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BOUNDARY LIMITS FOR FRACTIONAL POISSON
a-EXTENSIONS OF L p BOUNDARY FUNCTIONS IN A CONE

LEI QIAO AND TAO ZHAO

If one replaces the Poisson kernel of a cone by the Poisson a-kernel, then
normalized Poisson integrals with respect to the stationary Schrödinger
operator converge along approach regions wider than the ordinary non-
tangential cones. In this paper we present new and simplified proofs of
these results. We also generalize the result by Mizuta and Shimomura to
the smooth cones.

1. Introduction and main results

Let R and R+ be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by Rn (n ≥ 2) the n-dimensional Euclidean space. A point
in Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean distance of
two points P and Q in Rn is denoted by |P− Q|. Also |P−O|, with O the origin
of Rn , is simply denoted by |P|. The boundary, the closure and the complement of
a set S in Rn are denoted by ∂S, S and Sc, respectively.

We introduce a system of spherical coordinates (r,2), 2= (θ1, θ2, . . . , θn−1),
in Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, xn) by

x1 = r
(n−1∏

j=1

sin θ j

)
, xn = r cos θ1,

for n ≥ 2, and for n ≥ 3,

xn−m+1 = r
(m−1∏

j=1

sin θ j

)
cos θm (2≤ m ≤ n− 1),

where 0 ≤ r < +∞, −π/2 ≤ θn−1 < 3π/2, and if n ≥ 3, then 0 ≤ θ j ≤ π

(1≤ j ≤ n− 2).

This work was supported by the National Natural Science Foundation of China (grants U1304102 and
11301140.)
MSC2010: 31B05, 31B10.
Keywords: boundary limit, Poisson a-integral, stationary Schrödinger operator, cone.

227

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.272-1


228 LEI QIAO AND TAO ZHAO

The unit sphere and the upper unit half-sphere are denoted by Sn−1 and Sn−1
+ ,

respectively. For simplicity, a point (1,2) on Sn−1 and the set {2; (1,2) ∈�}, for
a set�⊂ Sn−1, are often identified with2 and�, respectively. For two sets4⊂R+

and �⊂ Sn−1, the set {(r,2) ∈ Rn
; r ∈4, (1,2) ∈�} in Rn is simply denoted by

4×�. In particular, the half-space R+× Sn−1
+ = {(X, xn) ∈ Rn

; xn > 0} will be
denoted by Tn .

By Cn(�), we denote the set R+ ×� in Rn with the domain � on Sn−1. We
call it a cone. Then Tn is a special cone obtained by putting �= Sn−1

+ . We denote
the sets I ×� and I × ∂�, with I an interval on R, by Cn(�; I ) and Sn(�; I ). By
Sn(�), we denote Sn(�; (0,+∞)), which is ∂Cn(�)−{O}.

For positive functions h1 and h2, we say that h1 . h2 if h1 ≤ Mh2 for some
constant M > 0. If h1 . h2 and h2 . h1, we say that h1 ≈ h2.

This article is devoted to the stationary Schrödinger operator

SSEa =−1+ a(P)I,

where 1 is the Laplace operator and I is the identity operator. We assume hereafter
that the potential a(P) is a nonnegative, locally integrable function in Cn(�),
namely, 0≤ a ∈ Lb

loc(Cn(�)), with b > n/2 if n ≥ 4, and with b = 2 if n = 2 or 3.
We denote this class of potentials by A.

If a ∈ A, then the operator SSEa can be extended in the usual way from the
space C∞0 (Cn(�)) to an essentially self-adjoint operator on L2(Cn(�)) (see [Reed
and Simon 1979, Chapter 13]). We shall denote the extended operator by SSEa as
well. The latter has Green function Ga

�(P, Q) vanishing almost everywhere at the
boundary and possessing all the analytic properties. For |P−Q|→ 0, we normalize
it such that cnGa

�(P, Q)≈− log |P−Q|when n=2, or cnGa
�(P, Q)≈|P−Q|2−n

when n ≥ 3. Here c2 = 2π , cn = (n− 2)sn when n ≥ 3, and sn is the surface area
2πn/2(0(n/2))−1 of Sn−1. The Green function Ga

�(P, Q) is positive on Cn(�)

and its inner normal derivative ∂Ga
�(P, Q)/∂nQ ≥ 0. We denote this derivative by

PIa
�(P, Q), which is called the Poisson a-kernel with respect to Cn(�). Then the

Poisson a-integral PIa
� f (P) (P ∈ Cn(�)) is defined by

PIa
� f (P)=

∫
Sn(�)

PIa
�(P, Q) f (Q) dσQ,

where
PIa
�(P, Q)=

∂

∂nQ
Ga
�(P, Q),

f ∈ L p(∂Cn(�)) (1≤ p <∞) and dσQ is the surface area element on Sn(�).

Remark 1 [Yoshida 1991]. Let �= Sn−1
+ and a = 0. Then

G0
Sn−1
+

(P, Q)=
{

log |P − Q∗| − log |P − Q| n = 2,
|P − Q|2−n

− |P − Q∗|2−n n ≥ 3,
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where Q∗ = (Y,−yn); that is, Q∗ is the mirror image of Q = (Y, yn) with respect
to ∂Tn . Hence, for the two points P = (X, xn)∈ Tn and Q= (Y, yn)∈ ∂Tn , we have

PI0
Sn−1
+

(P, Q)=
{

2|P − Q|−2xn n = 2,
2(n− 2)|P − Q|−nxn n ≥ 3.

Let � be a domain on Sn−1 with smooth boundary. Consider the Dirichlet
problem

(3n + λ)ϕ = 0 on �,

ϕ = 0 on ∂�,

where 3n is the spherical part of the Laplace operator

1n =
n− 1

r
∂

∂r
+
∂2

∂r2 +
3n

r2 .

We denote the least positive eigenvalue of this boundary value problem by λ and the
normalized positive eigenfunction corresponding to λ by ϕ(2);

∫
�
ϕ2(2) dσ2 = 1,

where dσ2 is the surface area on Sn−1.
To simplify our consideration in the following, we shall assume that if n≥ 3, then

� is a C2,α-domain (0<α < 1) on Sn−1 surrounded by a finite number of mutually
disjoint closed hypersurfaces (e.g., see [Gilbarg and Trudinger 1977, pp. 88–89]
for the definition of C2,α-domain). Then by modifying Miranda’s method [1970,
pp. 7–8], we can prove the inequality (see [Yoshida 1991, p. 373])

(1-1) ϕ(2)≈ dist(2, ∂�) (2 ∈�).

For any (1,2) ∈�, we have (see [Courant and Hilbert 1953])

ϕ(2)≈ dist
(
(1,2), ∂Cn(�)

)
,

which yields that

(1-2) δ(P)≈ rϕ(2),

where δ(P)= dist(P, ∂Cn(�)) and P = (r,2) ∈ Cn(�).
Solutions of the ordinary differential equation

(1-3) −Q′′(r)−
n− 1

r
Q′(r)+

(
λ

r2 + a(r)
)

Q(r)= 0, 0< r <∞,

with a parameter λ play an essential role in these questions. It is known (see, for
example, [Verzhbinskii and Maz’ya 1971]) that if the potential a belongs to A,
then (1-3) has a fundamental system of positive solutions {V,W } such that V is
nondecreasing with

0≤ V (0+)≤ V (r)↗∞ as r→+∞,
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and W is monotonically decreasing with

+∞=W (0+) > W (r)↘ 0 as r→+∞.

We will also consider the class B, consisting of the potentials a∈A such that there
exists a finite limit limr→∞ r2a(r)= k ∈ [0,∞) and moreover r−1

|r2a(r)− k| ∈
L(1,∞). If a ∈B, then the (sub)superfunctions are continuous (see [Simon 1982]).

In the rest of paper, we assume that a ∈B and we shall suppress this assumption
for simplicity.

Denote

ι±k =
2− n±

√
(n− 2)2+ 4(k+ λ)

2
;

then the solutions to (1-3) have the asymptotics (see [Hartman 1964])

(1-4) V (r)≈ r ι
+

k , W (r)≈ r ι
−

k , as r→∞.

Let u(r,2) be a function on Cn(�). For any given r ∈ R+, the integral∫
�

u(r,2)ϕ(2) d S1,

is denoted by Nu(r), when it exists. The finite or infinite limit

lim
r→∞

V−1(r)Nu(r)

is denoted by Uu , when it exists.
We fix an open, nonempty and bounded set G⊂∂Cn(�). In Cn(�), we normalize

the extension, with respect to G, by

Pa
� f (P)=

PIa
� f (P)

PIa
� χG(P)

.

Let
0(ζ )= {P = (r,2) ∈ Cn(�) : |(r,2)− ζ |. δ(P)}

be a nontangential cone in Cn(�) with vertex ζ ∈ ∂Cn(�).
We define

ℵp( f, l, P)=
(

1
ln−1

∫
B(P,l)

| f (Q)|p dσQ

)1/p

and
E

p
f (G)= {P ∈ G : ℵp( f − f (P), l, P)→ 0 as l→ 0}.

Note that if f ∈ L p(∂Cn(�)), then |G\Ep
f (G)| = 0 (almost every point is a

Lebesgue point).
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In the proof we need inequalities between the Green function Ga
�(P, Q) and

that of the Laplacian, hereafter denoted by G�(P, Q). It is well known that, for
any potential a(P)≥ 0,

(1-5) Ga
�(P, Q)≤ G�(P, Q).

The inverse inequality is much more elaborate. Cranston, Fabes and Zhao (see
[Cranston et al. 1988]; the case n = 2 is implicitly contained in [Cranston 1989])
have proved

(1-6) Ga
�(P, Q)≥ M(�)G�(P, Q),

where M(�)=M(�, a(P)) is a positive constant and does not depend on points P
and Q in Cn(�). If a = 0, then obviously M(�)≡ 1.

So we have

Ga
�(P, Q)≈ G�(P, Q),

from (1-5) and (1-6), which yields that

(1-7) PIa
�(P, Q)≈ PI�(P, Q).

Now we state our results, which are due to Qiao [2012] in the case a = 0 by the
remark. For related results in the half-space and the unit disc, we refer readers to
[Mizuta and Shimomura 2003, Theorem 3; Sjögren 1984; 1997; Rönning 1997;
Brundin 1999].

Theorem 2. Let 1 ≤ p < ∞ and f ∈ L p(∂Cn(�)). Then, for any ζ ∈ E
p
f (G)

(in particular, for a.e. ζ ∈G), one has that Pa
� f (P)→ f (ζ ) as P→ ζ along 0(ζ ).

2. Some lemmas

Lemma 1. For any P = (r,2) ∈ Cn(�) and any Q = (t,8) ∈ Sn(�) satisfying
0< t/r ≤ 4

5 (resp. 0< r/t ≤ 4
5),

PIa
�(P, Q)≈ t−1V (t)W (r)ϕ(2)(2-1)

(resp. PIa
�(P, Q)≈ V (r)t−1W (t)ϕ(2)).(2-2)

For any P = (r,2) ∈ Cn(�) and any Q = (t,8) ∈ Sn(�; (4r/5, 5r/4)),

(2-3) PIa
�(P, Q)≈

rϕ(2)
|P − Q|n

,

Proof. These immediately follow from [A. Escassut and Yang 2008, Chapter 11], [Es-
sén and Lewis 1973, Lemma 2], [Azarin 1969, Lemma 4 and Remark] and (1-7). �
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Lemma 2. PIa
� 1(P)= O(1) as P→ ζ ∈ G.

Proof. Write

PIa
� 1(P)=

∫
E1

+

∫
E2

+

∫
E3

=U1(P)+U2(P)+U3(P),

where

E1 = Sn
(
�;
(
0, 4

5r
])
, E2 = Sn

(
�;
[ 5

4r,∞
))
, E3 = Sn

(
�;
( 4

5r, 5
4r
))
.

By (1-4), (2-1) and (2-2), we have the estimates

U1(P)≈W (r)ϕ(2)
∫

E1

t ι
+

k −1 dσQ ≈−
sn

ι−k
W
(5

4

)
ϕ(2),(2-4)

U2(P)≈
sn

ι+k
V
(4

5

)
ϕ(2).(2-5)

Next we shall estimate U3(P). Take a sufficiently small positive number k such
that

Sn
(
�;
( 4

5r, 5
4r
))
⊂

⋃
P=(r,2)∈3(k)

B
(
P, 1

2r
)
,

where

3(k)=
{

P = (r,2) ∈ Cn(�) : inf
z∈∂�
|(1,2)− (1, z)|< k, 0< r <∞

}
.

Since P→ ζ ∈ G, we only consider the case P ∈3(k). Now, put

Hi (P)=
{

Q ∈ E3 : 2i−1δ(P)≤ |P − Q|< 2iδ(P)
}
.

Since Sn(�)∩{Q ∈Rn
: |P−Q|< δ(P)} =∅, we have by (1-5) and (2-3) that

U3(P)≈
i(P)∑
i=1

∫
Hi (P)

rϕ(2)
|P − Q|n

dσQ,

where i(P) is a positive integer satisfying 2i(P)−1δ(P)≤ r/2< 2i(P)δ(P).
By (1-2) we have∫

Hi (P)

rϕ(2)
|P − Q|n

dσQ ≈ rϕ(2)
∫

Hi (P)

1
δ(P)

dσQ =
rϕ(2)
δ(P)

sn

2i(P) ≈
sn

2i(P) ,

for i = 1, 2, . . . , i(P).
So

(2-6) U3(P)≈ O(1).

Combining (2-4)–(2-6), Lemma 2 is proved. �
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Lemma 3. PIa
� χG(P)= PIa

� 1(P)+ O(1) as P→ ζ ∈ G.

Proof. In fact, we only need to prove

(2-7) U4(P)=
∫

Sn(�)−G
PIa
�(P, Q) dσQ . O(1).

Write

U4(P)=
∫
(Sn(�)−G)∩E1

+

∫
(Sn(�)−G)∩E2

+

∫
(Sn(�)−G)∩E3

=U5(P)+U6(P)+U7(P).
Obviously

U5(P).U1(P)≈ O(1),(2-8)

U6(P).U2(P)≈ O(1).(2-9)

Further, we have by (2-3) that

(2-10) U7(P)≈ rϕ(2)
∫
(Sn(�)−G)∩E3

1
|P − Q|n

dσQ

.
sn

d
|ζ |ϕ(2) (P→ ζ ∈ G),

where d = infQ∈∂Cn(�)−G |Q− ζ |.
Combining (2-8)–(2-10), (2-7) holds, which gives the conclusion. �

3. Proof of the theorem

As P→ ζ ∈ G,
PIa
� χG(P)= O(1) 6= 0,

from Lemmas 2 and 3.
Now let f ∈ L p(∂Cn(�)) and ζ ∈ E

p
f (G) be given. We may, without loss of

generality, assume that f (ζ )= 0. Furthermore we assume that P = (r,2) ∈ 0(ζ ).
Let s = |(r,2)− ζ |. We write

PIa
� f (P)=

∫
E1

+

∫
E2

+

∫
E3∩B(ζ,2s)

+

∫
E3∩Bc(ζ,2s)

= V1 f (P)+ V2 f (P)+ V3 f (P)+ V4 f (P).

By using Hölder’s inequality, (1-4), (2-1) and (2-2), we have the estimates

|V1 f (P)|.W (r)ϕ(2)
∫

E1

tα−1 f (Q) dσQ . r (1−n)/p
‖ f ‖p,

|V2 f (P)|. r (1−n)/p
‖ f ‖p.
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Similar to the estimate of U3(P) in Lemma 2, we only consider the following
inequality by (1-2):∫

Hi (P)

rϕ(2)
|P − Q|n

dσQ ≈ rϕ(2)
∫

Hi (P)

1
(2i−1δ(P))n

dσQ

. r ι
+

0 ϕ(2)

∫
E2

t ι
−

0 −1
| f (Q)| dσQ . r (1−n)/p

‖ f ‖p,

for i = 0, 1, 2, . . . , i(P), which is similar to the estimate of V2 f (P).
So

|V3 f (P)|. r (1−n)/p
‖ f ‖p.

Notice that |P − Q|> 1
2 |ζ − Q| in the case Q ∈ E3 ∩ Bc(ζ, 2s). By (1-2) and

(2-3), we have

|V4 f (P)|. δ(P)
∫

E3∩Bc(ζ,2s)

| f (Q)|
|P − Q|n

dσQ

. δ(P)
∞∑

i=1

∫
E3∩(B(ζ,2i+1s)\B(ζ,2i s))

| f (Q)|
|ζ − Q|n

dσQ

. δ(P)
∞∑

i=1

(
1

2i s
)n
∫

E3∩B(ζ,2i+1s)
| f (Q)| dσQ

. δ(P)
∞∑

i=1

ℵ1( f, 2i+1s, ζ ). δ(P)
∞∑

i=1

∫ 2i+2s

2i+1s

ℵ1( f, l, ζ )
l

dl

. δ(P)
∫
∞

s

ℵ1( f, l, ζ )
l

dl . δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

Thus it follows that

|P� f (P)|.
1

O(1)

[
|V1 f (P)| + |V2 f (P)| + |V3 f (P)| + |V4 f (P)|

]
. r (1−n)/p

‖ f ‖p + δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

Using the fact that s . δ(P). rϕ(2), we get

|P� f (P)|. ℵ1( f, 2s, ζ )+ δ(P)
∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl.

It is clear that ∫
∞

δ(P)

ℵ1( f, l, ζ )
l

dl

is a convergent integral, since
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ℵ1( f, l, ζ )
l

. s−1−nsn/q
‖ f ‖p . s−1−n/p

‖ f ‖p,

from Hölder’s inequality.
Now, as δ(P)→ 0, we also have s → 0. Since f (ζ ) = 0 and since we have

assumed that ζ ∈ E
p
f (G) (and thus that ζ ∈ E1

f (G)), it follows that Pa
� f (P)→

0= f (ζ ) as P = (r,2)→ ζ along 0(ζ ). This concludes the proof.
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