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WITH INVERSE-SQUARE POTENTIAL

CHANGXING MIAO, JUNYONG ZHANG AND JIQIANG ZHENG

We consider maximal estimates for the solution to an initial value problem
of the linear Schrodinger equation with a singular potential. We show a
result about the pointwise convergence of solutions to this special variable
coefficient Schrodinger equation with initial data uyg € H* (R") for s > %
or radial initial data ug € H*(R") for s > % and that the solution does not

converge when s < %.

1. Introduction and statement of main result

We study the maximal estimates for the solution to an initial value problem of the
linear Schrédinger equation with an inverse square potential. More precisely, we
consider the Schrodinger equation

10— Au+ —u=0 (t,x) € RxR"\ {0}, a>—(n—2)%/4,
(1-1) | x|
u(x,0) =ug(x).

The scale-covariance elliptic operator P, := —A + a/|x|? appearing in (1-1)
plays a key role in many problems of physics and geometry. The heat and wave
flows for the elliptic operator P, have been studied in the theory of combustion
(see [Vazquez and Zuazua 2000]) and in wave propagation on conic manifolds
(see [Cheeger and Taylor 1982]). The Schrodinger equation (1-1) arises in the
study of quantum mechanics [Kalf et al. 1975]. There has been a lot of interest
in developing Strichartz estimates both for the Schrodinger and wave equations
with the inverse square potential; we refer the reader to [Burq et al. 2003; 2004;
Planchon et al. 2003a; 2003b; Miao et al. 2013]. However, as far as we know, there
are few results about the maximal estimates associated with the operator P,, which
arises in the study of pointwise convergence problem for the Schrédinger and wave
equations with the inverse square potential. In this paper, we aim to address some
maximal estimates in the special settings associated with the operator P,. As a
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direct consequence, we obtain the pointwise convergence result for uy € H*(R")
with s > %

In the case of the free Schrodinger equation without potential, i.e., a = 0, there
is a large amount of literature on developing maximal estimates for its solution,

which can be formally written as

u(t, x) = e Bug(x) = / AmICE—ED g (6) de
Rn

When n = 1, Carleson [1980] proved that the convergence result holds in the sense
that lim;_o u(z) = ug for a.e. x when ug € H%(R) with s > %. Dahlberg and Kenig
[1982] showed that the result is sharp in the sense that the solution does not converge
when s < %. When n = 2, Sjolin [1987] and Vega [1988] independently proved
convergence results when ug € H*(R") with s > % It follows from the construction
of [Dahlberg and Kenig 1982; Vega 1988] that the solution does not converge when
s < %. When n = 2, Bourgain [1995] showed that there is a certain s < % such
that the convergence result holds, and this result was improved by Moyua, Vargas
and Vega [Moyua et al. 1996]. Having shown the bilinear restriction estimates for
paraboloids, Tao and Vargas [2000] and Tao [2003] showed convergence for s > ;—;
and s > % respectively. This was improved further to s > % in [Lee 2006; Shao
2010]. Very recently, Bourgain [2013] made some progress in high dimension n = 2
to show that the convergence result holds for s > % — ﬁ when 7 = 1 and that the
convergence result needs s = (n —2)/(2n) when n = 5.

In the situation when a # 0, (1-1) can be viewed as a special Schrodinger
equation with variable singular coefficients. The potential prevents us from using
the Fourier transform to give the expression of the solution. With the motivation of
regarding the potential term as a perturbation on angular direction in [Burq et al.
2003; Planchon et al. 2003b; Miao et al. 2013], we express the solution by using
the Hankel transform of radial functions and spherical harmonics. Instead of the
Fourier transform, we utilize the Hankel transform and modify the argument of
[Vega 1988] to show that the pointwise convergence result holds when the initial
data uy € H*(R") for s > %, or when radial initial data uy € H*(R") for s > %,

1

and that the solution does not converge when s < 4.

Let u be the solution to (1-1); we define the maximal function by

(1-2) u*(x) = sup |u(x,1)|.
|t|>0

Our main theorems are the following.
Theorem 1.1. Let B > 1,n =2 and s > L. Then

dx
(1-3) / ()2 ————— < Clluol?rsiom.
Rnl (x)] 01 )P [0l grs
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As a direct consequence of Theorem 1.1, we have:

Corollary 1.1. Let ug € H*(R") with s > 1 and n = 2. Then

(1-4) lim u(t, x) = up(x), a.e x e€R".
t—0

Theorem 1.2. Let B" be the open unit ball in R". Assume that there exists a
constant C independent of ug such that

(1-5) / ¥ ()P dx < ClluolFps@my Sfor all uo(x) € H*(R).
Bn
Then s = %.
With this in mind, Theorem 1.1 is far from being sharp. Assuming that the initial
data possesses additional angular regularity, we have:

Theorem 1.3. Let B" be the open unit ball in R" and € > 0. There exists a constant
C independent of ug such that

(1-6) [ wroPasCluol
Bn 4 2

H*H,

where for s, s’ =0,
HgHg = {g: ”g”HSHS’ = “(I_AG)T((I_A)ig)HLZ R+;L2(sn—1)) < OO}
rite rn—1gr e

Here Ag denotes the Laplace—Beltrami operator on S~ 1.

Remark 1.1. i) This result implies that the pointwise convergence of solutions to
(1-1) holds for radial initial data ug € H*(R") with s > %.

ii) This result is an analogue of [Cho et al. 2006, Theorem 1.1]. We remark that
the parameter € there should be corrected to € > % rather than € > 0. Thus, we
generalize and improve the result of Cho et al. by making use of a finer result
proved in [Gigante and Soria 2008].

Now we introduce some notation. We use A < B to denote the statement that
A < CB for some large constant C which may vary from line to line and depend on
various parameters; and similarly use 4 < B to denote the statement A < C~! B.
We employ A ~ B to denote the statement that A < B < A. If the constant C
depends on a special parameter other than the above, we shall denote it explicitly by
subscripts. We briefly write 4 +¢ as A+ or A—e€ as A— for 0 < € < 1. Throughout
this paper, pairs of conjugate indices are written as p, p’, where 1/p+1/p’ =1
with 1 < p < oo.

This paper is organized as follows. In Section 2, we mainly revisit the properties
of the Bessel functions and the Hankel transform associated with —A + a/|x|?.
Section 3 is devoted to the proofs of the theorems.
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2. Preliminaries

We list some results about the Hankel transform and the Bessel functions and then
show a characterization of the Sobolev norm in the Hankel transform version.

We begin by recalling the expansion formula with respect to spherical harmonics.
For details, we refer to [Stein and Weiss 1971]. For the sake of convenience, let

(2-1) E=pw and x=rf withw,0eS" L

For any g € L?(R"), the expansion formula with respect to the spherical harmonics
yields
oo d(k)

g) =D aru(r)Ye(8),

k=0 (=1
where
Yo Yedio

is the orthogonal basis of the space of spherical harmonics of degree k on "1,
called %k, having dimension

2k+n—-2

d () = =

Clody = (2.

We remark that for n = 2, the dimension of % is independent of k. Obviously, we
have the orthogonal decomposition

o0
LA(s"Y =Pt
k=0
By orthogonality, it gives
(2-2) ||g(x)”L(3(§n—l) = ||ak,€(")”512(’€-
From —Ag Yy ¢(0) = k(k +n—2)Yy ¢(0), the fractional power of 1 — Ay can be

written explicitly [Machihara et al. 2005] as

oo d(k) .
(2-3) (1=2g)2g(x) =Y Y (1 +k(k+n—2)2aye(r) Yy (0).
k=0 (=1

We will need the Fourier transform of ag ¢(r)Yy ¢(6). Theorem 3.10 of [Stein
and Weiss 1971] asserts the Hankel transform formula

oo d(k)

(o,¢]
N . _n—2 n
2-4) g(,oa))fvg E zkYk,g(a)),o 2/0 Jk+%(2ﬂi’/0)ak,£(’”)”2d”-
k=0 (=1
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Here the Bessel function Ji () of order k is defined by the integral

Lyk L _
Ji(r) = L[ e’”(l—sz)Zleds withk>—% and r > 0.
T(k+Hra@) J-

A simple computation gives the rough estimates

Crk 1
(2'5) |Jk(r)| < k 1 1 1 + 1)
2T (k+5)T(3) k+ 5
where C is an absolute constant. This estimate will be mainly used when r < 1.
Another well-known asymptotic expansion for the Bessel function is

/2 .2 4 -3
(2-6) Jr(r)y=r 2\/;005(1’ 5 4)—|—0k(r 2) asr — o0,

but with a constant depending on k (see [Stein and Weiss 1971]). As pointed out in
[Stein 1993], if one seeks a uniform bound for large » and k, the best one can do is
|Je(r)| < C r=%. One will find that this decay doesn’t lead to the desired result.

We now recall the properties of Bessel function J (r) in [Stein 1993; Stempak
2000].

Lemma 2.1 (asymptotics of the Bessel function). Assume that k € N and k > 1.
Let Ji (r) be the Bessel function of order k defined as above. There exist a large
constant C and small constant ¢ independent of k and r satisfying these conditions:

e Whenr < %,

2-7) | (r)| < Ce¢k+r),

. When%SrSZk,

(2-8) 1T ()| < Ck™3 (k™3 |r —k| + 1)73.

o Whenr = 2k,

(2-9) Je(r) =172 Y ag(r ket + E(r.k),
+

where |a+(r, k)| < C and |E(r, k)| < Cr~—L.
As a consequence of Lemma 2.1, we have:

Lemma 2.2. Let R > 1. There exists a constant C independent of k, R such that

2R
(2-10) f |Je ()| dr < C.
R
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Proof. To prove (2-10), we write
2R
[ inera= [ nora s [neres [ gope
R 11 12 13

where I; = [R,2R]N[0,4], I, = [R,2R]N [£,2k] and I; = [R,2R] N [2k, o0].
By (2-7) and (2-9), we have

(2-11) / [T ()2 dr < c[ e~ dr < Ce R,
I I
and
(2-12) / |Ji(r)|?dr < C.
I3

On the other hand, one has by (2-8)

/ 1T (1) 2dr < c/ K31+ k73 r—k|)"2dr < C.
[5,2k] [%,2k]

Observing that [R,2R] N [k, 2k] = @& unless R ~ k, we obtain

(2-13) / |Jk(r)]?dr < C.
I,
This together with (2-11) and (2-12) yields (2-10). O
For simplicity, we define
2-14) u(k) = ”2;2 4k and v(k) =Vl +a witha>—(n—2)%/4.

We sometime write v instead of v(k). Let f be a Schwartz function defined on R”.
We define the Hankel transform of order v by

2-15) 0. 11€ = [ 00T 1) o ar

where p = €], w = &/|&| and J,, is the Bessel function of order v. In particular, if
the function f is radial, then we have

2-16) 0= [ 00T o) 3
0o d(k)
If f(x)= > Y ape(r)Yge(0), it follows from (2-4) that
k=0 (=1
A 0o d(k)
(2-17) FE =Y 2mi* ¥ () (H oy an.e) ().

k=04{=1



MAXIMAL ESTIMATES FOR SCHRODINGER WITH INVERSE-SQUARE POTENTIAL 7

The following properties of the Hankel transform are obtained in [Burq et al.
2003; Planchon et al. 2003b].

Lemma 2.3. Let ¥, be as above and set

—1 2
Ay o= =07 =20, + [V — (5 ) |
() %6, =%,
(ii) 9, is self-adjoint, i.e., ¥, = ¥}
(iii) ¢, is an L? isometry, i.e., ||?€v¢||L§ = ”¢”L§'
(iv) %, (Avp)(E) = [E[*(Hop) (§), for ¢ € L.

We next recall an almost orthogonality inequality. Denote by P; and f’] the
usual dyadic frequency localization at |£| ~ 2/ and the localization with respect to
(— A+a/|x|2)2 We define the projectors Mjj = P; PJ/ and Njj = PJ Pj:. More
precisely, let f be in the k-th harmonic subspace; then

Pif =HpuoBiHugy S and  Pj f =%, Hoh) /-
where (&) = B(27/ |£]) with B € C°(R™) supported in [, 2].

Lemma 2.4 (almost orthogonality inequality [Burq et al. 2003]). Let f € L*(R").
There exists a constant C independent of j, j' such that

(2-18) 1M f 2@y ING i 2@y < €27V £l 2,
1
where e < 1+ min{%, (% —i—a)z}.
As a consequence, we have:

Lemma 2.5. Let f € L2(R") be given by

oo d(k)

S =D ar e (r) Y (6).

k=04{=1

1

Thenfor0 <s <1 —i—min{%, (% +a)7} and s’ =0,

oo d(k)

@19) 3530 MP AR [beex (G0 T 13 ~ 1S gy s

k=0(¢{=1Me2?
where by ¢ (p) = (¥, yak,¢)(p) and x € Cg°(R") such that supp x C [% 1].
Proof. Note that —AgYy o = k(k +n—2)Yj 4. By Lemma 2.3, we have
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oo d(k)

2s’ 2 2
1 Vg0 g ~ ;;aw«) lare@Nzz | iy Ve Ol
oo dk)

~ 2 20+ bz gy

k=0/{=1

By (2-3), it suffices to show (2-19) with s’ = 0. By Lemma 2.3, we have

|bx, e(,O)X( Pz HLz = HX )3 [ Y1 (O)a ¢ ()] (S)HLz
= | %[ x (M)%v(Yk,l(e)ak,é NE]] L2

This yields, by letting j =log, M,

ku E(P)Xk)p”zl HLZ = H [%“XH)%V](Ykl(e)ake(r))HLz
= | P (Yk,1(O)ar,e(r) | 12

Let g ¢(x) = Yi 1(8)ak ¢(r) and Pj = Pj_y + Pjs + Pjsy1. We have by the
triangle inequality and Lemma 2.4

oo d(k)
LHS of (2-19)= > Y Y 22| Pigiy Hii
k=0(=1jez
oo d(k)
S Z Z 222S1(ZHPJPJ PJ’gHHLz)
k=0{=1 jezZ
oo dk)

<Y (T

k=0{=1jeZ

2
Pirgkelpz) -

1
where s <€ < 1 + mm{”22 (("_42)2 +a)?}. Let 0 < ¢; < 1 be such that

€, := € — €1 > s; then the LHS of (2-19) is bounded above by

oo d(k)
C Z Z Zzzjs 22—262“ —J |||Pj’gk elle(Rn) 22—261“ —J'l
k=0{(=1jeZ
oo dk)
<C Z Z Zzzj’s Zzzjsz—zezljl ||Pj’gk,€||iZ(Rn)
k=0{=1 j’/ Jjez
oo d(k)

<SCY Y Y 2 Pigkally gy

k=0{=1 j’
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By the definition of P, Lemma 2.3 and (2-17), we have

oo d(k)
2j’s P ns1 )2
LHS of (2-19) < CZ2 3 “X(y,)[%ﬂ(k)ak,e](p)p 2 .
j’ k=0+{=1
. oo d(k) 2
=Y 2 () X0 D 2wt o an, (o) Ve (@)
Iz k=0 {=1 L2®")
y NP
=y 2|y (5) /| ~ 1S Wy
,.Z, X577 ) | gy ~ 1 Vs
We can use a similar argument to prove
LHS of (2-19) = c|| |3,
This concludes the proof of Lemma 2.4. O

3. Proof of the main theorems

In this section, we first use the spherical harmonic expansion to write the solution
as a linear combination of products of the Hankel transform of radial functions and
spherical harmonics. We prove the main theorems by analyzing a property of the
Hankel transform. The key ingredients are to use the stationary phase argument
and to exploit the asymptotic behavior of the Bessel function.

The expression of the solution. Consider the following Cauchy problem:
i0;u—Au+—u=0,
x|
u(x,0) =ug(x).

(3-D

We use the spherical harmonic expansion to write

oo d(k)

(3-2) wo(x) =Y _ > " ap ()Y e(0).

k=0 {=1

Let us consider (3-1) in polar coordinates. Write v(z,r, ) = u(¢,r6) and g(r, 0) =
ug(rf). Then v(t,r, 0) satisfies

(33) [0;0—0,p0— -
v(0,r,0) =g(r,0).
By (3-2), we have

n—1

1 a
arv—r—zAgv + r—zv =0,

oo d(k)

g(r.0) =Y "> "ay ,(r)Y(0).

k=0{=1
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Using separation of variables, we can write v as a linear combination of products
of radial functions and spherical harmonics:

oo dk)

(3-4) V(6,1 0) =D vt 1) Yo (6),

k=0 {=1
where vy ¢ is given by

. -1 k(k+n-2
{l BrVk ¢ — Brrvp g — . Oy Vk,e + WUH =0,

vk, (0,7) = ag ,(r)

foreach k,€ € N, 1 < £ < d(k). Then we can rewrite the above by the definition
of A, k) as

0 A =0,
(3-5) {l 1kt + _v(l(;)vk,ﬁ
Vk,e(0,7) = ak’((r)-

Applying the Hankel transform to (3-5), by Lemma 2.3(iv), we have

LY 2050 =0,
(3-6) {i Ukt T 0"V
Uk,¢(0, p) = bk’g (p),
where
(3-7) Ukt (1, p) = (Hovr,0) (1, p), bR 4 (p) = (Hva} ) (p).

Solving this ODE and inverting the Hankel transform, we obtain

o
_n=2 ~ _
Uk,Z(l’V)=/0 (rp) ™ 2 Ty (r) i (1. p)p" " dp
*© —n>2 itp?10 n—1
=), (rp)™ 2 Jyey (rp)et™ by ((p)p" " dp.
Therefore we get

(3-8)  u(x,t) =wv(t,r,0)
o d(k) o
=3 Y Yee® [ 00 oG 7 b (01" 0
k=0 £=1 0
o d(k)
=Y Vi) [e””zb,?,g(p)](r).

k=04{=1
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Proof of Theorem 1.1. By the Sobolev embedding it R®)N Hat (R) — L°°(R),
it suffices to show:

Proposition 3.1. Ler v > 4 — B 7 and B = 1+ be such that

B {2 (M 5}
2u 1+2<1+m1n > 7] +a) .

There exists a constant C independent of uqy such that

dr dx
3-9 9% 2
(3-9) / /I u(x, )| Tk |)’3 Clluol? RS Y.

Proof. By the Plancherel theorem with respect to time ¢, we obtain

r“/ e 1 Ty(x, 1) dt
R

Using (3-8), this is bounded above by

_L,Ot
Rn—i—l

2 drdx

R JR

2

oo d(k)
23 tie® / [ (10)~" T 7P IB (o) " dp i
k=0 £=1

drdx
X—
(1+[xD?
oo d(k) 2
S Y v / ()" Ty (1)L ()" 8(x — p?)dp
R k=0 (=1
dr dx
X—
(14 [x])?
oo | 00 d(k) 2
/ / 3N V@D Joay(rPIBE ((VP)PT 2
k=0 {=1
dodx
X —7.
(1+xD?
By orthogonality, therefore, the LHS of (3-9) is
oo dk) 2 dpr” —1qr
sy [ P23 o) "% T b (00" 22 2
k=0{=1 I+ )

Let x be a smoothing function equals 1 in [1, %] and vanishes outside [%, 2]. For
our purpose, we make a dyadic decomposition to obtain
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LHS of (3-9)

Yy [

k=04{4=1Me2Z

2

2a+2(r,0) = Jv(k)(rp)bke(p)p (ﬁ)

"~ ldrdp
X —_—
0o d(k) (1+1)P
< Z Z Z M2(n—2+2a+%)+1—n

k=0{=1Me2” =1

drdp
\(rp) 7 u<k>(rp)bk¢(Mp)x(p>)

I+

d(k)
< i Z Z Z M—2t4a pn—1

k=04£=1 Me2%2Re2”
dr dp

2R

o R N e P e 2
M

Define

2R poo Cn—2 drd
Gre® ) = [ [ oo™ 5 S vobh Moo L
R Jo ’ I+ 37

Proposition 3.2. (1) If R < 1, then
2

Gru(R.M) S R2v()—n+3 5 r—n min{l, (%)B} Hblg,e(/")X(ﬁ)p p

(2) If R > 1, then

L2

M 2

Gro(R, M) < min{l, (?)B}R_(”_Z)M_”

k,g(p)x(ﬁ)p%

Proof. (1) Since p~ 1, we have rp < 1. By the property (2-5) of the Bessel function,
we obtain

2R poo dr
Gro(R,M 5[ / do————
kit ) R Jo '0(1 + 47)8

g .
< ROy min1, (V5 xbipe" |

(2) Since p ~ 1, we have rp > 1. We estimate

L2

(rp)*® (rp)~"% ’

2O (k) + HT(})

by.o(Mp)x(p)

(3-10) G (R, M)

_(n2) fee) 0 ) 2R 2 dr
<20 [l oo [ o)

——dp.
A+
Subcase (i): R < M. Noting that p ~ 1, we obtain by Lemma 2.2
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2R 5 dr 2R 5
3-11 / J r _ 5/ J r dr <1.
(3-11) . [ o) (rp)] G+ 208~ Jx [ o) (rp)]

Subcase (ii): R > M. Noticing that p ~ 1 again, we obtain by Lemma 2.2

2R 2R
dr M\ MNP
- 27 < (22 2ar< (£
(3-12) [R [ Tu0 )| (lﬂ,d)ﬂN(R)fR oy PP dr < () -

Putting (3-11) and (3-12) into (3-10), we have
. MNP i) [ 2
Geo(R. M) 5 minf1, (S0)' R0 [ o oo 0o

. M B —(n—2 — P n=1|2
<l (2o o)

Thus we have proved Proposition 3.2. O

Now we return to proving Proposition 3.1. By Proposition 3.2, we show

Jo s 0 G

oo d(k) B
SEY Y X (wrteRe® 0wy (Y]
k=0 {=1Me2?{Re2%:R<1} 0 R 0 n—1 .2
<8R ox( )05 1)

oo d(k)

Y MRTHERRR (o (45)e"E e

k=0{=1Me2Z{Re2Z:R>>1}
From = 1+, one has

S el (4 o

Me2Z {Re2Z:R<1}

< 3 MR ()0 | e

Me2?
Sinceaz%—g,we have by Lemma 2.5
% (x, Y idffz MA24B (50 () (£ "%
/ f (1+]x])B ”k — L H kot 1P X(M)’o L2
< Clluol? O

fe-1+4 @)

Finally, we apply Proposition 3.1 with o« = %—k anda = %— to prove Theorem 1.1.
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Proof of Theorem 1.2. We now construct an example to show Theorem 1.2. The
main idea is the stationary phase argument. By (3-8), we recall

oo d(k) o
G-13) ux)=2, ) Ykl((’)/ (r0)™"%" Ty (rp)e™ ™ bY 1 (0)p" " dp,
k=0 £=1 0
where
oo d(k)
b o (p) = (pag )(p). uo(x)=ue(r6) => Y af ,(r) Y (0).
k=0 {=1

In particular we choose u(x) to be a radial function such that (¥, )uo)(§) =
X (I&]), where x ; is a smooth positive function supported in J (to be chosen
later) and N >> 1. Then

*® _n=2 02 _
(3-14) u(x,t) = /0 (rp)” 2 Ju)(rp)e' ™ x n(p)p" ' dp.
Recalling the asymptotic expansion of the Bessel function,
-1 /2 vw  w _3
Jy(r)y=r"2 ;cos(r—T—Z)—i—Ov(r 2) asr — o0,

with a constant depending on v (see [Stein and Weiss 1971]), we can write

T

o0 — 7 v 7 Vi T ;
u(x,t) =Cy /0 (rp)—%(el(rp—T—z) _e—,(rp—T—z))eltpsz(p)pn—l dp

© =2 Z3\ 2 _
+C”/o (rp) " 2 Ou((rp)™2)e"™ xn (p) 0"~ dp.
Let us define
i+ * —n=L i(—rp+tp?) n—1
(3-15) Ii(r)=Che' 274 , (rp)~ 7 e xn(P)p" " dp,
—i(E+7) > —n=Ll i(rp+tp?) n—1
(3-16) L(r)=Ce 273 | (rp)” 2 e xn(P)p" " dp,
> —n=2 -3\ itp? n—1
(3-17) I3(r) =G, i (rp)~ 2 Ou((rp)~2)e'™ xn (p)p" ' dp.
Let ¢, (p) = tp? — rp. The fundamental idea is to choose sets Jy and E C B”, in

which #(r) can be chosen, so that d,¢,(p) = 2t(r)p — r almost vanishes for all
p€Jnyandr € {|x|:x € E}. To this end, we choose

. 1 1
E={x: 10 <Ix|<g} and Jy=[N,N+2N2].
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Choose 1(r) = r/(2(N + +/N)); then 3,¢, (N + N%) — 0. Then
1,(r) = Cpet CF D) pitr N+V/N)

/ T Y il bl
0 2(N ++/N)

xn ()" dp.

Observe that

o (N + V/N)?

o0
n—1
G189 heNze [ 07w Y (05" dp.
" Jo YN+ VN) N
Moreover, there exists a small constant ¢ > 0 such that
cos 1P~V + NP
2(N + +/N) “
— (N + V/N)P?
since rlp— (N + )l <Z forallr e [Lo é], N > 1 and p € Jy. Therefore,
2(N++/N) 4
_n=1 [ n—1 _n=1 _n
(3-19) [ ()| = cvr™ 2 xn(Pp T dp=zcyr™ 2 N2,
0

On the other hand, let ¢,(p) = tp? + rp, t = t(r) as before; then 3,0, (p) =
21(r)p+r = 555 when p € Jy and r € [135. |- Integrating by parts, we obtain

(3-20) L)< Cr iN"T.
Obviously, we have
(3-21) 11(r)| < Cor 2N "2,

Combining (3-19)~(3-21), we get for N > 1 and r € [145. %]
(3-22) u*(x)=cN?2.
On the other hand, let j, = log, N'; we obtain by the definitions of P; and P;
luo (o) I3rs =Y 225 Piuoll7 = Y 2% P Pjguol|7 -
j j

1
By Lemma 2.4, we choose s <€ < 1+ mln{”zz, ((”_2)2 +a)?} to obtain

||u0(x)||%1c < C2221S 2el|j— JO|||u0||2
J

— CNZSZZZJS 2€|]|||X ” _ N2s+n—f
J

(3-23)
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Thus, by (1-5) and (3-22), we must have 5 > 1.

Proof of Theorem 1.3. Even though there is a loss of the angular regularity in
Theorem 1.3, the result implies the sharp result for the radial initial data. The key
ingredient here is the following lemma proved in [Gigante and Soria 2008].

Lemma 3.1. Let J,(s) = 52 Jy(s) with s = 0, and let

(1P
(3-24) Tvg(r)=/—(rp)g(p)dp
I ,04
Then
1
(3:-25) /0 Tog(r)Pdr < C /1 12(0)2dp.

where the constant C is independent of g € L*(I), of the interval I, of the measur-
able function t(r) and of the order v = 0.

We also can follow the Carleson approach [1980] to linearize our maximal
operator, by making ¢ into a function of r, #(r). By the triangle inequality, we have
the estimate

lu* ()| 2B

oo d(k)
_n—=2 i 2 _
<C) >, f (D)™ Ly (rp)e! DB ((p)p" dp|
k=0 4{=1 Lrn—ldr
Let g(p) = b9 ,(p)p"7 +3; then
oo dk) || oo . .
(3-26) [[u*(O)ll2my S YD [ Togoy (rp)e’ P p~a g (p)dp :
k=0 {=1 LE([0,1])

Using Lemma 3.1, we obtain

oo d(k)

(3-27) lu* () p2egmy SC DD bR o) T z HLZ(R"')
k=0 (=1

Let o = (n—1)/2 + € with € > 0, we have by the Cauchy—Schwarz inequality

™ ()| 2B
0o d(k) L oo d(k)

<o(X a2 ) (X a0 o )

k=0 {=1 k=0 {=1

(Sl
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Since d(k) ~ (k)"~2, we have by Lemma 2.5

oo d(k) 1
n=1_1,2 2
lu* ()l L2y < (Z > A+ b (p)p"2 +4|}L2<R+)) < luoll o
k=0 (=1 ’ 8 H H

This completes the proof of Theorem 1.3.
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