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ON A LIU–YAU TYPE INEQUALITY FOR SURFACES

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL AND SIMON RAULOT

Let � be a compact mean-convex domain with smooth boundary † WD @�,
in an initial data set .M 3; g; K /, which has no apparent horizon in its inte-
rior. If † is spacelike in a spacetime .E4; gE/ with spacelike mean curvature
vector H such that † admits an isometric and isospin immersion into R3

with mean curvature H0, thenZ
†

jHjd† �

Z
†

H 2
0

jHj
d†:

If equality occurs, we prove that there exists a local isometric immersion
of � in R3;1 (the Minkowski spacetime) with second fundamental form
given by K . We also examine, under weaker conditions, the case where the
spacetime is the .nC2/-dimensional Minkowski space RnC1;1 and establish
a stronger rigidity result.

1. Introduction

Let .E4;gE/ be a spacetime satisfying the Einstein field equations; that is, .E4;gE/

is a 4-dimensional time-oriented Lorentzian manifold such that

RicE�
1
2
REgE D T;

where RE (respectively, RicE) denotes the scalar curvature (respectively, the Ricci
curvature) of (E;gE/, and T is the energy-momentum tensor which describes the
matter content of the ambient spacetime. We also assume that .E4;gE/ satisfies the
dominant energy condition; that is, its energy-momentum tensor T has the property
that, for every future-directed causal vector � 2 �.T E/, the vector field dual to the
one-form �T.�; � / is a future-directed causal vector of T E.

Let M 3 be an immersed spacelike hypersurface of .E4;gE/ with induced Rie-
mannian metric g. Assume that T is the future-directed timelike normal vec-
tor to M and denote by K the associated second fundamental form defined by
K.X;Y /D gE.r

E
X

T;Y / for all X;Y 2 �.TM/. Here rE denotes the Levi-Civita
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connection of the spacetime. Then the Gauss, Codazzi and Einstein equations
provide constraint equations on M , given by�

�D 1
2

�
R� jKj2

M
C .trM .K//2

�
;

J D�ı.K� trM .K/g/;

where R is the scalar curvature of .M 3;g/, jKj2 and tr.K/ denote the squared
norm and the trace of K with respect to g, and ı is the divergence on M . Here �
and J are the energy and momentum density of the matter fields, and are given by

�D T.T;T / and Ji D T.ei ;T /

for 1� i � 3, where fe1; e2; e3g is a local basis of the spatial tangent space of M .
The dominant energy condition for the spacetime implies that �� jJ j as functions
on M . A triplet .M 3;g;K/ which satisfies the dominant energy condition is called
an initial data set.

Now we consider a codimension-two spacelike orientable surface †2 in the
spacetime E4. We will represent by H the mean curvature vector field on †2,
defined as

HD tr II;

where II is the second fundamental form of this immersion. Since the normal
space at each point of †2 is a Lorentzian plane, it can be spanned by two future-
directed null normal vector fields NC and N�, normalized in such a way that
hNC;N�i D �

1
2

. We denote by �C and �� the components of H with respect
to NC and N�. They are the so-called future-directed null expansions of H, and
measure the area growth when †2 varies in the corresponding directions. It is clear
that

jHj2 D��C��:

If �C and �� are both negative, the surface will be called a trapped surface. A
surface with �C D 0 or �� D 0 is called an apparent horizon (or a marginally
trapped surface). Note that if †2 is trapped or marginally trapped, then the mean
curvature vector H is a causal vector at each point. This is why the mean curvature
field H being spacelike everywhere is equivalent to † being an untrapped surface.

In the case that †2 spans a spacelike hypersurface in the spacetime, that is, when
there exists a spacelike hypersurface �3 immersed in E4 such that @�3 D†2, the
normal null vector fields NC and N� may be ordered in such a way that they project
onto directions tangent to �3 which are, respectively, outer and inner normal at
each point of †2. In other words, if N is the inner normal unit vector field on †2

tangent to �3 and T is the future-directed timelike normal to �3 in E4, we put

NC D
1
2
.T �N / and N� D

1
2
.T CN /:
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The second fundamental form of †2 in E4 is given in terms of the Lorentzian basis
of the normal bundle the hypersurface � by

II.X;Y /D g.AX;Y /N Cg.BX;Y /T

for all X;Y 2 �.T†/, where AX WD �rX N denotes the shape operator of †2

in �3 and r is the Levi-Civita connection of the Riemannian metric g on M . The
mean curvature vector field H of † in E can be reexpressed by

HD �CN�C ��NC DHN C tr† .K/T;

where H D tr A is the mean curvature of †2 in �3 and tr† .K/ is the trace on †2

of the shape operator K of �3 in E4. The norm of H can be also reexpressed as

(1) jHj2 DH 2
� tr† .K/

2
D��C��;

where �˙ D tr† .K/ ˙ H are the future-directed null expansions of H. The
spacelike surfaces with �C < 0 (respectively, �� < 0) are referred to as outer
(respectively, inner) trapped surfaces. It is easy to see that untrapped submanifolds,
that is, codimension-two spacelike submanifolds of a spacetime with spacelike
mean curvature vector field, naturally divide into two disjoint classes:

Lemma 1. Let†2 be a compact spacelike codimension-two submanifold embedded
in a spacetime E4. Suppose that its mean curvature vector field H is spacelike and
that †2 is the boundary of a spacelike hypersurface �3 in E4. Then �3 is either
mean-convex or mean-concave.

Proof. It suffices to take into account that if .�C; ��/ are the future-directed null
expansions of the mean curvature vector field H associated to the embedding of †2

in the domain �3, we have, from (1),

0< jHj2 D��C�� and �C� �� D 2H;

where H is the inner mean curvature function of †2 in �3. The first of these two
equalities implies that �C and �� have opposite signs everywhere on †2. Then,
from the second one, we have that either H > 0 or H < 0 on the whole of †2. �

Note that this fact obviously holds for higher-dimensional initial data sets. In
the following, an untrapped surface (respectively, a codimension-two untrapped
submanifold) which bounds a compact, connected and mean-convex spacelike
hypersurface will be referred to as an outer untrapped surface (respectively, an
outer untrapped submanifold). It is worth noting that round spheres in Euclidean
slices are untrapped surfaces. The same occurs in general for large radial spheres
in asymptotically flat spacelike hypersurfaces.

We now give the precise statement of our main result:
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Theorem 2. Let� be a compact domain with an outer untrapped boundary surface
† WD @� in an initial data set .M 3;g;K/. If � has no apparent horizon in its
interior, then for all ' 2 �.=S†/,

(2)
Z

†

�
1

jHj
j =D'j2�

jHj

4
j'j2

�
d†� 0;

where =S† is the extrinsic spinor bundle on † and =D is the extrinsic Dirac operator
(see Section 2). Moreover, if equality occurs, then there exists a local isometric
immersion of � in R3;1 with K as second fundamental form.

As a direct application, we prove the following result:

Theorem 3. Under the conditions of Theorem 2, assume furthermore that† admits
an isometric and isospin immersion into R3 with mean curvature H0. Then

(3)
Z

†

jHj d†�

Z
†

H 2
0

jHj
d†:

Moreover, if equality occurs, then † is connected and there exists a local isometric
immersion of � in R3;1 with second fundamental form given by K and mean
curvature vector of † satisfying jHj DH0.

If we consider the case of codimension-two outer untrapped submanifolds in the
.nC2/-dimensional Minkowski spacetime RnC1;1, we prove that we can remove the
assumption on the nonexistence of apparent horizons (see Theorem 14). Moreover,
in this situation, we completely characterize the equality case. Namely:

Theorem 4. Let † be a codimension-two outer untrapped submanifold in RnC1;1.
If † admits an isometric and isospin immersion into RnC1 with mean curvature H0,
then inequality (3) holds and equality is achieved if and only if † lies in a hyperplane
in RnC1;1 and † is connected.

Remark 5. In Theorems 3 and 4, we assumed that the boundary hypersurface of
a compact domain in a certain spin manifold admits an isospin immersion into
a Euclidean space. In general, an .n C 1/-dimensional spin manifold induces
a spin structure on each of its orientable immersed hypersurfaces through their
corresponding immersions (see Section 2.2 below). Two distinct immersions of
an orientable manifold †n into two (possibly different) .nC 1/-dimensional spin
manifolds are said to be isospin when the spin structures induced on †n from the
corresponding ambient manifolds coincide (up to an equivalence). Recall that spin
structures on †n are parametrized by the cohomology group H 1.†n;Z2/. Thus,
for example, if †n is a simply connected manifold, any two immersions of †n in
two arbitrary .nC 1/-dimensional spin manifolds must be isospin. Consequently if
the surface † in Theorem 3 has genus zero or the hypersurface † in Theorem 4 is
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simply connected, we only need to suppose that they are mean-convex in their initial
data sets and that they can be immersed as hypersurfaces in a Euclidean space.

Also it is clear that when the two immersions defined on †n lie in the same
ambient space and are regularly homotopic, the associated induced spin structures
are equivalent. In fact, two immersions are said to be regularly homotopic (isotopic,
according to Pinkall [1985] and others) if we may pass continuously from one to
the other through a family of immersions. Consequently they determine the same
class in H 1.†n;Z2/. Indeed in the case nD 2, two spin structures induced from
the spin structure of the 3-dimensional spin ambient space through two different
embeddings are equivalent if and only if they are regularly homotopic (besides the
previous reference, see [Hass and Hughes 1985, pp. 104–105] and [Benedetti and
Silhol 1995, p. 656]).

Then take any compact mean-convex surface † embedded in R3. This surface
bounds a compact domain in three-dimensional Euclidean space which is a totally
geodesic initial data set in the Minkowski space R3;1. If we slightly deform this
surface, the positivity of the mean curvature is preserved by continuity, and, from
the arguments above, the same holds for the induced spin structure. So there are
examples of mean-convex boundaries in initial data sets of spacetimes admitting
isospin immersions in Euclidean spaces. Many of them are nonconvex. In fact,
take† to be, for instance, a right cylinder with two half-spheres closing its extremes
(after smoothing) or a torus of revolution thin enough (if we want to have some
point with negative Gauss curvature).

Note that if † is not convex, we cannot use the Weyl theorem and so we do not
know whether it is possible to immerse† isometrically in Euclidean space R3. This
is why in this case, Theorems 3 and 4 should be viewed as comparison theorems for
the mean curvatures of two immersions in the spirit of a classical result by Herglotz.
Indeed, Herglotz [1943] gave a succinct proof of Cohn-Vossen’s rigidity result for
convex surfaces based on an integral inequality involving the second fundamental
forms of two embeddings (see, e.g., [Montiel and Ros 1997, Section 7.4]). Our
Theorem 3 provides an inequality of this type which could be a first step in enlarging
the Cohn-Vossen theorem to include Euclidean mean-convex compact surfaces.

In this direction, one can easily see that Theorem 4 implies that the integral
of the mean curvature is preserved through bendings of compact mean-convex
hypersurfaces embedded in a Euclidean space. This was first proved by Almgren
and Rivin [1998] (see also [Rivin and Schlenker 1999]).

Recall that Liu and Yau [2006] (see also [Liu and Yau 2003]) proved the following
positivity result: Let .�3;g;K/ be an initial data set for the Einstein equation.
Suppose that the boundary @� has finitely many components †i , 1� i � l , each
of which has positive Gauss curvature and spacelike mean curvature vector in the
spacetime. Then for all i ,
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(4)
Z

†i

jHj d†�

Z
†i

H0 d†:

Moreover, if equality occurs for some i 2 f1; : : : ; lg, then @� is connected and the
spacetime is flat along �.

The proof of this result relies on a generalized version of the positive mass
theorem and on the resolution of the Jang equation. One of the key ingredients in
the proof is provided by the Weyl embedding theorem [1916], which asserts that
the condition that † embeds isometrically as a strictly convex hypersurface in R3 is
equivalent to † having positive Gauss curvature. Note that by the Cauchy–Schwarz
inequality, inequality (4) implies (3).

More recently, Eichmair, Miao and Wang [Eichmair et al. 2012] generalized
inequality (4) for time-symmetric initial data under weaker convexity assumptions
for the embedding of † in R3. We point out that, in contrast to Liu and Yau’s result,
we do not assume that the immersion is a strictly convex embedding. In particular,
the mean curvature H0 is not assumed to be positive.

2. The Riemannian setting

2.1. Preliminaries on spin manifolds. Let .M;g/ be an .nC1/-dimensional Rie-
mannian spin manifold, which we will suppose from now on to be connected, and
denote by r the Levi-Civita connection on its tangent bundle TM. We choose a spin
structure on M and consider the corresponding spinor bundle SM , a rank-2.nC1/=2

complex vector bundle. Denote by 
 the Clifford multiplication

(5) 
 W C`.M / �! End.SM /;

which is a fiber-preserving algebra morphism. Then SM becomes a bundle of
complex left modules over the Clifford bundle C`.M / over the manifold M .
When .nC 1/ is even, the spinor bundle splits into the direct sum of the positive
and negative chiral subbundles:

(6) SM D SMC
˚SM�;

where SM˙ are defined to be the ˙1-eigenspaces of the endomorphism 
 .!nC1/,
with !nC1 D i .nC2/=2e1e2 � � � enC1 the complex volume form.

On the spinor bundle SM , one has (see [Lawson and Michelsohn 1989]) a natural
Hermitian metric, denoted by h � ; � i, and the spinorial Levi-Civita connection r
acting on spinor fields. It is well-known that the Hermitian scalar product, the
Levi-Civita connection r and the Clifford multiplication (5) satisfy, for any spinor
fields  ; ' 2�.SM / and any tangent vector fields X;Y 2�.TM/, the compatibility
conditions



ON A LIU–YAU TYPE INEQUALITY FOR SURFACES 183

h
 .X / ; 
 .X /'i D jX j2h ; 'i;(7)

X h ; 'i D hrX ; 'iC h ;rX 'i;(8)

rX

�

 .Y / 

�
D 
 .rX Y / C 
 .Y /rX :(9)

Since r!nC1 D 0, for nC 1 even, the decomposition (6) is orthogonal and r
preserves this decomposition.

The Dirac operator D on SM is the first-order elliptic differential operator
locally given by

D D

nC1X
iD1


 .ei/rei
;

where fe1; : : : ; enC1g is a local orthonormal frame of TM. When .nC 1/ is even,
the Dirac operator interchanges positive and negative spinor fields; that is,

D W �.SM˙/ 7�! �.SM�/:

2.2. Hypersurfaces and induced structures. In this section, we compare the res-
trictions =S† of the spinor bundle SM of a spin manifold M to an orientable
hypersurface † immersed into M , and its Dirac-type operator =D to the intrinsic
spinor bundle S† of the induced spin structure on † and its fundamental Dirac
operator D†. A fundamental case will be when the hypersurface † is just the
boundary @M of a manifold M . These facts are in general well-known (see, for
example, [Bureš 1993; Trautman 1995; Bär 1998; Baum et al. 1990; Hijazi et al.
2001a; 2001b; 2002; Hijazi and Montiel 2014]). For completeness, we introduce
the notation and key facts.

Denote by =r the Levi-Civita connection associated with the induced Riemannian
metric on †. The Gauss formula says that

(10) =rX Y DrX Y �g.AX;Y /N;

where X;Y are vector fields tangent to the hypersurface †, the vector field N is a
global unit field normal to †, and A stands for the shape operator corresponding
to N ; that is,

(11) rX N D�AX for all X 2 �.T†/:

We have that the restriction
=S† WD SM j†

is a left module over C`.†/ for the induced Clifford multiplication

=
 W C`.†/ �! End.=S†/



184 OUSSAMA HIJAZI, SEBASTIÁN MONTIEL AND SIMON RAULOT

given by

(12) =
 .X / D 
 .X /
 .N / 

for every  2 �.=S†/ and X 2 �.T†/. (Note that a spinor field on the ambient
manifold M and its restriction to the hypersurface † will be denoted by the same
symbol.) Consider the Hermitian metric h � ; � i on =S† induced from that of SM .
This metric immediately satisfies the compatibility condition (7) if one considers
the Riemannian metric on † induced from M and the Clifford multiplication =

defined in (12). Now the Gauss formula (10) implies that the spin connection =r
on =S† is given by the spinorial Gauss formula

(13) =rX DrX �
1
2 =
 .AX / DrX �

1
2

 .AX /
 .N / 

for every  2 �.=S†/ and X 2 �.T†/. Note that the compatibility conditions (7),
(8) and (9) are satisfied by .=S†; =
 ; h � ; � i; =r/.

Denote by =D W �.=S†/! �.=S†/ the Dirac operator associated with the Dirac
bundle =S† over the hypersurface. It is a well-known fact that =D is a first-order
elliptic differential operator which is formally L2-selfadjoint. By (13), for any
spinor field  2 �.SM /,

=D D

nX
jD1

=
 .ej / =rej
 D 1

2
H � 
 .N /

nX
jD1


 .ej /rej
 ;

where fe1; : : : ; eng is a local orthonormal frame of T† and H D tr A is the mean
curvature of † corresponding to the orientation N . Using (13) and (11), it is
straightforward to see that the skew-commutativity rule

(14) =D.
 .N / /D�
 .N / =D 

holds for any spinor field  2 �.=S†/. It is important to point out that, from this
fact, the spectrum of =D is always symmetric with respect to zero, while this is the
case for the Dirac operator D† of the intrinsic spinor bundle only when n is even.
Indeed, in this case, we have an isomorphism of Dirac bundles

.=S†; =
 ; =D/� .S†; 
†;D†/;

and the decomposition =S†D =S†C˚ =S†�, given by

=S†˙ WD f 2 =S† j i
 .N / D˙ g;

corresponds to the chiral decomposition of the spinor bundle S†. Hence =D inter-
changes =S†C and =S†�.

When n is odd the spectrum of D† is not necessarily symmetric. In fact, in
this case, the spectrum of =D is just the symmetrization of the spectrum of D†.
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This is why the decomposition of SM into positive and negative chiral spinors
induces an orthogonal and =
 ; =D-invariant decomposition =S†D =S†C˚ =S†�, with
=S†˙ WD .SM˙/j†, in such a way that

.=S†˙; =
 ; =Dj=S†˙
/� .S†;˙
†;˙D†/:

Also, 
 .N / interchanges the decomposition, and both maps 
 .N / W =S†˙! =S†�
are isomorphisms.

Consequently, studying the spectrum of the induced operator =D is equivalent to
studying the spectrum of the Dirac operator D† of the Riemannian spin structure
induced on the hypersurface †.

2.3. A spinorial Reilly-type inequality for manifolds with boundary. Here, we
prove a spinorial Reilly-type inequality (see [Liu and Yau 2003] and [Raulot 2013]).

Recall that on a compact .nC1/-dimensional Riemannian spin manifold M with
boundary †D @M , for any spinor field  2�.SM /, the fundamental Schrödinger–
Lichnerowicz formula is given by:

(15)
Z

†

�
h =D ; i �

H

2
j j2

�
d†D

Z
M

�
1
4
Rj j2Cjr j2� jD j2

�
dM;

where R is the scalar curvature of M . Note that the assumption R � 0 is quite
natural and has been used intensively to get, in particular, lower bounds on both D

and =D. However, in our situation (see Section 3.1), we have a weaker assumption
on the scalar curvature. More precisely, we assume that there exists a smooth vector
field X 2 �.TM/ such that

(16) R� 2jX j2C 2ı.X /;

where jX j2 D g.X;X / and ı is the divergence of X D

nX
jD1

X j ej 2 �.TM/, locally
given by

ı.X /D�

nC1X
iD1

ei.X
i/:

Then we prove an adapted Reilly-type inequality. Namely:

Proposition 6. Let M a compact Riemannian spin manifold with boundary † such
that there exists a smooth vector field X 2 �.TM/ satisfying (16). Then

(17)
Z

†

˝
=D � 1

2
.H Cg.X;N // ;  

˛
d†�

Z
M

�
1
2
jr j2� jD j2

�
dM:

Moreover, equality occurs if and only if the spinor field  satisfies

(18) rY  D�g.X;Y / 

for all Y 2 �.TM/.
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Proof. First note that, since

ı.j j2X /D�X.j j2/Cj j2ı.X /;

the Stokes formula givesZ
M

R

4
j j2 dM D

Z
M

�
R

4
�

1

2
ı.X /

�
j j2 dM C

1

2

Z
M

ı.X /j j2 dM

D
1

4

Z
M

.R� 2ı.X //j j2 dM C
1

2

Z
M

X.j j2/ dM

C
1

2

Z
†

g.X;N /j j2 d†:

Inserting this identity in (15) leads toZ
†

˝
=D � 1

2
.H Cg.X;N //;  

˛
d†

D

Z
M

�
1
4
.R� 2ı.X //j j2C 1

2
X.j j2/

�
dM C

Z
M

.jr j2� jD j2/ dM

and, using (16), we conclude that

(19)
Z

†

˝
=D � 1

2
.H Cg.X;N //;  

˛
d†

�

Z
M

�
1
2
jX j2j j2C 1

2
X.j j2/

�
dM C

Z
M

.jr j2� jD j2/ dM:

If we let zrY  WD rY  Cg.X;Y / , it is straightforward to compute

j zr j2 D jr j2CjX j2j j2C 2 RehrX ; i;

and since 2 RehrX ; i DX.j j2/, we get

1
2
X.j j2/� �1

2
jr j2� 1

2
jX j2j j2;

with equality if and only if zr D 0. Combining this last inequality with (19)
finishes the proof. �

2.4. A local boundary elliptic condition for the Dirac operator. As before, † is
the boundary of an .nC 1/-dimensional Riemannian spin compact manifold M .
We define two pointwise projections

P˙ W =S† �! =S†

on the induced Dirac bundle over the hypersurface by

(20) P˙ D
1
2
.Id=S†˙i
 .N //:
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It is a well-known fact that these two orthogonal projections P˙ acting on the
spin bundle =S† provide local elliptic boundary conditions for the Dirac operator D

of M . The ellipticity of these boundary conditions and that of the Dirac operator D

allow us to solve boundary value problems for D on M by prescribing, on the
boundary †, the corresponding P˙-projections of the solutions. Namely, we have:

Proposition 7 [Hijazi and Montiel 2014]. Let M be a compact Riemannian spin
manifold with boundary a hypersurface †. If ' 2 �.=S†/ is a smooth spinor field
of the induced Dirac bundle, then the boundary value problem�

D D 0 on M;

P˙. j†/D P˙' on †

for the Dirac operator has a unique smooth solution  2 �.SM /.

For a more general discussion on boundary conditions for the Dirac operator, we
refer to [Booß-Bavnbek and Wojciechowski 1993], [Ballmann and Bär 2012] or
[Bartnik and Chruściel 2005].

2.5. A holographic principle for the existence of parallel spinors. It is by now
standard (see [Hijazi et al. 2001b; 2002]) to make use of (15) for a compact
Riemannian spin manifold M with nonnegative scalar curvature R, together with
the solution of an appropriate boundary value problem for the Dirac operator D

of M , in order to establish a certain integral inequality for the induced Dirac
operator =D of the boundary hypersurface @M D †. Raulot [2013] uses such
arguments for compact manifolds whose scalar curvature satisfies (16). In this
section, we generalize the holographic principle for the existence of parallel spinors
proved in [Hijazi and Montiel 2014] in the context studied in [Raulot 2013].

First we need to recall the following fact:

Lemma 8 [Hijazi et al. 2002]. For any smooth spinor field  2 �.=S†/,Z
†

h =D ; i d†D 2

Z
†

h =DPC ;P� i d†:

The proof simply relies on the self-adjointness of the Dirac operator =D and on
the identities

(21) =DP˙ D P� =D;

which are obtained using (14) and (20).

Proposition 9. Let M be a compact Riemannian spin manifold with scalar curva-
ture satisfying (16) such that

F WDH Cg.X;N / > 0:
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For any ' 2 �.=S†/, one has

(22) 0�

Z
†

�
1

F
j =DPC'j

2
�

F

4
jPC'j

2

�
d†:

Moreover equality holds if and only if there exists a parallel spinor field 2�.SM /

such that PC D PC' along the boundary hypersurface † and the vector field X

vanishes identically on M .

Proof. Take any spinor field ' 2 �.=S†/ of the induced spinor bundle on the
hypersurface and consider the boundary value problem�

D D 0 on M;

PC D PC' on †

for the Dirac operator D and the boundary condition PC. The existence and
uniqueness of a smooth solution  2 �.SM / for this boundary problem is ensured
by Proposition 7. This solution  , inserted in inequality (17), translates to

(23) 0�
1

2

Z
M

jr j2 dM �

Z
†

�
h =D ; i �

F

2
j j2

�
d†:

Note that if equality is achieved, then  is a parallel spinor field satisfying (18).
Since such a spinor field has no zeros, the vector field X vanishes identically on
the whole of M . Inequality (23) combined with Lemma 8, together with the fact
that the decomposition

 D PC CP� 

is pointwise orthogonal, imply

(24) 0�

Z
†

�
2h =DPC ;P� i �

F

2
jPC j

2
�

F

2
jP� j

2

�
d†:

Since the function F is assumed to be positive on †, it follows that

0�

ˇ̌̌̌r
2

F
=DPC �

r
F

2
P� 

ˇ̌̌̌2
D

2

F
j =DPC j

2
C

F

2
jP� j

2
� 2h =DPC ;P� i:

In other words,

2h =DPC ;P� i �
F

2
jP� j

2
�

2

F
j =DPC j

2;

which, when combined with inequality (24), implies inequality (22). Now, if
equality holds, we already noticed that the spinor field  must be parallel with
PC D PC' and X � 0.

Conversely, if we assume that there is a parallel spinor field  on M and X � 0,
then we are in the situation covered in [Hijazi and Montiel 2014]. �
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With this, we are ready to state the main result of this section:

Theorem 10. Let M be a compact Riemannian spin .nC1/-dimensional manifold,
and X 2 �.TM/ such that

R� 2jX j2C 2ı.X / and F WDH Cg.X;N / > 0:

Then, for any spinor field ' 2 �.=S†/, one has

(25) 0�

Z
†

�
1

F
j =D'j2�

F

4
j'j2

�
d†:

Equality holds if and only if there exist two parallel spinor fields‰C; ‰� 2�.SM /

such that PC‰
C D PC' and P�‰

� D P�' on the boundary and X � 0.

Proof. From the symmetry between the two boundary conditions PC and P� for
the Dirac operator on M (see Proposition 7 and Lemma 8), one can repeat the
proof of Proposition 9 to get the inequality corresponding to (22) where the positive
projection PC is replaced by the negative one P�. Hence, for any spinor field
' 2 �.=S†/, we also have

(26) 0�

Z
†

�
1

F
j =DP�'j

2
�

F

4
jP�'j

2

�
d†:

Taking into account the relation (21) and the pointwise orthogonality of the projec-
tions P˙, the sum of the two inequalities (22) and (26) yields (25). The equality
case is a consequence of Proposition 9. �
Remark 11. Note that, as observed in [Hijazi and Montiel 2014], equality in (25)
does not imply that the two parallel spinors in Theorem 10 coincide.

We should also mention that inequality (25) has a nice interpretation in terms
of the first eigenvalue of the boundary Dirac operator =DF associated with the
conformal metric gF D F2g. More precisely:

Corollary 12. Let .M nC1;g/ be an .nC 1/-dimensional compact connected Rie-
mannian spin manifold satisfying the assumptions of Theorem 10. Then the first
nonnegative eigenvalue �1. =DF / of the Dirac operator corresponding to the confor-
mal metric gF D F2g satisfies

�1. =DF /�
1
2
;

and equality holds if and only if M admits a nontrivial parallel spinor (and
X � 0). In this case, the eigenspace corresponding to �1. =DF / D

1
2

consists of
restrictions to† of parallel spinor fields on M multiplied by the function F�.n�1/=2.
Furthermore the boundary hypersurface † has to be connected.

The proof is omitted since it is similar to [Hijazi and Montiel 2014, Theorem 1].
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2.6. A discussion on quasilocal masses. In this section, we consider a 3-dimen-
sional compact connected Riemannian manifold .M 3;g/ with nonnegative scalar
curvature, whose boundary †2 has positive mean curvature H . Note that since M

is a 3-dimensional manifold, it is necessarily spin. Moreover we also assume that
there exists an immersion �0 of the surface † in R3 with mean curvature H0.

One of the fundamental results in classical general relativity is certainly the proof
of the positivity of the total energy by Schoen and Yau [1981] and Witten [1981].
This led to the more ambitious claim of associating energy to extended, but finite,
spacetime domains, that is, at the quasilocal level. Obviously the quasilocal data
could provide a more detailed characterization of the states of the gravitational
field than the global ones, so they are interesting in their own right. For a complete
review of these topics, we refer to [Szabados 2004]. It is currently required that a
quasilocal mass satisfies natural properties, among which are:

(I) Nonnegativity: M.†/� 0.

(II) Rigidity: M.†/D 0 if and only if † is in the Minkowski spacetime.

(III) Monotonicity: If †1 D @M1 and †2 D @M2 such that M1 � M2, then
M.†1/�M.†2/.

(IV) ADM limit: If .†k/ is a sequence of surfaces that exhaust an asymptotically
flat manifold .N 3;g/, then

lim
k!1

M.†k/DmADM.g/;

where mADM.g/ is the ADM mass of .N;g/.

(V) Black hole limit: If † is a horizon in an asymptotically flat manifold .N 3;g/,
then

M.†/D

r
A

16�
;

where A is the area of †.

Brown and York [1993] proposed the following definition for the quasilocal mass
of a surface † (now called the Brown–York mass):

mBY .†/ WD
1

8�

Z
†

.H0�H / d†:

The nonnegativity of mBY .†/ is proved in [Shi and Tam 2002] under additional
assumptions. Indeed they impose that �0 is a strictly convex isometric embedding,
which by the Weyl embedding theorem [1916] is equivalent to the fact that † has
positive Gauss curvature. Moreover, in this situation, the embedding �0 is unique
up to an isometry of R3.
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Recently Lam [2011] proposed in his thesis the definition

mL.†/ WD
1

16�

Z
†

1

H0

.H 2
0 �H 2/ d†:

He proves that mL.†/ has several interesting properties for certain surfaces in
complete asymptotically flat Riemannian manifolds that are the graphs of smooth
functions over R3 (see the same work for a precise description). More precisely, it
satisfies Properties (I), (III), (IV) and (V). Moreover, using the Cauchy–Schwarz
inequality, it is straightforward to check that mBY .†/�mL.†/.

From [Hijazi and Montiel 2014], we can define a quasilocal mass similar to the
Brown–York and Lam masses, and prove its nonnegativity in the more general
context described in the beginning of this section. Indeed, if we let

m.†/ WD
1

16�

Z
†

1

H
.H 2

0 �H 2/ d†;

then, from the immersion �0, there exists a spinor field ‰0 2 �.=S†/ satisfying the
Dirac equation

=D‰0 D
H0

2
‰0 and j‰0j D 1:

It is obtained by taking the restriction to † of a parallel spinor field on R3. Now
taking ‰0 in inequality (25) with X � 0 and F DH gives m.†/� 0. Moreover,
from the same reference, m.†/D 0 if and only if M is a Euclidean domain and
the embedding of † in M and its immersion in R3 are congruent. In other words,
properties (I) and (II) are satisfied.

Note that if we assume that† has positive Gauss curvature (which is a stronger as-
sumption) then using the Cauchy–Schwarz inequality implies that m.†/�mBY .†/,
and the nonnegativity of m.†/ follows from the nonnegativity of the Brown–York
mass. On the other hand, it is also proved in [Hijazi and Montiel 2014, Proof of
Corollary 10] that (IV) holds. However it is clear from the definition that the
mass m.†/ is not defined for minimal surfaces (and so for apparent horizons).
Moreover the monotonicity property (III) is not satisfied in general. Take for example
the 3-dimensional Schwarzschild manifold .N 3;g/D .R3 n f0g;u4geucl/, where
u WD 1CM=2r , M > 0, and geucl is the Euclidean metric. For a sphere S2

r in N 3,
its isometric image in R3 is S2

ru2 . Thus H0 D 2=ru2 and since the Schwarzschild
metric is conformal to the Euclidean metric,

H D u�2

�
2

r
C

4

u

@u

@r

�
:
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A direct computation gives

m.S2
r /DM

r CM=2

r �M=2
;

and so m.S2
r / is monotonically decreasing to the ADM mass M as r goes to

infinity.

3. Spacelike surfaces in initial data sets

3.1. The Jang equation. In this section, we recall some well-known facts about
the Jang equation (for more details, we refer to [Schoen and Yau 1981], [Yau 2001]
or [Andersson et al. 2011]). This equation first was used by Jang [1978] in his
attempt to prove the positive mass theorem using the inverse mean curvature flow.
However, as shown by Schoen and Yau [1981], this equation can be used to reduce
the proof of the general positive mass theorem to the case of time-symmetric initial
data sets (that is, Kij D 0/ previously obtained by the same authors [1979]. More
recently, Liu and Yau [2003; 2006] defined a quasilocal mass, generalizing the
Brown–York quasilocal mass, and proved its positivity using the Jang equation.
Other similar applications of the Jang equation can be found in, for example, [Wang
and Yau 2007; 2009].

The problem can be stated as follows: Let .M 3;g;K/ be an initial data set for
the Einstein equation and consider the four-dimensional manifold M �R equipped
with the Riemannian metric h � ; � i WD g˚ dt2. The problem is to find a smooth
function u WM ! R such that the hypersurface yM of M �R obtained by taking
the graph of u over M satisfies the equation

H yM
D tr yM .K/;

where H yM
denotes the mean curvature of yM in .M � R; h � ; � i/ and tr yM . � / is

the trace on yM with respect to the induced metric. This geometric problem is
equivalent to solving the nonlinear second-order elliptic equation

(27)
3X

i;jD1

�
gij
�

uiuj

1Cjruj2

��
.r2u/ijp
1Cjruj2

�Kij

�
D 0;

where r (respectively, r2) denotes the Levi-Civita connection (respectively, the
Hessian) of the metric g, ui D gij uj and uj D ej .u/. Note that the metric induced
by h � ; � i on yM is

Ogij D gij Cuiuj

and can be viewed as a deformation of the metric g on M . In the following,
we adopt the convention that M and yM denote, respectively, the Riemannian
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manifolds .M;g/ and .M; Og/. Analogously, ifr denotes the Levi-Civita connection
for M , then yr denotes that on yM and so on. Since we assume that the initial data
set .M 3;g;K/ comes from a spacetime satisfying the dominant energy condition,
we have that the relation

(28) 0� 2.�� jJ j/� yR� 2jX j2
Og
� 2yı.X /

holds on yM , where

(29) X D ! � yr log.f /;

! is the tangent part of the vector field dual to �K. � ; y�/, f D �h@t ; y�i and y�
denotes the unit normal vector field to yM in M � R. All the quantities Kij , �
and J are defined on M �R by parallel transport along the R-factor. Moreover
equality occurs in (28) if and only if � D jJ j and the second fundamental form
of yM in M �R is K.

It is important to note here that in Theorem 2 we assume that there is no apparent
horizon in the interior of� so that there exists a global solution of the Jang equation
which does not blow up.

3.2. Proof of Theorem 2. From [Yau 2001], and since we assumed that � has no
apparent horizon in its interior, there exists a smooth solution u on � of the Jang
equation (27), defined with the Dirichlet boundary condition

uj† � 0:

This boundary condition ensures that the metrics Og and g coincide on the boundary†
so that the Dirac operators =D acting on =S† and y=D on y=S† also coincide. Moreover,
from a calculation in the same work,

yH � Og.X; yN /D f �1H � � jruj tr†.K/;

where yN denotes the unit outward normal vector field of † in y� and � 2 f˙1g.
From this equality and since f D�h@t ; y�i D 1=

p
1Cjruj2, we easily see that

(30) F WD yH � Og.X; yN /� jHj D

q
H 2� tr†.K/2:

Since we assume that † has a spacelike mean curvature vector H, this implies
that the function F is positive on †. From the discussion of Section 3.1, we also
have that the resulting Riemannian manifold y� satisfies the condition (16) because
of (28), the vector field X being defined here by (29). Clearly all the assumptions
of Theorem 10 are fulfilled and we deduce that for all ' 2 �.=S†/,

0�

Z
†

�
1

F
j =D'j2�

F

4
j'j2

�
d†;
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which by inequality (30) implies inequality (2).
Now assume that equality is achieved. Once again we apply Theorem 10, and

then y� has at least a parallel spinor field ˆ. In particular, y� is Ricci-flat, and since
it is a 3-dimensional domain, it is flat. Moreover, if we have equality in (28), then
the second fundamental form of y� in M �R is Kij . So we can choose a coordinate
system yx D .yx1; yx2; yx3/ in a neighborhood U of a point p 2� such that Ogij D ıij .
In this chart,

gij D ıij �
@u

@yxi

@u

@yxj
;

and this shows that if .yx1; yx2; yx3; t/ denotes coordinates in the Minkowski spacetime,
the graph of u over U isometrically embeds in R3;1 with second fundamental form
given by Kij . Then it is clear that � locally embeds in the Minkowski spacetime
with K as second fundamental form as asserted. �

As a first consequence, we have the estimate proved by Raulot [2013] for the
first eigenvalue of the Dirac operator on †.

Corollary 13. Under the same conditions of Theorem 2, the first eigenvalue �1.D†/

of the Dirac operator satisfies

�1.D†/
2
�

1
4

inf
†
jHj2:

Moreover, if equality occurs, then † is connected and there exists a local isometric
embedding of � as a spacelike hypersurface in R3;1 with K as second fundamental
form.

Proof. The inequality on �1.D†/ follows directly by taking ' D ˆ 2 �.=S†/

in (2), where ˆ is an eigenspinor for the Dirac operator =D associated with the
eigenvalue �1. =D/ (which equals �1.D†/). On the other hand, the second part of
the equality case follows directly from Theorem 2. For the connectedness of †, it
is enough to remark that, from [Hijazi et al. 2001a], the eigenspace associated to
�1. =D/ corresponds to the restriction to† of the space of parallel spinor fields on the
domain y� obtained by solving the Jang equation. Then, assuming that† has several
connected components, we fix one of them, say†0, and define a spinor field on† by

ẑ D

�
ˆ0 on †0;

0 on †�†0;

whereˆ0 is an eigenspinor for the extrinsic Dirac operator =D associated to the eigen-
value �1. =D/. It is then straightforward to check that ẑ is also an eigenspinor associ-
ated to �1. =D/ so that it comes from the restriction of a parallel spinor on y�. However,
since such a spinor field has constant norm, it is impossible unless† is connected. �
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Proof of Theorem 3. In order to establish inequality (3) it is sufficient to apply
inequality (2) to the restriction to † of a parallel spinor field on R3. From the
equality case of Theorem 2, we deduce that � locally embeds in the Minkowski
spacetime with K as a second fundamental form. On the other hand, we have
equality in (30) so that yH D jHj, and then equality in (3) now readsZ

†

�
yH �

H 2
0

yH

�
d†D 0:

We conclude by applying the rigidity part of [Hijazi and Montiel 2014, Theorem 3]
to the compact Ricci-flat manifold y� to deduce that † is connected and jHj DH0.

�

3.3. Codimension-two outer untrapped submanifolds in the Minkowski space-
time. In this section, we prove that inequality (2) holds in the case of codimension-
two outer untrapped submanifolds of the Minkowski spacetime without any as-
sumption on the existence of apparent horizon. More precisely, we prove:

Theorem 14. Let †n be a codimension-two outer untrapped submanifold of the
.nC 2/-dimensional Minkowski spacetime .RnC1;1; h � ; � i/. Then inequality (2)
holds. Moreover equality holds if and only if † lies in a hyperplane of RnC1;1.

Proof. First we note that by assumption † factorizes through a compact and
connected spacelike hypersurface � of RnC1;1. This factorization provides us a
Lorentzian orthonormal reference fT;N g for the normal plane of † in RnC1;1,
and, since † is the boundary of a mean-convex domain � and has spacelike mean
curvature vector, we deduce that the corresponding future-directed null expansions
satisfy �C > 0 and �� < 0. On the other hand, from the work of Bartnik and
Simon [1982] and a straightforward generalization in [Miao et al. 2010, Lemma 4.1],
the submanifold † spans a compact, smoothly immersed, maximal hypersurface �0

in RnC1;1. This means that † factorizes through another spacelike hypersurface �0

of RnC1;1. The new factorization provides us a different Lorentzian orthonormal
reference fT 0;N 0g for the normal plane of † in RnC1;1. In fact, it is obvious that
there must be a function f 2 C1.†/ such that

T 0 D .coshf /T � .sinhf /N and N 0 D�.sinhf /T C .coshf /N:

It is clear that this new reference determines a new pair of null vectors T 0˙N 0

and a new future-directed null expansion of H

(31) � 0C D ef �C and � 0� D e�f ��;

which satisfies � 0C > 0 and � 0� < 0. In particular, we get that 2H 0 D � 0C� �
0
� > 0.

Moreover, since �0 is maximal, we have tr.K0/D 0, and the Gauss formula gives
R0 D jK0j2 � 0. Here R0 is the scalar curvature of �0 equipped with the metric
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induced by the Minkowski spacetime, and K0 is the associated second fundamental
form. On the other hand, since † has a spacelike mean curvature vector, we deduce

(32) 0< jHj D
q
�� 0C�

0
� D

q
H
02� tr†.K0/2 �H

0

;

so we conclude that �0 is such that R0 � 0 and H 0 > 0. Now we can apply
Theorem 10 to �0 with X � 0, and then for all ' 2 �.=S†/,

(33) 0�

Z
†

�
1

H 0
j =D'j2�

1

4
H 0j'j2

�
d†:

Inequality (2) follows using inequality (32). Assume now that equality is achieved.
From the equality case of (33), we deduce that�0 has at least a parallel spinor so that
�0 is Ricci-flat. In particular, it has zero scalar curvature, and since R0D jK0j2D 0,
�0 has to be totally geodesic in RnC1;1, hence † lies in a hyperplane of RnC1;1.
Conversely, if † is a codimension-two submanifold with spacelike mean curvature
vector which lies in a hyperplane RnC1;1, then its second fundamental form K is
zero since a hyperplane PnC1 is totally geodesic. In particular, the squared norm
of the mean curvature vector of † satisfies

(34) jHj2 DH 2
� tr†.K/

2
DH 2;

where H is the mean curvature of † in the hyperplane P . Note that jHj> 0 since
H > 0. Consider now a parallel spinor field ˆ0 on RnC1;1. The spinorial Gauss
formula from the totally geodesic immersion of the hyperplane PnC1 in RnC1;1

and then the one from †n into PnC1 tell us that ˆ0 satisfies

=rYˆ0 D�
1
2 =
 .AY /ˆ0

for all Y 2 �.T†/, where A is the Weingarten map of †n in PnC1. Taking the
trace of this identity gives

=Dˆ0 D
1
2
Hˆ0 D

1
2
jHjˆ0;

where the last equality comes from (34). It is now straightforward to check that
equality holds in (2) for ' Dˆ0. �

Note that Theorem 4 is obtained as a direct application of the previous result.
As an application we obtain the n-dimensional counterpart of Corollary 13 in the
Minkowski spacetime with an optimal rigidity statement:

Corollary 15. Let†n be a codimension-two outer untrapped submanifold in RnC1;1.
Then

j�1.D†/j �
1
2

inf
†
jHj:
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Moreover equality occurs if and only if † is a totally umbilical round sphere in a
spacelike hyperplane of RnC1;1.

Proof. It is enough to apply the previous theorem to an eigenspinor for =D associated
with the eigenvalue �1. =D/, and we directly have the result. From Theorem 14,
† lies in a totally geodesic spacelike hyperplane PnC1 with constant positive mean
curvature H . Then the Alexandrov theorem allows to conclude that † is a totally
umbilical sphere in PnC1. The converse is clear by taking the restriction of a
parallel spinor of the Minkowski space to † via the totally geodesic immersion of
RnC1 in RnC1;1. �
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