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ON STABLE COMMUTATOR LENGTH
IN HYPERELLIPTIC MAPPING CLASS GROUPS

DANNY CALEGARI, NAOYUKI MONDEN AND MASATOSHI SATO

We give a new upper bound on the stable commutator length of Dehn twists
in hyperelliptic mapping class groups and determine the stable commutator
length of some elements. We also calculate values and the defects of homo-
geneous quasimorphisms derived from ω-signatures and show that they are
linearly independent in the mapping class groups of pointed 2-spheres when
the number of points is small.

1. Introduction

The aim of this paper is to investigate stable commutator length in hyperelliptic
mapping class groups and in mapping class groups of pointed 2-spheres. Given a
group G and an element x ∈ [G,G], the commutator length of x , denoted by clG(x),
is the smallest number of commutators in G whose product is x , and the stable
commutator length of x is defined by the limit sclG(x) := limn→∞ clG(xn)/n (see
Definition 2.1 for details).

We investigate stable commutator length in two groups, Mm
0 and Hg. Let m be a

positive integer greater than 3. Choose m distinct points {qi }
m
i=1 in a 2-sphere S2.

Let Diff+(S2, {qi }
m
i=1) denote the set of all orientation-preserving diffeomorphisms

in S2 which preserve {qi }
m
i=1 setwise with the C∞-topology. We define the mapping

class group of the m-pointed 2-sphere by Mm
0 = π0 Diff+(S2, {qi }

m
i=1). Let 6g be

a closed connected oriented surface of genus g ≥ 1. An involution ι : 6g → 6g

defined as in Figure 1 is called the hyperelliptic involution.

sgΣ 1 s2 s i

180º

g−1

Figure 1. Hyperelliptic involution ι and the curves s1, . . . , sg−1.
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Let Mg denote the mapping class group of6g, that is, the group of isotopy classes
of orientation-preserving diffeomorphisms of6g, and let Hg be the centralizer of the
isotopy class of a hyperelliptic involution in Mg, which is called the hyperelliptic
mapping class group of genus g. Note that Mg = Hg when g = 1, 2. Since
there exists a surjective homomorphism P : Hg →M

2g+2
0 with finite kernel (see

Lemma 3.3 and the paragraph before Remark 3.7), these two groups have the same
stable commutator length.

Let s0 be a nonseparating curve on 6g satisfying ι(s0) = s0, and let sh be a
separating curve in Figure 1 for h = 1, . . . , g − 1. We denote by ts j the Dehn
twist about s j for j = 0, 1, . . . , g− 1. In general, it is difficult to compute stable
commutator length, but those of some mapping classes are known. In the map-
ping class group of a compact oriented surface with connected boundary, Baykur,
Korkmaz and the second author [Baykur et al. 2013] determined the commutator
length of the Dehn twist about a boundary curve. In the mapping class group of a
closed oriented surface, interesting lower bounds on scl of Dehn twists are obtained
using gauge theory. Endo and Kotschick [2001], and Korkmaz [2004] proved that
1/(18g− 6)≤ sclMg (ts j ) for j = 0, 1, . . . , g− 1. For technical reasons, this result
is stated in [Endo and Kotschick 2001] only for separating curves. This technical
assumption is removed in [Korkmaz 2004]. The second author [Monden 2012] also
showed that 1/(8g+ 4)≤ sclHg (ts0) and

h(g− h)
g(2g+ 1)

≤ sclHg (tsh ) for h = 1, . . . , g− 1.

Stable commutator length on a group is closely related to functions on the
group called homogeneous quasimorphisms through Bavard’s duality theorem.
Homogeneous quasimorphisms are homomorphisms up to bounded error called
the defect (see Definition 2.2 for details). By Bavard’s theorem, if we obtain a
homogeneous quasimorphism on the group and calculate its defect, we also obtain
a lower bound on stable commutator length. Actually, Bestvina and Fujiwara
[2002, Theorem 12] proved that the spaces of homogeneous quasimorphisms on Mg

and Mm
0 are infinite-dimensional when g ≥ 2 and m ≥ 5, respectively. However

it is hard to compute explicit values of these quasimorphisms and their defects.
To compute stable commutator length, we consider computable quasimorphisms
derived from ω-signature in [Gambaudo and Ghys 2005] on symmetric mapping
class groups.

In Section 3, we review symmetric mapping class groups, which are defined by
Birman and Hilden as generalizations of hyperelliptic mapping class groups. We
reconsider cobounding functions of ω-signatures as a series of quasimorphisms φm, j

on a symmetric mapping class group π0Cg(t). Since there exists a surjective
homomorphism P : π0Cg(t)→Mm

0 with finite kernel, the homogenizations φ̄m, j
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induce homogeneous quasimorphisms on Mm
0 . Let σi ∈Mm

0 be a half twist which
permutes the i-th point and the (i + 1)-th point. We denote by σ̃i ∈ π0Cg(t) a lift
of σi , which will be defined on page 333.

In Section 6, we calculate φm, j and their homogenizations φ̄m, j .

Theorem 1.1. Let r be an integer such that 2≤ r ≤ m. Then:

(i) φm, j (σ̃1 · · · σ̃r−1)=
2(r − 1) j (m− j)

m(m− 1)
.

(ii) φ̄m, j (σ1 · · · σr−1)=−
2
r

{
jr(m− j)(m− r)

m2(m− 1)
+

(
r j
m
−

[
r j
m

]
−

1
2

)2

−
1
4

}
,

where [x] denotes the greatest integer ≤ x.

Since this requires straightforward and lengthy calculations to prove, we leave it
until the last section. A computer calculation shows that the ([m/2]−1)×([m/2]−1)
matrix whose (i, j)-entry is φ̄m, j+1(σ1 · · · σi ) is nonsingular when 4≤m≤30. Thus
we have:

Corollary 1.2. The set {φ̄m, j }
[m/2]
j=2 is linearly independent when 4≤ m ≤ 30.

In Section 4, we calculate the defects of the homogenizations of these quasi-
morphisms. In particular, we determine the defect of φ̄m,m/2 when m is even.
Actually φ̄m,m/2 is the same as the homogenization of the Meyer function on the
hyperelliptic mapping class group Hg.

Theorem 1.3. Let D(φm, j ) and D(φ̄m, j ) be the defects of the quasimorphisms φm, j

and φ̄m, j , respectively.

(i) For j = 1, 2, . . . , [m/2],

D(φ̄m, j )≤ D(φm, j )≤ m− 2.

(ii) When m is even and j = m/2,

D(φ̄m,m/2)= m− 2.

Remark 1.4. If φ :G→R is a quasimorphism and φ̄ :G→R is its homogenization,
they satisfy

D(φ̄)≤ 2D(φ)

(see [Calegari 2009] Corollary 2.59). We will claim in Lemma 4.1 that, when φ is
antisymmetric and a class function, they satisfy the sharper inequality

D(φ̄)≤ D(φ).

Note that when g = 2, the hyperelliptic mapping class group H2 coincides
with M2. We may think of the lift of σi ∈M6

0 for i = 1, 2, 3, 4, 5 to M2 as the Dehn
twist tci along the simple closed curve ci in Figure 2 (see page 333). Similarly
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the Dehn twist ts1 ∈M2 can be considered as a lift of (σ1σ2)
6
∈M6

0 by the chain
relation (see Lemma 2.8). Since Theorem 1.1(ii) implies φ̄6,2((σ1σ2)

6) = −8/5
and Theorem 1.3(i) implies D(φ̄6,2)≤ 4, by applying Bavard’s duality theorem, we
have:

Corollary 1.5. 1
5
≤ sclM2(ts1).

To the best of our knowledge, for g ≥ 2, there is not known an element x
in Hg (or Mg) such that scl(x) is nonzero and can be computed explicitly. By
Theorem 1.3(ii), we can determine the stable commutator length of the following
element in Hg.

Theorem 1.6. Let d+2 , d−2 , . . . , d+g−1, d−g−1 be simple closed curves in Figure 7.
Let c be a nonseparating simple closed curve satisfying ι(c)= c which is disjoint
from d+i , d−i and sh (i = 1, . . . , g, h = 1, . . . , g− 1). For g ≥ 2,

sclHg

(
t2g+8
c (td+2 td−2 · · · td+g−1

td−g−1
)2(ts1 · · · tsg−1)

−1)
=

1
2
.

In particular, if g = 2, then we have sclH2(t
12
c t−1

s1
)= 1/2.

Next we consider upper bounds on stable commutator length. Korkmaz [2004]
also gave the upper bound sclMg (ts0) ≤ 3/20 for g ≥ 2. In the case of g = 2, the
second author [Monden 2012] showed sclM2(ts0) < sclM2(ts1). However these upper
bounds do not depend on g. On the other hand, Kotschick [2008] proved that there
is an estimate sclMg (ts0)= O(1/g) by using the so-called “Munchhausen trick”.

In Section 5, we give the following upper bounds.

Theorem 1.7. Let s0 be a nonseparating curve on 6g, and let Gg be either Mg

or Hg. For all g ≥ 1, we have

sclGg (ts0)≤
1

2{2g+ 3+ (1/g)}
.

2. Preliminaries

Stable commutator lengths and quasimorphisms. Let G denote a group, and let
[G,G] denote the commutator subgroup, which is the subgroup of G generated by
all commutators [x, y] = xyx−1 y−1 for x, y ∈ G.

Definition 2.1. For x ∈ [G,G], the commutator length clG(x) of x is the least
number of commutators in G whose product is equal to x . The stable commutator
length of x , denoted scl(x), is the limit

sclG(x)= lim
n→∞

clG(xn)

n
.
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For each fixed x , the function n 7→ clG(xn) is nonnegative and

clG(xm+n)≤ clG(xm)+ clG(xn).

Hence this limit exists. If x is not in [G,G] but has a power xm which is, define
sclG(x)= sclG(xm)/m. We also define sclG(x)=∞ if no power of x is contained
in [G,G] (we refer the reader to [Calegari 2009] for the details of the theory of the
stable commutator length).

Definition 2.2. A quasimorphism is a function φ :G→R for which there is a least
constant D(φ)≥ 0 such that

|φ(xy)−φ(x)−φ(y)| ≤ D(φ),

for all x, y ∈ G. We call D(φ) the defect of φ. A quasimorphism is homogeneous
if it satisfies the additional property φ(xn)= nφ(x) for all x ∈ G and n ∈ Z.

We recall the following basic facts. Let φ be a quasimorphism on G. For each
x ∈ G, define

φ̄(a) := lim
n→∞

φ(xn)

n
.

The limit exists and defines a homogeneous quasimorphism. Homogeneous
quasimorphisms have the following properties, shown for example in [Calegari
2009, Section 5.5.2] and [Kotschick 2008, Lemma 2.1(1)].

Lemma 2.3. Let φ be a homogeneous quasimorphism on G. For all x, y ∈ G,

(i) φ(x)= φ(yxy−1),

(ii) xy = yx =⇒ φ(xy)= φ(x)+φ(y).

Theorem 2.4 (Bavard’s duality theorem [1991]). Let Q be the set of homogeneous
quasimorphisms on G with positive defects. For any x ∈ [G,G], we have

sclG(x)= sup
φ∈Q

|φ(x)|
2D(φ)

.

Mapping class groups. For g≥1, the abelianizations of the mapping class group Mg

of the surface 6g and its subgroup Hg are finite (see [Powell 1978]). Therefore all
elements of Mg and Hg have powers that are products of commutators. Dehn showed
that the mapping class group Mg is generated by Dehn twists along nonseparating
simple closed curves. We review some relations between them. Hereafter we do
not distinguish a simple closed curve in 6g and its isotopy class. The following
relations are well known. See, for example, [Farb and Margalit 2012, Sections 3.3,
3.5.1, 5.1.4, and 4.4.1].
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c1 c2g+1

c2 c4c3 c5 c2g−1

c2g+2

c6 c2g

Figure 2. The curves c1, c2, . . . , c2g+2.

Lemma 2.5. Let c be a simple closed curve in 6g and f ∈Mg. Then we have

t f (c) = f tc f −1.

From this lemma, the values of scl and homogeneous quasimorphisms on the
Dehn twists about nonseparating simple closed curves are constant.

Lemma 2.6. Let c and d be simple closed curves in 6g.

(i) If c is disjoint from d, then tctd = td tc.

(ii) If c intersects d in one point transversely, then tctd tc = td tctd .

Lemma 2.7 (hyperelliptic involution). Let c1, . . . , c2g+1 be nonseparating curves
in 6g as in Figure 2. We call the product

ι := tc2g+1 tc2g · · · tc2 tc1 tc1 tc2 · · · tc2g tc2g+1

the hyperelliptic involution. For g = 1, the hyperelliptic involution ι equals
tc1 tc2 tc1 tc1 tc2 tc1 , where c1 and c2 are respectively the meridian and longitude of 61.

Lemma 2.8 (chain relation). For a positive integer n, let a1, a2, . . . , an be a se-
quence of simple closed curves in 6g such that ai and a j are disjoint if |i − j | ≥ 2
and ai and ai+1 intersect at one point.

When n is odd, a regular neighborhood of a1 ∪ a2 ∪ · · · ∪ an is a subsurface of
genus (n− 1)/2 with two boundary components, denoted by d1 and d2. Then

(tan · · · ta2 ta1)
n+1
= td1 td2 .

When n is even, a regular neighborhood of a1 ∪ a2 ∪ · · · ∪ an is a subsurface of
genus n/2 with connected boundary, denoted by d. Then

(tan · · · ta2 ta1)
2(n+1)

= td .

Meyer’s signature cocycle. Let X be a compact oriented (4n + 2)-manifold for
nonnegative integer n, and let 0 be a local system on X such that 0(x) is a
finite-dimensional real or complex vector space for x ∈ X . If we are given a
regular antisymmetric (respectively, skew-hermitian) form 0⊗0→R (respectively,
0⊗0→ C), we have a symmetric (respectively, hermitian) form on H2n+1(X;0)
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as in [Meyer 1972, p. 12]. For simplicity, we only explain the complex case. It is
defined by

H2n+1(X;0)⊗ H2n+1(X;0)∼= H 2n+1(X, ∂X;0)⊗ H 2n+1(X, ∂X;0)
∪
−→ H 4n+2(X, ∂X;0⊗0)

→ H 4n+2(X, ∂X;C)
[X,∂X ]
−−−−→ C,

where the first row is defined by the Poincaré duality, the second row is defined by
the cup product of the base space, the third row comes from the skew-hermitian form
of 0 as above, and the fourth row is the evaluation by the fundamental class of X .
Meyer showed additivity of signatures with respect to this hermitian form (more
strongly, he showed Wall’s nonadditivity formula for G-signatures of homology
groups with local coefficients).

Theorem 2.9 [Meyer 1972, Satz I.3.2]. Let X and 0 be as above. Assume that X
is obtained by gluing two compact oriented (4n+ 2)-manifold X− and X+ along
some boundary components.

Then we have

Sign(H2n+1(X;0))= Sign(H2n+1(X−;0|X−))+Sign(H2n+1(X+;0|X+)).

Consider the case when X is a pair of pants, which we denote by P . Let α and β
be loops in P as in Figure 3, left.

For ϕ,ψ ∈Mg, there exists a6g-bundle Eϕ,ψ on P whose monodromies along α
and β are ϕ and ψ , respectively. This is unique up to bundle isomorphism. In this
setting, the intersection form on the local system H1(6g;R) induces the symmetric
form on H1(P; H1(6g;R)). Meyer showed that the signature of this symmetric
form on H1(P; H1(6g;R)) coincides with that of Eϕ,ψ . Moreover he explicitly
described it in terms of the action of the mapping class group on H1(6g;R) as

α

β

B
1

B
2

B
 g�1

B
 g

A
1

A
2

A
 g�1

A
 g

Figure 3. Left: loops in a pair of pants. Right: a symplectic basis
of H1(6g;Z).
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follows. Fix the symplectic basis {Ai , Bi }
g
i=1 of H1(6g;Z) as in Figure 3, right;

then the action induces a homomorphism ρ :Mg→ Sp(2g;Z). Let I denote the
identity matrix of rank g and define

J =
(

0 I
−I 0

)
.

For symplectic matrices A and B of rank 2g, define the vector space

VA,B =
{
(v,w) ∈ R2g

×R2g
| (A−1

− I )v+ (B− I )w = 0
}
.

Consider the symmetric bilinear form

〈 , 〉A,B : VA,B × VA,B→ R

on VA,B defined by

〈(v1, w1), (v2, w2)〉A,B := (v1+w1)
T J (I − B)w2.

Then, the space VA,B coincides with H1(P; H1(6g;R)), and the above form
〈 , 〉ρ(ϕ),ρ(ψ) corresponds to the symmetric form on H1(P; H1(6g;R)).

Meyer’s signature cocycle τg :Mg ×Mg→ Z is the map defined by

(ϕ, ψ) 7→ Sign(〈 , 〉ρ(ϕ),ρ(ψ)),

which is known to be a bounded 2-cocycle by Theorem 2.9. When we restrict it to the
hyperelliptic mapping class group Hg, it represents the trivial cohomology class in
H 2(Hg;Q). Since the first homology H1(Hg;Q) is trivial, the cobounding function
φg : Hg → Q of τg is unique. It is a quasimorphism, called the Meyer function.
Endo [2000] computed it to investigate signatures of fibered 4-manifolds called
hyperelliptic Lefschetz fibrations. Morifuji [2003] relates it to the eta invariants of
mapping tori and the Casson invariants of integral homology 3-spheres.

3. Cobounding functions of the Meyer’s signature cocycles
on symmetric mapping class groups

As in the introduction, let m be a positive integer greater than 3 and {qi }
m
i=1 be m

distinct points in a 2-sphere S2. Choose a base point ∗ ∈ S2
−{qi }

m
i=1, and denote by

αi ∈ π1(S2
−{qi }

m
i=1, ∗) a loop which rounds the point qi clockwise as in Figure 4.

For an integer d such that d ≥ 2 and d |m, define a homomorphism

π1(S2
−{qi }

m
i=1)→ Z/dZ

by mapping each generator αi to 1∈Z/dZ. This homomorphism induces a d-cyclic
branched covering pd : 6h → S2 with m branched points, where 6h is a closed
oriented surface of genus h. Applying the Riemann–Hurwitz formula, we have
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h = (d − 1)(m− 2)/2. We denote by t :6h→6h the deck transformation which
corresponds to the generator 1 ∈ Z/dZ.

Let η denote the d-th root of unity exp(2π i/d), where i is a square root of −1.
The first homology H1(6h;C) decomposes into a direct sum

⊕d−1
j=1 V η j

, where V z

is an eigenspace whose eigenvalue is z ∈C. Note that V 1 is trivial since the quotient
space6g/〈t〉 is a 2-sphere, where 〈t〉 denotes the cyclic group generated by the deck
transformation t . We also denote by Ch(t) the centralizer of t in the diffeomorphism
group Diff+6h . We call the path-connected component π0Ch(t) the symmetric map-
ping class group of the covering p, which is defined by Birman and Hilden [1973].

In this section, we introduce 2-cocycles on the symmetric mapping class group
π0Ch(t), derived from the nonadditivity formula for signatures. These are almost
the same as the ω-signatures defined in [Gambaudo and Ghys 2005].

Let us consider an oriented 6h-bundle Eϕ,ψ over P whose structure group is
contained in Ch(t), and monodromies along α and β are ϕ and ψ in π0Ch(t), respec-
tively. Since coordinate transformations commute with the deck transformation t , we
can define a fiberwise Z/dZ-action on Eϕ,ψ . Since the structure group is in Ch(t),
not only H1(6h;C) but also each eigenspace V η j

is a local system on P . We can
extend the intersection form as a skew-hermitian form H1(6h;C)⊗H1(6h;C)→C

defined by

(x1+ x2 i) · (y1+ y2 i)= x1 · y1+ x2 · y2+ (x1 · y2− x2 · y1)i .

For v ∈ V η j
and w ∈ V ηk

(1≤ j ≤ d − 1, 1≤ k ≤ d − 1),

(tv) ·w = (ω jv) ·w = ω− j (v ·w),

(tv) ·w = v · (t−1w)= v · (ω−kw)= ω−k(v ·w).

Since ω− j is not equal to ω−k , we have v ·w = 0. Hence, H1(6h;C) decomposes
into an orthogonal sum of subspaces {V ω j

}
d−1
j=1. By restricting the intersection

form on H1(6h;C) to V η j
, we can define a hermitian form on H1(P; V η j

). By
Theorem 2.9, we have a 2-cocycle on π0Ch(t) as follows.

Lemma 3.1. Let j be an integer such that 1≤ j ≤ m− 1. The map

τm,d, j : π0Ch(t)×π0Ch(t)→ Z

1 m

*

i iα

Figure 4. A loop αi .
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defined by
τm,d, j (ϕ, ψ)= Sign(H1(P; V η j

))

is a 2-cocycle, where V η j
is the local system on P induced from the oriented

6h-bundle Eϕ,ψ → P.

Proof. The proof is the same as for [Meyer 1972, p. 43, Equation (0)]. Applying addi-
tivity of signatures to two oriented 6h-bundles on P , we can see that τm,d, j satisfies

τm,d, j (ϕ1, ϕ2)+ τm,d, j (ϕ1ϕ2, ϕ3)= τm,d, j (ϕ1, ϕ2ϕ3)+ τm,d, j (ϕ2, ϕ3),

for ϕ1, ϕ2, ϕ3 ∈ π0Ch(t). �

Since the deck transformation t acts on H 1(P, ∂P; V η j
) by multiplication of η j ,

we can calculate Z/dZ-signature as

Sign(H1(P; V η j
), tk)= ηk j Sign(H1(P; V η j

))= ηk jτm,d, j (ϕ, ψ),

for 0 ≤ k ≤ m − 1. Moreover Meyer [1972, Satz I.2.2] proved Sign(Eϕ,ψ , tk) =

Sign(H1(P; H 1(6h;C)), tk). Hence we have:

Lemma 3.2. For 0≤ k ≤ m− 1,

Sign(Eϕ,ψ , tk)=

d−1∑
j=1

ηk jτm,d, j (ϕ, ψ).

The symmetric mapping class groups. A diffeomorphism f :6h→6h in Ch(t)
induces a diffeomorphism f̄ : S2

→ S2 which satisfies the commutative diagram

6h
f

−−−→ 6h

pd

y pd

y
S2 f̄
−−−→ S2.

Moreover since f̄ satisfies p−1
d (q)= p−1

d ( f̄ (q)) for any q ∈ S2, we have

f̄ ∈ Diff+(S2, {qi }
m
i=1).

Therefore we have a natural homomorphism P : π0Ch(t)→Mm
0 which maps [ f ]

to [ f̄ ]. By a method similar to [Birman and Hilden 1971, Theorem 1] (see also
[Birman and Hilden 1973, Section 5]), we have:

Lemma 3.3. Let m ≥ 4. The sequence

1 −−−→ Z/dZ −−−→ π0Ch(t)
P

−−−→ Mm
0 −−−→ 1

is exact.
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i
m1

i+1

Figure 5. The diffeomorphism si .

Let si : S2
→ S2 be a half twist of the disk which exchanges the points qi and qi+1

as in Figure 5.
We denote by σi ∈Mm

0 the mapping class represented by si . By lifting si , we
have a unique diffeomorphism s̃i :6h→6h which satisfies supp s̃i = p−1

d (supp si ).
Let us denote the mapping class of s̃i by σ̃i ∈ π0Ch(t). Note that when d = 2, σ̃i is
the Dehn twist along a nonseparating simple closed curve.

Lemma 3.4. The set {σ̃i }
m−1
i=1 ⊂ π0Ch(t) generates the group π0Ch(t).

Proof. Since {σi }
m−1
i=1 generates the group Mm

0 , it suffices to represent [t] ∈ π0Ch(t)
as a product of {σi }

m−1
i=1 . Let C (∗)

h (t) denote the subgroup of Ch(t) defined by
C (∗)

h (t)= { f ∈ Ch(t) | f (p−1
d (∗))= p−1

d (∗)}. In this proof, by abuse of terminol-
ogy, we use the term “Dehn twist” both for a diffeomorphism and for a mapping class.
The diffeomorphism s1 · · · sm−2s2

m−1sm−2 · · · s1 in Diff+(S2, {qi }
m
i=1) is isotopic to

the product of Dehn twists t−1
c tc′ in Figure 6, and it is also isotopic to the Dehn

twist t−1
d .

Therefore the lift s̃1 · · · s̃m−2s̃2
m−1s̃m−2 · · · s̃1 is isotopic to some lift f̃1 :6h→6h

of t−1
d . Since we can choose the isotopy in Diff+(S2, {qi }

m
i=1) so that it does

not move ∗, the lift f̃1 fixes p−1(∗) pointwise. Let D be the closed disk which
is bounded by d and contains ∗, and let f̃2 denote the lift of td which satisfies
supp f̃2 ⊂ p−1(D). Since f1 f2 is a lift of the identity map of S2, and the action
of f̃2 on p−1(∗) coincides with that of t , we have f̃1 f̃2 = t ∈ Diff+6h . Since td is
isotopic to the identity map in Diff+6h , we have [ f̃2]=1∈π0Ch(t). Thus we obtain

σ̃1 · · · σ̃m−2σ̃
2
m−1σ̃m−2 · · · σ̃1 = [ f̃1] = [ f̃1 f̃2] = [t] ∈ π0Ch(t). �

1 12 2

* *

m m

d
c

c'

Figure 6. The curves c, c′, d .
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The cobounding function of the cocycles τm,d, j . Recall that, for an integer d with
d |m, we have a covering space pd :6h→ S2. Let g = (m− 1)(m− 2)/2. If we
consider the case when d = m, pd is the m-cyclic covering on S2 whose genus of
the covering surface is g. Thus we identify it with the surface 6g, and denote the
covering by p :6g→ S2.

Since the quotient space 6g/〈td
〉 is also a d-cyclic covering of S2 with m

branched points, we can identify 6h ∼=6g/〈td
〉. Since a diffeomorphism f ∈Cg(t)

induces a diffeomorphism f̄ on 6g/〈td
〉 which commutes with t , we have a

natural homomorphism P : π0Cg(t)→ π0Ch(t) which maps [ f ] to [ f̄ ]. Since
H∗(π0Ch(t);Q) ∼= H∗(Mm

0 ;Q), and H∗(Mm
0 ;Q) is trivial (see [Cohen 1987]

Corollary 2.2), there exists a unique cobounding function of τm,d, j . Denote it
by φm,d, j : π0Ch(t)→Q. Since τm,d, j is bounded, the cobounding function φm,d, j

is a quasimorphism.

Remark 3.5. Gambaudo and Ghys [2005] already constructed almost the same
quasimorphisms on the mapping class groups of pointed disks, called ω-signatures.
They calculated the value of their quasimorphisms for an element similar to

σ̃1σ̃2 · · · σ̃r−1 ∈ π0Ch(t)

in [Gambaudo and Ghys 2005, Proposition 5.2].

Remark 3.6. This construction is also similar to higher-order signature cocycles
in Cochran, Harvey and Horn’s paper [Cochran et al. 2012]. They considered von
Neumann signatures of surface bundles whose fibers are nonfinite regular coverings
on a surface with boundary.

Let us recall a natural homomorphism π0Ch(t)→ Mh defined by forgetting
symmetries of mapping classes. It maps a mapping class [ f ] ∈π0Ch(t) to [ f ] ∈Mh ,
and is injective as shown in Birman and Hilden [1973, Theorem 1]. In particular, if
we consider the case when m is even and the double covering p2 :6h→ S2, this
homomorphism induces isomorphism between π0Ch(t) and Hh . In this case, the
eigenspace V−1 coincides with H1(6h;C). Thus we have:

Remark 3.7. When m is even, φm,2,1 : π0Ch(t)→Q is equal to the Meyer func-
tion φh : Hh → Q on the hyperelliptic mapping class group, under the natural
isomorphism π0Ch(t)∼=Hh .

Lemma 3.8. For 1≤ j ≤ d − 1 and ϕ ∈ π0Cg(t),

φm,m,mj/d(ϕ)= φm,d, j (P(ϕ)).

Proof. Since H1(π0Cg(t);Q) is trivial, it suffices to show that

τm,m,mj/d(ϕ, ψ)= τm,d, j (P(ϕ),P(ψ)) for ϕ,ψ ∈ π0Cg(t).
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If f : E → P is an oriented 6g-bundle with structure group Cg(t), the induced
map f̄ : E/〈td

〉 → P is an oriented 6h-bundle with structure group Ch(t). If we
denote the monodromies of f along α and β by ϕ and ψ , the ones of f̄ are P(ϕ)

and P(ψ).
Let ω be the m-th root of unity exp(2π i/m), and let qd :6g→6g/〈td

〉 denote
the projection. To distinguish eigenspaces of H1(6g;C) and H1(6h;C) of the
action by t , we denote them by (Vg)

z and (Vh)
z instead of V z , respectively. The

projection qd induces the isomorphism H1(6g;C)
〈td
〉 ∼= H1(6h;C). Moreover we

have (Vg)
ωmj/d ∼= (Vh)

η j
. Hence it also induces a natural isomorphism between

H1(P; (Vg)
ωmj/d

) and H1(P; (Vh)
η j
), where (Vg)

ωmj/d
and (Vh)

η j
are local systems

coming from f and f̄ .
Let ã, b̃ be loops in 6g − {qi }

m
i=1. We may assume that qd(ã)∪ qd(b̃) has no

triple point. Then the intersection number [qd(ã)] · [qd(b̃)] in 6h coincides with
[q−1

d (qd(ã))] · [b̃] in 6g. Hence we have

m/d−1∑
i=0

[(tdi )∗ã] ·
m/d−1∑

j=0

[(td j )∗b̃] =
m/d−1∑

i=0

m/d−1∑
j=0

[(tdi−d j )∗ã] · [b̃]

=
m
d
[q−1

d (qd(ã))] · [b̃] =
m
d
[qd(ã)] · [qd(b̃)].

Therefore the isomorphism H1(6g;C)
〈td
〉 ∼= H1(6h;C) induced by the quotient

map qd :6g→6h preserves the intersection form up to constant multiple. Thus it
also preserves the intersection forms on H1(P; (Vg)

ωmj/d
) and H1(P; (Vh)

η j
), and

we obtain
τm,m,mj/d(ϕ, ψ)= Sign(H1(P; (Vg)

ωmj/d
))

= Sign(H1(P; (Vh)
η j
))

= τm,d, j (P(ϕ),P(ψ)). �

By Lemma 3.8, it suffices to consider the case when d = m. We shorten τm,m, j

and φm,m, j to τm, j and φm, j .

Lemma 3.9. φm, j (ϕ)= φm,m− j (ϕ).

Proof. By taking complex conjugates, we have an isomorphism i : V ω j ∼= V ωm− j
.

Moreover it induces the isomorphism i∗ : H1(P; V ω j
)∼= H1(P; V ωm− j

).
Let us denote the hermitian form on H1(P; V ω j

) by 〈 , 〉 j . By the definition
of the hermitian form, we have 〈x, y〉 j = 〈i∗x, i∗y〉m− j for x, y ∈ H1(P; V ω j

),
where z is a complex conjugate of z ∈C. Thus the signatures of the hermitian forms
〈 , 〉 j and 〈 , 〉m− j coincide, and the cobounding functions of τm, j and τm,m− j also
coincide. �
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4. Defects of homogeneous quasimorphisms

In this section, we will prove Theorems 1.3 and 1.6. On page 336, we give an
inequality between the defects of a quasimorphism and its homogenization when
the quasimorphism is antisymmetric and a class function (Lemma 4.1) and prove
Theorem 1.3(i). On page 337, we prove Theorem 1.3(ii) by giving a lower bound
on the defect of φm,m/2 : π0Cg(t)→ R, which is the cobounding function of the
2-cocycle τm,m/2. On page 337, we prove Theorem 1.6.

Proof of Theorem 1.3(i). Endo [2000, Proposition 3.1] showed that the Meyer func-
tion φg :Hg→Q satisfies the conditions in Lemma 4.1. The quasimorphisms φ̄m, j

also satisfy these conditions.
Turaev [1985] defined another 2-cocycle on the symplectic group. Endo and

Nagami [2005, Proposition A.3] showed that Turaev’s cocycle coincides with the
Meyer cocycle up to sign. Since Turaev’s cocycle is defined by the signature on
a vector space of rank less than or equal to m − 2. A similar argument shows
D(φm, j )≤ m− 2. Thus Theorem 1.3(i) follows from Lemma 4.1 below.

Lemma 4.1. Let G be a group, and φ : G→ R a quasimorphism satisfying

φ(xyx−1)= φ(y), φ(x−1)=−φ(x).

Then we have
D(φ̄)≤ D(φ),

where φ̄ is the homogenization of φ.

Proof of Lemma 4.1. Without loss of generality, we may assume that the quasimor-
phism φ : G→ R is antisymmetric:

φ(x−1)=−φ(x).

Otherwise pass to the antisymmetrization φ′ : G→ R defined by

φ′(x)=
φ(x)−φ(x−1)

2
,

which satisfies
D(φ′)≤ D(φ), and φ̄′ = φ̄.

For any x, y ∈ G, we have

φ([x, y])= |φ([x, y])−φ(y)+φ(y)|

= |φ(xyx−1 y−1)−φ(xyx−1)−φ(y−1)| ≤ D(φ).

Thus for any g ∈ [G,G],

|φ(g)| ≤ (2 cl(g)− 1)D(φ).
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As observed by Bavard [1991, Lemma 3.6],

cl(xn yn(xy)−n)≤
n
2
,

for every n ≥ 0. Therefore we have |φ(xn yn(xy)−n)| ≤ (n− 1)D(φ). Hence

|δφ̄(x, y)| = lim
n→∞

∣∣∣∣φ(xn)+φ(yn)−φ(xn yn)

n

∣∣∣∣
= lim

n→∞

∣∣∣∣φ(xn yn(xy)−n)

n

∣∣∣∣≤ D(φ). �

Proof of Theorem 1.3(ii). Let m be an even number greater than or equal to 4. By
Remark 3.7, we consider the Meyer function φg on the hyperelliptic mapping class
group Hg instead of φm,m/2.

Lemma 4.2 [Barge and Ghys 1992, Proposition 3.5]. For any A ∈ Sp(2g;Z),

Sign(〈 , 〉Ak ,A)= Sign
(
−J

k∑
i=1

(Ai
− A−i )

)
.

Let ci , d+i , and d−i denote the simple closed curves in Figure 7. For simplicity,
we also denote by ci , d+i , and d−i the Dehn twists along these curves.

To prove Theorem 1.3(ii), it suffices to show the following.

Lemma 4.3. δφ̄g(c2
2c2

4 · · · c
2
2g, d+1 d−1 d+2 d−2 · · · d

+
g d−g )=−2g.

Proof of Lemma 4.3. Since the pairs (ci , c j ), (d+i d−i , d+j d−j ), and (ci , d+j d−j )
mutually commute when i 6= j , the expression in the lemma equals

φ̄g(c2
2c2

4 · · · c
2
2g)+ φ̄g(d+1 d−1 d+2 d−2 · · · d

+

g d−g )− φ̄g(c2
2d+1 d−1 c2

4d+2 d−2 · · · c
2
2gd+g d−g )

=

g∑
i=1

(φ̄g(c2
2i )+ φ̄g(d+i d−i )− φ̄g(c2

2i d
+

i d−i )).

Hence it suffices to prove φ̄g(c2
2i )+φ̄g(d+i d−i )−φ̄g(c2

2i d
+

i d−i )=−2 for 1≤ i ≤ g.

d1
+

d1
c2 c2i−

di
+

di
− c2g

dg
+

dg
−

Figure 7. Curves in 6g.
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Since ρ(d+i )= ρ(d
−

i ), we have

φ̄g(c2
2i )+ φ̄g(d+i d−i )− φ̄g(c2

2i d
+

i d−i )

=− lim
n→∞

1
n

{
φg((c2

2i d
+

i d−i )
n)−φg((c2

2i )
n)−φg((d+i d−i )

n)
}

= lim
n→∞

1
n

n−1∑
k=1

{
τg((c2

2i d
+

i d−i )
k, c2

2i d
+

i d−i )− τg(c2i
2i , c2

2i )− τg((d+i d−i )
i , d+i d−i )

}
+ τg(c2

2i , d+i d−i )

= lim
n→∞

1
n

n−1∑
k=1

{
τg((c2

2i (d
+

i )
2)k, c2

2i (d
+

i )
2)τg(c2i

2i , c2
2i )− τg((d+i )

2i , (d+i )
2)
}

+ τg(c2
2i , (d

+

i )
2).

There exists a mapping class ψi such that ψi c2iψ
−1
i = c2 and ψi d+i ψ

−1
i = d+i

for i = 2, . . . , g. Since the Meyer cocycle satisfies the property

τg(xyx−1, xzx−1)= τg(y, z)

for x, y, z ∈Mg, we have

lim
n→∞

n−1∑
k=1

1
n
{τg((c2

2i (d
+

i )
2)k, c2

2i (d
+

i )
2)− τg(c2i

2i , c2
2i )− τg((d+i )

2i , (d+i )
2)}

+ τg(c2
2i , (d

+

i )
2)

= lim
n→∞

n−1∑
k=1

1
n
{τg((c2

2(d
+

1 )
2)k, c2

2(d
+

1 )
2)− τg(c2i

2 , c2
2)− τg((d+1 )

2i , (d+1 )
2)}

+ τg(c2
2, (d

+

1 )
2).

Let us consider the case when g = 1. Since ρ(c2
2)=

( 1
0

2
1

)
, ρ((d+1 )

2)=
( 1
−2

0
1

)
and ρ(c2

2(d
+

1 )
2)=

(
−3
−2

2
1

)
, we have

−J
n∑

k=1

(ρ(c2k
2 )− ρ(c

−2k
2 ))=

(
0 0
0 2n(n+ 1)

)
,

−J
n∑

k=1

(ρ(d+1 )
2k
− ρ(d+1 )

−2k)=

(
2n(n+ 1) 0

0 0

)
,

−J
n∑

k=1

(ρ((c2
2(d
+

1 )
2)k)− ρ((c2

2(d
+

1 )
2)−k))=

n∑
k=1

4k(−1)k
(
−1

1
1
−1

)
= {(−1)n(2n+ 1)− 1}

(
−1

1
1
−1

)
.

By Lemma 4.2 we obtain
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lim
n→∞

n−1∑
k=1

τg(c2k
2 , c2

2)

n
= lim

n→∞

n−1∑
k=1

τg((d+1 )
2k, (d+1 )

2)

n
= 1,(1)

lim
n→∞

n−1∑
k=1

τg((c2
2(d
+

1 )
2)k, c2

2(d
+

1 )
2)

n
= 0.(2)

When g ≥ 2, the same calculation also shows (1). It is an easy calculation to
show that

τg(c2
2, d+1 d−1 )= 0.

Therefore we obtain

φ̄g(c2
2i )+ φ̄g(d+i d−i )− φ̄g(c2

2i d
+

i d−i )=−2. �

In the same way as for (1), we have τg(si
0, s0)= 1. Hence we obtain

φ̄g(s0)=− lim
n→∞

∑n−1
i=1 τg(si

0, s0)

n
+φg(s0)=−1+φg(s0)

and
φ̄g(sh)= φg(s0).

By [Endo 2000, Lemmas 3.3 and 3.5], we have

φ̄g(ts0)=−
g

2g+ 1
, and φ̄g(tsh )=−

4h(g− h)
2g+ 1

.

Remark 4.4. By Theorems 1.3 and 2.4, φ̄g gives the lower bounds for sclHg (tsh )

( j = 0, . . . , g− 1) corresponding to ones given in [Monden 2012].

Remark 4.5. By Theorems 1.7 and 2.4 and Remark 4.4, we have sclM1(tc)=
1

12 .
Let ρ :M1 ∼= SL(2,Z)→ PSL(2,Z) be the natural quotient map. It is easily seen
that for all x ∈ M1, sclM1(x) = sclPSL(2,Z)(ρ(x)). Louwsma [2011] determined
sclPSL(2,Z)(y)= 1

12 for y = ρ(tc) .

Proof of Theorem 1.6. If x ∈Hg satisfies |φ̄g(x)| = D(φ̄g) and |φ(x)| ≤ D(φ) for
any homogeneous quasimorphism φ :Hg→ R, we obtain scl(x)= 1

2 by Bavard’s
duality theorem (Theorem 2.4). We will show that

x = c2g+8(d+2 d−2 · · · d
+

g−1d−g−1)
2(s1 · · · sg−1)

−1

satisfies this property.
Firstly we will prove

g−1∑
j=1

φ(s j )=

g∑
i=1

(φ(c2
2i d
−

i d+i )−φ(d
−

i d+i ))
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for any homogeneous quasimorphism φ :Hg→ R. By Lemma 2.8, we have

(d+1 c2d−1 )
4
= s1, (d+g c2gd−g )

4
= sg−1,

(d+i c2i d−i )
4
= si−1si (i = 2, . . . , g− 1).

Since c2i commutes with s j , (c2d−1 d+1 c2d−1 d+1 )
2
= s1, (c2i d−i d+i c2i d−i d+i )

2
= si−1si ,

and (c2gd−g d+g c2gd−g d+g )
2
= sg−1. By Lemma 2.6, c2i d−i d+i c2i commutes with

d−i d+i for i = 1, . . . , g, as is easy to check. Therefore (c2d−1 d+1 c2)
2
= s1(d−1 d+1 )

−2,
(c2i d−i d+i c2i )

2
= si−1si (d−i d+i )

−2, and (c2gd−g d+g c2g)
2
= sg−1(d−g d+g )

−2. These
equations give

2φ(c2
2d−1 d+1 )= φ(s1)− 2φ(d−1 d+1 ),

2φ(c2
2i d
−

i d+i )= φ(si−1)+φ(si )− 2φ(d−i d+i ),

2φ(c2
2gd−g d+g )= φ(sg−1)− 2φ(d−g d+g ).

Thus we obtain
g−1∑
j=1
φ(s j )=

g∑
i=1
(φ(c2

2i d
−

i d+i )−φ(d
−

i d+i )).

Secondly we will prove φ̄g(x)=D(φ̄g). The curves c, s1, . . . , sg−1, d+2 , d−2 , . . . ,
d+g−1, d−g−1 are mutually disjoint, and ci is conjugate to c. Hence, by Lemma 2.3(i)
and (ii), we have

φ(x)= (g+ 4)φ(c2)+ 2
g−1∑
i=2

φ(d+i d−i )−
g−1∑
j=1

φ(si )

=

g∑
i=1

(φ(c2
2i )+φ(d

+

i d−i )−φ(c
2
2i d
−

i d+i )).

In the proof of Lemma 4.3, we showed

g∑
i=1

(φ̄g(c2
2i )+ φ̄g(d+i d−i )− φ̄g(c2

2i d
−

i d+i ))=−2g =−D(φ̄g).

Thus we obtain |φ̄g(x)| = D(φ̄g).
Lastly we prove φ(x)≤ D(φ) for any homogeneous quasimorphism φ :Hg→R:

D(φ)≥ |δ(c2
2 · · · c

2
2g, d+1 d−1 · · · d

+

g d−g )|

=
∣∣φ(c2

2 · · · c
2
2g)+φ(d

+

1 d−1 · · · d
+

g d−g )−φ(c
2
2 · · · c

2
2gd+1 d−1 · · · d

+

g d−g )
∣∣

=
∣∣φ(c2

2 · · · c
2
2g)+φ(d

+

1 d−1 · · · d
+

g d−g )−φ((c
2
2d+1 d−1 ) · · · (c

2
2gd+g d−g ))

∣∣
=

∣∣∣∣ g∑
i=1

(φ(c2
2i )+φ(d

+

i d−i )−φ(c
2
2i d
+

i d−i ))
∣∣∣∣= |φ(x)|. �
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5. Proof of Theorem 1.7

Let c1, . . . , c2g+2 be nonseparating simple closed curves on 6g as in Figure 2 and
let φ be a homogeneous quasimorphism on Hg. For simplicity of notation, we write
ti instead of tci By ι= ι−1, we have t2

2g+1t2g · · · t2t2
1 = (t2g · · · t2)−1ι−1. Since each

of the two boundary components of a regular neighborhood of c2 ∪ c3 ∪ · · · ∪ c2g is
c2g+2 by Lemma 2.8, we have (t2g · · · t2)2g

= t2
2g+2. Note that this relation holds

in Hg. Therefore, by Definition 2.2 and Lemma 2.3, we have

(3) φ(t2
2g+1t2g · · · t2t2

1 )=−φ(t2g · · · t2)+φ(ι−1)=−
1
g
φ(t2g+2).

Applying Lemma 2.3(i) and 2.6(i), we can move the factors with single and double
underlines alternatively as follows.

φ(t2
2g+1t2g · · · t3t2t2

1 )= φ(t
2
1 t2

2g+1t2g · · · t3t2) (by Lemma 2.3)

= φ(t2
2g+1t2g · · · t3t2

1 t2) (by Lemma 2.6)

= φ(t2t2
2g+1t2g · · · t4t3t2

1 ) (by Lemma 2.3)

= φ(t2
2g+1t2g · · · t4t2t3t2

1 ) (by Lemma 2.6)

= φ(t2
2g+1t2g · · · t6t5t3t2

1 t4t2) (by Lemma 2.3 and 2.6)

= φ(t2
2g+1t2g · · · t6t4t2t5t3t2

1 ) (by Lemmas 2.3 and 2.6)

= φ(t2
2g+1t2g · · · t7t5t3t2

1 t6t4t2) (by Lemmas 2.3 and 2.6)

= φ(t2
2g+1t2g · · · t8t6t4t2t7t5t3t2

1 ) (by Lemmas 2.3 and 2.6)

= φ(t2
2g+1t2g · · · t9t7t5t3t2

1 t8t6t4t2) (by Lemmas 2.3 and 2.6)

...

= φ
(
(t2

2g+1t2g−1 · · · t5t3t2
1 )(t2gt2g−4 · · · t4t2)

)
.

From Definition 2.2 and Equation (3),

D(φ) ≥ |φ((t2
2g+1 · · · t3t2

1 )(t2g · · · t4t2))−φ(t2
2g+1 · · · t3t2

1 )−φ(t2g · · · t4t2)|

=

∣∣∣∣−1
g
φ(t2g+2)−φ(t2

2g+1 · · · t3t2
1 )−φ(t2g · · · t4t2)

∣∣∣∣,
where D(φ) is the defect of φ. From Lemmas 2.3, 2.5 and 2.6 we have

D(φ)≥
∣∣∣∣1gφ(t1)+ (g+ 3)φ(t1)+ gφ(t1)

∣∣∣∣= (2g+ 3+ 1
g
)|φ(t1)|.

By Theorem 2.4 we have sclHg (t1)≤
1

(2(2g+ 3+ 1/g))
. This completes the proof

of Theorem 1.7. �
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Remark 5.1. By a similar argument to the proof of Theorem 1.7, we can show that

sclMm
0
(σ1)=

1
2{m+ 1+ 2/(m− 2)}

for all m ≥ 4.

6. Calculation of quasimorphisms

In this section, we prove Theorem 1.1. To prove it, we perform a straightforward
and elementary calculation of the hermitian form 〈 , 〉σ̃ k ,σ̃ on the eigenspace V ω j

.
Let p : 6g → S2 be the regular branched m-cyclic covering on S2 with m

branched points as on page 333. Choose a point in p−1(∗), and denote it by ∗̃ ∈6g.
We denote by α̃i the lift of αi which starts at ∗̃. Note that α̃i t (α̃i+1)

−1 is a loop
in 6g while α̃i is an arc. We denote by ei (k) ∈ H1(6g;Z) the homology class
represented by tk(α̃i t (α̃i+1)

−1).

Lemma 6.1. The homology classes {ei (k)}1≤i≤m−2
0≤k≤m−2

form a basis of H1(6g;Z).

Proof. We use the Schreier method. Let T denote a Schreier transversal T ={αk
1}

m−1
i=0

and S a generating set S = {αi }
m−1
i=1 of π1(S2

− {qi }
m
i=1). Then the subgroup

π1(6g −{p−1(qi )}
m
i=1) is generated by

{(rs(rs)−1
| r ∈ T, s ∈ S} = {αk

1αiα
−k−1
1 }2≤i≤m−1

0≤k≤m−2
∪ {αm−1

1 αi }1≤i≤m−1.

By van Kampen’s theorem, the group π1(6g) is obtained by adding the relation
αm

i = 1 to π1(6g−{p−1(qi )}
m
i=1). Thus, the set {αk

1αiα
−1
i+1α

−k
1 }i,k , where from now

through the end of the proof we have 1≤ i ≤ m− 2 and 0≤ k ≤ m− 2, generates
the group π1(6g). This implies that {ei (k)}i,k is a generating set of H1(6g;Z).

By the Riemann–Hurwitz formula, H1(6g;Z) is a free module of rank equal to
2g = (m− 1)(m− 2), and this is equal to the order of the set {ei (k)}i,k . Therefore
the set {ei (k)}i,k is a basis of the free module H1(6g;Z). �

The intersection form and the action of σ̃i . Let j be an integer with 1≤ j ≤m−1.
Firstly we find a basis of V ω j

⊂ H1(6g;C) and calculate intersection numbers.

Lemma 6.2. The intersection numbers of {ei (k)}1≤i≤m−2
0≤k≤m−2

are

ei (k)·ei ′(k)=


−1 if i = i ′−1,

1 if i = i ′+1,
0 otherwise,

ei (k)·ei ′(k+1)=


−1 if i = i ′,

1 if i = i ′−1,
0 otherwise,

ei (k)·ei ′(k−1)=


−1 if i = i ′,

1 if i = i ′+1,
0 otherwise,

ei (k)·ei ′(k ′)= 0 if |k−k ′| ≥ 2.
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1 2

2l1l
0q

ml

m

Figure 8. The paths l1, l2, . . . , lm .

1 i+1
i

i+2 m
e (k)i

1 i i+2 m
e (k)i

e    (k+1)i+1

Figure 9. Left: the k-th copy. Right: the (k+ 1)-th copy.

Proof. We only prove the equality ei (k) · ei+1(k+ 1)= 1 since the other cases are
proved in the same way.

Let li be the paths as in Figure 8. Consider m copies of the 2-sphere cut along
the li , and number them from 1 to m. (For convenience, copy 1 will also be called
copy m+1.) Gluing the left-hand side of li in the k-th copy to the right-hand side of li

in the (k+1)-th copy for k=1, 2, . . . ,m, we obtain a closed connected surface home-
omorphic to 6g, and it is naturally a covering space on S2. As in Figure 9, the loops
representing ei (k) and ei+1(k+ 1) intersect once positively in the (k+ 1)-th copy.

Hence we have ei (k) · ei+1(k+ 1)= 1. �

For 1 ≤ i ≤ m− 2, we define wi =
∑m−1

k=0 ω
− jkei (k). Since tei (k) = ei (k + 1)

for 1 ≤ k ≤ m − 2 and ei (m − 1) = −
∑m−2

k=0 ei (k), we have wi ∈ V ω j
, and the

set {wi }
m−2
i=1 is a basis of V ω j

.

Lemma 6.3. The intersection numbers of {wi }1≤i≤m−2 are

wi ·wi ′ =


d(1−ω j ) if i = i ′+ 1,
d(−ω− j

+ω j ) if i = i ′,
d(ω− j

− 1) if i = i ′− 1,
0 otherwise.

Proof. By Lemma 6.2, we have

wi ·wi =

d−1∑
k=0

d−1∑
l=0

ω j (k−l)ei (k) · ei (l)= d(−ω− j
+ω j ),

wi ·wi+1 =

d−1∑
k=0

d−1∑
l=0

ω j (k−l)ei (k) · ei+1(l)= d(ω− j
− 1),
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and wi ·wk = 0 when |i − k| ≥ 2. �

Let σ̃ = σ̃1 · · · σ̃r−1. We next find eigenvectors in V ω j
relative to the action by σ̃ .

Lemma 6.4. Let i be an integer such that 1≤ i ≤ m− 1. Then we have

(σ̃i )∗el(k)=


el(k)+ el+1(k) if 2≤ i ≤ m− 1, and l = i − 1,
−el(k− 1) if l = i,
el−1(k− 1)+ el(k) if l = i + 1,
el(k) if l 6= i − 1, i, i + 1.

Proof. Recall that ei (k) is the homology class represented by the loop α̃k
1 α̃i α̃

−1
i+1α̃

−k
1 .

In the fundamental group π1(S2
−{qi }

m
i=1), we have

(σi )∗(αi−1α
−1
i )= αi−1α

−1
i+1 = (αi−1α

−1
i )(αiα

−1
i+1),

(σi )∗(αiα
−1
i+1)= αi+1(α

−1
i+1αiαi+1)

−1
= α−1

i+1(αiα
−1
i+1)

−1αi+1,

(σi )∗(αi+1α
−1
i+2)= (α

−1
i+1αiαi+1)α

−1
i+2 = α

−1
i+1(αiα

−1
i+1)αi+1(αi+1α

−1
i+2).

By lifting these loops to the covering space 6g, we obtain what we want. �

By Lemma 6.4, the matrix representations of the actions of {σ̃i }
m−1
i=1 on V ω j

with
respect to the basis {wi }1≤i≤m−2 are calculated as

(σ̃1)∗ =

−ω− j ω− j O
0 1 O
O O Im−4

 , (σ̃i )∗ =

Ii−1 O O
O L O
O O Im−i−4

 ,
(σ̃m−2)∗ =

Im−4 O O
O 1 O
O 1 −ω− j

 , (σ̃m−1)∗ =

(
Im−3 v

O −1+
∑m−2

k=1 ω
− jk

)
,

where

L =

1 0 0
1 −ω− j ω− j

0 0 1

 , v =

(
1, 1+ω− j , . . . ,

m−3∑
k=0

ω− jk
)T

.

Let r be an integer with 2≤ r ≤ m, and put

e′r (k)= [ã
k
1 ãr (ã1ã2 · · · ãr )

−1ã−1
1 (ã1ã2 · · · ãr )ã−k

1 ].

By Lemma 6.4, we have

σ̃∗ei (k)= ei+1(k), when 1≤ i ≤ r − 2,

σ̃∗er (k)=−e′r (k)+ er (k),

σ̃∗er−1(k)= e′r (k),

σ̃∗e′r (k)= e1(k− r + 1).
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The sum w′r :=
m−1∑
k=0

ω− jke′r (k) is contained in V ω j
. For i = 1, 2, . . . , r−2, we have

σ̃∗wi = σ̃∗

m−1∑
k=0

ω− jkei (k)=
m−1∑
k=0

ω− jkei+1(k)= wi+1,

σ̃∗wr−1 =

m−1∑
k=0

ω− jk(er−1(k)+ e′r (k))= wr−1+w
′

r ,

σ̃∗w
′

r =

m−1∑
k=0

ω− jke1(k− r + 1)=
m−1∑
k=0

ω− j (k+r−1)e1(k)= ω−(r−1) jw1.

Let ζ = exp(2π i/r) and vi =
r−1∑
k=1

ω(k−1) jζ−(k−1)iwk+ω
(r−1) jζ−(r−1)iw′r . Then

σ̃∗vi =

r−1∑
k=1

ω(k−1) jζ−(k−1)i (σ̃ )∗wk +ω
(r−1) jζ−(r−1)i (σ̃ )∗w

′

r

=

r−2∑
k=1

ω(k−1) jζ−(k−1)iwk+1+ω
(r−2) jζ−(r−2)iw′r +ω

(r−1) jζ−(r−1)iω−pjw1

= ω− jζ i
(r−1∑

k=1

ω(k−1) jζ−(k−1)iwk +ω
(r−1) jζ−(r−1)iw′r

)
= (ω− jζ i )vi .

Hence vi is an eigenvector with eigenvalue ω− jζ i with respect to the action by σ̃ .
Note that the subspace generated by {wi }

r−1
i=1 coincides with one generated by {vi }

r−1
i=1 .

Since σ̃ acts trivially on {wi }
m−1
i=r+1, they are also eigenvectors with eigenvalue 0.

Moreover the set {vi }
r−1
i=1 ∪ {wi }

m−2
i=r+1 is linearly independent.

Lemma 6.5. Let i, i ′ be integers such that 1≤ i ≤ r − 1 and 1≤ i ′ ≤ r − 1. Then
we have

vi · vi ′ =

{
8rd i sin π i

r
sin π j

m
sinπ

( i
r
−

j
m

)
if i = i ′,

0 otherwise.

Proof. Since the action of the mapping class group π0Cg(t) preserves the intersection
form,

vi · vi =

r−1∑
k=0

r−1∑
l=0

ω(l−k) jζ−(l−k)i (σ̃ k
∗
w1 · σ̃

l
∗
w1)

=

r−1∑
k=0

r−1∑
l=0

ω(l−k) jζ−(l−k)i (w2 · σ̃
l−k+1
∗

w1).
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Thus Lemma 6.3 implies

vi · vi = ω
(r−1) jζ−(r−1)i (w2 · σ̃

r
∗
w1)+ω

jζ−i (r − 1)(w2 · σ̃
2
∗
w1)+ r(w2 · σ̃∗w1)

+ω− jζ i (r − 1)(w2 ·w1)+ω
−(r−1) jζ (r−1)i (w2 · σ̃

−r+2
∗

w1)

= r{(ω− jζ i )w2 ·w1+ (ω
jζ−i )w2 ·w3+w2 ·w2}

= 8rd i sin π i
r

sin π j
m

sinπ
( i

r
−

j
m

)
. �

Calculation of ω-signatures and the cobounding functions φm, j . Lastly we will
calculate the hermitian form 〈 , 〉σ̃ k ,σ̃ and the ω-signature. We have already found
the set of eigenvectors {vi }

r−1
i=1 ∪ {wi }

m−2
i=r+1 with respect to the action by σ̃ which is

linearly independent. Since dim V ω j
= m− 2, we need to find another eigenvector.

Lemma 6.6.
rm∑
k=1

τ(σ̃ k, σ̃ )= rm− 2|mi − r j |.

Proof. We first consider the case when r j/m is not an integer. Put

β =

r∑
i=1

wi −
1
r

r∑
k=1

1
1−ω jζ−k vk .

The subspace generated by {vi }
r−1
i=1 and that generated by {wi }

r−1
i=1 coincide. Thus

the set {vi }
r−1
i=1 , β, {wi }

m−2
i=r+1 forms a basis of V ω j

when 1 ≤ r ≤ m − 2, and the
set {vi }

m−2
i=1 forms a basis of V ω j

when r = m− 1. We have

σ̃∗β =

r∑
i=2

wi −
1
r

r∑
k=1

ω jζ−k

1−ω jζ−k vk

=

r∑
i=2

wi +
1
r

r∑
k=1

vk −
1
r

r∑
k=1

1
1−ω jζ−k vk

=

r∑
i=1

wi −
1
r

r∑
k=1

1
1−ω jζ−k vk = β.

Note that β and {wi }
m−2
i=r+1 are in the annihilator of the hermitian form 〈 , 〉σ̃ k ,σ̃

since they have eigenvalue 1 with respect to the action by σ̃ .
By Lemma 4.2, we have

τ(σ̃ k, σ̃ )=

r∑
i=1

sign〈vi , vi 〉σ̃ k ,σ̃ =−

r∑
i=1

sign
(
(vi ·vi )

k∑
l=1

((ω− jζ i )l−(ω jζ−i )l)

)

=−

r∑
i=1

sign
(
(vi ·vi )(1−ω jζ−i )(1−ω− jζ i )

k∑
l=1

((ω− jζ i )l−(ω jζ−i )l)

)
.



STABLE COMMUTATOR LENGTH IN MAPPING CLASS GROUPS 347

By the equation

(1−ω jζ−i )(1−ω− jζ i )

k∑
l=1

((ω− jζ i )l − (ω jζ−i )l)

= 8i sin
(
−
π(k+1) j

m
+
π(k+1)i

r

)
sin
(
−
πk j
m
+
πki

r

)
sin
(
−
π j
m
+
π i
r

)
and Lemma 6.5, we have

τ((σ̃ )k, σ̃ )=

r−1∑
i=1

sign
(

sin kπ
( i

r
−

j
m

)
sin(k+ 1)π

( i
r
−

j
m

))
.

Since r j/m is not an integer, i/r − j/m is not zero. Thus we obtain

rm∑
k=1

τ((σ̃ )k, σ̃ )=

r−1∑
i=1

rm∑
k=1

sign
(

sin kπ
( i

r
−

j
m

)
sin(k+ 1)π

( i
r
−

j
m

))

=

r−1∑
i=1

(rm− 2|mi − r j |).

Next consider the case when r j/m is an integer and 1≤ r ≤ m− 1. Denote this
integer r j/m by i0. Then, the eigenvalue of vi0 is 1, and vi0 and {wi }

m−2
i=r+1 are in

the annihilator of 〈 , 〉σ̃ k ,σ̃ . If we put

β ′ =

r∑
i=1

wi −
1
r

∑
1≤k≤r
k 6=i0

1
1−ω jζ−k vk,

the set of the homology classes {vi }
r−1
i=1 , β ′, {wi }

m−2
i=r+1 forms a basis of V ω j

. We
have

σ̃ β ′ =

r∑
i=2

wi −
1
r

∑
1≤k≤r
k 6=i0

ω jζ−k

1−ω jζ−k vk

=

r∑
i=2

wi +
1
r

∑
1≤k≤r
k 6=i0

vk −
1
r

∑
1≤k≤r
k 6=i0

1
1−ω jζ−k vk

=

r∑
i=1

wi −
1
r
vi0 −

1
r

∑
1≤k≤r
k 6=i0

1
1−ω jζ−k vk = β

′
−

1
r
vi0 .

By Lemma 4.2,

〈β ′, β ′〉σ̃ k ,σ̃ = β
′
·

1
r

k∑
i=1

2ivi0 =
k(k+1)

r

r∑
i=1

wi · vi0 .
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Since the eigenvalues of {vi }
r−1
i=1 are different from 1, the intersection vi · vi0 = 0

for 1 ≤ i ≤ r − 1. Since the subspace generated by {wi }
r−1
i=1 and that generated

by {vi }
r−1
i=1 coincide, we also have wi · vi0 = 0. Thus we have

r
k(k+ 1)

〈β ′, β ′〉σ̃ k ,σ̃ = wr · vi0 = wr · (wr−1+w
′

r )

= wr ·

(
wr−1−

r−1∑
k=0

ω(k−r) jwk

)
= (1−ω− j )wr ·wr−1 = (1−ω− j )(1−ω j ) > 0.

Moreover since vi ·vi0 = 0, Lemma 4.2 implies 〈vi , β
′
〉σ̃ k ,σ̃ = 0 for 1≤ i ≤ r−1.

Therefore we have

rm∑
k=1

τ(σ̃ k, σ̃ )=

rm∑
k=1

( k∑
i=1

sign(〈vi , vi 〉σ̃ k ,σ̃ )+ sign(〈β ′, β ′〉σ̃ k ,σ̃ )

)

=

rm∑
k=1

( ∑
1≤i≤r−1

i 6=i0

sign
(

sin kπ
( i

r
−

j
m

)
sin(k+ 1)π

( i
r
−

j
m

))
+ 1

)

=

∑
1≤i≤r−1

i 6=i0

(rm− 2|mi − r j |)+ rm =
r−1∑
i=1

(rm− 2|mi − r j |).

In the case when r = m, the set {vi }
r−2
i=1 forms a basis of V ω j

. By a similar
calculation, we can also prove what we want. �

Lemma 6.7. For r = 2, 3, . . . ,m,

φm, j (σ̃ )− φ̄m, j (σ̃ )=
2
r

{(
r j
m
−

[
r j
m

]
−

1
2

)2

−
r2 j (m− j)

m2 −
1
4

}
.

Proof. τ(σ̃ k, σ̃ )=

r−1∑
i=1

sign
(

sin kπ
( i

r
−

j
m

)
sin(k+ 1)π

( i
r
−

j
m

))
.

Since we have τ(σ̃ k+rm, σ̃ )= τ(σ̃ k, σ̃ ),

φm, j (σ̃ )− φ̄m, j (σ̃ )=
1

rm

rm∑
k=1

τ(σ̃ k, σ̃ )=
1

rm

r−1∑
i=1

(rm− 2|mi − r j |)

= r − 1−
2

rm

( [ r j
m ]∑

i=1

(r j −mi)+
r−1∑
[

r j
m ]+1

(mi − r j)
)

=
2
r

{(
r j
m
−

[
r j
m

]
−

1
2

)2

+
r2 j (m− j)

m2 −
1
4

}
. �
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Proof of Theorem 1.1. Applying Lemma 6.7 to the case when r = m, we have

φm, j (σ̃1 · · · σ̃m−1)− φ̄m, j (σ̃1 · · · σ̃m−1)=
2 j (m− j)

m
.

Since

φ̄m, j (σ̃1 · · · σ̃m−1)=
1
m
φ̄m, j ((σ̃1 · · · σ̃m−1)

m)= 0,

we have

φm, j (σ̃1 · · · σ̃m−1)=
2 j (m− j)

m
.

Put ϕ= σ̃1σ̃3 · · · σ̃m−1, ψ= σ̃2σ̃4 · · · σ̃m−2 when m is even, and ϕ= σ̃1σ̃3 · · · σ̃m−2,
ψ = σ̃2σ̃4 · · · σ̃m−1, when m is odd. As we saw in Section 5, σ̃1 · · · σ̃m−1 is conjugate
to ϕψ . By direct computation, if (ϕ−1

∗
− I2g)x + (ψ∗− I2g)y = 0 for x, y ∈ V ω j

,
we have (ϕ−1

∗
− I2g)x = (ψ∗− I2g)y = 0. Hence we have τg(ϕ, ψ)= 0.

In the same way, for i = 1, 2, . . . , [(m− 1)/2], we have

τg(σ̃1σ̃3 · · · σ̃2i+1, σ̃2σ̃4 · · · σ̃2i )= τg(σ̃1σ̃3 · · · σ̃2i+1, σ̃2σ̃4 · · · σ̃2i+2)= 0,

τg(σ̃1σ̃3 · · · σ̃2i−1, σ̃2i+1)= τg(σ̃2σ̃4 · · · σ̃2i , σ̃2i+2)= 0.

Thus

φm, j (σ̃ )= (r − 1)φm, j (σ̃1)=
r − 1
m− 1

φm, j (σ̃1 · · · σ̃m−1)=
2(r − 1) j (m− j)

m(m− 1)
.

Hence we obtain

φ̄m, j (σ1 · · · σr−1)= φ̄m, j (σ̃ )

= φm, j (σ̃ )− (φm, j (σ̃ )− φ̄m, j (σ̃ ))

=−
2
r

{
jr(m− j)(m− r)

m2(m− 1)
+

(
r j
m
−

[
r j
m

]
−

1
2

)2

−
1
4

}
. �

By the values of φ̄m,1, we see:

Remark 6.8. Let r be an integer such that 2≤ r ≤ m. Then

φ̄m,1(σ̃1 · · · σ̃r−1)= 0.

However we do not know whether the quasimorphism φ̄m,1 is trivial or not.
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