2, −1

12 ,
−5
12

k+ 11
12 , k+ 19

12 , 1

∣∣∣∣ y
)
.

The result now follows by substituting (4-6) with y = 1 into (4-4) . �
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Remark 4.2. There is another explicit representation of a somewhat different form
than (4-3) for the Atkin polynomials. Indeed, it follows from Theorem 4(ii) in
[Kaneko and Zagier 1998] that

(4-7) An(x)=
n∑

i=0

i∑
m=0

(−1)m
(
−1
12

i−m

)(
−5
12

i−m

)(
n+ 1

12
m

)(
n− 7

12
m

)(
2n−1

m

)−1

xn−i .

5. Asymptotics

Wimp [1987, Proof of Theorem 1] showed that the functions un and yn (un and vn

in his notation) defined by

(5-1)
u(α,β)n (x; c)= (−1)n

0(n+β+c+1)
0(n+c+1)

F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)
,

y(α,β)n (x; c)= (−1)n
0(n+α+c+1)

0(n+α+β+c+1)
F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
,

satisfy the same recurrence relation satisfied by Rn and Rn , and thus the latter
can be represented as linear combinations of the former. We shall slightly modify
these functions so as to replace the gamma factors by rising factorials (thus getting
rational rather than transcendental coefficients when the parameters are rational) as
follows. Set

(5-2)
U (α,β)

n (x; c)=
0(c+1)

0(β+c+1)
u(α,β)n (x; c),

Y (α,β)n (x; c)=
0(α+β+c+1)
0(α+c+1)

y(α,β)n (x; c).

Thus we have

(5-3)
U (α,β)

n (x; c)= (−1)n
(β+c+1)n
(c+1)n

F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)
,

Y (α,β)n (x; c)= (−1)n
(α+c+1)n

(α+β+c+1)n
F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
.

Note that since the factors multiplied by un and yn in (5-2) are independent of n,
Un and Yn satisfy the same recurrence as Rn and Rn . Indeed, after a simple Kummer
transformation, Formula (28) on p. 988 of [Wimp 1987] can be written as

(5-4) Rn =
(β+c)(α+β+c)
β(α+β+2c)

F
(

c, 1−(α+β+c)
1−β

∣∣∣∣ x
)

Un

−
c(α+c)

β(α+β+2c)
F
(
β+c, 1−(α+c)

1+β

∣∣∣∣ x
)

Yn.
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Similarly, Theorem 3.10 of [Ismail and Masson 1991] leads to

(5-5) Rn = F
(

c,−(α+β+c)
−β

∣∣∣∣ x
)

Un

−
c(α+c)
β(β+1)

x F
(

1+β+c, 1−(α+c)
2+β

∣∣∣∣ x
)

Yn.

The following theorem provides the analogous representation for the Atkin polyno-
mials:

Theorem 5.1. Let Un and Yn be as in (5-3), and set

(5-6)
Ũ (α,β)

n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

U (α,β)
n (x; c),

Ỹ (α,β)n (x; c)=
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

Y (α,β)n (x; c).

Then we have

(5-7) An+1(x)= C(x)Ũ (1/2,−2/3)
n

(
x; 7

12

)
+D(x)Ỹ (1/2,−2/3)

n
(
x; 7

12

)
, n ≥ 0,

with C(x) and D(x) given by

(5-8)

C(x) := −1
60

(
24F

(
−5
12 ,
−5
12

−1
3

∣∣∣∣ x
)
+F

(
−5
12 ,
−5
12

2
3

∣∣∣∣ x
))
,

D(x) := 91
384

x
(

4F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)
−5F

( 11
12 ,
−1
12

4
3

∣∣∣∣ x
))
.

Proof. From (5-4) and (5-5), we see that

(5-9) x R(1/2,−2/3)
n

(
x; 7

12

)
−

5
12 R(1/2,−2/3)

n
(
x; 7

12

)
=

5
12

U (1/2,−2/3)
n

(
x; 7

12

)( (−1
12

)(
−

2
3

) x F
( 7

12 ,
7
12

5
3

∣∣∣∣ x
)
−F

( 7
12 ,
−5
12

2
3

∣∣∣∣ x
))

−xY (1/2,−2/3)
n

(
x; 7

12

)(( 7
12

)(13
12

)(
−

2
3

) F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)

−
5
12

( 7
12

)(13
12

)(
−

2
3

)(1
3

)F
( 11

12 ,
−1
12

4
3

∣∣∣∣ x
))
.

Expanding the hypergeometric series in powers of x , we get, after some computation,
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(5-10) x R(1/2,−2/3)
n

(
x; 7

12

)
−

5
12 R(1/2,−2/3)

n
(
x; 7

12

)
=
−1
60

(
24F

(
−5
12 ,
−5
12

−1
3

∣∣∣∣ x
)
+F

(
−5
12 ,
−5
12

2
3

∣∣∣∣ x
))

U (1/2,−2/3)
n

(
x;

7
12

)
+

91
384

x
(

4F
(
−1
12 ,
−1
12

1
3

∣∣∣∣ x
)
−5F

( 11
12 ,
−1
12

4
3

∣∣∣∣ x
))

Y (1/2,−2/3)
n

(
x;

7
12

)
,

and the result follows from (3-10). �

Theorem 5.1 enables us to obtain an asymptotic formula for the Atkin polynomials:

Theorem 5.2. Let C(x) and D(x) be as in (5-8). For fixed θ ∈ (0, π/2), the
following asymptotic formula holds as n→∞:

(5-11) An+1(sin2 θ)

∼
(−1)n

22n+1(cos θ)(sin θ)
7
6

C(sin2 θ)
0
( 1

3

)
(sin θ)

2
3

0
( 11

12

)
0
(17

12

) cos
[

2(n−1)θ+
π

12

]

+D(sin2 θ)
0
( 5

3

)
0
( 13

12

)
0
(19

12

) cos
[

2(n−1)θ−
7π
12

]
Proof. We start by recalling the following asymptotic formula, due to Watson, [Luke
1969, (8), p. 237] (all of our asymptotic formulas will be as n→∞).

(5-12) F
(

b−n, n+a
d

∣∣∣∣ sin2 θ

)
∼
0(d)n−d+ 1

2
√
π

(cos θ)d−a−b− 1
2

(sin θ)d−
1
2

cos
[

2nθ+(a−b)θ−
π

2

(
d−

1
2

)]
for fixed θ ∈ (0, π). Note that Stirling’s formula can be written as

(5-13) 0(n+a)∼
√

2π nn+a− 1
2 e−n as n→∞,

from which we deduce
0(n+a)
0(n+b)

∼ na−b.

Hence

un(sin2 θ)∼
(−1)n0(1+β)(cos θ)−α−

1
2

√
πn(sin θ)β+

1
2

cos
[

2nθ−(α+β+2c+1)θ−
π

2

(
β+

1
2

)]
,

yn(sin2 θ)∼
(−1)n0(1−β)(cos θ)−α−

1
2

√
πn(sin θ)−β+

1
2

cos
[

2nθ−(α+β+2c+1)θ+
π

2

(
β−

1
2

)]
.
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Also, from (5-13) we get

(5-14)
(c+1)n(α+β+c+1)n
(α+β+2c+1)2n

=
0(α+β+2c+1)

0(c+1)0(α+β+c+1)
0(n+c+1)0(n+α+β+c+1)

0(2n+α+β+2c+1)

∼
0(α+β+2c+1)

0(c+1)0(α+β+c+1)
√
πn
( 1

2

)2n+α+β+2c
.

Substituting (α, β, c)=
( 1

2 ,
−2
3 ,

7
12

)
, we see that

(5-15)

Ũn(sin2 θ)∼
(−1)n0

( 1
3

)
(sin θ)1/6

22n+1 cos θ0
( 11

12

)
0
( 17

12

) cos
[

2(n−1)θ+
π

12

]
,

Ỹn(sin2 θ)∼
(−1)n0

( 5
3

)
(sin θ)−7/6

22n+1 cos θ0
( 13

12

)
0
( 19

12

) cos
[

2(n−1)θ−
7π
12

]
,

and the result follows from (5-7) and (5-8). �

6. Generating functions

We start by recalling a remarkable identity of Flensted-Jensen and Koornwinder
[1973]. The interested reader could also consult [Wimp 1987] for more details on
various other authors who presented variants of this identity as well as other proofs.

Lemma 6.1. Let t, x, a, b, d be complex numbers with x /∈ [1,∞) and

(6-1) |t |<
1

|
√

x+
√

x−1|2
.

Then

(6-2)
∞∑

n=0

(d+a)n(b)n
(a+b+1)n

F
(
−n−a, n+b

d

∣∣∣∣ x
)
(−t)n

n!

=

(
z2−t
z2+t

)a+d( 2
z2−t

)b

F
(
−a, b

d

∣∣∣∣ t+z1

2t

)
F
(

a+d, a+1
a+b+1

∣∣∣∣ 2t
t+z2

)
,

where z1 = 1−
√
(1+t)2−4xt and z2 = 1+

√
(1+t)2−4xt.

To simplify notation we shall write, for t 6= 0,

(6-3)
δ =

t+z1

2t
=
(1+ t)−

√
(1+t)2−4xt
2t

,

ε =
t+z2

2t
=
(1+ t)+

√
(1+t)2−4xt
2t

.
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We clearly have

(6-4) t (y−δ)(y−ε)= t y2
−(1+t)y+x .

Obviously z2+t = 2tε, and we also have z2−t = 2t (ε−1). Furthermore we have
δε = x/t . Thus we can rewrite (6-2) for x 6= 0 as

(6-5)
∞∑

n=0

(d+a)n(b)n
(a+b+1)n

F
(
−n−a, n+b

d

∣∣∣∣ x
)
(−t)n

n!

=
(x−tδ)a+d−bδb

xa+d F
(
−a, b

d

∣∣∣∣ δ)F
(

a+d, a+1
a+b+1

∣∣∣∣ t
x
δ

)
.

The following proposition provides a generating function for Un and Yn:

Proposition 6.2. Let Un and Yn be as in (5-2). Let t and x be such that x /∈ [1,∞)
is nonzero and |t (

√
x+
√

x−1)2|< 1, and set δ as in (6-3). Then:

∞∑
n=0

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Un(x)
tn

n!

=
δα+β+c+1

xβ+c+1(x−tδ)α
F
(
−c, α+β+c+1

1+β

∣∣∣∣ δ)F
(
β+c+1, c+1
α+β+2c+2

∣∣∣∣ tδ
x

)
,

(6-6)

∞∑
n=0

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Yn(x)
tn

n!

=
δα+c+1

xc+1(x−tδ)α
F
(
−β−c, α+c+1

1−β

∣∣∣∣ δ)F
(

c+1, β+c+1
α+β+2c+2

∣∣∣∣ tδ
x

)
.

(6-7)

Proof. From (5-1), we see that

(6-8)
0(c+1)

0(β+c+1)
(α+β+c+1)n(c+1)n
(α+β+2c+2)n

un

=
(c+β+1)n(α+β+c+1)n

(α+β+2c+2)n
F
(
−n−c, n+α+β+c+1

1+β

∣∣∣∣ x
)

and

(6-9)
0(α+β+c+1)
0(α+c+1)

(α+β+c+1)n(c+1)n
(α+β+2c+2)n

yn

=
(c+1)n(α+c+1)n
(α+β+2c+2)n

F
(
−n−β−c, n+α+c+1

1−β

∣∣∣∣ x
)
.

The identities (6-6) and (6-7) follow from applying (6-5) with the choices (a, b, d)=
(c, α+β+c+1, β+1) and (a, b, d)= (β+c, α+c+1, 1−β), respectively. �
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Remark 6.3. The result in Proposition 6.2 is essentially due to Wimp. However,
we take this opportunity to correct a misprint in the statement of Theorem 5 in
[Wimp 1987]: In the first line of page 999, the parameter “γ +c+β” should be
replaced by “γ + c−β” (in our notation, the later is α+ c+1 while the former
would be α+c+1+2β, which indeed doesn’t ever seem to figure in the theory).

We next obtain a generating function identity for the Atkin polynomials scaled
by a rather unexpected appearance of the Catalan numbers. The right-hand side of
the generating series has four summands; each is up to a relatively simple multiple
a product of three hypergeometric functions in the variables x , δ and 1/ε = tδ/x .

Theorem 6.4. Let C(x) and D(x) be as in (5-8), and δ as in (6-3). Furthermore,
let
{
Cn = 1/(n+1)

(2n
n

)}
n denote the sequence of Catalan numbers.

(1) For 0< x < 1 and |t |< 1, we have

(6-10)
∞∑

n=0

Cn+1An+1(x)tn
=

δ17/12

x11/12
√

x−tδ
F
( 11

12 ,
19
12

3

∣∣∣∣ tδ
x

)

×

[
C(x)F

(
−7
12 ,

17
12

1
3

∣∣∣∣ δ)+D(x)
( x
δ

)2/3
F
( 1

12 ,
25
12

5
3

∣∣∣∣ δ)].
(2) For |t |< 1, we have

(6-11)
∞∑

n=0

Cn+1An+1(0)(−t)n = −5
12 F

( 11
12 ,

17
12

3

∣∣∣∣ t
)
,

and consequently for n ≥ 0, we have

(6-12) An+1(0)= (−1)n
(
−5
12

)( 11
12

)
n

( 17
12

)
n

(2n+1)!
.

Proof. Note that for 0≤ x < 1, we have

|
√

x+
√

x−1|2 = |
√

x+i
√

1−x |2 = 1,

so (6-1) indeed translates into |t |< 1. Now, using (5-6), we see that

(6-13)
(α+β+c+1)n(c+1)n
(α+β+2c+2)n

Un =
(α+β+2c+1)2n

(α+β+2c+2)n
Ũn

= (α+β+2c+1)
(α+β+2c+1+n)n
(α+β+2c+1+n)

Ũn,

with a similar identity for Yn , and (6-10) now follows from (5-7) and Proposition 6.2
by substituting (α, β, c)=

( 1
2 ,
−2
3 ,

7
12

)
.

When x = 0 and |t |< 1, then, in the notation of (6-2), we have t+z1 = 0 and
z2+ t = 2(1+ t), and hence z2− t = 2. Furthermore, we have C(0) = −5

12 and
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D(0)= 0. It thus follows from (6-2) and (5-7) that

(6-14) 2
∞∑

n=0

(2n+1
n

)
An+1(0)

tn

2+n
=

−5
12(1+t)11/12 F

( 11
12 ,

19
12

3

∣∣∣∣ t
1+t

)
.

Replacing t with (−t) and applying the Pfaff–Kummer transformation [Erdélyi
et al. 1953, Formula (2) on p. 105], we obtain (6-11), from which (6-12) follows by
comparing coefficients and simplifying. �

Remark 6.5. Formula (6-12) can also be obtained directly from the defining recur-
sion of the Atkin polynomials, as in Proposition 6 of [Kaneko and Zagier 1998]. In
that same proposition, and again using only the defining recurrence (1-1), Kaneko
and Zagier also obtain a formula equivalent to

(6-15) An+1(1)=
7
12

( 11
12

)
n

( 19
12

)
n

(2n+1)!
.

Taking a hint from (6-11), it is straightforward to prove directly from (6-15) that
for |t |< 1, we have

(6-16)
∞∑

n=0

Cn+1An+1(1)tn
=

7
12

F
( 11

12 ,
19
12

3

∣∣∣∣ t
)
.

Alternatively, one can prove (6-16) in a manner similar to (6-11), bearing in mind
that we have C(1)= D(1)= 0, whereas Ũ (1/2,−2/3)

n
(
x; 7

12

)
and Ṽ (1/2,−2/3)

n
(
x; 7

12

)
have simple poles at x = 1, and thus their product is to be interpreted in the limit
x→ 1− as the derivative of the former multiplied by the residue of the latter.

7. The weight function for the Atkin polynomials

Kaneko and Zagier [1998] gave the weight function for the Atkin polynomials
An( j) on [0, 1728] as

(7-1) w( j)=
6
π
θ ′( j),

where θ : [0, 1728]→ [π/3, π/2] is the inverse of the monotone increasing function
θ 7→ j (eiθ ), where j (τ ) is the usual modular j -invariant from the theory of modular
forms. In this section we derive an explicit description of the weight function in
terms of hypergeometric series. Formula (25) on p. 20 of [Erdélyi et al. 1953] states
that an inverse for the scaled j-invariant given by

J (z)=
j (z)

1728



126 AHMAD EL-GUINDY AND MOURAD E. H. ISMAIL

is obtainable by the formula

(7-2) z = e2π i/3 F−λeiπ/3 J 1/3 F∗

F−λe−iπ/3 J 1/3 F∗
,

where

(7-3)

F(J )= 2 F1

( 1
12 ,

1
12

2
3

∣∣∣∣ J
)
,

F∗(J )= 2 F1

( 5
12 ,

5
12

4
3

∣∣∣∣ J
)
,

λ=
0
( 2

3

)
0
( 5

12

)
0
( 11

12

)
0
( 4

3

)
0
( 1

12

)
0
( 7

12

) = (2−√3)
0
( 2

3

)
02
(11

12

)
0
( 4

3

)
02
( 7

12

) .
We must note that this is one inverse of many as J is invariant under modular
transformations. This particular formula gives, easily, that z(0)= e2π i/3. In order
to use the same intervals as in [Kaneko and Zagier 1998], we consider another
inverse, corresponding to applying z 7→ −1/z, thus obtaining

(7-4) z(J )= eπ i/3 F−λe−iπ/3 J 1/3 F∗

F−λeiπ/3 J 1/3 F∗
.

It is straightforward to verify that using (7-4), we get z(0)= eπ i/3 and z(1)= eπ i/2.
For 0≤ J ≤ 1, F and F∗ are computed in terms of the converging hypergeometric
series and hence are real. Thus in the ratio

F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

the denominator is the complex conjugate of the numerator. Hence the ratio has
absolute value equal to 1, and is of the form eiρ . We will show below that 0≤ρ≤π/6.
Thus an explicit description of the function θ( j) : [0, 1728] → [π/3, π/2] is given
by θ( j)= φ( j/1728), where φ(J ) : [0, 1] → [π/3, π/2] is defined by

φ(J )=
π

3
−i log

(
F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

)
=
π

3
+ρ(J ),

and we have

(7-5) φ′(J )=−i
F(J )−λeiπ/3 J 1/3 F∗(J )

F(J )−λe−iπ/3 J 1/3 F∗(J )

(
F(J )−λe−iπ/3 J 1/3 F∗(J )
F(J )−λeiπ/3 J 1/3 F∗(J )

)′
=−i

W (J )
|F(J )−λe−iπ/3 J 1/3 F∗(J )|2

,

where W (J ) is given explicitly by
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(7-6) W (J )

=
(
F(J )−λeiπ/3J 1/3 F∗(J )

)(
F ′(J )−λe−iπ/3J 1/3(F∗)′(J )− λ

3 e−iπ/3J−2/3 F∗(J )
)

−
(
F(J )−λe−iπ/3J 1/3 F∗(J )

)(
F ′(J )−λeiπ/3J 1/3(F∗)′(J )− λ

3 eiπ/3J−2/3 F∗(J )
)

=
λ
3 J−2/3i

√
3
(
F(J )F∗(J )+3J F(J )(F∗)′(J )−3J F ′(J )F∗(J )

)
.

We also note that W is the Wronskian of two linearly independent solutions for the
equation

z(1−z)
d2u
dz2 +(c−(1+a+b)z)

du
dz
−abu = 0,

where here a = b = 1
12 and c = 2

3 . It follows that W itself satisfies the equation

(7-7) z(1−z)
dW
dz
= ((a+b+1)z−c)W.

On the open interval (0, 1), (7-7) has solution

(7-8) W (J )= B J−2/3(1− J )−1/2.

To determine the constant B we compare the coefficient of J−2/3 in (7-8) and (7-6)
to get

B =
iλ
√

3
.

Hence

(7-9) φ′(J )=
λ
√

3

J−2/3(1− J )−1/2

|F(J )−λe−iπ/3 J 1/3 F∗(J )|2
.

The fact that the derivative is positive for 0≤ J ≤1 implies that φ(J ) is monotone in-
creasing, and hence that it is bounded between φ(0) and φ(1), as we claimed above.

Note that

(7-10) w( j)=
6
π
θ ′( j)=

6
1728π

φ′
(

j
1728

)
=

6λ

1728π
√

3

12(122 j−2/3)((1728− j)−1/2123/2)∣∣12F
( j

1728

)
−λe−iπ/3 j1/3 F∗

( j
1728

)∣∣2 .
We have thus proved the following theorem:

Theorem 7.1. Let λ be as in (7-3). Then the normalized weight function for the
Atkin polynomials An( j) on the interval [0, 1728] is given by

(7-11) w( j)=
144λ
π

j−2/3(1728− j)−1/2∣∣∣∣12F
( 1

12 ,
1
12

2
3

∣∣∣∣ j
1728

)
−λe−iπ/3 j1/3 F

( 5
12 ,

5
12

4
3

∣∣∣∣ j
1728

)∣∣∣∣2
.
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