BOUNDARY LIMITS FOR FRACTIONAL POISSON a-EXTENSIONS OF L^p BOUNDARY FUNCTIONS IN A CONE

LEI QIAO AND TAO ZHAO
BOUNDARY LIMITS FOR FRACTIONAL POISSON a-EXTENSIONS OF L^p BOUNDARY FUNCTIONS IN A CONE

LEI QIAO AND TAO ZHAO

If one replaces the Poisson kernel of a cone by the Poisson a-kernel, then normalized Poisson integrals with respect to the stationary Schrödinger operator converge along approach regions wider than the ordinary nontangential cones. In this paper we present new and simplified proofs of these results. We also generalize the result by Mizuta and Shimomura to the smooth cones.

1. Introduction and main results

Let \mathbb{R} and \mathbb{R}_+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbb{R}^n \ (n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbb{R}^n is denoted by $P = (X, x_n)$, $X = (x_1, x_2, \ldots, x_{n-1})$. The Euclidean distance of two points P and Q in \mathbb{R}^n is denoted by $|P - Q|$. Also $|P - O|$, with O the origin of \mathbb{R}^n, is simply denoted by $|P|$. The boundary, the closure and the complement of a set S in \mathbb{R}^n are denoted by ∂S, \overline{S} and S^c, respectively.

We introduce a system of spherical coordinates (r, Θ), $\Theta = (\theta_1, \theta_2, \ldots, \theta_{n-1})$, in \mathbb{R}^n which are related to cartesian coordinates $(x_1, x_2, \ldots, x_{n-1}, x_n)$ by

$$x_1 = r \left(\prod_{j=1}^{n-1} \sin \theta_j \right), \quad x_n = r \cos \theta_1,$$

for $n \geq 2$, and for $n \geq 3$,

$$x_{n-m+1} = r \left(\prod_{j=1}^{m-1} \sin \theta_j \right) \cos \theta_m \quad (2 \leq m \leq n-1),$$

where $0 \leq r < +\infty$, $-\pi/2 \leq \theta_{n-1} < 3\pi/2$, and if $n \geq 3$, then $0 \leq \theta_j \leq \pi$ ($1 \leq j \leq n-2$).

This work was supported by the National Natural Science Foundation of China (grants U1304102 and 11301140.)

MSC2010: 31B05, 31B10.

Keywords: boundary limit, Poisson a-integral, stationary Schrödinger operator, cone.
The unit sphere and the upper unit half-sphere are denoted by S^{n-1} and S^{n-1}_+, respectively. For simplicity, a point $(1, \Theta)$ on S^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$, for a set $\Omega \subset S^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Xi \subset \mathbb{R}_+$ and $\Omega \subset S^{n-1}$, the set $\{(r, \Theta) \in \mathbb{R}^n; r \in \Xi, (1, \Theta) \in \Omega\}$ in \mathbb{R}^n is simply denoted by $\Xi \times \Omega$. In particular, the half-space $\mathbb{R}_+ \times S^{n-1} = \{(X, x_n) \in \mathbb{R}^n; x_n > 0\}$ will be denoted by T_n.

By $C_n(\Omega)$, we denote the set $\mathbb{R}_+ \times \Omega$ in \mathbb{R}^n with the domain Ω on S^{n-1}. We call it a cone. Then T_n is a special cone obtained by putting $\Omega = S^{n-1}_+$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$, with I an interval on \mathbb{R}, by $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega)$, we denote $S_n(\Omega; (0, +\infty))$, which is $\partial C_n(\Omega) - \{0\}$.

For positive functions h_1 and h_2, we say that $h_1 \lesssim h_2$ if $h_1 \leq Mh_2$ for some constant $M > 0$. If $h_1 \lesssim h_2$ and $h_2 \lesssim h_1$, we say that $h_1 \approx h_2$.

This article is devoted to the stationary Schrödinger operator

$$\text{SSE}_a = -\Delta + a(P)I,$$

where Δ is the Laplace operator and I is the identity operator. We assume hereafter that the potential $a(P)$ is a nonnegative, locally integrable function in $C_n(\Omega)$, namely, $0 \leq a \in L^b_{\text{loc}}(C_n(\Omega))$, with $b > n/2$ if $n \geq 4$, and with $b = 2$ if $n = 2$ or 3. We denote this class of potentials by \mathcal{A}.

If $a \in \mathcal{A}$, then the operator SSE_a can be extended in the usual way from the space $C_0^\infty(C_n(\Omega))$ to an essentially self-adjoint operator on $L^2(C_n(\Omega))$. We shall denote the extended operator by SSE_a as well. The latter has Green function $G^a_\Omega(P, Q)$ vanishing almost everywhere at the boundary and possessing all the analytic properties. For $|P - Q| \to 0$, we normalize it such that $c_n G^a_\Omega(P, Q) \approx -\log |P - Q|$ when $n = 2$, or $c_n G^a_\Omega(P, Q) \approx |P - Q|^{2-n}$ when $n \geq 3$. Here $c_2 = 2\pi$, $c_n = (n - 2)s_n$ when $n \geq 3$, and s_n is the surface area $2\pi^{n/2}(\Gamma(n/2))^{-1}$ of S^{n-1}. The Green function $G^a_\Omega(P, Q)$ is positive on $C_n(\Omega)$ and its inner normal derivative $\partial G^a_\Omega(P, Q)/\partial n_Q \geq 0$. We denote this derivative by $\Pi^a_\Omega(P, Q)$, which is called the Poisson a-kernel with respect to $C_n(\Omega)$. Then the Poisson a-integral $\Pi^a_\Omega f(P)$ ($P \in C_n(\Omega)$) is defined by

$$\Pi^a_\Omega f(P) = \int_{S_n(\Omega)} \Pi^a_\Omega(P, Q) f(Q) d\sigma_Q,$$

where

$$\Pi^a_\Omega(P, Q) = \frac{\partial}{\partial n_Q} G^a_\Omega(P, Q),$$

$f \in L^p(\partial C_n(\Omega))$ ($1 \leq p < \infty$) and $d\sigma_Q$ is the surface area element on $S_n(\Omega)$.

Remark 1 [Yoshida 1991]. Let $\Omega = S^{n-1}_+$ and $a = 0$. Then

$$G^0_{S^{n-1}_+}(P, Q) = \begin{cases} \log |P - Q^*| - \log |P - Q| & n = 2, \\ |P - Q|^{2-n} - |P - Q^*|^{2-n} & n \geq 3, \end{cases}$$
where \(Q^* = (Y, -y_n) \); that is, \(Q^* \) is the mirror image of \(Q = (Y, y_n) \) with respect to \(\partial T_n \). Hence, for the two points \(P = (X, x_n) \in T_n \) and \(Q = (Y, y_n) \in \partial T_n \), we have

\[
\Pi_0^{a-1}(P, Q) = \begin{cases}
2|P - Q|^{-2}x_n & n = 2, \\
2(n - 2)|P - Q|^{-n}x_n & n \geq 3.
\end{cases}
\]

Let \(\Omega \) be a domain on \(S^{n-1} \) with smooth boundary. Consider the Dirichlet problem

\[
(\Lambda_n + \lambda)\varphi = 0 \quad \text{on} \ \Omega, \\
\varphi = 0 \quad \text{on} \ \partial \Omega,
\]

where \(\Lambda_n \) is the spherical part of the Laplace operator

\[
\Lambda_n = \frac{n - 1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{\Lambda_n}{r^2}.
\]

We denote the least positive eigenvalue of this boundary value problem by \(\lambda \) and the normalized positive eigenfunction corresponding to \(\lambda \) by \(\varphi(\Theta) \); \(\int_{\Omega} \varphi^2(\Theta) \, d\sigma_{\Theta} = 1 \), where \(d\sigma_{\Theta} \) is the surface area on \(S^{n-1} \).

To simplify our consideration in the following, we shall assume that if \(n \geq 3 \), then \(\Omega \) is a \(C^{2, \alpha} \)-domain (\(0 < \alpha < 1 \)) on \(S^{n-1} \) surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g., see [Gilbarg and Trudinger 1977, pp. 88–89] for the definition of \(C^{2, \alpha} \)-domain). Then by modifying Miranda’s method [1970, pp. 7–8], we can prove the inequality (see [Yoshida 1991, p. 373])

(1-1) \[\varphi(\Theta) \approx \text{dist}(\Theta, \partial \Omega) \quad (\Theta \in \Omega). \]

For any \((1, \Theta) \in \Omega\), we have (see [Courant and Hilbert 1953])

\[
\varphi(\Theta) \approx \text{dist}((1, \Theta), \partial C_{n}(\Omega)),
\]

which yields that

(1-2) \[\delta(P) \approx r \varphi(\Theta), \]

where \(\delta(P) = \text{dist}(P, \partial C_{n}(\Omega)) \) and \(P = (r, \Theta) \in C_{n}(\Omega) \).

Solutions of the ordinary differential equation

(1-3) \[-Q''(r) - \frac{n - 1}{r} Q'(r) + \left(\frac{\lambda}{r^2} + a(r) \right) Q(r) = 0, \quad 0 < r < \infty, \]

with a parameter \(\lambda \) play an essential role in these questions. It is known (see, for example, [Verzhbinskii and Maz’ya 1971]) that if the potential \(a \) belongs to \(\mathfrak{A} \), then (1-3) has a fundamental system of positive solutions \(\{V, W\} \) such that \(V \) is nondecreasing with

\[
0 \leq V(0+) \leq V(r) \nearrow \infty \quad \text{as} \ r \to +\infty,
\]

where \(Q^* = (Y, -y_n) \); that is, \(Q^* \) is the mirror image of \(Q = (Y, y_n) \) with respect to \(\partial T_n \). Hence, for the two points \(P = (X, x_n) \in T_n \) and \(Q = (Y, y_n) \in \partial T_n \), we have

\[
\Pi_0^{a-1}(P, Q) = \begin{cases}
2|P - Q|^{-2}x_n & n = 2, \\
2(n - 2)|P - Q|^{-n}x_n & n \geq 3.
\end{cases}
\]

Let \(\Omega \) be a domain on \(S^{n-1} \) with smooth boundary. Consider the Dirichlet problem

\[
(\Lambda_n + \lambda)\varphi = 0 \quad \text{on} \ \Omega, \\
\varphi = 0 \quad \text{on} \ \partial \Omega,
\]

where \(\Lambda_n \) is the spherical part of the Laplace operator

\[
\Lambda_n = \frac{n - 1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{\Lambda_n}{r^2}.
\]

We denote the least positive eigenvalue of this boundary value problem by \(\lambda \) and the normalized positive eigenfunction corresponding to \(\lambda \) by \(\varphi(\Theta) \); \(\int_{\Omega} \varphi^2(\Theta) \, d\sigma_{\Theta} = 1 \), where \(d\sigma_{\Theta} \) is the surface area on \(S^{n-1} \).

To simplify our consideration in the following, we shall assume that if \(n \geq 3 \), then \(\Omega \) is a \(C^{2, \alpha} \)-domain (\(0 < \alpha < 1 \)) on \(S^{n-1} \) surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g., see [Gilbarg and Trudinger 1977, pp. 88–89] for the definition of \(C^{2, \alpha} \)-domain). Then by modifying Miranda’s method [1970, pp. 7–8], we can prove the inequality (see [Yoshida 1991, p. 373])

(1-1) \[\varphi(\Theta) \approx \text{dist}(\Theta, \partial \Omega) \quad (\Theta \in \Omega). \]

For any \((1, \Theta) \in \Omega\), we have (see [Courant and Hilbert 1953])

\[
\varphi(\Theta) \approx \text{dist}((1, \Theta), \partial C_{n}(\Omega)),
\]

which yields that

(1-2) \[\delta(P) \approx r \varphi(\Theta), \]

where \(\delta(P) = \text{dist}(P, \partial C_{n}(\Omega)) \) and \(P = (r, \Theta) \in C_{n}(\Omega) \).

Solutions of the ordinary differential equation

(1-3) \[-Q''(r) - \frac{n - 1}{r} Q'(r) + \left(\frac{\lambda}{r^2} + a(r) \right) Q(r) = 0, \quad 0 < r < \infty, \]

with a parameter \(\lambda \) play an essential role in these questions. It is known (see, for example, [Verzhbinskii and Maz’ya 1971]) that if the potential \(a \) belongs to \(\mathfrak{A} \), then (1-3) has a fundamental system of positive solutions \(\{V, W\} \) such that \(V \) is nondecreasing with

\[
0 \leq V(0+) \leq V(r) \nearrow \infty \quad \text{as} \ r \to +\infty,
\]
and W is monotonically decreasing with
\[+\infty = W(0+) > W(r) \downarrow 0 \quad \text{as } r \to +\infty. \]

We will also consider the class \mathcal{B}, consisting of the potentials $a \in \mathcal{A}$ such that there exists a finite limit $\lim_{r \to +\infty} r^2 a(r) = k \in [0, +\infty)$ and moreover $r^{-1}|r^2 a(r) - k| \in L(1, \infty)$. If $a \in \mathcal{B}$, then the (sub)superfunctions are continuous (see [Simon 1982]).

In the rest of the paper, we assume that $a \in \mathcal{B}$ and we shall suppress this assumption for simplicity.

Denote
\[\iota^\pm_k = \frac{2 - n \mp \sqrt{(n-2)^2 + 4(k+\lambda)}}{2}; \]
then the solutions to (1-3) have the asymptotics (see [Hartman 1964])
\[(1-4) \quad V(r) \approx r^{\iota^+_k}, \quad W(r) \approx r^{\iota^-_k}, \quad \text{as } r \to \infty. \]

Let $u(r, \Theta)$ be a function on $C_n(\Omega)$. For any given $r \in \mathbb{R}_+$, the integral
\[\int_{\Omega} u(r, \Theta) \varphi(\Theta) \, dS_1, \]
is denoted by $N_u(r)$, when it exists. The finite or infinite limit
\[\lim_{r \to \infty} V^{-1}(r) N_u(r) \]
is denoted by \mathcal{N}_u, when it exists.

We fix an open, nonempty and bounded set $G \subset \partial C_n(\Omega)$. In $C_n(\Omega)$, we normalize the extension, with respect to G, by
\[\mathcal{P}^a_{\partial \Omega} f(P) = \frac{P^a_{\Omega} f(P)}{P^a_{\partial \Omega} \chi_G(P)}. \]

Let
\[\Gamma(\zeta) = \{ P = (r, \Theta) \in C_n(\Omega) : |(r, \Theta) - \zeta| \lesssim \delta(P) \} \]
be a nontangential cone in $C_n(\Omega)$ with vertex $\zeta \in \partial C_n(\Omega)$.

We define
\[\mathcal{N}_p(f, l, P) = \left(\frac{1}{ln-1} \int_{B(P, l)} |f(Q)|^p \, d\sigma_Q \right)^{1/p} \]
and
\[\mathcal{N}_f^p(G) = \{ P \in G : \mathcal{N}_p(f - f(P), l, P) \to 0 \text{ as } l \to 0 \}. \]

Note that if $f \in L^p(\partial C_n(\Omega))$, then $|G \setminus \mathcal{N}_f^p(G)| = 0$ (almost every point is a Lebesgue point).
In the proof we need inequalities between the Green function \(G^a_\Omega(P, Q) \) and that of the Laplacian, hereafter denoted by \(G_\Omega(P, Q) \). It is well known that, for any potential \(a(P) \geq 0 \),

\[
(1-5) \quad G^a_\Omega(P, Q) \leq G_\Omega(P, Q).
\]

The inverse inequality is much more elaborate. Cranston, Fabes and Zhao (see [Cranston et al. 1988]; the case \(n = 2 \) is implicitly contained in [Cranston 1989]) have proved

\[
(1-6) \quad G^a_\Omega(P, Q) \geq M(\Omega) G_\Omega(P, Q),
\]

where \(M(\Omega) = M(\Omega, a(P)) \) is a positive constant and does not depend on points \(P \) and \(Q \) in \(C_n(\Omega) \). If \(a = 0 \), then obviously \(M(\Omega) = 1 \).

So we have

\[
G^a_\Omega(P, Q) \approx G_\Omega(P, Q),
\]

from (1-5) and (1-6), which yields that

\[
(1-7) \quad \Pi^a_\Omega(P, Q) \approx \Pi_\Omega(P, Q).
\]

Now we state our results, which are due to Qiao [2012] in the case \(a = 0 \) by the remark. For related results in the half-space and the unit disc, we refer readers to [Mizuta and Shimomura 2003, Theorem 3; Sjögren 1984; 1997; Rönning 1997; Brundin 1999].

Theorem 2. Let \(1 \leq p < \infty \) and \(f \in L^p(\partial C_n(\Omega)) \). Then, for any \(\zeta \in \mathbb{E}^p_f(G) \) (in particular, for a.e. \(\zeta \in G \)), one has that \(\mathcal{P}^a_\Omega f(P) \to f(\zeta) \) as \(P \to \zeta \) along \(\Gamma(\zeta) \).

2. Some lemmas

Lemma 1. For any \(P = (r, \Theta) \in C_n(\Omega) \) and any \(Q = (t, \Phi) \in S_n(\Omega) \) satisfying \(0 < t/r \leq \frac{4}{5} \) (resp. \(0 < r/t \leq \frac{4}{5} \)),

\[
(2-1) \quad \Pi^a_\Omega(P, Q) \approx t^{-1} V(t) W(r) \varphi(\Theta)
\]

\[
(2-2) \quad (\text{resp. } \Pi^a_\Omega(P, Q) \approx V(r) t^{-1} W(t) \varphi(\Theta)).
\]

For any \(P = (r, \Theta) \in C_n(\Omega) \) and any \(Q = (t, \Phi) \in S_n(\Omega; (4r/5, 5r/4)) \),

\[
(2-3) \quad \Pi^a_\Omega(P, Q) \approx \frac{r \varphi(\Theta)}{|P - Q|^n}.
\]

Proof. These immediately follow from [A. Escassut and Yang 2008, Chapter 11], [Essén and Lewis 1973, Lemma 2], [Azarin 1969, Lemma 4 and Remark] and (1-7). \(\square \)
Lemma 2. $\text{Pl}^0_{\Omega} 1(P) = O(1)$ as $P \to \zeta \in G$.

Proof. Write

$$\text{Pl}^0_{\Omega} 1(P) = \int_{E_1} + \int_{E_2} + \int_{E_3} = U_1(P) + U_2(P) + U_3(P),$$

where

$$E_1 = S_n(\Omega; (0, \frac{4}{5}r]), \quad E_2 = S_n(\Omega; \left[\frac{5}{4}r, \infty\right)), \quad E_3 = S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)).$$

By (1-4), (2-1) and (2-2), we have the estimates

(2-4) \quad U_1(P) \approx W(r)\phi(\Theta) \int_{E_1} t^{k-1} d\sigma_Q \approx -\frac{s_n}{t_k} W\left(\frac{5}{4}\right) \phi(\Theta),

(2-5) \quad U_2(P) \approx \frac{s_n}{t_k} V\left(\frac{4}{5}\right) \phi(\Theta).

Next we shall estimate $U_3(P)$. Take a sufficiently small positive number k such that

$$S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)) \subset \bigcup_{P=(r, \Theta) \in \Lambda(k)} B(P, \frac{1}{2}r),$$

where

$$\Lambda(k) = \left\{ P = (r, \Theta) \in C_n(\Omega) : \inf_{z \in \partial \Omega} |(1, \Theta) - (1, z)| < k, 0 < r < \infty \right\}.$$

Since $P \to \zeta \in G$, we only consider the case $P \in \Lambda(k)$. Now, put

$$H_i(P) = \left\{ Q \in E_3 : 2^{i-1}\delta(P) \leq |P - Q| < 2^i\delta(P) \right\}.$$

Since $S_n(\Omega) \cap \{ Q \in \mathbb{R}^n : |P - Q| < \delta(P) \} = \emptyset$, we have by (1-5) and (2-3) that

$$U_3(P) \approx \sum_{i(P)} \int_{H_i(P)} \frac{r\phi(\Theta)}{|P - Q|^n} d\sigma_Q,$$

where $i(P)$ is a positive integer satisfying $2^{i(P)-1}\delta(P) \leq r/2 < 2^{i(P)}\delta(P)$.

By (1-2) we have

$$\int_{H_i(P)} \frac{r\phi(\Theta)}{|P - Q|^n} d\sigma_Q \approx r\phi(\Theta) \int_{H_i(P)} \frac{1}{\delta(P)} d\sigma_Q = \frac{r\phi(\Theta)}{\delta(P)} \frac{s_n}{2^{i(P)}} \approx \frac{s_n}{2^{i(P)}},$$

for $i = 1, 2, \ldots, i(P)$.

So

(2-6) \quad U_3(P) \approx O(1),

Combining (2-4)–(2-6), Lemma 2 is proved. \qed
Lemma 3. $\Pi_{\Omega}^a \chi_G(P) = \Pi_{\Omega}^a 1(P) + O(1)$ as $P \to \zeta \in G$.

Proof. In fact, we only need to prove
\begin{equation}
U_4(P) = \int_{S_n(\Omega) - G} \Pi_{\Omega}^a (P, Q) \, d\sigma_Q \lesssim O(1).
\end{equation}

Write
$U_4(P) = \int_{(S_n(\Omega) - G) \cap E_1} + \int_{(S_n(\Omega) - G) \cap E_2} + \int_{(S_n(\Omega) - G) \cap E_3}$
$= U_5(P) + U_6(P) + U_7(P)$.

Obviously
\begin{align*}
U_5(P) & \lesssim U_1(P) \approx O(1), \\
U_6(P) & \lesssim U_2(P) \approx O(1).
\end{align*}

Further, we have by (2-3) that
\begin{equation}
U_7(P) \approx r \varphi(\Theta) \int_{(S_n(\Omega) - G) \cap E_3} \frac{1}{|P - Q|^n} d\sigma_Q \lesssim \frac{s_n}{d} |\varphi(\Theta) (P \to \zeta \in G),
\end{equation}
where $d = \inf_{Q \in \partial C_n(\Omega) - G} |Q - \zeta|$.

Combining (2-8)–(2-10), (2-7) holds, which gives the conclusion. \hfill \square

3. Proof of the theorem

As $P \to \zeta \in G$,
$\Pi_{\Omega}^a \chi_G(P) = O(1) \neq 0$,
from Lemmas 2 and 3.

Now let $f \in L^p(\partial C_n(\Omega))$ and $\zeta \in \mathbb{E}_p^p(G)$ be given. We may, without loss of generality, assume that $f(\zeta) = 0$. Furthermore we assume that $P = (r, \Theta) \in \Gamma(\zeta)$.
Let $s = |(r, \Theta) - \zeta|$. We write
$\Pi_{\Omega}^a f(P) = \int_{E_1} + \int_{E_2} + \int_{E_3 \cap B(\zeta, 2s)} + \int_{E_3 \cap B^c(\zeta, 2s)}$
$= V_1 f(P) + V_2 f(P) + V_3 f(P) + V_4 f(P)$.

By using Hölder’s inequality, (1-4), (2-1) and (2-2), we have the estimates
\begin{align*}
|V_1 f(P)| \lesssim W(r) \varphi(\Theta) \int_{E_1} r^{\alpha - 1} f(Q) \, d\sigma_Q \lesssim r^{(1-n)/p} \|f\|_p, \\
|V_2 f(P)| \lesssim r^{(1-n)/p} \|f\|_p.
\end{align*}
Similar to the estimate of $U_3(P)$ in Lemma 2, we only consider the following inequality by (1-2):

\[
\int_{H_i(P)} \frac{r\varphi(\Theta)}{|P - Q|^n} d\sigma_Q \approx r\varphi(\Theta) \int_{H_i(P)} \frac{1}{(2^{i-1}\delta(P))^n} d\sigma_Q \\
\lesssim r_0^+\varphi(\Theta) \int_{E_2} t_0^{-1} |f(Q)| d\sigma_Q \lesssim r^{(1-n)/p} \|f\|_p,
\]

for $i = 0, 1, 2, \ldots, i(P)$, which is similar to the estimate of $V_2 f(P)$.

So

\[
|V_3 f(P)| \lesssim r^{(1-n)/p} \|f\|_p.
\]

Notice that $|P - Q| > \frac{1}{2} |\zeta - Q|$ in the case $Q \in E_3 \cap B^e(\zeta, 2s)$. By (1-2) and (2-3), we have

\[
|V_4 f(P)| \lesssim \delta(P) \int_{E_3 \cap B^e(\zeta, 2s)} \frac{|f(Q)|}{|P - Q|^n} d\sigma_Q \\
\lesssim \delta(P) \sum_{i=1}^{\infty} \int_{E_3 \cap (B(\zeta, 2^{i+1}s) \setminus B(\zeta, 2^i s))} \frac{|f(Q)|}{|\zeta - Q|^n} d\sigma_Q \\
\lesssim \delta(P) \sum_{i=1}^{\infty} \left(\frac{1}{2^is}\right)^n \int_{E_3 \cap B(\zeta, 2^{i+1}s)} |f(Q)| d\sigma_Q \\
\lesssim \delta(P) \sum_{i=1}^{\infty} \mathcal{N}_1(f, 2^{i+1}s, \zeta) \lesssim \delta(P) \sum_{i=1}^{\infty} \int_{2^{i+1}s}^{2^{i+2}s} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl \\
\lesssim \delta(P) \int_s^{\infty} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl \lesssim \delta(P) \int_{\delta(P)}^{\infty} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl.
\]

Thus it follows that

\[
|\mathcal{P}_\Omega f(P)| \lesssim \frac{1}{O(1)} \left[|V_1 f(P)| + |V_2 f(P)| + |V_3 f(P)| + |V_4 f(P)| \right] \\
\lesssim r^{(1-n)/p} \|f\|_p + \delta(P) \int_{\delta(P)}^{\infty} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl.
\]

Using the fact that $s \lesssim \delta(P) \lesssim r\varphi(\Theta)$, we get

\[
|\mathcal{P}_\Omega f(P)| \lesssim \mathcal{N}_1(f, 2s, \zeta) + \delta(P) \int_{\delta(P)}^{\infty} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl.
\]

It is clear that

\[
\int_{\delta(P)}^{\infty} \frac{\mathcal{N}_1(f, l, \zeta)}{l} dl
\]

is a convergent integral, since
$\frac{N_1(f, l, \zeta)}{l} \lesssim s^{-1-n} s^{n/q} \|f\|_p \lesssim s^{-1-n/p} \|f\|_p,$

from Hölder’s inequality.

Now, as $\delta(P) \to 0$, we also have $s \to 0$. Since $f(\zeta) = 0$ and since we have assumed that $\zeta \in \mathcal{E}_f^p(G)$ (and thus that $\zeta \in \mathcal{E}_f^1(G)$), it follows that $\mathcal{P}_\Omega^a f(P) \to 0 = f(\zeta)$ as $P = (r; \Theta) \to \zeta$ along $\Gamma(\zeta)$. This concludes the proof.

References

Received August 22, 2013. Revised December 29, 2013.

LEI QIAO
HENAN UNIVERSITY OF ECONOMICS AND LAW
SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE
ZHENGZHOU, 450046
CHINA
qiaocqu@163.com

TAO ZHAO
FACULTY OF SCIENCE
OKAYAMA UNIVERSITY
OKAYAMA, 700-8350
JAPAN
t_t_zhao@yeah.net
Nonconcordant links with homology cobordant zero-framed surgery manifolds
JAE CHOON CHA and MARK POWELL

Certain self-homotopy equivalences on wedge products of Moore spaces
HO WON CHOI and KEE YOUNG LEE

Modular transformations involving the Mordell integral in Ramanujan’s lost notebook
YOUN-SEO CHOI

The D-topology for diffeological spaces
J. DANIEL CHRISTENSEN, GORDON SINNAMON and ENXIN WU

On the Atkin polynomials
AHMAD EL-GUIDY and MOURAD E. H. ISMAIL

Evolving convex curves to constant-width ones by a perimeter-preserving flow
LAIYUAN GAO and SHENGLIANG PAN

Hilbert series of certain jet schemes of determinantal varieties
SUDHIR R. GHORPADE, BOYAN JONOV and B. A. SETHURAMAN

On a Liu–Yau type inequality for surfaces
OUSSAMA HIJAZI, SEBASTIÁN MONTIEL and SIMON RAULOT

Nonlinear Euler sums
ISTVÁN MEZŐ

Boundary limits for fractional Poisson a-extensions of L^p boundary functions in a cone
LEI QIAO and TAO ZHAO

Jacobi–Trudi determinants and characters of minimal affinizations
STEVEN V SAM

Normal families of holomorphic mappings into complex projective space concerning shared hyperplanes
LIU YANG, CAIYUN FANG and XUECHENG PANG