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NORMAL FAMILIES OF HOLOMORPHIC MAPPINGS INTO
COMPLEX PROJECTIVE SPACE CONCERNING

SHARED HYPERPLANES

LIU YANG, CAIYUN FANG AND XUECHENG PANG

We prove new criteria for normality for holomorphic mappings into the
complex projective space using the generalized Zalcman lemma. This im-
proves previous results in one complex variable. An example is included to
complement our theory.

1. Introduction

Recall that a family F of meromorphic functions on a plane domain D⊂C is normal
on D if every sequence in F contains a subsequence that converges uniformly on D
(with respect to the spherical metric) to a meromorphic function or to∞.

The following Picard-type theorem is a consequence of the second main theorem
of value distribution theory.

Theorem A [Bergweiler 2006, pp. 78–80] . Let f be a meromorphic function on
the complex plane C. If there exist three mutually distinct points a1, a2 and a3 on
the Riemann sphere such that f (z)−a j (for j = 1, 2, 3) has no zero on the complex
plane then f (z) is a constant.

A heuristic principle, bearing Bloch’s name and playing an important role in the
theory of normal families, says that if the only meromorphic function with a certain
property are constant, then a family of meromorphic functions in a plane domain
possessing this property is likely to be normal [Bergweiler 2006, pp. 78–80]. For
example, the Montel-type theorem associated with Theorem A is true:

Theorem B [Bergweiler 2006, pp. 78–80]. Let F be a family of meromorphic
functions on a plane domain D. Suppose that there exist three mutually distinct
points a1, a2 and a3 on the Riemann sphere such that f (z)− a j (for j = 1, 2, 3)
has no zero on D for each f ∈ F. Then F is a normal family on D.

We say that two meromorphic functions f and g on a domain D share the value
a (a =∞ is allowed) if f −1(a)= g−1(a) as sets (ignoring multiplicities). There
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are many results concerning this notion in value distribution theory, such as R.
Nevanlinna’s famous theorem [1926] that two meromorphic functions on the com-
plex plane sharing five distinct values coincide identically. (The number 5 cannot
be reduced, as the pair ez, e−z , with shared values 0, 1,−1,∞, demonstrates; but
Nevanlinna [1926] also showed that if four values are shared and the multiplicities
with which these each of these values is taken are the same for the two functions,
the two functions differ only by a Möbius transformation. The condition that the
multiplicities are the same cannot be relaxed; see [Gundersen 1979].)

More generally, the maximum modulus principle and Montel’s theorem yield
this extension of Theorem B:

Theorem C. Let F be a family of meromorphic functions on a plane domain D.
Suppose that there exist three mutually distinct points a1, a2 and a3 on the Riemann
sphere such that for each f, g ∈ F, f and g share a j (for j = 1, 2, 3) on D. Then
F is normal on D.

The following question arises naturally from Theorem C. Suppose two families of
meromorphic functions share some values a j . If one is normal, is the other normal?
Recently the problem was solved by Pang and Liu, who showed that if two families
of meromorphic functions share four values, the normality of one family implies the
normality of the other. They also gave a counterexample to show that the number 4
is sharp.

Theorem D [Liu et al. 2013]. Let F and G be two families of meromorphic functions
on a plane domain D. Suppose that there exist four mutually distinct points a1, a2, a3

and a4 on the Riemann sphere such that for each f ∈ F, there exists g ∈ G such
that f and g share a j for j = 1, . . . , 4 on D. If G is normal on D, then F is also
normal on D.

The classical Zalcman lemma plays a central role in normal family theory of one
complex variable. On the other hand, the study of normal families for holomorphic
mappings was initiated by H. Wu in his well-known paper in Acta Math [1967].
Much attention has been given to find the correct generalization of Zalcman’s result
to several complex variables. In this paper we prove some new normality criteria
for holomorphic mappings from plane domains into Ps(C) using the generalized
Zalcman lemma. An example will be included to complement our theory.

2. Basic notions and main results

Basic notions. We start with relevant definitions. For details see [Mai et al. 2005;
Shabat 1985, pp. 99–106; Ru 2001, pp. 99–102].

Let Ps(C) be a complex s-dimensional projective space and ρ :Cs+1
\{0}→Ps(C)

be the standard projective mapping. A subset H of Ps(C) is called a hyperplane if
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there is a s-dimensional linear subspace H̃ of Cs+1 such that

ρ(H̃ −{0})= H.

For a fixed system of homogeneous coordinates Z =[Z0 : Z1 : · · · : Zs], a hyperplane
H of Ps(C) can be written as

H =
{
[Z0 : Z1 : · · · : Zs] ∈ Ps(C) | 〈Z , α〉 = 0

}
,

where
〈Z , α〉 := a0 Z0+ · · ·+ as Zs

and α = (a0, . . . , as) ∈ Cs+1 is a nonzero vector. We write it as

H = {〈Z , α〉 = 0}

for convenience. In particular, we can take α ∈ B, where B is the set of Euclidean
unit vectors in Cs+1.

Let H1, . . . , Hs+1 be hyperplanes in Ps(C). Let α j = (a j0, . . . , a js)∈ B be such
that

H j = {〈Z , α j 〉 = 0}

for j = 1, . . . , s+ 1. Define

D(H1, . . . , Hs+1) := |det(αT
1 , . . . , α

T
s+1)|

which only depends on H j but does not depend on the choice of α j ∈ B.

Definition 2.1. Let H1, . . . , Hq , with q ≥ s+ 1, be hyperplanes in Ps(C). Define

D(H1, . . . , Hq) :=
∏

1≤ j1<···< js+1≤q

|det(αT
j1, . . . , α

T
js+1
)|.

We say the hyperplane family H1, . . . , Hq , q ≥ s+1, in Ps(C) is in general position
if D(H1, . . . , Hq) > 0.

Let M and N be connected Hermitian manifolds of dimension m and s with
Hermitian metrics hM and hN , respectively. The space C(M; N ) of continuous
mappings between M and N endowed with the compact-open topology is second
countable so that a metric can be furnished in C(M; N ) which induces the compact-
open topology.

Remark 2.2. A sequence { fn} in C(M; N ) converges to f in C(M; N ) in this
topology if and only if { fn} converges to f uniformly on compact subset of M .

The space H(M; N ) of holomorphic mappings from M into N is a closed
subspace of C(M; N ).
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Definition 2.3. A family F ⊂ H(M; N ) is called normal on M if any sequence
in F contains a subsequence which is relatively compact in H(M; N ), that is, if
any sequence { fn} ⊂ F contains a subsequence which converges to f ∈H(M; N )
uniformly on every compact subset of M .

Throughout this paper, we consider the special case where M is a plane domain
and N is a complex projective space.

Let f : D→ Ps(C) be a holomorphic map and U be an open set in D. Any
holomorphic mapping f̃ : U → Cs+1 such that ρ ◦ f̃ (z) ≡ f (z) in U is called
a representation of f on U . For a fixed system of homogeneous coordinates
[Z0 : Z1 : · · · : Zs] we set

Vi =
{
[Z0 : Z1 : · · · : Zs] | Zi 6= 0

}
, for i = 0, . . . , s.

Then every a ∈ D has a neighborhood U of a such that f (U )⊂ Vi for some i , and
f has a representation

f̃ = ( f0, . . . , fi−1, 1, fi+1, . . . , fs)

on U with holomorphic functions f0, . . . , fi−1, fi+1, . . . , fs .

Definition 2.4. For an open subset U of D we call a representation f̃ = ( f0, . . . , fs)

a reduced representation of f on U if f0, . . . , fs are holomorphic functions on U
and have no common zero.

Remark 2.5. Every holomorphic map of D into Ps(C) has a reduced representation
on some neighborhood of each point in D. Moreover, let f̃ = ( f0, . . . , fs) be a
reduced representation of f . For an arbitrary nowhere zero holomorphic function
h, ( f0h, . . . , fsh) is also a reduced representation of f . Conversely, for every
reduced representation (g0, . . . , gs) of f , each gi can be written as gi = h fi for
some nowhere zero holomorphic function h.

Remark 2.6. Every f ∈H(D;Ps(C)) has a reduced representation on the totality
of D [Fujimoto 1974].

We now give the definition of sharing hyperplanes, which extends the definition
of sharing values. Take f ∈H(D;Ps(C)). Let H = {〈Z , α〉 = 0} be a hyperplane
in Ps(C), where α = (a0, . . . , as) ∈ Cs+1

−{0}. Let f̃ = ( f0, . . . , fs) be a reduced
representation of f . We consider the holomorphic function on D

〈 f̃ (z), H〉 := a0 f0+ · · ·+ as fs .

Definition 2.7. Suppose f, g are in H(D;Ps(C)) and H is a hyperplane in Ps(C).
If there exist some (thus all) reduced representations of f and g respectively such
that 〈 f̃ (z), H〉 and 〈 g̃(z), H〉 share 0 on D, we say that f and g share H on D.
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By Remark 2.5, 〈 f̃ (z), H〉= 0 is indeed independent of the choice of the reduced
representation of f . Therefore sharing hyperplanes is well defined.

We will use the notation 〈 f (z), H〉 when some properties are independent of the
choice of the reduced representation of f . For example, we can say that 〈 f (z), H〉
has finite zeros on D.

H. Fujimoto [1974] gave the relation between m-convergence and quasiregularity.
In the case of holomorphic maps, we have the following properties. Suppose
{ fn} ⊂H(D;Ps(C)); then { fn} converges uniformly on compact subsets of D to a
holomorphic mapping f of D into Ps(C) if and only if, for any a ∈ D, each fn has
a reduced representation

f̃n = ( fn0, fn1, . . . , fns)

on some fixed neighborhood U of a in D such that { fni } converges uniformly on
compact subsets of U to a holomorphic function fi on U , i = 0, 1, . . . , s, with the
property that

f̃ = ( f0, f1, . . . , fs)

is a reduced representation of f on U .

Main results. Here we shall improve both Theorem C and Theorem D and obtain
the following results.

Theorem 2.8. Suppose F ⊂ H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 2s + 1, be
hyperplanes in Ps(C) located in general position. Suppose that for each f, g ∈ F,
f and g share H j on D, for j = 1, . . . , q. Then F is normal on D.

Corollary 2.9. Suppose F ⊂ H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 2s + 1, be
hyperplanes in Ps(C) located in general position. Suppose that for each f ∈ F,
f omits H j on D, for j = 1, . . . , q. Then F is normal on D.

Proof. Each H j ( j = 1, . . . , q) is a shared value of all f ∈ F, since f −1(H j )=∅.
Thus, the family F satisfies the assumptions of Theorem 2.8. �

Theorem 2.10. Suppose F,G ⊂ H(D;Ps(C)). Let q ≥ 3s + 1 be a integer, and
suppose the following three conditions are satisfied:

(i) For each f ∈ F, there exist g ∈ G and q hyperplanes H1, f , . . . , Hq, f (which
may depend on f ) such that f and g share H j, f on D, for j = 1, . . . , q.

(ii) inf{D(H1, f , . . . , Hq, f ) : f ∈ F}> 0.

(iii) G is normal on D.

Then F is a normal family on D.

By Theorem 2.10 we immediately have the following corollary.
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Corollary 2.11. Suppose F,G⊂H(D;Ps(C)). Let H1, . . . , Hq , with q ≥ 3s+ 1,
be hyperplanes in Ps(C) located in general position. Suppose that for each f ∈ F

there exists g ∈ G such that f and g share H j on D, j = 1, . . . , q. If G is normal
on D, then F is also normal on D.

The following example shows that the number 3s+ 1 in Theorem 2.10 is sharp
when s = 2.

Example 1. Let 1 be the unit disk. Let F= { fn(z)}, where

fn(z)=
[√
−1 cos nz : sin nz : sin nz

]
.

We denote by zn,1, zn,2, . . . , zn,kn the zeros of sin nz in 1. Let G = {gn(z)},
where

gn(z)=
[

1 :
∏

1≤i≤kn

z− zn,i

1− z̄n,i z
:

∏
1≤i≤kn

z− zn,i

1− z̄n,i z

]
.

Let
H1 = {[Z0 : Z1 : Z2] | 3Z0+ Z1+ 2Z2 = 0},

H2 = {[Z0 : Z1 : Z2] | −5Z0+ Z1+ 4Z2 = 0},

H3 = {[Z0 : Z1 : Z2] | 7Z0+ Z1+ 6Z2 = 0},

H4 = {[Z0 : Z1 : Z2] | −9Z0+ Z1+ 8Z2 = 0},

H5 = {[Z0 : Z1 : Z2] | Z2 = 0},

H6 = {[Z0 : Z1 : Z2] | Z1 = 0}.

Then these hyperplanes are in general position.
One can verify that fn and gn share H j on 1 for j = 1, . . . , 6. Clearly, G

is normal on 1. However, F fails to be normal on any neighborhood of 0 by
Lemma 3.2 in next section.

3. Some lemmas

The following is the general version of the Zalcman lemma.

Lemma 3.1 [Thai et al. 2003]. Let F be a family of holomorphic mappings of a
domain � in Cm into Ps(C). The family F is not normal on � if and only if there
exist sequences { fn} ⊂ F, {zn} ⊂ � with zn → z0 ∈ �, and {ρn} with ρn > 0 and
ρn→ 0 such that

hn(ξ) := fn(zn + ρnξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic map-
ping h of C into Ps(C).
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Lemma 3.2 [Osserman and Ru 1997]. Let M be a Riemann surface, and fn : M→
Ps(C) be a sequence of holomorphic maps converging uniformly on every compact
subset of M to a holomorphic map f : M→ Ps(C). Given a, b ∈ Ps(C∗), let fa,b

be the meromorphic function defined by

fa,b =
〈 f̃ , α〉

〈 f̃ , β〉
,

where f̃ is a reduced representation of f on U , and α, β ∈ (Cs+1)∗ are such that
a = ρ(α), b = ρ(β). Assume that β( f̃ ) 6≡ 0 on some U. Let p ∈ M be such that
β( f̃ )(p) 6= 0, and Up be a neighborhood of p such that β( f̃ )(z) 6= 0 for z ∈ Up.
Then { fna,b} converges uniformly on Up to the meromorphic function fa,b.

Let µ > 0 be an integer. The holomorphic map f ∈H(C;Ps(C)) is said to be
ramified over a hyperplane H = {〈Z , α〉 = 0} with multiplicity at least µ if all zeros
of 〈 f (z), α〉 = 0 have orders at least µ, where f̃ is a local reduced representation
of f (it is easy to check that this definition is independent of the choice of reduced
representation). If either the image of f completely omits H or f (C) ⊆ H , we
shall say that f is ramified over H with multiplicity∞.

Nochka [1983] improved the result of Green [1977] and proved H. Cartan’s
conjecture.

Lemma 3.3 [Nochka 1983]. Suppose that q(≥ 2s + 1) hyperplanes H1, . . . , Hq

are given in general position in Ps(C), along with q positive integers m1, . . . ,mq

(some of them may be∞). If

q∑
j=1

(
1− s

m j

)
> s+ 1,

then there does not exist a nonconstant holomorphic mapping f : C→ Ps(C) such
that f intersects H j with multiplicity at least m j , j = 1, . . . , q.

Lemma 3.4 (first main theorem [Fujimoto 1993, Corollary 3.1.16]). Let f : C→
Ps(C) be a holomorphic map. Let H be a hyperplane in Ps(C). If f (C)* H, then

T f (r)= m f (r, H)+ N f (r, H)+ O(1).

The second main theorem about linearly degenerated case is also required.

Lemma 3.5 (degenerate second main theorem [Ru 2001, Theorem A3.4.4]). Let
f = [ f0 : · · · : fs] : C→ Ps(C) be a holomorphic map whose image is contained in
some k-dimensional subspace but not in any subspace of dimension lower than k.
Let H1, . . . , Hq be hyperplanes in general position. Assume that f (C) * H j , for
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j = 1, . . . , q. Then the inequality

q∑
j=1

m f (r, H j )+
n+ 1
k+ 1

N (R f , r)≤ (2n− k+ 1)T f (r)+ O(log T f (r))

holds for all r outside a set E with finite Lebesgue measure. Here N (R f , r) is the
ramification term.

Lemma 3.6 [Fujimoto 1974]. Let f ∈H(C;Ps(C)). The map f is rational, namely,
f is representable as f = [ f0 : · · · : fs] with polynomial fi , i = 0, . . . , s, if and
only if

lim
r→∞

T f (r)
log r

<∞.

Lemma 3.7. Let f ∈ H(C;Ps(C)), and H1, . . . , H2s+1 be hyperplanes in Ps(C)

located in general position. If for each hyperplane H j , j = 1, . . . , 2s + 1, either
f (C)⊂ H j or 〈 f (z), H j 〉 has finite zeros in C (no zero point is allowed), then the
map f is rational.

Proof. Let f̃ = ( f0, . . . , fs) be a reduced representation of f on C. We set the
rank of the vector group { f0, . . . , fs} to be k + 1, with 0 ≤ k ≤ s. Thus, f (C) is
contained in some k-dimensional subspace of Ps(C) but not in any subspace of
dimension lower than k.

Let I be a subset of {1, . . . , 2s+ 1} such that i is in I if and only if f (C)⊂ Hi ,
and let

X I =
⋂
i∈I

Hi .

We can identify X I with a projective space of dimension s− k1, where k1 = #I . So
0≤ k1 ≤ s− k. According to the definition, the restrictions of

H∗j := H j

⋂
X I , j 6∈ I

are hyperplanes which are still in general position in X I = Ps−k1(C).
Applying Lemma 3.5 to f = [ f0 : · · · : fs] : C→ Ps−k1(C) and the hyperplanes

H∗j , j 6∈ I , and using the first main theorem about holomorphic curves, it follows
that the inequality

(2s− k1+ 1)T f (r)≤
∑
j 6∈I

N f (r, H∗j )+ (2(s− k1)− k+ 1)T f (r)+ O(log T f (r))

holds for all r outside a set with finite Lebesgue measure. Since 〈 f (z), H∗j 〉 has
finite zeros in C, this yields the inequality

(k1+ k)T f (r)≤ O(log T f (r))+ O(log r).
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If k = k1 = 0, the rank of the vector group { f0, . . . , fs} is 1, which means that
f is a constant map.

If k1+ k > 0. Together with Lemma 3.6, the above inequality implies that f is
rational. Hence, the lemma is proved. �

4. Proofs of the theorems

Proof of Theorem 2.8. Fix g ∈ F. Suppose that F is not normal on some point
z0 ∈ D. Suppose there are k hyperplanes H jl , l = 1, . . . , k, such that

g(z0) ∈

k⋂
l=1

H jl .

Then k ≤ s. For otherwise k ≥ s+ 1, and because H1, . . . , Hq , q ≥ 2s+ 1, are
hyperplanes in Ps(C) located in general position, it follows that g = [0 : 0 : · · · : 0].
This is a contradiction. Therefore, k ≤ s. Without loss of generality, we assume
that there exists a neighborhood U (z0)⊂ D such that for l = 1, . . . , k1,

g(U (z0))⊂ Hl,

for µ= k1+ 1, . . . , k,
g(U (z0))∩ Hµ = {g(z0)},

and for ν = k+ 1, . . . , 2s+ 1,

g(D(z0))∩ Hν = φ.

In other words, these hyperplanes are divided into three groups.
Observing that normality is a local property, we may suppose that U (z0) is the

unit disk1, and z0= 0. Then by Lemma 3.1 there exist points zn with zn→ z0 ∈ D,
positive numbers ρn with ρn→ 0, and functions fn ∈ F such that

hn(ξ) := fn(zn + ρnξ)

converges uniformly on compact subsets of C to a nonconstant holomorphic map-
ping h of C into Ps(C). Here ξ ∈ C satisfies zn + ρnξ ∈1.

We consider two cases.
If zn/ρn→∞, then for each ξ ∈ C, zn + ρnξ 6= z0 when n is large enough. It

follows that for i = k1+ 1, . . . , 2s+ 1,

〈 fn(zn + ρnξ), Hi 〉 6= 0.

The Hurwitz theorem implies that for i = k1 + 1, . . . , 2s + 1, 〈h(ξ), Hi 〉 6= 0 or
〈h(ξ), Hi 〉 ≡ 0. Thus, 〈h(ξ), H j 〉 6= 0 or 〈h(ξ), H j 〉 ≡ 0 for j = 1, . . . , 2s+ 1. By
Lemma 3.3, h is a constant holomorphic mapping. This contradicts the claim that
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h is a nonconstant holomorphic mapping.
If zn/ρn 6→ ∞, taking a subsequence and renumbering, we may assume that

zn/ρn→ c, c ∈ C. Then

fn(ρnξ)= hn

(
ξ −

zn

ρn

)
converges uniformly on compact subsets of C to a nonconstant holomorphic mapping
h(ξ − c). Since for each hyperplane H j , j = 1, . . . , 2s + 1, either h(C) ⊂ H j

or 〈h(ξ − c)(z), H j 〉 has finite zeros in C, h(ξ − c) is rational by Lemma 3.7.
Since h(ξ − c) is a holomorphic mapping, there exist some constants cν , with
ν = k+ 1, . . . , 2s+ 1, such that

〈h(ξ − c)(z), Hν〉 ≡ cν .

Note that 2s− k+ 1≥ s+ 1, and {H j } are in general position. Hence we see that
h(ξ − c) is a constant map. Again, this a contradiction. And hence the family F is
normal on D. �

Proof of Theorem 2.10. If F is not normal on D, then by Lemma 3.1, there exist
points zn→ z0 ∈ D, positive numbers ρn→ 0 and functions fn ∈ F, such that

hn(ξ) := fn(zn + ρnξ),

where ξ ∈ C satisfies zn + ρnξ ∈ D, converges uniformly on compact subsets of C

to a nonconstant holomorphic mapping h of C into Ps(C).
By condition (i), there exist q hyperplane sequences {H j, fn }

∞

n=1 and {gn} ⊂ G

such that for z ∈ D, j = 1, . . . , q,

〈gn(z), H j, fn 〉 = 0

whenever
〈 fn(z), H j, fn 〉 = 0, z ∈ D.

For j = 1, . . . , q , take {α jn}
∞

n=1 ⊂ B satisfying

H j, fn = {〈Z , α jn〉 = 0}.

Since B is a compact subset of Cs+1, there exist α j = (a j0, . . . , a js) ∈ B for
j = 1, . . . , q , and subsequences which (to avoid complication in notation) we again
call {α jn} satisfying that α jn→ α j as n→∞. Let

H j = {〈Z , α j 〉 = 0}

be hyperplanes of Ps(C), j = 1, . . . , q . From condition (i), it follows that

D(H1, . . . , Hq)≥ lim inf
n→∞

D(H1, fn , . . . , Hq, fn ) > 0.

Thus, the hyperplanes H j , j = 1, . . . , q, are located in general position.
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Claim. There exist at most 2s hyperplanes such that for each hyperplane H,
either the image of h completely omits H or h(C)⊂ H. If not, Lemma 3.3 shows
that h is a constant holomorphic mapping, which is a contradiction. So there exist
at least s + 1 hyperplanes of H j , j = 1, . . . , q, such that for i = 1, . . . , s + 1,
h(C)∩ Hi 6= φ and h(C)* Hi .

For a fixed i ∈ {1, . . . , s + 1}, suppose that ξi ∈ h(C) ∩ Hi . Choose a small
neighborhood U (ξi ) of ξi such that h(C)∩ Hi = {ξi }. Hence 〈 h̃(ξi ), H〉 = 0 and
〈 h̃(ξi ), H〉 6≡ 0, where h̃ is a local reduced representation. Since hn converges
uniformly to h on U (ξi ), hn has a local reduced representation h̃n = (hn0, . . . , hns)

such that h̃n uniformly converges to a reduced representation h̃ = (h0, . . . , hs)

of h on U (ξi ). Obviously, hnk converges uniformly to hk on U (ξi ) for each k =
0, . . . , s. Therefore 〈 h̃n(ξ), αin〉 converges uniformly to 〈 h̃(ξ), αi 〉 on U (ξi ). By
the Hurwitz theorem, there exist ξin → ξi such that 〈 h̃n(ξin), αin〉 = 0, that is,
〈 f̃n(zn + ρnξin), αin〉 = 0.

On the other hand, applying condition (iii), we can find subsequences of {gn}

(again denoted by themselves) such that gn converges uniformly to g on D, where
g is a holomorphic mapping of D into Ps(C). As we noted earlier, gn has a local
reduced representation g̃n = (gn0, . . . , gns) such that g̃n uniformly converges to a
reduced representation g̃ = (g0, . . . , gs) of g on U (z0). It follows that

〈 g̃n(zn + ρnξin), αin〉 = 0.

As n→∞, we have
〈 g̃(z0), αi 〉 = 0.

So there exist s+ 1 hyperplanes Hi , i = 1, . . . , s+ 1, which intersect at one point
ρ(g̃(z0)). This contradicts the claim that the hyperplanes H j , j = 1, . . . , q, are
located in general position. This finishes the proof. �

Acknowledgements

The authors thank the referees for valuable suggestions.

References

[Bergweiler 2006] W. Bergweiler, “Bloch’s principle”, Comput. Methods Funct. Theory 6:1 (2006),
77–108. MR 2007f:30045 Zbl 1101.30034

[Fujimoto 1974] H. Fujimoto, “On families of meromorphic maps into the complex projective space”,
Nagoya Math. J. 54 (1974), 21–51. MR 51 #3543 Zbl 0267.32005

[Fujimoto 1993] H. Fujimoto, Value distribution theory of the Gauss map of minimal surfaces in Rm ,
Aspects of Mathematics E21, Vieweg, Braunschweig, 1993. MR 95d:32029 Zbl 1107.32004

[Green 1977] M. L. Green, “The hyperbolicity of the complement of 2n+ 1 hyperplanes in general
position in Pn and related results”, Proc. Amer. Math. Soc. 66:1 (1977), 109–113. MR 56 #15994
Zbl 0366.32013

http://dx.doi.org/10.1007/BF03321119
http://msp.org/idx/mr/2007f:30045
http://msp.org/idx/zbl/1101.30034
http://projecteuclid.org/euclid.nmj/1118795097
http://msp.org/idx/mr/51:3543
http://msp.org/idx/zbl/0267.32005
http://dx.doi.org/10.1007/978-3-322-80271-2
http://msp.org/idx/mr/95d:32029
http://msp.org/idx/zbl/1107.32004
http://dx.doi.org/10.2307/2041540
http://dx.doi.org/10.2307/2041540
http://msp.org/idx/mr/56:15994
http://msp.org/idx/zbl/0366.32013


256 LIU YANG, CAIYUN FANG AND XUECHENG PANG

[Gundersen 1979] G. G. Gundersen, “Meromorphic functions that share three or four values”, J.
London Math. Soc. (2) 20:3 (1979), 457–466. MR 80m:30030 Zbl 0413.30025

[Liu et al. 2013] X. J. Liu, S. H. Li, and X. Pang, “A normal criterion about two families of
meromorphic functions concerning shared values”, Acta Math. Sin. (Engl. Ser.) 29:1 (2013), 151–
158. MR 3001017 Zbl 1267.30086

[Mai et al. 2005] P. N. Mai, D. D. Thai, and P. N. T. Trang, “Normal families of meromor-
phic mappings of several complex variables into PN (C)”, Nagoya Math. J. 180 (2005), 91–110.
MR 2006i:32003 Zbl 1162.32001

[Nevanlinna 1926] R. H. Nevanlinna, “Einige Eindueutigkeitssätze in der Theorie der meromorphen
Funktionen”, Acta Math. 48 (1926), 367–391.

[Nochka 1983] E. I. Nochka, “On the theory of meromorphic functions”, Dokl. Akad. Nauk SSSR
269:3 (1983), 547–552. In Russian; translated in Sov. Math. Dokl. 27 (1983), 377–381. MR 85i:32038
Zbl 0552.32024

[Osserman and Ru 1997] R. Osserman and M. Ru, “An estimate for the Gauss curvature of minimal
surfaces in Rm whose Gauss map omits a set of hyperplanes”, J. Differential Geom. 46:3 (1997),
578–593. MR 98k:53014 Zbl 0918.53003

[Ru 2001] M. Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific,
River Edge, NJ, 2001. MR 2002g:11106 Zbl 0998.30030

[Shabat 1985] B. V. Shabat, Distribution of values of holomorphic mappings, Translations of Mathe-
matical Monographs 61, American Mathematical Society, Providence, RI, 1985. MR 86k:32023
Zbl 0564.32016

[Thai et al. 2003] D. D. Thai, P. N. T. Trang, and P. D. Huong, “Families of normal maps in several
complex variables and hyperbolicity of complex spaces”, Complex Var. Theory Appl. 48:6 (2003),
469–482. MR 2004c:32003 Zbl 1036.32001

[Wu 1967] H. Wu, “Normal families of holomorphic mappings”, Acta Math. 119 (1967), 193–233.
MR 37 #468 Zbl 0158.33301

Received August 3, 2013. Revised September 22, 2013.

LIU YANG

DEPARTMENT OF MATHEMATICS

EAST CHINA NORMAL UNIVERSITY

SHANGHAI, 200062
CHINA

yangliu20062006@126.com

CAIYUN FANG

SCHOOL OF MATHEMATICS SCIENCES

NANJING NORMAL UNIVERSITY

NANJING, 210023
CHINA

05325@njnu.edu.cn

XUECHENG PANG

DEPARTMENT OF MATHEMATICS

EAST CHINA NORMAL UNIVERSITY

SHANGHAI, 200062
CHINA

xcpang@math.ecnu.edu.cn

http://dx.doi.org/10.1112/jlms/s2-20.3.457
http://msp.org/idx/mr/80m:30030
http://msp.org/idx/zbl/0413.30025
http://dx.doi.org/10.1007/s10114-012-0600-7
http://dx.doi.org/10.1007/s10114-012-0600-7
http://msp.org/idx/mr/3001017
http://msp.org/idx/zbl/1267.30086
http://projecteuclid.org/euclid.nmj/1134569897
http://projecteuclid.org/euclid.nmj/1134569897
http://msp.org/idx/mr/2006i:32003
http://msp.org/idx/zbl/1162.32001
http://msp.org/idx/mr/85i:32038
http://msp.org/idx/zbl/0552.32024
http://projecteuclid.org/euclid.jdg/1214459977
http://projecteuclid.org/euclid.jdg/1214459977
http://msp.org/idx/mr/98k:53014
http://msp.org/idx/zbl/0918.53003
http://dx.doi.org/10.1142/9789812810519
http://msp.org/idx/mr/2002g:11106
http://msp.org/idx/zbl/0998.30030
http://msp.org/idx/mr/86k:32023
http://msp.org/idx/zbl/0564.32016
http://dx.doi.org/10.1080/0278107031000094963
http://dx.doi.org/10.1080/0278107031000094963
http://msp.org/idx/mr/2004c:32003
http://msp.org/idx/zbl/1036.32001
http://dx.doi.org/10.1007/BF02392083
http://msp.org/idx/mr/37:468
http://msp.org/idx/zbl/0158.33301
mailto:yangliu20062006@126.com
mailto:05325@njnu.edu.cn
mailto:xcpang@math.ecnu.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 272 No. 1 November 2014

1Nonconcordant links with homology cobordant zero-framed surgery
manifolds

JAE CHOON CHA and MARK POWELL

35Certain self-homotopy equivalences on wedge products of Moore spaces
HO WON CHOI and KEE YOUNG LEE

59Modular transformations involving the Mordell integral in Ramanujan’s lost
notebook

YOUN-SEO CHOI

87The D-topology for diffeological spaces
J. DANIEL CHRISTENSEN, GORDON SINNAMON and ENXIN WU

111On the Atkin polynomials
AHMAD EL-GUINDY and MOURAD E. H. ISMAIL

131Evolving convex curves to constant-width ones by a perimeter-preserving
flow

LAIYUAN GAO and SHENGLIANG PAN

147Hilbert series of certain jet schemes of determinantal varieties
SUDHIR R. GHORPADE, BOYAN JONOV and B. A. SETHURAMAN

177On a Liu–Yau type inequality for surfaces
OUSSAMA HIJAZI, SEBASTIÁN MONTIEL and SIMON RAULOT

201Nonlinear Euler sums
ISTVÁN MEZŐ
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