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JACOBI–TRUDI DETERMINANTS
AND CHARACTERS OF MINIMAL AFFINIZATIONS

STEVEN V SAM

In their study of characters of minimal affinizations of representations of
orthogonal and symplectic Lie algebras, Chari and Greenstein conjectured
that certain Jacobi–Trudi determinants satisfy an alternating sum formula.
In this note, we prove their conjecture and slightly more. The proof relies
on some symmetries of the ring of symmetric functions discovered by Koike
and Terada. Using results of Hernandez, Mukhin and Young, and Naoi, this
implies that the characters of minimal affinizations in types B, C, and D are
given by a Jacobi–Trudi determinant.

Introduction

In [Chari and Greenstein 2011] (henceforth abbreviated [CG]), the authors study
a class of modules over the current algebra g⊗C[t], where g is either a special
orthogonal or symplectic Lie algebra (over the complex numbers). These modules
are related to the minimal affinizations, a class of irreducible representations for
the quantum loop algebra Uq(g⊗C[t, t−1

]). We refer the reader to [CG, §3] for
background and references. A character formula, which is similar to a Jacobi–Trudi
determinant, for these modules is conjectured in [CG, Conjecture 1.13]. This is
inspired by [Nakai and Nakanishi 2006], which conjectures that the characters of
minimal affinizations are given by such determinants (see also [Nakai and Nakanishi
2007a; 2007b] for related work).

The aim of this note is to prove [CG, Conjecture 1.13] (see Theorem 1.1). We will
give a uniform proof for all types. The conjecture reduces to a combinatorial state-
ment about characters of g, so we will not need to discuss current or loop algebras
any further. In fact, we will prove an extension of the combinatorial statement which
removes a restriction on the highest weights considered. Furthermore, using results
of Hernandez, Mukhin and Young, and Naoi, this gives a character formula for
minimal affinizations of representations of g in types B, C, and D (see Remark 1.3).

The method of proof involves passing to a suitable limit (with respect to the rank
of the Lie algebra) to take advantage of additional symmetries. This suggests that
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there should be a connection to the categories Rep(O) and Rep(Sp) studied in [Sam
and Snowden 2013, §4] and a suitable categorification of the involutions iO and
iSp used in Section 3 (which were introduced in [Koike and Terada 1987]), but we
have been unable to find one so far.

1. Notation

We need some basic terminology of partitions [Macdonald 1995, §I.1]. A partition λ
is a sequence of integers (λ1, . . . , λr ) with λ1 ≥ · · · ≥ λr ≥ 0. We set |λ| =

∑
i λi

and `(λ)=max{i | λi 6= 0}. We write µ⊆ λ if µi ≤ λi for all i and also say that
λ contains µ. The notation ab means the sequence (a, a, . . . , a) where a appears
b times. We use λ† to denote the transpose partition of λ, i.e., λ†

i = #{ j | λ j ≥ i}
(in terms of Young diagrams, we are flipping across the diagonal). Let Sλ denote
the corresponding Schur functor [Fulton and Harris 1991, §6.1]; for the purposes
of this note, Sλ is a functor from the category of complex vector spaces to itself.
Special cases are symmetric powers Sk = Symk and exterior powers S(1k) =

∧k .
We use sλ to denote the Schur function indexed by λ [Macdonald 1995, §I.3] (it is
the character of Sλ). The product of two Schur functions is a linear combination of
Schur functions:

sµsν =
∑
λ

cλµ,νsλ.

The cλµ,ν are the Littlewood–Richardson coefficients [Macdonald 1995, §I.9]. If
cλµ,ν 6= 0, then |λ| = |µ| + |ν| and also µ⊆ λ and ν ⊆ λ.

Let G be a complex classical group of type Bn , Cn , or Dn+1, i.e., G is either
O2n+1(C), Sp2n(C), or O2n+2(C), respectively. Let g be the Lie algebra of G. Let
rank(g) be the rank of g; i.e., it is n in the cases of type B and C, and it is n+ 1
in the case of type D. We use these groups rather than their Lie algebras to avoid
having to make technical remarks later. For the representations considered in [CG],
this choice will not be important. We number the nodes of the Dynkin diagram
according to Bourbaki notation:

Bn :
1 2

. . .
n− 2 n− 1 n

⇒

Cn :
1 2

. . .
n− 2 n− 1 n

⇐

Dn+1 :
1 2

. . .
n− 2 n− 1 n

n+ 1
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Let ωi be the fundamental weights, and let λ be a dominant integral weight which is
a linear combination of ω1, . . . , ωn−1 (so in particular, we avoid the spin represen-
tations in the orthogonal case). We will use a basis e1, . . . , erank(g) for the weight
lattice of G (see [Fulton and Harris 1991, §16.1, §18.1] for details; there the basis
is denoted L1, . . . , L rank(g)). Given λ= a1ω1+ · · ·+ an−1ωn−1, we associate to it
the partition

(a1+ · · ·+ an−1, a2+ · · ·+ an−1, . . . , an−1).

So in particular, the notation λi = ai + · · · + an−1 is defined. Then we have
λ=λ1e1+· · ·+λn−1en−1. Let Vλ be the corresponding highest weight representation
of G. We will denote V = V1, the vector representation. We sometimes use the
notation V O

λ or V Sp
λ to emphasize that we are dealing with the orthogonal or

symplectic case, respectively.
In general, all finite-dimensional irreducible representations Vλ of G can be

indexed by partitions λ (see [Fulton and Harris 1991, §17.3, §19.5] or [Sam and
Snowden 2013, §4.1]). We may assume that `(λ) ≤ rank(g) as long as we are
ambivalent about the presence of the sign representation in the orthogonal group
case. (The reason we do not use the special orthogonal group is because some
irreducible representations of the even orthogonal group are not irreducible when
restricted to the special orthogonal group, and so the latter group does not behave
as well from the perspective of stability.)

Now we rephrase the definitions in [CG, §1.13] in this notation. First, we have
iλ = `(λ). In the orthogonal case, 9λ = {ei + e j | 1 ≤ i < j ≤ `(λ)}, and in the
symplectic case, 9λ = {ei + e j | 1≤ i ≤ j ≤ `(λ)}. Define the set

0(λ,9λ)=

{
(µ, s)

∣∣∣ λ= µ+∑
β∈9λ

nββ, nβ ∈ Z≥0,
∑
β∈9λ

nβ = s
}
.

By the definitions of9λ, we see that (µ, s)∈0(λ,9λ) implies that s= (|λ|−|µ|)/2.
Define hk = char(V O

k ) in the orthogonal case and hk =
∑

0≤r≤k/2 char(V Sp
k−2r )

in the symplectic case. In both cases, define the Jacobi–Trudi determinant

Hλ = det(hλi−i+ j ).

For (ν, s) ∈ 0(λ,9λ), define

Cλ
ν,s = dim homG(Vν,

∧s
(g)⊗ Vλ)

(see [CG, §2.7], but there it is c instead of C ; we use c for Littlewood–Richardson
coefficients).

All of the above definitions make sense for any partition λ with `(λ)≤ rank(g).
To make this clear, we spell out the conversion between partitions and weights now.
Let r = rank(g) and let λ= (λ1, . . . , λr ) be a partition.
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• If G = Sp2r (C), then Vλ is irreducible with highest weight

r−1∑
i=1

(λi − λi+1)ωi + λrωr .

• If G = O2r+1(C), then Vλ is irreducible with highest weight

r−1∑
i=1

(λi − λi+1)ωi + 2λrωr .

• If G = O2r (C), then there are two cases. In both cases, Vλ is an irreducible
representation of O2r (C), but we distinguish between what happens when we
pass to the Lie algebra so2r (C).

– If λr = 0, then Vλ is an irreducible representation of so2r (C) with highest
weight

r−2∑
i=1

(λi − λi+1)ωi + λr−1(ωr−1+ωr ).

– If λr > 0, then as a representation of so2r (C), Vλ is the direct sum of
irreducible representations with highest weights

r−2∑
i=1

(λi − λi+1)ωi + (λr−1− λr )ωr−1+ (λr−1+ λr )ωr

and

r−2∑
i=1

(λi − λi+1)ωi + (λr−1+ λr )ωr−1+ (λr−1− λr )ωr .

In the orthogonal case, let dλν be the multiplicity of V Sp
ν in Sλ(V Sp): here V Sp is

the vector representation for Sp(2n) with n ≥ `(λ) and Sλ(V Sp) is considered as
a representation of Sp(2n). By [Koike and Terada 1987, Proposition 1.5.3], this
multiplicity is independent of n as long as n ≥ `(λ), and we have

dλν =
∑
η

cλ
ν,(2η)† .

Similarly, in the symplectic case, let dλν be the multiplicity of V O
ν in Sλ(V O)

(note that we are using branching rules for the other group in both cases). Then
we have

dλν =
∑
η

cλν,2η.
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When `(λ)≤ n− 1, the following main result proves [CG, Conjecture 1.13].

Theorem 1.1. Let λ be a partition with `(λ)≤ rank(g). Then

(1.2)
∑

(ν,s)∈0(λ,9λ)

(−1)sCλ
ν,s Hν = char(Vλ).

Also Hλ =
∑

ν dλν char(Vν).

Remark 1.3. Under the restriction `(λ)≤ n− 1, Chari and Greenstein constructed
the module P(λ, 0)0(λ,9λ) in [CG], and Theorem 1.1 together with [CG, Theorem 2]
shows that its character is Hλ. In types B and C, Naoi [2013, Remark 4.7] shows
that these modules are the “graded limits” of the minimal affinizations of the
corresponding simple modules Vλ of g. A similar result is obtained for a special class
of highest weights in type D in [Naoi 2014]. In particular, the characters (considered
as representations of g) of both modules are the same. So the character of the
minimal affinization is also Hλ. In type B, this follows from [Hernandez 2007] (see
[Naoi 2013, Remark 4.7]) or from [Mukhin and Young 2012, Corollary 7.6]. �

2. Some identities

Let Q−1 be the set of partitions with the following inductive definition. The
empty partition belongs to Q−1. A nonempty partition µ belongs to Q−1 if and
only if the number of rows in µ is one more than the number of columns, i.e.,
`(µ)=µ1+1, and the partition obtained by deleting the first row and column of µ,
i.e., (µ2− 1, . . . , µ`(µ)− 1), belongs to Q−1. The first few partitions in Q−1 are 0,
(1, 1), (2, 1, 1), (2, 2, 2). Define Q1 = {λ | λ

†
∈ Q−1}. We record this definition as

the following formula:

Q†
1 = Q−1.(2.1)

The significance of these sets are the following decompositions (see [Macdonald
1995, I.A.7, Examples 4, 5]):∧i

(Sym2(E))=
⊕
µ∈Q1
|µ|=2i

Sµ(E),(2.2)

∧i(∧2
(E)

)
=

⊕
µ∈Q−1
|µ|=2i

Sµ(E).(2.3)

We need two of Littlewood’s identities [Koike and Terada 1987, Proposition 1.5.3]:

char(V O
λ )=

∑
µ∈Q1

(−1)|µ|/2
∑
ν

cλµ,νsν,(2.4)

char(V Sp
λ )=

∑
µ∈Q−1

(−1)|µ|/2
∑
ν

cλµ,νsν .(2.5)
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Lemma 2.6. Fix (ν, s) ∈ 0(λ,9λ), where `(λ) ≤ rank(g) and s = (|λ| − |ν|)/2.
Then Cλ

ν,s =
∑

µ∈Q−1
cλµ,ν in the orthogonal case (for the symplectic case, use Q1

instead of Q−1).
Conversely, if this sum is nonzero, then (ν, s) ∈ 0(λ,9λ) for s = (|λ| − |ν|)/2.

Proof. In the orthogonal case, we have g= V1,1 =
∧2
(V ). So we need to calculate

the multiplicity of Vν in
∧s(∧2

(V )
)
⊗Vλ, where s = (|λ|−|ν|)/2. By (2.3), we get∧s(∧2

(V )
)
=

⊕
µ∈Q−1
|µ|=2s

Sµ(V ).

(In the symplectic case we instead have g= V2 = Sym2(V ), so all of the following
statements will hold if we replace Q−1 with Q1.) We claim that the multiplicity
of Vν in Sµ(V )⊗ Vλ is the Littlewood–Richardson coefficient cλµ,ν .

If `(µ)≤ rank(g), then as a representation of the orthogonal group (also in the
symplectic case), Sµ(V ) is the sum of Vµ and other Vα, where |α| < |µ| up to
twisting Vα with a sign character (this follows from the explicit formula in [Koike
and Terada 1987, Proposition 2.5.1]). Also, if Vν appears in Vα ⊗ Vλ, then we
must have |ν| ≥ |λ| − |α| by a basic argument with weights. This implies that the
multiplicity of Vν in Sµ(V )⊗ Vλ is the same as the multiplicity of Vν in Vµ⊗ Vλ
under our hypothesis that |ν| + |µ| = |λ|. Furthermore, the multiplicity in this case
is the Littlewood–Richardson coefficient cλµ,ν [ibid., Proposition 2.5.2].

If `(µ) > rank(g), then the multiplicity of Vν in Sµ(V )⊗ Vλ is 0 since all Vα
in Sµ(V ) satisfy |α|< |µ|. Also, cλµ,ν = 0 since µ 6⊆ λ. This proves the claim and
the second sentence of the lemma.

Now we handle the last sentence of the lemma. So suppose that cλµ,ν 6= 0 for
some µ ∈ Q−1. Set s = (|λ| − |ν|)/2= |µ|/2. The weights of Sµ(V )⊂

∧s
(g) are

linear combinations of s roots of g. In particular, λ is the sum of ν and s roots
α1, . . . , αs of g. The possible roots of g are ei±e j and±ei . Since |ν+ei−e j | = |ν|

and |ν ± ei | = |ν| ± 1, the s roots α1, . . . , αs must all be of the form ei + e j , so
(ν, s) ∈ 0(λ,9λ). �

3. Proof of main theorem

Lemma 3.1. Pick X ∈ {B,C,D}. Fix a partition λ with `(λ)≤ n. Then (1.2) is true
for the representation Vλ for Xn if and only if it is true for the representation Vλ
for Xm for any m ≥ n.

Proof. By [Koike and Terada 1987, Corollary 2.5.3], the tensor product decomposi-
tion Vλ⊗ Vµ is independent of m if m ≥ `(λ)+ `(µ), and in this case, the tensor
product decomposes as a sum of Vα with `(α)≤ `(λ)+ `(µ). The definition of Hλ

involves multiplying at most `(λ)≤m characters, all indexed by one-row partitions,
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so its definition is independent of m. Certainly the set 0(λ,9λ) does not depend
on m if m ≥ `(λ). So it remains to show that the coefficients Cλ

ν,s are independent
of m, but this follows from Lemma 2.6. �

In particular, we may assume that n = ∞. In this limit, we can use some
additional symmetries of the character ring 3 of g. Then 3 is the ring of symmetric
functions, but is equipped with a new basis which was studied in [ibid.]. Write
s[λ] = char(Vλ). We use sSp

[λ] or sO
[λ] if we need to emphasize the group. Then

the s[λ], as λ ranges over all partitions, forms a basis for this character ring. The
idea is to use (2.4) or (2.5) to exhibit the change of basis between s[λ] and the usual
Schur functions sµ = char(Sµ(V )). There is an involution (which is an algebra
automorphism), denoted iO in the orthogonal case and iSp in the symplectic case,
that sends s[λ] to s[λ†] [ibid., Theorem 2.3.4]. Also, we recall that the linear map
ω : sλ 7→ sλ† is an algebra automorphism [Macdonald 1995, §I.3]. We need the
following identity [Koike and Terada 1987, Theorem 2.3.2]:

(3.2) ω(sSp
[λ])= sO

[λ†]
.

Lemma 3.3. The involution iO or iSp sends Hν to the Schur function sν† .

Proof. In the orthogonal case, iO(hk) = s[1k ] = char
(∧k V

)
= s1k , and in the

symplectic case,

iSp(hk)=
∑

0≤r≤k/2

s[1k−2r ] = char
(∧k V

)
= s1k

by basic properties of the decomposition of exterior powers under the action of
the symplectic group. Since iO and iSp are algebra homomorphisms, we see that
Hν = det(hνi−i+ j ) gets sent to det(s1νi−i+ j ), which is the Schur function sν† by the
Jacobi–Trudi formula [Macdonald 1995, §I.3, equation (3.5)]. �

Now we focus on the orthogonal case (the symplectic case is almost identical).
By (2.4),

s[λ] =
∑
µ∈Q1

(−1)|µ|/2
∑
ν

cλµ,νsν .

Since cλµ,ν = cλ
†

µ†,ν† (use that sµsν =
∑

λ cλµ,νsλ [Macdonald 1995, §I.9] and the
involution ω defined above), and Q†

1 = Q−1 (2.1), we can rewrite this as

s[λ†] =

∑
µ∈Q−1

(−1)|µ|/2
∑
ν

cλµ,νsν† .

In particular, the coefficient of sν† is
∑

µ∈Q−1
(−1)(|λ|−|ν|)/2cλµ,ν . By Lemma 2.6,

we get
s[λ†] =

∑
(ν,s)∈0(λ,9λ)

(−1)sCλ
ν,ssν† .
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Finally, apply the involution iO to this equation and use Lemma 3.3 to get (1.2).
The last part of the theorem follows directly from Lemma 3.3 and (3.2).
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