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SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

We consider the affine variety Zm,n
2,2 of first-order jets over Zm,n

2 , where Zm,n
2

is the classical determinantal variety given by the vanishing of all 2 × 2
minors of a generic m×n matrix. When 2 < m≤ n, this jet scheme Zm,n

2,2 has
two irreducible components: a trivial component, isomorphic to an affine
space, and a nontrivial component that is the closure of the jets supported
over the smooth locus of Zm,n

2 . This second component is referred to as the
principal component of Zm,n

2,2 ; it is, in fact, a cone and can also be regarded as
a projective subvariety of P2mn−1. We prove that the degree of the principal
component of Zm,n

2,2 is the square of the degree of Zm,n
2 and, more generally,

the Hilbert series of the principal component of Zm,n
2,2 is the square of the

Hilbert series of Zm,n
2 . As an application, we compute the a-invariant of

the principal component of Zm,n
2,2 and show that the principal component of

Zm,n
2,2 is Gorenstein if and only if m = n.

1. Introduction

Let F be an algebraically closed field and m, n, r be integers with 1≤ r ≤ m ≤ n.
Let Zm,n

r denote the affine variety in Amn
F defined by the vanishing of all r × r

minors of an m × n matrix whose entries are independent indeterminates over F.
Equivalently Zm,n

r is the locus of m × n matrices over F of rank < r . This is a
classical and well-studied object and a number of its properties are known. For
example, we know that Zm,n

r is irreducible, rational, arithmetically Cohen–Macaulay
and projectively normal. Moreover the multiplicity of Zm,n

r (at its vertex, since Zm,n
r

is evidently a cone) or, equivalently, the degree of the corresponding projective
subvariety of Pmn−1

F is given by the following elegant formula (see [Abhyankar 1988,
Remarks 20.18 and 20.19] or [Ghorpade 1994, Corollary 6.2]; see also [Herzog
and Trung 1992] for an alternative proof and [Arbarello et al. 1985, Chapter 2, §4]
or [Ghorpade and Krattenthaler 2004, p. 352] for an alternative approach and a
different formula):
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(1) e(Zm,n
r )= det

1≤i, j≤r−1

((m+n−i− j
m−i

))
.

More generally, the Hilbert series of Zm,n
r (or, more precisely, of the corresponding

projective subvariety of Pmn−1
F ) is also known and is explicitly given by

(2)

∑
k≥0 hk tk

(1− t)d
,

where d = (r − 1)(m+ n− r + 1) is the dimension of Zm,n
r (as an affine variety),

and the coefficients hk are given by sums of binomial determinants as follows:

hk =
∑

k1+···+kr−1=k

det
1≤i, j≤r−1

((m−i
ki

)( n− j
ki+i− j

))
.

For a proof of this formula, we refer to [Ghorpade 1996] (see also [Galligo 1985]
and [Conca and Herzog 1994]). Using this, or otherwise (see [Svanes 1974]), it
can be shown that Zm,n

r is Gorenstein if and only if m = n. Moreover one can also
show that the a-invariant of the (homogeneous) coordinate ring of Zm,n

r (which,
by definition, is the least degree of a generator of its graded canonical module) is
n(1− r); see, e.g., [Gräbe 1988] or [Ghorpade 1996, Theorem 4].

We now turn to jet schemes, which have been of much recent interest due in large
part to Nash’s suggestion [1995] that jet schemes should give information about
singularities of the base; see, e.g., [Mustaţă 2001; 2002; Ein and Mustaţă 2009].
If Z is a scheme of finite type over F and k a positive integer, then a (k − 1)-jet
on Z is a morphism Spec F[t]/(tk)→ Z. The set of (k − 1)-jets on Z forms a
scheme of finite type over F, denoted Jk−1(Z) and called the (k− 1)-th jet scheme
of Z. A little more concretely, suppose Z is the affine scheme Spec S/I defined
by the ideal I = 〈 f1, . . . , fs〉 in the polynomial ring S = F[X1, . . . , X N ]. Consider
independent indeterminates t and X (`)

i (i = 1, . . . , N and `= 0, . . . , k− 1) over F

and the corresponding polynomial ring S(k) in the Nk variables X (`)
i . For each

j = 1, . . . , s, the polynomial

f j
(
X (0)

1 + t X (1)
1 + · · ·+ tk−1 X (k−1)

1 , . . . , X (0)
N + t X (1)

N + · · ·+ tk−1 X (k−1)
N

)
is of the form

f (0)j + t f (1)j + · · ·+ tk−1 f (k−1)
j modulo 〈tk

〉

for unique f (`)j ∈ S(k) (0≤ ` < k). Then Jk−1(Z) is the affine scheme Spec S(k)/I ′,
where I ′ is the ideal generated by all f (`)j , 1 ≤ j ≤ s, 0 ≤ ` < k, (Often in the
literature, authors conflate the algebraic set in ANk consisting of the zeros of the
polynomials f (`)j with Jk−1(Z) itself. This is generally harmless, especially when
considering topological properties such as components, since the points of this
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algebraic set correspond bijectively with the set of closed points of Jk−1(Z) as F is
algebraically closed, and the set of closed points of an affine scheme is dense in the
scheme. See [Liu 2002, Chapter 2, Remark 3.49], for instance.)

When Z is smooth of dimension d , the jet scheme Jk−1(Z) is known to be smooth
of dimension kd. In general, Jk−1(Z) can have multiple irreducible components,
and these include a principal component that corresponds to the closure of the set
of jets supported over the smooth points of the base scheme Z. These components
are usually quite complicated and interesting. In fact, very little seems to be known
about the structure of these components and their numerical invariants such as mul-
tiplicities. For example, even when Z is a monomial scheme such as the one given
by X1 X2 · · · Xe = 0, where e≤ N , determining the irreducible components and the
multiplicity of Jk−1(Z) appears to require some effort; see, e.g., [Goward and Smith
2006] and [Yuen 2007b]. Irreducible components of jet schemes of toric surfaces are
discussed in [Mourtada 2011], while the irreducibility of jet schemes of the commut-
ing matrix pairs scheme is discussed in [Sethuraman and Šivic 2009]. In a more re-
cent work [Bruschek et al. 2011], the Hilbert series of arc spaces (that are, in a sense,
limits of k-th jet schemes as k→∞) of seemingly simple objects such as the double
line y2

= 0 are shown to have connections with the Rogers–Ramanujan identities.
Now determinantal varieties such as Zm,n

r above are natural examples of singular
algebraic varieties, and it is not surprising that the study of their jet schemes has
been of considerable interest. This was done first by Košir and Sethuraman [2005a;
2005b] (see also [Yuen 2007a]). To describe the related results, henceforth we
fix positive integers r, k,m, n with r ≤ m ≤ n, and let Zm,n

r,k denote the (k− 1)-th
jet scheme on Zm,n

r . It was shown in [Košir and Sethuraman 2005a] that Zm,n
r,k

is irreducible of codimension k(n − m + 1) when r = m, and if r < m, then
it can have ≥ 1 + bk/2c irreducible components with equality when r = 2 or
k = 2. A more unified result was obtained in [Docampo 2013], showing that
Zm,n

r,k has exactly k + 1 − dk/re irreducible components. At any rate, the best
understood case with multiple components is Zm,n

2,2 , where 2 < m ≤ n. In this
case Zm,n

2,2 = Z0 ∪ Z1, where Z1 is isomorphic to Amn while Z0 is the principal
component which is the closure of the jets supported over the smooth points of
the base variety Zm,n

2 . Here it will be convenient to consider 2mn indeterminates,
denoted xi, j , yi, j for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and the corresponding polynomial
ring R = F[xi, j , yi, j : 1 ≤ i ≤ m, 1 ≤ j ≤ n]. Also let I = Im,n

2,2 and I0 denote,
respectively, the ideals of R corresponding to the jet scheme Zm,n

2,2 and its principal
component Z0. In [Košir and Sethuraman 2005b], it was shown that both I and I0

are homogeneous radical ideals of R (so that I0 is prime), and moreover their
Gröbner bases were explicitly determined. The leading term ideal LT(I0) of I0

with respect to this Gröbner basis is generated by squarefree monomials and hence
R/LT(I0) is the Stanley–Reisner ring of a simplicial complex 10. Jonov [2011]
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subsequently studied this simplicial complex. He showed that 10 is shellable and
thus deduced that R/I0 is Cohen–Macaulay. (This last result was independently
obtained in [Smith and Weyman 2007] as well, using a geometric technique for
computing syzygies.) Jonov also found a formula for the multiplicity of R/I0,
namely,

(3) e(R/I0)=

m∑
i=1

n∑
j=1

(i, j) 6=(m,n)

(m+n−i− j
m−i

)
det


( i+n−2

i−1

) (m+ j−2
m−1

)
( i+n−3

i−2

) (m+ j−3
m−2

)
 .

Equation (3) above is the starting point of the present paper. We first show that
the right side of this equation simplifies remarkably to yield the pretty result

e(R/I0)=
(m+n−2

m−1

)2

= e(Zm,n
2 )2.

(this was already alluded to in [Jonov 2011, Remark 2.8]). Next we proceed to
determine the Hilbert series of R/I0 or of the principal component Z0. We use the
well-known connections between the Hilbert series of R/I0, that of R/LT(I0) and
the shelling of the facets of the simplicial complex 10 obtained in [Jonov 2011].
With some effort we are led to an initial formula for the Hilbert series of R/I0, which
is enormously complicated and involves multiple sums of products of binomials
in the same vein as the right side of (3). But we persist with the combinatorics
and are eventually rewarded with the main result of this paper. Namely, just like
the multiplicity, the Hilbert series of R/I0 is precisely the square of the Hilbert
series of the base determinantal variety Zm,n

2 . As a corollary of this, we are able
to determine the a-invariant of R/I0 and the Hilbert series of its graded canonical
module. Moreover we show that, as in the case of classical determinantal varieties,
Z0 is Gorenstein if and only if m = n.

The proofs given here are completely elementary but highly combinatorial and
rather intricate. Heuristically it appears to us that up to some flat deformation (such
as the Gröbner deformation of I0 to LT(I0), which preserves the Hilbert series),
the coordinate ring of the principal component (suitably deformed) should look like
the tensor product of the coordinate ring of the base (similarly deformed) with itself.
(This would reflect the fact that, at the smooth points, the base variety locally looks
like its tangent space.) It would follow then that the Hilbert series of the principal
component is the square of that of Zm,n

2 . We emphasize that this is only heuristics
(with all of its ever-present dangers); nevertheless we suspect that analogous results
relating the Hilbert series of the principal component to that of the base scheme
should hold more generally for all Zm,n

r,k , and possibly also for jet schemes over a
wider class of affine base schemes. We do not know how to prove this, and leave it
open for investigation.
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2. Binomials and lattice paths

In this section we collect some preliminaries concerning binomial coefficients,
alterations of summations, and lattice paths. These will be useful in the sequel.

2.1. Binomials. To begin with, let us recall that the binomial coefficient
(s

a

)
is

defined for any integer parameters s, a (and with the standard convention that the
empty product is taken as 1) as follows:( s

a

)
=

{s(s− 1) · · · (s− a+ 1)
a!

if a ≥ 0,

0 if a < 0.

In fact, this definition makes sense not only for any s ∈ Z but also for s in any
overring of Z and in particular, s can be an indeterminate over Q in which case

(s
a

)
is a polynomial in s of degree a, provided a ≥ 0. Now let s, a ∈ Z. Note that

(4)
( s

a

)
= 0 ⇐⇒ either a < 0 or a > s ≥ 0.

One has to be careful with the validity of some of the familiar identities; for example,

(5)
( s

a

)
=

( s
s−a

)
⇐⇒ either s ≥ 0 or s < a < 0,

whereas some standard identities such as the Pascal triangle identity or its alternative
equivalent version below are valid for arbitrary integer parameters:

(6)
( s

a−1

)
+

( s
a

)
=

( s+1
a

)
and

( s+a
a

)
+

( s+a
a+1

)
=

( s+a+1
a+1

)
.

The equivalence of the two identities above follows from the simple fact below,
which is also valid for arbitrary integer parameters:

(7)
( s+a

a

)
= (−1)a

(
−s−1

a

)
, that is,

( s
a

)
= (−1)a

( a−s−1
a

)
.

We now record some basic facts, which are often used in later sections. Proofs are
easy and are briefly outlined for the sake of completeness.

Lemma 1. For any e, s, t ∈ Z with s ≤ t , we have∑
s<d≤t

( d
e

)
=

( t+1
e+1

)
−

( s+1
e+1

)
.

Proof. Induct on t − s, using the first identity in (6) to rewrite
( t+1

e+1

)
. �

The following result is a version of the so-called Chu–Vandermonde identity.
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Lemma 2. For any s, t, α, β ∈ Z, we have

(8)
∑
j∈Z

( s
α+ j

)( t
β− j

)
=

( s+t
α+β

)
and

(9)
∑
j∈Z

( s+α+ j
α+ j

)( t+β− j
β− j

)
=

( s+t+α+β+1
α+β

)
,

where, in view of (4), the summation on the left in (8) as well as in (9) is essentially
finite in the sense that all except finitely many summands are zero.

Proof. Let X be an indeterminate over Q. Use the binomial theorem, namely,

(1+ X)d =
∞∑

i=0

( d
i

)
X i ,

which is valid in the formal power series ring Q[[X ]] for any d ∈Z, and compare the
coefficients of Xα+β on the two sides of the identity (1+ X)s(1+ X)t = (1+ X)s+t

to obtain (8). Now (8) and (7) imply (9). �

2.2. Alterations of summations. As in (8) and (9) above, we will often deal with
summations that are essentially finite, by which we mean that the parameters in the
sum range over an infinite set, but the summand is zero for all except finitely many
values of parameters, and so the summation is, in fact, finite. It is, however, very
useful that the parameters range freely over a seemingly infinite set so that useful
alterations such as the ones listed below can be readily made. These are too obvious
to be stated as lemmas and proved formally. But for ease of reference, we record
below some elementary transformations of essentially finite summations. In what
follows, f :Z2

→Q will denote a rational-valued function of two integer parameters
with the property that the support of f , namely, the set {(s1, s2)∈Z2

: f (s1, s2) 6= 0}
is finite or more generally, it is diagonally finite, that is, for each k ∈ Z, the set
{(s1, s2) ∈ Z2

: s1+ s2 = k and f (s1, s2) 6= 0} is finite. In this case, for any ν ∈ Z

and any α, β ∈ Z such that α+β = ν, we have

(10)
∑

s1+s2=k−ν

f (s1, s2)=
∑

t1+t2=k

f (t1−α, t2−β),

where writing s1+ s2 = k− ν below the first summation indicates that the sum is
over all (s1, s2) ∈ Z2 satisfying s1+ s2 = k− ν. A similar meaning applies for the
second summation and in fact, for all such summations appearing in the sequel.
Since the “diagonal condition” t1+ t2 = k is symmetric, we also have

(11)
∑

t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2, t1).
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Figure 1. A lattice path from A = (1, 1) to E = (4, 5).

Thus, for example, using (10) and (11), we find∑
t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2+ 1, t1− 1)=
∑

t1+t2=k

f (t1+ 1, t2− 1).

2.3. Lattice paths. Let A= (a, a′) and E= (e, e′) be points in the integer lattice Z2.
By a lattice path from A to E we mean a finite sequence L = (P0, P1, . . . , Pt) of
points in Z2 with P0 = A, Pt = E and

Pi − Pi−1 = (1, 0) or (0, 1) for i = 1, . . . , t.

The lattice path L can and will be identified with its point set {Pj : 0 ≤ j ≤ t};
indeed L is obtained by simply arranging the elements of this set in a lexicographic
order. The point A = P0 is called the initial point of L while E = Pt is called the
end point of L . We say that a point Pj is a NE-turn of the lattice path L if 0< j < t
and Pj − Pj−1 = (0, 1) while Pj+1− Pj = (1, 0). Note that a lattice path is also
determined by its NE turns.

In more intuitive terms, a lattice path consists of vertical or horizontal steps of
length 1, and a NE-turn is simply a northeast turn. For example, a lattice path from
A = (1, 1) to E = (4, 5) may be depicted as in Figure 1, and it may be noted that
the points (1, 2) and (2, 4) are its NE turns.

If we let P(A→ E) denote the set of lattice paths from A= (a, a′) to E = (e, e′)
and, for any k ∈ Z, let Pk(A→ E) denote the subset of P(A→ E) consisting of
lattice paths with exactly k NE turns, then it is easily seen that

(12)
|P(A→ E)| =

( e−a+e′−a′
e−a

)
,

|Pk(A→ E)| =
( e−a

k

)( e′−a′
k

)
,

where as usual, for a finite set P, we denote by |P| the cardinality of P. Given
any two d-tuples A = (A1, . . . , Ad) and E = (E1, . . . , Ed) of points in Z2, by
a lattice path from A to E we mean a d-tuple L = (L1, . . . , Ld), where Lr is a
lattice path from Ar to Er , for 1 ≤ r ≤ d. We call L to be nonintersecting if no
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two of the paths L1, . . . , Ld have a point in common. We say that L has k NE
turns if the total number of NE turns in the d paths L1, . . . , Ld is k. The set of
nonintersecting lattice paths from A= (A1, . . . , Ad) to E= (E1, . . . , Ed) will be
denoted by P(A1→ E1, . . . , Ad → Ed) or simply by P(A→ E), and its subset
consisting of nonintersecting lattice paths with exactly k NE turns will be denoted
by Pk(A1→ E1, . . . , Ad → Ed) or simply by Pk(A→ E).

Proposition 3. Let d be a positive integer and let Ar = (ar , a′r ) and Er = (er , e′r ),
r = 1, . . . , d , be points in Z2. Also let A= (A1, . . . , Ad) and E= (E1, . . . , Ed).

(i) Suppose

a1 ≤ · · · ≤ ad , e1 ≤ · · · ≤ ed and a′1 ≥ · · · ≥ a′d , e′1 ≥ · · · ≥ e′d .

Then the number of nonintersecting lattice paths from A to E is equal to

(13) det
(( e j−ai+e′j−a′i

e j−ai

)
1≤i, j≤d

)
(ii) Let k ∈ Z and suppose

a1 ≤ · · · ≤ ad , e1 < · · ·< ed and a′1 > · · ·> a′d , e′1 ≥ · · · ≥ e′d .

Then the number of nonintersecting lattice paths from A to E with exactly k
NE turns is equal to

(14)
∑

k1+···+kd=k

det
(( e j−ai+i− j

ki+i− j

)( e′j−a′i−i+ j
ki

)
1≤i, j≤d

)
Part (i) of the above proposition is due to Gessel and Viennot [1985, Theorem 1],

although some of the ideas can be traced back to Chaundy [1932], Karlin and
McGregor [1959], and Lindström [1973]. The statement here is a little more
general than that of [Gessel and Viennot 1985], and a proof can be found, for
example, in [Ghorpade 2001, §3] or [Krattenthaler 1995b, §2.2]. Part (ii) was
proved independently by Modak [1992], Krattenthaler [1995a] and Kulkarni [1996]
(see also [Ghorpade 1996]), although the hypothesis in [Modak 1992] and [Kulkarni
1996] on the coordinates of the initial and the end points is slightly more restrictive
than in (ii) above where we follow [Krattenthaler 1995a, Theorem 1]. The following
consequence is frequently used in Section 4.

Corollary 4. For any a, b, c, d, s ∈ Z with a < c and b ≥ d, the cardinality of
Ps((1, 2)→ (a, b), (1, 1)→ (c, d)) is given by∑

s1+s2=s

( a−1
s1

)( b−2
s1

)( c−1
s2

)( d−1
s2

)
−

( a
s2+1

)( b−2
s2

)( c−2
s1−1

)( d−1
s1

)
.

Proof. This is just a special case of part (ii) of Proposition 3. �
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3. Multiplicity

As in the Introduction, we fix in the remainder of this paper an algebraically closed
field F and integers m, n with 2< m ≤ n. Also let xi, j , yi, j , 1≤ i ≤ m, 1≤ j ≤ n,
be independent indeterminates over F. Denote by Vx the set

{xi, j : 1≤ i ≤ m and 1≤ j ≤ n}

of the “x-variables”, and by Vy a similar set of the “y-variables”. Let V = Vx ∪ Vy

and let R = F[V ] be the corresponding polynomial ring in 2mn variables; also let
Rx = F[Vx ] and Ry = F[Vy] be the corresponding polynomial rings in mn variables.
By the support of a monomial F in R, denoted supp(F), we mean the subset of V
consisting of the variables appearing in F . Clearly a monomial F in R can be
uniquely written as

(15) F = Fx Fy, where Fx , Fy are monomials with Fx ∈ Rx and Fy ∈ Ry,

and moreover F is squarefree if and only if both Fx and Fy are squarefree. Note
that squarefree monomials can be identified with their supports, and in particular,
faces of a simplicial complex 1 with vertex set V can be viewed as squarefree
monomials in R. With this in view, we may not distinguish between a squarefree
monomial and its support, and we may sometimes write xi, j ∈G rather than xi, j |G
when G is a squarefree monomial in R and xi, j is a variable appearing in it. A
monomial G in Rx will be called a lattice path monomial in Rx if there is a positive
integer t and variables xi1, j1, . . . , xit , jt in Vx such that

(16) G =
t∏

s=1

xis , js with (is − is−1, js − js−1)= (1, 0) or (0, 1) for 1< s ≤ t.

In this case G is called a lattice path monomial from xi1, j1 to xit , jt , and we will refer
to xi1, j1 as the leader of G and denote it by µ(G). Note that µ(G)= xi1, j1 depends
only on G (and not on the given ordering of the variables appearing in it) since
(i1, j1) is lexicographically the least among the pairs (i, j) for which xi, j ∈ supp(G).
A variable xis , js in supp(G) will be called an ES-turn of G if 1< s < t , is = is−1,
and js = js+1. Analogously a variable xis , js in supp(G) will be called a SE-turn
of G if 1< s < t , js = js−1, and is = is+1. Moreover we will call a variable xis , js
in supp(G) the midpoint of a segment in G if 1< s < t and either is−1 = is = is+1

(horizontal segment) or js−1 = js = js+1 (vertical segment). It may be noted that a
variable xis , js with 1< s < t is either an ES-turn or a SE-turn or the midpoint of a
segment in G.

Evidently lattice path monomials in Rx correspond to lattice paths in the sense
of Section 2.3 if we turn the m×n rectangular matrix (xi, j ) left by 90◦ and identify
the variable xi, j with the lattice point (i, j). In this way leaders correspond to initial



156 SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

xi,j

xm,n

yi,n

ym,j

Figure 2. Lattice path monomials Fx and Fy = FU
y FL

y in Proposition 5.

points while ES turns correspond to NE turns. Lattice path monomials in Ry together
with their leaders, ES turns, SE turns, and midpoints of segments are similarly
defined (and similarly identified with lattice paths in the sense of Section 2.3).

We have noted in the introduction that a Gröbner basis (with respect to reverse
lexicographic order on monomials with the 2mn variables arranged suitably) of the
ideal I of the variety Zm,n

2,2 of first-order jets over Zm,n
2 , as well as of the ideal I0

of the principal component Z0 of Zm,n
2,2 , was determined in [Košir and Sethuraman

2005b]. As a consequence, one can write down the generators of the leading
term ideal of I0 (see [Jonov 2011, Proposition 1.1]), say LT(I0), and deduce that
R/LT(I0) is the Stanley–Reisner ring of a simplicial complex 10 with V as its set
of vertices. A precise description of the facets of 10 was given by Jonov [2011,
§2], and we recall it below.

Proposition 5. A squarefree monomial F , decomposed as in (15) above, is a facet
of 10 if and only if there is a unique (i, j) ∈ Z2, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, such
that (i, j) 6= (m, n) and Fx is a lattice path monomial from xi, j to xm,n , whereas
Fy = FU

y FL
y , where FU

y is a lattice path monomial from y1,1 to yi,n , FL
y is a lattice

path monomial from y2,1 to ym, j , and the supports of FU
y and FL

y are disjoint.

The lattice path monomials Fx and Fy = FU
y FL

y are illustrated in Figure 2 by the
corresponding “paths” in rectangular matrices.

Using Proposition 5 together with the first identity in (12) and part (i) of
Proposition 3, Jonov showed that the simplicial complex 10 is pure (i.e., all its
facets have the same dimension) and deduced the dimension and the formula stated
in the introduction for the multiplicity of the coordinate ring R/I0 of Z0.

Corollary 6. The (Krull) dimension of R/I0 is 2(m+ n− 1) and the multiplicity
of R/I0 is given by (3).

Now here is the pretty result about the multiplicity that was alluded to in the
introduction, namely, that the formula (3) admits a remarkable simplification.
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Theorem 7. The multiplicity of R/I0 is given by

(17) e(R/I0)=
(m+n−2

m−1

)2

.

Proof. For 1≤ i ≤ m and 1≤ j ≤ n, let 1i, j denote the 2× 2 determinant in (3).
Observe that if (i, j)= (m, n), then 1i, j = 0. Thus, by expanding this determinant
and rearranging the summands, we can write

e(R/I0)=

m∑
i=1

( i+n−2
i−1

) n∑
j=1

Si, j −

m∑
i=1

( i+n−3
i−2

) n∑
j=1

Ti, j ,

where, for 1≤ i ≤ m and 1≤ j ≤ n, we have put

Si, j =

(m+n−i− j
m−i

)(m+ j−3
m−2

)
and Ti, j =

(m+n−i− j
m−i

)(m+ j−2
m−1

)
.

Rewriting Si, j using (5) and then noting that the resulting product is zero if j < 1
or j > n, thanks to (4), we see from Equation (9) in Lemma 2 that

n∑
j=1

Si, j =
∑

j

(m+n−i− j
n− j

)(m+ j−3
j−1

)
=

( 2m+n−i−2
n−1

)
,

for each i = 1, . . . ,m. In a similar manner,
n∑

j=1

Ti, j =
∑

j

(m+n−i− j
n− j

)(m+ j−2
j−1

)
=

( 2m+n−i−1
n−1

)
,

for each i = 1, . . . ,m. It follows that e(R/I0) is given by the telescoping sum

e(R/I0)=

m∑
i=1

(ai − ai−1), where ai :=

( i+n−2
i−1

)( 2m+n−i−2
n−1

)
,

for 0 ≤ i ≤ m. Since a0 = 0 and am =

(m+n−2
m−1

)2
, we obtain the desired result.

�

It may be noted that in view of (1) and (17), the multiplicity of the principal
component Z0 is precisely the square of the multiplicity of the base variety Zm,n

2 .

4. Hilbert series

Let us begin by recalling that a shelling of a pure simplicial complex 1 is a linear
ordering F1, . . . , Fe of its facets such that for all positive integers i, j , with j < i ≤ e,
there exist some v ∈ Fi \ F j and some positive integer k < i such that Fi \ Fk = {v}.
Given such a shelling and any t ∈ {1, . . . , e}, we let

c(Ft)= {v ∈ Ft : there exists s < t such that Ft \ Fs = {v}}.
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Elements of c(Ft) will be referred to as the corners of Ft . It may be noted that
c(Ft) is nonempty if and only if t > 1. Recall also that a simplicial complex 1 is
said to be shellable if it is pure and it has a shelling. The following result is well
known (see [Bruns and Conca 2003, Theorem 6.3]).

Proposition 8. Let 1 be a shellable simplicial complex and let R1 denote its
Stanley–Reisner ring. Then:

(i) R1 is Cohen–Macaulay and its (Krull) dimension dim R1 is 1+ dim1.

(ii) Suppose d = dim R1 and F1, . . . , Fe is a shelling of 1. Then the Hilbert
series of R1 is given by∑

j≥0 h j z j

(1− z)d
, where h j =

∣∣{t ∈ {1, . . . , e} : |c(Ft)| = j}
∣∣ for j ≥ 0.

Jonov [2011] showed that the simplicial complex 10 mentioned in the previous
section is shellable and concluded using part (i) of Proposition 8 that the coordinate
ring of R/I0 of the principal component Z0 of Zm,n

2,2 is Cohen–Macaulay. We shall
now proceed to use part (ii) of Proposition 8 to determine the Hilbert series of R/I0.
We will use the notation and terminology introduced at the beginning of Section 3.
Further we introduce the following “antilexicographic” linear order on Vx , that is,
on the x-variables. For any xa,b, xc,d ∈ Vx , define

xa,b ≺ xc,d ⇐⇒ either a > c or a = c and b > d.

Given a lattice path monomial G as in (16), the spread of G, denoted sp(G), is the
set of variables that are on or below the corresponding lattice path; more precisely,

sp(G)= {xa,b : is ≤ a ≤ m and 1≤ b ≤ js for some s = 1, . . . , t}.

The notion of spread is defined for lattice path monomials in Ry in exactly the same
manner. It may be observed that if G, H are lattice path monomials (both in Rx or
both in Ry), then the condition sp(G)⊆ sp(H) means, roughly speaking, that H is
to the right of G; moreover, if µ(G) = µ(H) and sp(G) = sp(H), then we must
have G = H .

Notice that the lattice path monomials FU
y and FL

y of Proposition 5 have the
property that sp(FL

y )⊆ sp(FU
y ).

Following [Jonov 2011], we now define a partial order on the facets of 10.

Definition 9. For any facets P, Q of 10 with decompositions P = Px PU
y PL

y and
Q = Qx QU

y QL
y as in Proposition 5, define P < Q if one of the following four

conditions hold: (i) µ(Px) ≺ µ(Qx), (ii) µ(Px) = µ(Qx) and sp(Px) ( sp(Qx),
(iii) Px = Qx and sp(PU

y )( sp(QU
y ), (iv) Px = Qx , PU

y = QU
y and sp(PL

y )( sp(QL
y).

The next result is a consequence of [Jonov 2011, Theorem 3.2] and its proof.
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Proposition 10. The relation < in Definition 9 defines a partial order and any
extension of it to a total order on the facets of 10 gives a shelling of 10.

The terminology of ES turns can be extended from lattice path monomials to
facets of10 as follows. For any facet F of10 having a decomposition F= Fx FU

y F l
y

as in Proposition 5, by an ES-turn of F we shall mean an ES-turn of either Fx or FL
y

or FU
y . It turns out that the corners of a facet of 10 are essentially its ES turns or

the leader of its x-component. There are, however, some subtleties involved and a
precise relation is given below.

Lemma 11. Let F be a facet of 10 and F = Fx FU
y FL

y be its decomposition as in
Proposition 5. Also let v ∈ V be a vertex of 10. Then:

(i) If v ∈ c(F), then either v = µ(Fx) or v is an ES-turn of F. In particular,
xm,n 6∈ c(F) and ym,n 6∈ c(F).

(ii) If µ(Fx) = xi, j , with (i, j) 6= (m, n − 1), then µ(Fx) ∈ c(F). Moreover
xm,n−1 6∈ c(F).

(iii) If v is an ES-turn of Fx , then v ∈ c(F).

(iv) If v is an ES-turn of FU
y or of FL

y , then v ∈ c(F), except when v is an ES-turn
of FU

y such that v= y1,2 or when v is an ES-turn of FU
y such that v= ym−1, j+1

and µ(Fx)= xm, j for some j < n.

Proof. (i) Let P = Px PU
y PL

y be a facet of 10 such that F \ P = {v} and F > P .
The latter implies that one of the four possibilities in Definition 9 must arise. First
suppose µ(Px)≺µ(Fx). Then µ(Fx) is a vertex of F that is smaller than µ(Px) in
the standard lexicographic order, and hence µ(Fx) 6∈ Px ; consequently v = µ(Fx),
and we are done. Now suppose µ(Px)=µ(Fx) and sp(Px)( sp(Fx). Then Px 6= Fx

and hence Fx \ Px = {v}. Note that since µ(Fx) and xm,n are in Px , the vertex v is
an ES-turn, SE-turn, or the midpoint of a segment of Fx . In case it is the midpoint
of a segment of Fx , the other two vertices in that segment must be in Px , and
since Px is a lattice path monomial, we see that v ∈ Px , which is a contradiction.
Also if v = xk,l (say) is a SE-turn of Fx , then xk−1,l and xk,l+1 must be in Fx and
hence in Px . But then Px must contain xk−1,l+1, which is a contradiction since
xk−1,l+1 6∈ sp(Fx). It follows that v is an ES-turn of Fx . Next suppose Px = Fx

and sp(PU
y ) ( sp(FU

y ). Then FU
y \ PU

y = {v}. Since µ(Px) = µ(Fx), in view of
Proposition 5, we see that the initial and the terminal variables of PU

y and FU
y

coincide, and so v is neither of these. Arguing as in the preceding case, we can rule
out the possibilities that v is a SE-turn or the midpoint of a segment of FU

y . Hence
v is an ES-turn of FU

y . In a similar manner, we see that if Px = Fx , PU
y = FU

y and
sp(PL

y )( sp(FL
y ), then v is a ES-turn of FL

y . Thus (i) is proved.

(ii) Let µ(Fx)= xi, j with (i, j) 6= (m, n−1). Then either xi, j+1 ∈ Fx or xi+1, j ∈ Fx .
First suppose xi, j+1 ∈ Fx . We define a new facet P as follows. Let Px = Fx \ {xi, j }
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and PL
y = FL

y ∪{ym, j+1}. To define PU
y , we take PU

y = FU
y in the case ym, j+1 /∈ FU

y .
If ym, j+1 ∈ FU

y , then this must mean that i =m, and hence j < n−1. We therefore
define PU

y = (F
U
y \ {ym, j+1})∪ {ym−1, j+2}. Observe that P = Px PU

y PL
y is a facet

of 10 and since µ(Px) ≺ µ(Fx), we have P < F . It follows that µ(Fx) ∈ c(F).
Next suppose xi+1, j ∈ Fx . We first assume that (i, j) 6= (m − 1, n). Now define
a new facet P as follows. First we let Px = Fx \ {xi, j }. If yi+1,n /∈ FL

y , then we
let PU

y = FU
y ∪ {yi+1,n} and PL

y = FL
y . If yi+1,n ∈ FL

y , then j must equal n. If now
i ≤ m − 2, then we let PL

y = (F
L
y \ {yi+1,n}) ∪ {yi+2,n−1}. We are left with the

special case i =m−1, j = n. Here we let Px = {xm,n−1, xm,n}, PU
y = FU

y ∪{ym,n},
and PL

y = FL
y \ {ym,n}. In all three cases, it is easy to verify that P = Px PU

y PL
y is

a facet of 10 such that F \ P = {xi, j } and P < F . Consequently µ(Fx) ∈ c(F).
Finally we show that xm,n−1 /∈ c(F). Assume, on the contrary, that there is a facet
P of 10 such that F \ P = {xm,n−1}. By (i) above, µ(F)= xm,n−1 because there
can be no ES-turn at xm,n−1. In view of Proposition 5, P must contain at least one
variable other than xm,n , and since xm,n−1 6∈ P , it follows that xm−1,n ∈ P . This
forces µ(Fx)≺ µ(Px), which violates the fact that P < F . Thus (ii) is proved.

(iii) Let v = xk,l be an ES-turn of Fx . Define Px = Fx \ {xk,l} ∪ {xk+1,l−1} and
Py = Fy . It is clear that P = Px Py is a facet of10 such that P < F and F \P ={v}.
This proves (iii).

(iv) First suppose v = yk,l is an ES-turn of FL
y . Then k < m and l > 1. Define

Px = Fx , PU
y = FU

y , and PL
y = FL

y \ {yk,l} ∪ {yk+1,l−1}. It is easy to see that
P = Px PU

y PL
y is facet of 10 such that P < F and F \ P = {v}. Next suppose

v = yk,l is an ES-turn of FU
y . Then once again k < m and l > 1. In case yk+1,l−1

is not in FL
y , we define Px = Fx , PL

y = FL
y , and PU

y = FU
y \ {yk,l} ∪ {yk+1,l−1},

whereas in case yk+1,l−1 is in FL
y and also k <m−1 and l > 2, we define Px = Fx ,

PU
y = FU

y \{yk,l}∪{yk+1,l−1}, and PL
y = FL

y \{yk+1,l−1}∪{yk+2,l−2}. We verify that
in both the cases, P = Px PU

y PL
y is a facet of 10 such that P < F and F \ P = {v}.

When l = 2, it is easy to see that v = yk,2 can be an ES-turn of FU
y only when

k = 1 lest FU
y and FL

y intersect at yk,1. We now show that y1,2 is not a corner of F .
Suppose that P = Px PU

y PL
y is a facet of 10 such that F \ P = {v}, v = y1,2 and

F > P . By Proposition 5, PU
y must start at y1,1 and PL

y must start at y2,1. For PU
y

to avoid v = y1,2, it must be the case that PU
y contains y2,1. But this contradicts the

fact that PU
y and PL

y do not intersect.
We are left with the situation where k = m− 1 and v = yk,l is an ES-turn of FU

y
and moreover ym,l−1 ∈ FL

y . Now since FU
y has an ES-turn at ym−1,l , we see that

l > 1 and both ym−1,l−1 and ym,l are in FU
y . In particular, ym,l 6∈ FL

y and since
ym,l−1 ∈ FL

y , in view of Proposition 5, it follows that FL
y ends at ym,l−1, while FU

y
ends at ym,n and also that µ(Fx)= xm,l−1. Now if there were a facet P = Px PU

y PL
y

of 10 such that F \ P = {v} and F > P , then Px = Fx and PL
y = FL

y , whereas
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FU
y \ PU

y = {ym−1,l}. But then PU
y is a lattice path monomial that contains both

ym−1,l−1 and ym,l and does not contain ym−1,l ; so it must contain ym,l−1. This is
a contradiction since ym,l−1 ∈ FL

y = PL
y and the monomials PU

y and PL
y have no

variable in common. This completes the proof. �

For any integers i, j, k with k ≥ 0, 1≤ i ≤ m and 1≤ j ≤ n, we define Ck
i, j to

be the number of facets F = Fx Fy of 10 such that µ(Fx)= xi, j and F has exactly
k ES turns that are in c(F). We state a useful consequence of Lemma 11:

Corollary 12. The Hilbert series of the coordinate ring R/I0 of the principal
component Z0 of Zm,n

2,2 is given by

(18)

∑
k≥0 hkzk

(1− z)2(m+n−1) ,

where h0 = 1, and for k ≥ 1,

(19) hk = Ck
m,n−1+

∑
(i, j)6=(m,n−1)
(i, j) 6=(m,n)

Ck−1
i, j ,

where the last sum is over all pairs (i, j) of integers satisfying 1 ≤ i ≤ m and
1≤ j ≤ n, with (i, j) 6= (m, n− 1) and (i, j) 6= (m, n).

Proof. It is well-known that the (Krull) dimension as well as the Hilbert series
of R/I0 coincides with that of R/LT(I0) (see, e.g., [Bruns and Conca 2003, §3]),
where LT(I0) denotes the leading term ideal of I0 as in [Košir and Sethuraman
2005b] and [Jonov 2011, Proposition 1.1]. Now 10 is precisely the simplicial
complex such that R/LT(I0) is the Stanley–Reisner ring of 10. Thus it follows
from Corollary 6 and part (ii) of Proposition 8 that the Hilbert series of R/I0 is
given by (18), where h0 = 1, and for k ≥ 1,

hk =
∣∣{F : F a facet of 10 with |c(F)| = k}

∣∣.
Partitioning the facets F = Fx Fy in the above set in accordance with the values
of µ(Fx) and noting from Proposition 5 that µ(Fx) 6= (m, n), and then applying
Lemma 11, we obtain the desired result. �

We have seen in Section 3 that lattice path monomials can be related to lattice
paths in the sense of Section 2.3 if we rotate to the left by 90◦ and identify the
variable xi, j with the point (i, j) of Z2. Also recall that for any (a, a′), (e, e′) ∈ Z2

and s ∈ Z, we denote by Ps((a, a′)→ (e, e′)) the set of lattice paths from (a, a′) to
(e, e′) with s NE turns. Likewise if (ai , a′i ), (ei , e′i )∈Z2 for i = 1, 2 and s ∈Z, then
by Ps((a1, a′1)→ (e1, e′1), (a2, a′2)→ (e2, e′2)) we denote the set of pairs (L1, L2)

of nonintersecting lattice paths such that L i is from (ai , a′i ) to (ei , e′i ) for i = 1, 2,



162 SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

(i,j)

(m,n)

(m,j)

(i,n)

Figure 3. Lattice paths L and (L1, L2) corresponding to Fx and (FU
y , FL

y ).

and the paths L1 and L2 together have exactly s NE turns. Evidently these sets are
empty (and hence of cardinality 0) when s < 0.

Lemma 13. Let s, i, j ∈ Z with s ≥ 0, 1≤ i ≤ m and 1≤ j ≤ n.

(i) If i 6= m, then

C s
i, j =

∑
s1+s2=s

∣∣Ps1((i, j)→ (m, n))
∣∣ ∣∣Ps2((1, 2)→ (i, n), (1, 1)→ (m, j))

∣∣,
where the sum is over pairs (s1, s2) of nonnegative integers with s1+ s2 = s.

(ii) If 1< j < n− 1, then

C s
m, j =

m−1∑
p=1

n−1∑
q= j+1

∣∣Ps−1((1, 2)→ (p, q), (1, 1)→ (m, j))
∣∣

+

m−2∑
p=1

∣∣Ps−1((1, 2)→ (p, j), (1, 1)→ (m, j))
∣∣

+
∣∣Ps((1, 2)→ (m− 1, j), (1, 1)→ (m, j))

∣∣.
(iii) C s

m,1 =

( n−2
s

)(m−1
s

)
and

C s
m,n−1 =

m−2∑
p=1

∣∣Ps−1((1, 2)→ (p, n− 1), (1, 1)→ (m, n− 1))
∣∣

+
∣∣Ps((1, 2)→ (m− 1, n− 1), (1, 1)→ (m, n− 1))

∣∣.
Proof. Let i, j ∈ Z with 1 ≤ i ≤ m, 1 ≤ j ≤ n, and (i, j) 6= (m, n). By a 90◦

rotation to the left, we see from Proposition 5 that the facets F = Fx Fy of 10

with µ(Fx) = xi, j are in one-to-one correspondence with the triples (L , L∗1, L∗2)
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of lattice paths, where L is from (i, j) to (m, n), while L∗1 is from (1, 1) to (i, n)
and L∗2 is from (2, 1) to (m, j), and moreover L∗1, L∗2 are nonintersecting. We will
now modify L∗1, L∗2 slightly keeping in mind the hypothesis in Corollary 4. To this
end, first note that (1, 2) ∈ L∗1 since 2< m ≤ n. Thus if we let L1 := L∗1 \ {(1, 1)}
and L2 := L∗2 ∪ {(1, 1)}, then (L∗1, L∗2) and (L1, L2) are pairs of nonintersecting
lattice paths that determine each other and have exactly the same NE turns, except
that if L∗1 had a NE turn at (1, 2), then L1 will not have a NE turn at (1, 2). Note
though that, by Lemma 11 (iv), y1,2 is not a corner of any facet, and this switch
will therefore not affect the count of corners. Consequently the facets F = Fx Fy of
10 with µ(Fx)= xi, j are in one-to-one correspondence with

P((i, j)→ (m, n))×P((1, 2)→ (i, n), (1, 1)→ (m, j)).

The lattice paths L and (L1, L2) corresponding to the components Fx and (FU
y , FL

y )

of the facet F = Fx Fy are illustrated in Figure 3; these may be compared with
Figure 2 that depicts the lattice path monomials Fx and Fy = FU

y FL
y .

(i) Suppose i 6=m. Then, from Lemma 11, we see that, for every facet F = Fx Fy

of10 withµ(Fx)= xi, j , all the ES turns of Fx , FU
y or FL

y that are in c(F) correspond
to the NE turns of the corresponding lattice paths L , L1 or L2. From this, we readily
obtain the formula in (i).

(ii) Suppose i = m and 1< j < n− 1. Then for a facet F = Fx Fy of 10 with
µ(Fx)= xm, j , the lattice path L corresponding to Fx is from (m, j) to (m, n) and
evidently this has no NE turns. Consider in P((1, 2)→ (i, n), (1, 1)→ (m, j))
the pair (L1, L2) corresponding to (FU

y , FL
y ). Suppose the last NE-turn of L1 is at

(p, q + 1). Note that if q < j , then we must have (m, j) ∈ L1, which contradicts
the fact that L1, L2 are nonintersecting. Thus 1 ≤ p ≤ m − 1 and j ≤ q < n.
Moreover if q = j , then by part (iv) of Lemma 11, we see that either p ≤ m− 2
or the NE-turn (p, q + 1) is not in c(F). It follows that L1 can be replaced by its
truncation L̃1, which is a lattice path from (1, 2) to (p, q) such that L̃1 and L2 are
nonintersecting. Moreover the number of NE turns of L̃1 in c(F) are exactly one
less than the number of NE turns of L1 in c(F), except when (p, q)= (m− 1, j)
in which case they are the same. Thus by varying (p, q) over an appropriate range,
we obtain the formula in (ii).

(iii) If (i, j)= (m, 1) and F = Fx Fy is a facet of 10 with µ(Fx)= xm,1, then the
path L corresponding to Fx as well as the path L2 corresponding to FL

y have no NE
turns. Moreover every NE-turn of the path L1 ∈P((1, 2)→ (m, n)) corresponding
to FU

y is necessarily in c(F), thanks to Lemma 11. Thus, in view of (12), we
see that C s

m,1 =
(n−2

s

)(m−1
s

)
. Finally if (i, j) = (m, n− 1), then arguing as in (ii)

above, we see that for a facet F = Fx Fy of 10 with µ(Fx) = xm,n−1, the lattice
path L corresponding to Fx has no NE turns and the last NE-turn of the lattice
path L1 corresponding to FU

y must be (p, n) for some p= 1, . . . ,m−1. Moreover
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by Lemma 11, this turn is counted as a corner (i.e., x p,n ∈ c(F)) if and only if
p < m− 1. Thus upon replacing L1 by its truncation up to (p, n− 1), we obtain
the desired formula for C s

m,n−1 in (iii). �

We can already use the results obtained thus far to write down an explicit formula
for the Hilbert series of the graded ring R/I0 corresponding to Z0. Indeed it suffices
to combine Corollary 12, Lemma 13, and Corollary 4. However the resulting formula
is much too complicated and we will instead use results in Section 2 for simplifying
various terms in (19) so as to eventually arrive at an elegant formula for (18).

Lemma 14. Let k be a positive integer. Then Ck
m,n−1 is equal to∑

t1+t2=k

(m−2
t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−2
t1−1

)( n−2
t1

)
.

Proof. For s ∈ Z, let f (s) :=
(m−1

s

)( n−2
s

)
and g(s) :=

(m−2
s−1

)( n−2
s

)
. By

Corollary 4,

(20)
m−2∑
p=1

∣∣Pk−1((1, 2)→ (p, n− 1), (1, 1)→ (m, n− 1))
∣∣

=

m−2∑
p=1

∑
s1+s2=k−1

( p−1
s1

)( n−3
s1

)
f (s2)−

( p
s2+1

)( n−3
s2

)
g(s1)

=

∑
s1+s2=k−1

( m−3∑
p′=0

( p′
s1

))( n−3
s1

)
f (s2)−

( m−2∑
p=1

( p
s2+1

))( n−3
s2

)
g(s1)

=

∑
s1+s2=k−1

(m−2
s1+1

)( n−3
s1

)
f (s2)−

(m−1
s2+2

)( n−3
s2

)
g(s1)

=

∑
t1+t2=k

(m−2
t1

)( n−3
t1−1

)
f (t2)−

(m−1
t2+1

)( n−3
t2−1

)
g(t1),

where the penultimate equality follows from Lemma 1 since
( 0

s1+1

)
= 0=

( 1
s2+2

)
for

s1, s2 ≥ 0, and also since
(n−3

s1

)
f (s2) = 0 =

(n−3
s2

)
g(s1) if s1 < 0 or s2 < 0, while

the last equality follows by altering the summations (twice!) as in (10). On the
other hand, by Corollary 4,

∣∣Pk((1, 2)→ (m− 1, n− 1), (1, 1)→ (m, n− 1))
∣∣ is

equal to

(21)
∑

t1+t2=k

(m−2
t1

)( n−3
t1

)
f (t2)−

(m−1
t2+1

)( n−3
t2

)
g(t1).

Now combining (20) and (21), using (6), and then using part (iii) of Lemma 13, we
obtain the desired result. �
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Lemma 15. Let k be a positive integer. Then
m−1∑
i=1

n∑
j=1

Ck−1
i, j is equal to

∑
t1+t2=k

(m
t2

)( n
t1+1

)(m−1
t1

)( n−2
t2−1

)
−

(m−1
t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
.

Proof. Using (12) and part (i) of Lemma 13, we see that
m−1∑
i=1

n∑
j=1

Ck−1
i, j equals

m−1∑
i=1

n∑
j=1

∑
k1+k2=k−1

(m−i
k1

)( n− j
k1

)∣∣Pk2((1, 2)→ (i, n), (1, 1)→ (m, j))
∣∣.

Applying Corollary 4 and then suitably interchanging summations and noting that
the summands below are zero if k1 < 0 or s1 < 0 or s2 < 0, this can be written as

(22)
∑

k1+s1+s2=k−1
k1,s1,s2≥0

M1 N1

(m−1
s2

)( n−2
s1

)
−M2 N2

(m−2
s1−1

)( n−2
s2

)
,

where, for any given k1, s1, s2 ≥ 0, we have temporarily put

M1 =

m−1∑
i=1

(m−i
k1

)( i−1
s1

)
, N1 =

n∑
j=1

( n− j
k1

)( j−1
s2

)
=

( n
k1+s2+1

)
,

M2 =

m−1∑
i=1

(m−i
k1

)( i
s2+1

)
, N2 =

n∑
j=1

( n− j
k1

)( j−1
s1

)
=

( n
k1+s1+1

)
,

and where the simplified expressions for N1, N2 follow by rewriting each of the
summands in N1 and N2 using (5), invoking (4) (noting that k1, s1, s2 ≥ 0), and
then applying (9) for suitable values of s, t , α and β. A similar simplification is
possible in M1 and M2 if we add and subtract the term corresponding to i =m, and
in view of (4), this is only necessary if k1 = 0. Thus

M1 =

( m
k1+s1+1

)
− δ0,k1

(m−1
s1

)
and M2 =

( m+1
k1+s2+2

)
− δ0,k1

( m
s2+1

)
,

where δ is the Kronecker delta. Substituting the simplified values of M1, N1,M2, N2

in (22), and letting

A(s1, s2) :=
(m−1

s2

)( n−2
s1

)
, B(s1, s2) :=

(m−2
s1−1

)( n−2
s2

)
for s1, s2 ∈ Z, we see that (22) is of the form E3+ S3, where

E3 =
∑

k1+s1+s2=k−1
k1,s1,s2≥0

( m
k−s2

)( n
k−s1

)
A(s1, s2)−

( m+1
k−s1+1

)( n
k−s2

)
B(s1, s2),

and S3 is the part where the Kronecker delta is nonzero:
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S3 =
∑

s1+s2=k−1

( m
s2+1

)( n
s1+1

)
B(s1, s2)−

(m−1
s1

)( n
s2+1

)
A(s1, s2).

Altering the summation as in (10), we see that S3 can be written as

(23)
∑

t1+t2=k

(m
t2

)( n
t1+1

)(m−2
t1−1

)( n−2
t2−1

)
−

(m−1
t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
.

On the other hand, in view of (4) and (11), we can write

E3 =

k−1∑
`=0

∑
s1+s2=`

( m
k−s1

)( n
k−s2

)
A(s2, s1)−

( m+1
k−s1+1

)( n
k−s2

)
B(s1, s2).

By (6), we have ( m+1
k−s1+1

)
=

( m
k−s1

)
+

( m
k−(s1−1)

)
.

Using this to split the second summand in E3 into two parts and combining one of
the parts with the first summand in E3 and then applying (6) once again, we see
that

E3 =

k−1∑
`=0

∑
s1+s2=`

f (s1, s2)− f (s1− 1, s2),

where

f (s1, s2) :=
( m

k−s1

)( n
k−s2

)(m−2
s1

)( n−2
s2

)
for s1, s2 ∈ Z. Now in view of (10), we find that E3 is given by the telescoping sum

E3 =

k−1∑
`=0

F`− F`−1, where F` :=
∑

s1+s2=`

f (s1, s2) for ` ∈ Z.

From the definition of f , we see that F−1 = 0, and thus E3 = Fk−1, that is,

E3 =
∑

s1+s2=k−1

( m
k−s1

)( n
k−s2

)(m−2
s1

)( n−2
s2

)
.

Now we can replace k − s1, k − s2 by s2 + 1, s1 + 1, respectively, in the above
summand, and then alter the summation using (10) to obtain

(24) E3 =
∑

t1+t2=k

(m
t2

)( n
t1+1

)(m−2
t1

)( n−2
t2−1

)
.

Finally, by adding (24) and (23) termwise and using (6), we obtain the desired
formula for E3+ S3, i.e., for

∑m−1
i=1

∑n
j=1 Ck−1

i, j . �
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Lemma 16. Let k be a positive integer. Then
n−2∑
j=1

Ck−1
m, j is equal to

∑
t1+t2=k

(m−1
t1

)( n−2
t1

)(m−1
t2−1

)( n−2
t2

)
−

( m
t2+1

)( n−2
t2

)(m−2
t1−2

)( n−2
t1

)
.

Proof. The desired result is easily verified when n ≤ 3 and so we assume that n > 3.
For j, s ∈ Z, let

f j (s) :=
(m−1

s

)( j−1
s

)
, g j (s) :=

(m−2
s−1

)( j−1
s

)
.

In view of parts (iii) and (ii) of Lemma 13 together with (4) and Corollary 4, we
see that

(25) Ck−1
m,1 =

( n−2
k−1

)(m−1
k−1

)
and

n−2∑
j=2

Ck−1
m, j = S4+ S5+ S6,

where

S4 =

n−2∑
j=2

m−1∑
p=1

n−1∑
q= j+1

∑
s1+s2=k−2

s1,s2≥0

( p−1
s1

)( q−2
s1

)
f j (s2)−

( p
s2+1

)( q−2
s2

)
g j (s1),

S5 =

n−2∑
j=2

m−2∑
p=1

∑
s1+s2=k−2

s1,s2≥0

( p−1
s1

)( j−2
s1

)
f j (s2)−

( p
s2+1

)( j−2
s2

)
g j (s1),

S6 =

n−2∑
j=2

∑
s1+s2=k−1

(m−2
s1

)( j−2
s1

)
f j (s2)−

(m−1
s2+1

)( j−2
s2

)
g j (s1).

Interchanging s1 and s2 in the second summand for S6 as in (11), we can write

(26) S6 =
∑

s1+s2=k−1

λ(s1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
,

where, for s1, s2 ∈ Z, we let

λ(s1, s2) :=

n−2∑
j=2

( j−2
s1

)( j−1
s2

)
.

Next, by Lemma 1,

m−2∑
p=1

( p−1
s1

)
=

(m−2
s1+1

)
and

m−2∑
p=1

( p
s2+1

)
=

(m−1
s2+2

)
for s1, s2 ≥ 0.

Consequently, by interchanging summations and rearranging terms, we find
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S5 =

n−2∑
j=2

∑
s1+s2=k−2

s1,s2≥0

(m−2
s1+1

)( j−2
s1

)
f j (s2)−

(m−1
s2+2

)( j−2
s2

)
g j (s1)(27)

=

∑
s1+s2=k−2

λ(s1, s2)

((m−2
s1+1

)(m−1
s2

)
−

(m−1
s1+2

)(m−2
s2−1

))

=

∑
s1+s2=k−1

λ(s1− 1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
,

where the penultimate equality follows from (4) and (11) by interchanging s1 and s2

in the second summand of the preceding formula, while the last equality follows
from (10). Now, using (6), we easily see that

λ(s1− 1, s2)+ λ(s1, s2)= ν(s1, s2) for any s1, s2 ∈ Z,

where

ν(s1, s2) :=

n−2∑
j=2

( j−1
s1

)( j−1
s2

)
.

Hence we can combine (27) and (26) to obtain

(28) S5+ S6 =
∑

s1+s2=k−1

ν(s1, s2)

((m−2
s1

)(m−1
s2

)
−

(m−1
s1+1

)(m−2
s2−1

))
.

It remains to consider S4 or rather Ck−1
m,1 + S4. This is a little more complicated, but

it can be handled using arguments similar to those in the proof of Lemma 15 as
follows. First, by interchanging summations and using Lemma 1, we find

S4 =

n−2∑
j=2

∑
s1+s2=k−2

s1,s2≥0

(m−1
s1+1

)
θ(s1) f j (s2)−

( m
s2+2

)
θ(s2)g j (s1),

where, for s ∈ Z, we have let

θ(s) :=
( n−2

s+1

)
−

( j−1
s+1

)
.

Now observe that if s1 < 0 or s2 < 0, then θ(s1) f j (s2) = 0 = θ(s2)g j (s1). Thus
we may drop the condition s1, s2 ≥ 0 in the above expression for S4, and then alter
each of the two summations over (s1, s2) using (10) to write

S4 =

n−2∑
j=2

∑
s1+s2=k−1

(m−1
s1

)
θ(s1− 1) f j (s2)−

( m
s2+1

)
θ(s2− 1)g j (s1).

Next we collate the terms involving j and bring the summation over j inside, and
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note that, by Lemma 1,
n−2∑
j=2

( j−1
s

)
=

( n−2
s+1

)
− δ0,s for any s ≥ 0. This yields

S4 =
∑

s1+s2=k−1

(m−1
s1

)( n−2
s1

)(m−1
s2

)(( n−2
s2+1

)
− δ0,s2

)
−

( m
s2+1

)( n−2
s2

)(m−2
s1−1

)(( n−2
s1+1

)
− δ0,s1

)
−

(m−1
s1

)(m−1
s2

)
ν(s1, s2)+

( m
s2+1

)(m−2
s1−1

)
ν(s1, s2).

Since
(m−2

s1−1

)
= 0 when s1= 0, the only contribution of the terms involving Kronecker

delta is when s2 = 0, and it is −
(m−1

k−1

)(n−2
k−1

)
, that is, precisely −Ck−1

m,1 . It follows
that Ck−1

m,1 + S4 = S∗4 + E4, where

S∗4=
∑

s1+s2=k−1

(m−1
s1

)(n−2
s1

)(m−1
s2

)( n−2
s2+1

)
−

( m
s2+1

)(n−2
s2

)(m−2
s1−1

)( n−2
s1+1

)
and

E4 =
∑

s1+s2=k−1

ν(s1, s2)

(( m
s2+1

)(m−2
s1−1

)
−

(m−1
s1

)(m−1
s2

))
(29)

=

∑
s1+s2=k−1

ν(s1, s2)

(( m
s1+1

)(m−2
s2−1

)
−

(m−1
s1

)(m−1
s2

))
,

where the last equality follows by interchanging s1 and s2, while noting that ν is
symmetric in s1, s2.

Now combining (28) and (29), and then, making an easy calculation using (6),
we see that

E4+ S5+ S6 =
∑

s1+s2=k−1

ν(s1, s2)

((m−1
s1

)(m−2
s2−1

)
−

(m−2
s1−1

)(m−1
s2

))
= 0,

where the last equality follows by interchanging s1 and s2 in one of the summations
above. Thus

∑n−2
j=1 Ck−1

m, j = S∗4 . Finally, using (10), we readily see that S∗4 is precisely
the desired formula in the statement of the lemma. �

Corollary 17. Let k be a positive integer. Then Ck
m,n−1+

n−2∑
j=1

Ck−1
m, j is equal to

∑
t1+t2=k

(m−1
t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−1
t1−1

)( n−2
t1

)
.

Proof. Consider the formula for
n−2∑
j=1

Ck−1
m, j given by Lemma 16. This is a difference
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of two summations over (t1, t2) ∈ Z2 with t1 + t2 = k. Alter the first of these
summations by interchanging t1 and t2, while putting

( m
t2+1

)
=
(m−1

t2

)
+
(m−1

t2+1

)
in the

second summation to split it into two summations. Then, using (6), we readily see
that the formula for

∑n−2
j=1 Ck−1

m, j becomes∑
t1+t2=k

(m−2
t1−1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
−

(m−1
t2+1

)( n−2
t2

)(m−2
t1−2

)( n−2
t1

)
.

This can be added termwise, using (6) once again, with the formula for Ck
m,n−1

given by Lemma 14, to obtain the desired result. �

We are now ready for our main theorem.

Theorem 18. The Hilbert series of R/I0 is given by

(30)
(∑m−1

e=0
(m−1

e

)(n−1
e

)
ze

(1− z)m+n−1

)2

.

Proof. First note that (30) is of the form (1− z)−2(m+n−1)
2m−2∑
k=0

h∗k zk , where

(31) h∗k =
∑

t1+t2=k

(m−1
t1

)( n−1
t1

)(m−1
t2

)( n−1
t2

)
for k ∈ Z.

On the other hand, by Corollary 12, we see that the Hilbert series of R/I0 is given
by (1− z)−2(m+n−1)∑

k≥0 hkzk , where h0 = 1, and

(32) hk =

(
Ck

m,n−1+

n−2∑
j=1

Ck−1
m, j

)
+

m−1∑
i=1

n∑
j=1

Ck−1
i, j for k ≥ 1.

It is clear that h∗0 = 1= h0 and so it suffices to show that h∗k = hk for all k ≥ 1. In
view of Corollary 17 and Lemma 15, this is equivalent to showing that∑
t1+t2=k

P1(t1, t2)− P2(t1, t2)+ P3(t1, t2)− P4(t1, t2)− P(t1, t2)= 0 for k ≥ 1,

where Pi (t1, t2) for i = 1, . . . , 4, and P(t1, t2) are the relevant summands, namely,

P1(t1, t2) :=
(m−1

t1

)( n−2
t1

)(m−1
t2

)( n−2
t2

)
,

P2(t1, t2) :=
(m−1

t2+1

)( n−2
t2

)(m−1
t1−1

)( n−2
t1

)
,

P3(t1, t2) :=
(m

t2

)( n
t1+1

)(m−1
t1

)( n−2
t2−1

)
,

P4(t1, t2) :=
(m−1

t1

)( n
t2

)(m−1
t2−1

)( n−2
t1

)
,
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and

P(t1, t2) :=
(m−1

t1

)( n−1
t1

)(m−1
t2

)( n−1
t2

)
for t1, t2 ∈ Z. To this end, we will make an extensive use of alterations as in (10)
and (11); more specifically, the fact that∑
t1+t2=k

f (t1, t2)=
∑

t1+t2=k

f (t2, t1)=
∑

t1+t2=k

f (t1+1, t2−1)=
∑

t1+t2=k

f (t2+1, t1−1)

for any f :Z2
→Q with finite support and any k ∈Z. Now fix any positive integer k

and any (t1, t2) ∈ Z2 with t1+ t2 = k. Observe that

P3(t1− 1, t2+ 1)− P4(t2, t1)=
(m−1

t2+1

)( n
t1

)(m−1
t1−1

)( n−2
t2

)
.

Using (6) twice, we may substitute
( n−2

t1

)
+

( n−2
t1−1

)
+

( n−1
t1−1

)
for

( n
t1

)
in the

right-hand side of the above identity to obtain

−P2(t1, t2)+ P3(t1− 1, t2+ 1)− P4(t2, t1)= Q1(t1, t2)+ Q2(t1, t2),

where

Q1(t1, t2) :=
(m−1

t2+1

)( n−2
t1−1

)(m−1
t1−1

)( n−2
t2

)
,

Q2(t1, t2) :=
(m−1

t2+1

)( n−1
t1−1

)(m−1
t1−1

)( n−2
t2

)
.

Finally observe that P1(t1, t2)+ Q1(t1+ 1, t2− 1)+ Q2(t2+ 1, t1− 1)= P(t1, t2).
This yields the desired result. �

It may be noted that in view of (2) and (30), the Hilbert series of the principal
component Z0 is precisely the square of the Hilbert series of the base variety Zm,n

2 ,
and, as such, Theorem 7 could be deduced as a consequence of Theorem 18.

As an application of Theorem 18, we will now compute the a-invariant of the
coordinate ring R/I0 of the principal component Z0 of Zm,n

2,2 and determine when
Z0 is Gorenstein. Recall that if A is a finitely generated, positively graded Cohen–
Macaulay algebra over a field, then A admits a graded canonical module ωA and the
a-invariant of A is defined as the negative of the least degree of a generator of ωA.
If the Hilbert series of A is given by HA(z) = h(z)/(1− z)d , where d = dim A
and h(z) ∈Q[z] with h(1) 6= 0, then the a-invariant of A is the order of the pole
of HA(z) at infinity, which is −(d − deg h(z)). Moreover the Hilbert series of ωA

is given by HωA(z) = (−1)d HA(z−1). As a general reference for these notions
and results, one may consult [Bruns and Herzog 1993], especially Sections 3.6
and 4.4. The following result is an analogue of a theorem of Gräbe [1988] (see also
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[Ghorpade 1996, Theorem 4]) for classical determinantal varieties which says that
if 1≤ r ≤m ≤ n, then the a-invariant of (the coordinate ring of) Zm,n

r is −(r −1)n.

Corollary 19. The a-invariant of R/I0 is equal to −2n and the Hilbert series of
the graded canonical module of R/I0 is given by

(33)
(∑m−1

e=0
(m−1

e

)(n−1
e

)
zm+n−e−1

(1− z)m+n−1

)2

.

Proof. We know from [Jonov 2011, Theorem 1.2] that A= R/I0 is Cohen–Macaulay
and it is obviously a finitely generated, positively graded F-algebra. Moreover, by
Theorem 18, the Hilbert series of A is given by h0(z)/(1− z)2(m+n−1), where

h0(z)=
( m−1∑

e=0

(m−1
e

)(n−1
e

)
ze
)2

.

Since 2 ≤ m ≤ n, we see that h0(z) is a polynomial in z of degree 2(m − 1),
with leading coefficient

(n−1
m−1

)
2, and all other coefficients nonnegative integers; in

particular, h0(1) 6= 0. Hence the a-invariant of A = R/I0 is

2(m− 1)− 2(m+ n− 1)=−2n,

and also that the Hilbert series of ωA is given by (33). �

The following result is an analogue of a theorem of Svanes [1974] (see also
[Conca and Herzog 1994]) for classical determinantal varieties which says that for
any r ≥ 1, (the coordinate ring of) Zm,n

r is Gorenstein if and only if m = n.

Corollary 20. The coordinate ring R/I0 of Z0 is Gorenstein if and only if m = n.

Proof. By [Jonov 2011, Theorem 1.2] and [Košir and Sethuraman 2005b, Proposi-
tion 3.3], A= R/I0 is a Cohen–Macaulay domain. Hence from a well-known result
of Stanley [1978, Theorem 4.4] (see also [Bruns and Herzog 1993, Corollary 4.4.6]),
we see that A is Gorenstein if and only if HA(z)= (−1)d za HA(z−1) for some a ∈Z.
Moreover, in this case, the integer a is necessarily the a-invariant of A. Thus, from
Corollary 19, we see that R/I0 is Gorenstein if and only if( m−1∑

e=0

(m−1
e

)( n−1
e

)
ze
)2

=

( m−1∑
e=0

(m−1
e

)( n−1
e

)
zm−1−e

)2

.

Since both the polynomials inside the square brackets on the two sides of the above
equality have positive leading coefficients, it follows that R/I0 is Gorenstein if and
only if

(n−1
e

)
=
( n−1

m−1−e

)
for all e = 0, 1, . . . ,m− 1. Since 1< m− 1≤ n− 1, the

latter clearly holds if and only if m = n. �
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[Ein and Mustaţă 2009] L. Ein and M. Mustaţă, “Jet schemes and singularities”, pp. 505–546 in
Algebraic geometry—Seattle 2005, II (Seattle, WA, 2005), edited by D. Abramovich et al., Proc.
Sympos. Pure Math. 80, Amer. Math. Soc., Providence, RI, 2009. MR 2010h:14004 Zbl 1181.14019

[Galligo 1985] A. Galligo, “Computations of some Hilbert functions related with Schubert calculus”,
pp. 79–97 in Algebraic geometry (Sitges, Barcelona, 1983), edited by E. Casas-Alvero et al., Lecture
Notes in Math. 1124, Springer, Berlin, 1985. MR 87j:14083 Zbl 0589.14039

http://msp.org/idx/mr/89e:05011
http://msp.org/idx/zbl/0643.05001
http://msp.org/idx/mr/86h:14019
http://msp.org/idx/zbl/0559.14017
http://dx.doi.org/10.1007/978-94-007-1092-4_2
http://msp.org/idx/mr/2005a:13025
http://msp.org/idx/zbl/1052.13010
http://dx.doi.org/10.1017/CBO9780511608681
http://msp.org/idx/mr/95h:13020
http://msp.org/idx/zbl/0788.13005
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAO0120/3544
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAO0120/3544
http://msp.org/idx/mr/2012m:14025
http://qjmath.oxfordjournals.org/content/os-3/1/76.full.pdf
http://msp.org/idx/zbl/0004.09704
http://dx.doi.org/10.2307/2160740
http://dx.doi.org/10.2307/2160740
http://msp.org/idx/mr/95a:13016
http://msp.org/idx/zbl/0823.13008
http://dx.doi.org/10.1090/S0002-9947-2012-05564-4
http://msp.org/idx/mr/3020097
http://msp.org/idx/zbl/1272.14014
http://msp.org/idx/mr/2010h:14004
http://msp.org/idx/zbl/1181.14019
http://dx.doi.org/10.1007/BFb0074997
http://msp.org/idx/mr/87j:14083
http://msp.org/idx/zbl/0589.14039


174 SUDHIR R. GHORPADE, BOYAN JONOV AND B. A. SETHURAMAN

[Gessel and Viennot 1985] I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length
formulae”, Adv. in Math. 58:3 (1985), 300–321. MR 87e:05008 Zbl 0579.05004

[Ghorpade 1994] S. R. Ghorpade, “Abhyankar’s work on Young tableaux and some recent develop-
ments”, pp. 215–249 in Algebraic geometry and its applications (West Lafayette, IN, 1990), edited
by C. Bajaj, Springer, New York, 1994. MR 95h:05148 Zbl 0814.14046

[Ghorpade 1996] S. R. Ghorpade, “Young bitableaux, lattice paths and Hilbert functions”, J. Statist.
Plann. Inference 54:1 (1996), 55–66. MR 98c:05165 Zbl 0864.05088

[Ghorpade 2001] S. R. Ghorpade, “A note on Hodge’s postulation formula for Schubert varieties”, pp.
211–219 in Geometric and combinatorial aspects of commutative algebra (Messina, 1999), edited
by J. Herzog and G. Restuccia, Lecture Notes in Pure and Appl. Math. 217, Dekker, New York, 2001.
MR 2002d:14079 Zbl 0986.14028

[Ghorpade and Krattenthaler 2004] S. R. Ghorpade and C. Krattenthaler, “The Hilbert series of
Pfaffian rings”, pp. 337–356 in Algebra, arithmetic and geometry with applications (West Lafayette,
IN, 2000), edited by C. Christensen et al., Springer, Berlin, 2004. MR 2005c:13010 Zbl 1083.13504

[Goward and Smith 2006] R. A. Goward, Jr. and K. E. Smith, “The jet scheme of a monomial
scheme”, Comm. Algebra 34:5 (2006), 1591–1598. MR 2007e:13037 Zbl 1120.14055

[Gräbe 1988] H.-G. Gräbe, Streckungsringe, Dissertation B, Erfurt/Mühlhausen, 1988.

[Herzog and Trung 1992] J. Herzog and N. V. Trung, “Gröbner bases and multiplicity of determinantal
and Pfaffian ideals”, Adv. Math. 96:1 (1992), 1–37. MR 94a:13012 Zbl 0778.13022

[Jonov 2011] B. Jonov, “Initial complex associated to a jet scheme of a determinantal variety”, J.
Pure Appl. Algebra 215:5 (2011), 806–811. MR 2011j:14103 Zbl 1219.13013

[Karlin and McGregor 1959] S. Karlin and J. McGregor, “Coincidence probabilities”, Pacific J. Math.
9 (1959), 1141–1164. MR 22 #5072 Zbl 0092.34503

[Košir and Sethuraman 2005a] T. Košir and B. A. Sethuraman, “Determinantal varieties over truncated
polynomial rings”, J. Pure Appl. Algebra 195:1 (2005), 75–95. MR 2005h:13020 Zbl 1085.14043

[Košir and Sethuraman 2005b] T. Košir and B. A. Sethuraman, “A Groebner basis for the 2× 2
determinantal ideal mod t2”, J. Algebra 292:1 (2005), 138–153. MR 2006f:13011 Zbl 1105.13009

[Krattenthaler 1995a] C. Krattenthaler, “Counting nonintersecting lattice paths with turns”, Sém.
Lothar. Combin. 34 (1995), Art. B34i, 17 pp. MR 97e:05018 Zbl 0855.05004

[Krattenthaler 1995b] C. Krattenthaler, The major counting of nonintersecting lattice paths and gen-
erating functions for tableaux, Mem. Amer. Math. Soc. 552, 1995. MR 95i:05109 Zbl 0830.05003

[Kulkarni 1996] D. M. Kulkarni, “Counting of paths and coefficients of the Hilbert polynomial of a
determinantal ideal”, Discrete Math. 154:1-3 (1996), 141–151. MR 97f:13018 Zbl 0853.05005

[Lindström 1973] B. Lindström, “On the vector representations of induced matroids”, Bull. London
Math. Soc. 5 (1973), 85–90. MR 49 #95 Zbl 0262.05018

[Liu 2002] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics
6, Oxford University Press, Oxford, 2002. MR 2003g:14001 Zbl 0996.14005

[Modak 1992] M. R. Modak, “Combinatorial meaning of the coefficients of a Hilbert polynomial”,
Proc. Indian Acad. Sci. Math. Sci. 102:2 (1992), 93–123. MR 94e:13022 Zbl 0761.13006

[Mourtada 2011] H. Mourtada, “Jet schemes of toric surfaces”, C. R. Math. Acad. Sci. Paris 349:9-10
(2011), 563–566. MR 2012e:14029 Zbl 1222.14031
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