Vol. 273, No. 1, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Vassiliev invariants of virtual Legendrian knots

Patricia Cahn and Asa Levi

Vol. 273 (2015), No. 1, 21–46
Abstract

We introduce a theory of virtual Legendrian knots. A virtual Legendrian knot is a cooriented wavefront on an oriented surface up to Legendrian isotopy of its lift to the unit cotangent bundle and stabilization and destabilization of the surface away from the wavefront. We show that the groups of Vassiliev invariants of virtual Legendrian knots and of virtual framed knots are isomorphic. In particular, Vassiliev invariants cannot be used to distinguish virtual Legendrian knots that are isotopic as virtual framed knots and have equal virtual Maslov numbers.

Keywords
Virtual knot, Legendrian knot, Vassiliev invariant
Mathematical Subject Classification 2010
Primary: 57M27
Milestones
Received: 28 May 2013
Revised: 15 September 2013
Accepted: 23 September 2013
Published: 6 December 2014
Authors
Patricia Cahn
Department of Mathematics
University of Pennsylvania
David Rittenhouse Lab
209 South 33rd Street
Philadelphia, PA 19104-6395
United States
Asa Levi
Department of Mathematics
Dartmouth College
6188 Kemeny Hall
Hanover, PA 03755-3551
United States