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SOME RESULTS ON THE GENERIC VANISHING
OF KOSZUL COHOMOLOGY VIA DEFORMATION THEORY

JIE WANG

We study the deformation-obstruction theory of Koszul cohomology groups
of gr

d’s on singular nodal curves. We compute the obstruction classes for
Koszul cohomology classes on singular curves to deform to a smooth one.
In the case where the obstructions are nontrivial, we obtain some partial
results for generic vanishing of Koszul cohomology groups.

1. Introduction

In this paper, we apply deformation theory to study the syzygies of general curves
in Pr with fixed genus and degree. Let L be a basepoint-free gr

d on a smooth
curve X . The Koszul cohomology group K p,q(X, L) is the cohomology of the
Koszul complex at the (p, q)-spot

−→
∧p+1 H 0(L)⊗H 0(X,Lq−1)

dp+1,q−1
−−−−→

∧p H 0(L)⊗H 0(X,Lq)
dp,q
−−→H 0(X,Lq+1),

where

dp,q(v1 ∧ · · · ∧ vp⊗ σ)=
∑

i

(−1)iv1 ∧ · · · ∧ v̂i ∧ ..∧ vp⊗ viσ.

The Koszul cohomology groups K p,q(X, L) completely determine the shape of
a minimal free resolution of the section ring

R = R(X, L)=
⊕
k≥0

H 0(X, Lk),

and therefore carry a lot of information about the extrinsic geometry of X .
We are interested in Green’s question:

Problem 1.1. What is the variational theory of the K p,q(X, L)? What do they look
like for X a general curve and L a general gr

d?
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If (X, L) is general in G r
g,d (in this paper, this means the Brill–Noether number

ρ = g − (r + 1)(g − d + r) is nonnegative and (X, L) is a general point of the
unique component of G r

g,d which dominates Mg), it is well known that we only
have to determine K p,1(X, L), or equivalently K p−1,2(X, L) for 1 ≤ p ≤ r − 1
(see Section 2).

Problem 1.1 seems too difficult to answer in full generality. For an arbitrary gr
d

on a general curve X , the simplest cases — determining K1,1(X, L) or K0,2(X, L)—
are still unknown. The maximal rank conjecture (MRC) [Eisenbud and Harris 1983]
predicts that the multiplication map

(1-1) Sym2 H 0(X, L)
µ
−→ H 0(X, L2)

is either injective or surjective, that is,

(1-2) min{k1,1(X, L), k0,2(X, L)} = 0.

Geometrically, this means that the number of quadrics in Pr containing X is as
simple as the Hilbert function of X ⊂ Pr allows.

There are many partial results about (1-2) using the so-called “méthode d’Horace”,
originally proposed by Hirschowitz. This amounts to a degeneration argument to a
carefully chosen singular curve in projective space and a proof of the statement on
such a curve by a delicate inductive argument. We refer to, for instance, [Ballico
and Fontanari 2010a; 2010b] for some recent results in this direction.

For higher syzygies, again there are many results (see [Aprodu 2004; Ballico
1996; Ein 1987; Farkas 2009]). One breakthrough result is Voisin’s solution [2002;
2005] of the generic Green’s conjecture, which solves Problem 1.1 for the case
L = K X .

For the vanishing of K p,1, there is [Aprodu 2004; 2005], which proved the generic
version of the Green–Lazarsfeld gonanity conjecture. This conjecture predicts that,
for smooth curve X of gonanity d and L a sufficiently positive line bundle on X ,

Kh0(L)−d,1(X, L)= 0.

Note that Problem 1.1 does not have any assumption on the positivity of L .
It seems that the method of all of the above results amounts to degenerating to

special curves, often a carefully chosen singular one, and verifying the statements
on these special curves. Given the fact that sometimes such special curves are
difficult to find and the inductive arguments can get technical, we would like to
take a slightly different point of view. We will consider one-parameter degeneration
to the simplest possible singular curve, namely, the union of two smooth curves
meeting at a node. Of course, there is no hope of directly verifying the vanishing
statements we would like to prove on these curves (see Section 3), but we are able
to compute the obstructions for the “extra” Koszul classes of the singular fiber
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to deform to nearby fibers. If one could prove these “extra” Koszul classes are
obstructed, we conclude the general fiber has the vanishing property we need. We
feel this point of view has a good chance to generalize.

More precisely, let the property GV(p)rg,d mean that, for general L ′ = gr
d on

general curve C of genus g, we have

(1-3) min{kp,1(C, L ′), kp−1,2(C, L ′)} = 0.

Problem 1.2. Does GV(p)rg,d imply GV(p)rg+1,d+1?

If this holds, one could set up an inductive argument. At each step r is fixed and
g, d go up by 1, or equivalently, r and h1 are fixed, and g goes up by 1.

In the case p= 1, the maximal rank conjecture predicts the answer should always
be affirmative. For higher syzygies, this is not always the case, but one would like
to prove some generic vanishing results for some special {g, r, d}.

We give a simple condition to guarantee GV(p)rg,d implies GV(p)rg+1,d+1 from
a deformation-theoretic point of view. We study the deformation theory of Koszul
cohomology groups on the simplest kind of singular curve X0: the union of a
general curve C of genus g and an elliptic curve E meeting at a node u. L0 is
carefully chosen (see Section 3) such that:

(a) (X0, L0) is smoothable to L t = gr
d+1 on a smooth curve X t of genus g+ 1.

(b) L0|C = L ′ and therefore min{kp,1(C, L0|C), kp−1,2(C, L0|C)} = 0.

(c) L0|E =OE(v) for another general point v ∈ E .

We prove:

Theorem 1.3. Let C ⊂ Pr be a general curve, |L ′| a general gr
d on C and ML ′ the

kernel bundle defined by the sequence

0−→ ML ′ −→ H 0(L ′)⊗OC
ev
−−→ L ′ −→ 0.

Then the following hold:

(a) If K p,1(C, L ′)= 0, then K p,1(X t , L t)= 0.

(b) If K p−1,2(C, L ′)= 0 and

(1-4) h0(C,∧r−p ML ′ ⊗ KC
)
= h0(C,∧r−p ML ′ ⊗ KC(2u)

)
for a general point u ∈ C , then K p−1,2(X t , L t)= 0.

In other words, GV(p)rg,d always implies GV(p)rg+1,d+1 if (1-4) holds.

The upshot is that under such degeneration, we could explicitly compute gen-
erators of K p,q(X0, L0). Unfortunately (X0, L0) does not satisfy (1-3). However
we could compute the obstructions for the “extra” Koszul classes to deform to
K p,q(X t , L t). If every “extra” Koszul class is obstructed, we conclude that (1-3)
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holds for (X t , L t). Condition (1-4) is a sufficient condition for the “extra” Koszul
classes to be obstructed.

In the case p = 1 (maximal rank conjecture), this sufficient condition turns out
to be very geometric.

Theorem 1.4. Let C ⊂ Pr be a general curve embedded by |L ′| a general gr
d and

suppose one of the following two conditions holds:

(a) µ in (1-1) is injective.

(b) µ is surjective and there exists a quadric Q ∈ Ker(µ) containing C but not
containing the tangential variety TC :=

⋃
u∈C TuC.

Then (MRC)rg+1,d+1 holds as well.

To apply Theorem 1.4 to the maximal rank conjecture, one has to verify a
hypothesis in (b) which seems geometrically interesting in its own right. Hopefully
there will be some other applications.

Starting from the fact that rational normal curves and canonical curves are
projectively normal, we verify hypothesis (b) in some special cases and get some
partial results.

Corollary 1.5. Let (X, L) be a general pair in G r
g,d with h1(L)≤ 1. Suppose

d > 5
4 g+ 9

4 if h1(L)= 0, or

d > 5
4 g+ 3

4 if h1(L)= 1;

then (X, L) is projectively normal.

It is a very well-known result of Green and Lazarsfeld [1986] that any very ample
line bundle L on X with

(1-5) deg(L)≥ 2gX + 1− 2h1(L)−Cliff(X)

is projectively normal, and the bound is sharp. Notice that (1-5) implies that
h1(L)≤ 1.

If X is general,

Cliff(X)=
⌊

gX − 1
2

⌋
;

thus, the Green–Lazarsfeld theorem predicts projective normality for general curves
if d is bigger than roughly 3g/2. Corollary 1.5 thus says that if L is also general,
we could improve the lower bound of d to roughly 5g/4.

The bounds in Corollary 1.5 are weaker than the bounds in [Ballico and Fontanari
2010b].

We could also fix a small r and let h1 be arbitrarily large.

Corollary 1.6. The maximal rank conjecture (for quadrics) holds if r ≤ 4.
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The reason we can get rid of the restriction on the degree of the line bundle
for small r is that we can always verify the hypothesis on TC in Theorem 1.4(b)
if r ≤ 4. Thus (MRC)rg,d always implies (MRC)rg+1,d+1.

For higher syzygies, we do not expect analogously that min{kp,1, kp−1,2} = 0
for p ≥ 2. We refer the audience to Section 2 for a counterexample. Nevertheless,
we do wish to obtain certain vanishing results or effective upper bounds on kp,q .

The difficulty in generalizing the inductive argument to higher syzygies is twofold.
First there are relatively few known cases to start the induction with. There is
essentially a single known starting series of examples for vanishing of syzygies,
namely, Voisin’s solution to the generic Green conjecture. Besides Voisin’s theorem,
Farkas [2006] proved that properties GV(2)716,21 and GV(3)10

22,30 hold. Secondly, for
higher syzygies, the sufficient condition for “extra” Koszul classes to be obstructed
is not as geometric.

Nevertheless we summarize our results on higher syzygies as follows:

Theorem 1.7. Let X be a general curves of genus g and L a general gr
d on X. Then:

(a) If g ≥ r + 1, then K p,1(X, L)= 0 for p ≥ b(r + 1)/2c.

(b) If h1(L)= 1 (which implies that g ≥ r + 1), then

K p−1,2(X, L)= 0 for 1≤ p ≤ r −
⌊g

2

⌋
,

kp−1,2(X, L)≤ (g− 2r + 2p− 1)
( r−1

p−1

)
for p > r −

⌊g
2

⌋
.

Combining Corollaries 1.5 and 1.7(a), we can determine kp,q(X, L) for L a
general gr

d with r ≤ 4.

Corollary 1.8. For a general pair (X, L) in G r
g,d with r ≤ 4, g ≥ r + 1, we have

min{kp,1(X, L), kp−1,2(X, L)} = 0.

The organization of this paper is as follows. In Section 2, we review some basic
facts about Koszul cohomology of general curves. In Section 3, we study the Koszul
cohomology of the central fiber (X0, L0). We explicitly write down the generators
of the “extra” Koszul classes in Kr−p,0(X0, L0;ωX0)

∼=K p−1,2(X0, L0)
∨. Section 4

contains a computation of the obstructions for these classes to deform, and Section 5
gives a sufficient condition for the obstruction classes to be linearly independent,
and a proof of Theorem 1.3. In Section 6, we focus on the p = 1 case and prove
Theorem 1.4 and Corollaries 1.5 and 1.8. Finally, in Section 7, we consider higher
syzygies for line bundles with h1

= 1. In some special range of p, we are able to
prove some vanishing results as in Theorem 1.7.
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2. Koszul cohomology of general curves

We first summarize several special properties of Koszul cohomology groups on
general curves over C. We refer to [Aprodu and Nagel 2010] and [Eisenbud 1992]
for general facts about Koszul cohomology.

Proposition 2.1. Suppose X is a general curve and L is a complete gr
d on X.

(a) K p,0(X, L)= 0 except when p = 0 and k0,0(X, L)= 1.

(b) K p,q(X, L)= 0 for q ≥ 4.

(c) K p,3(X, L)= 0 except when p = r − 1 and kr−1,3(X, L)= h1(L).

Proof. Statement (a) follows from the definition of Koszul cohomology.
To prove (b) and (c), we use the following facts:

(i) The multiplication map

H 0(X, L)⊗ H 0(X, K X ⊗ L−1)−→ H 0(X, K X )

is injective. This is the Gieseker–Petri theorem.

(ii) H 0(X, K X ⊗ L−2)= 0. This is a direct consequence of (i) (see [Arbarello and
Cornalba 1981]).

Statement (b) follows from (ii) and the duality theorem of Koszul cohomology
(see [Aprodu and Nagel 2010, Section 2.3]):

(2-1) K p,q(X, L)= Kr−1−p,2−q(X, L; K X )
∨.

To prove (c), we first apply (2-1) and note that the Koszul differential dr−1−p,−1

factors as∧r−1−p H 0(L)⊗ H 0(K X ⊗ L−1)
dr−1−p,−1 //

y⊗Id
��

∧r−2−p H 0(L)⊗ H 0(K X )

∧r−2−p H 0(L)⊗ H 0(L)⊗ H 0(K X ⊗ L−1)

Id⊗µ

33

By (i), both y⊗ Id and Id⊗µ are injective. �

As a consequence, we have the following corollary:

Corollary 2.2. Let X be a general curve and L a globally generated gr
d with r ≥ 1.

(a) L is normally generated if and only if the multiplication map

µ : S2 H 0(X, L)−→ H 0(X, L2)

is surjective.

(b) If L is normally generated, the homogeneous ideal IX is generated by quadrics
and cubics.
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Proof. The only possible nonzero K0,q for q ≥ 2 is K0,2(X, L) = Coker(µ). If
K0,2(X, L) = 0, L is normally generated. Since k1,q is the number of minimal
generators of IX of degree q + 1, (b) follows. �

Moreover, since taking cohomology does not change the Euler characteristic of
the complex, we have for any 1≤ p ≤ r − 1 that

kp,1(X, L)− kp−1,2(X, L)

=

∑
i+ j=p+1

(−1) j+1 dimC

((∧i V
)
⊗ H 0(X, L j )

)
=

(r+1
p

)
(g− d + r)−

( r+1
p+1

)
g+

(r−1
p

)
d +

( r
p+1

)
(g− 1).

Denote this number by bp(X, L), which depends only on g, r , d, p. Therefore
to determine the Koszul cohomology of (X, L), it suffices to determine either row
q = 1 or q = 2.

Remark. Based on the maximal rank conjecture, one might expect that analogously

(2-2) min{kp,1(X, L), kp−1,2(X, L)} = 0

for general (X, L). But this is not the case. In fact, F. Schreyer proved in his thesis
(see [Green 1984, 4.a.2] for more details) that for any curve X of genus g, there
exists a number d0 such that if deg(L)= d ≥ d0, then

K p,2(X, L) 6= 0 if r − 1≥ p ≥ r − g.

On the other hand, it follows from a theorem of Green and Lazarsfeld [1984]
(see also [Aprodu and Nagel 2010, Corollary 3.39]) that for d large,

K p,1(X, L) 6= 0 if 1≤ p ≤ r −
⌊

g
2

⌋
− 2.

Thus, for r − g+ 1≤ p ≤ r −bg/2c− 2, (2-2) does not hold.

3. Koszul cohomology of the central fiber

Let L ′ be a gr
d on a smooth curve C of genus g and X0 =C ∪ E the reducible nodal

curve consisting of C and an elliptic curve E meeting at a general point u. Let L0

be the line bundle on X0 such that

L0|C = L ′

and
L0|E =OE(v),

where v 6= u. We would like to study the relations between K p,q(C, L ′) and
K p,q(X0, L0) in this section.
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First, observe that by construction any (global) section of L ′ on C extends
uniquely to a section of L0 on X0; thus we have a natural isomorphism

φ : H 0(C, L ′)∼= H 0(X0, L0).

Moreover, by the Riemann–Roch theorem, h1(C, L ′)= h1(X0, L0), and there is a
natural identification

H 0(C, KC ⊗ L ′−1)∼= H 0(X0, ωX0 ⊗ L−1
0 ).

A first consequence is:

Proposition 3.1. If K p,1(C, L ′)= 0, then K p,1(X0, L0)= 0.

Proof. Consider the commutative diagram∧p+1 H 0(L0) //

∼=

��

∧p H 0(L0)⊗ H 0(L0) //

∼=

��

∧p−1 H 0(L0)⊗ H 0(L2
0)

��∧p+1 H 0(L ′) //
∧p H 0(L ′)⊗ H 0(L ′) //

∧p−1 H 0(L ′)⊗ H 0(L ′2)

where the vertical arrows are restriction maps to C . The hypothesis says that the
lower row is exact in the middle. A simple diagram chase gives the conclusion. �

The argument in Proposition 3.1 does not generalize to the case q = 2 because
H 0(C, L ′2) is not isomorphic to H 0(X0, L2

0). Instead we dualize using (2-1),

K p−1,2(C, L ′)∨ ∼= Kr−p,0(C, L ′; KC),

and compare Kr−p,0(C, L ′; KC) with Kr−p,0(X0, L0;ωX0).
Here, ωX0 is the dualizing sheaf of X0. Its restriction to C and E are line

bundles KC(u) and KE(u) respectively. A global section of the dualizing sheaf
consists of (global) one-forms on C and E , viewed as sections of KC(u) and KE(u)
respectively which vanish at u.

Figure 1 describes the various line bundles in question on X0 and their restrictions
to each component. The S-shaped curve is C and the straight line is E .

Choose a basis {ω0, . . . , ωg−1} of H 0(C, KC) and a basis {ωg} of H 0(E, KE).
For 0≤ i ≤ g−1, we will think of ωi as a section in H 0(KC(u))which vanishes on u,
and then extend it over E by the zero section. Such a section belongs to H 0(ωX0),
and we still denote it by ωi . Similarly, we obtain ωg ∈ H 0(ωX0) with ωg|C = 0.

In this way, we obtain a natural identification

ψ : H 0(C, KC)⊕ H 0(E, KE)∼= H 0(C, KC(u))⊕ H 0(E, KE(u))∼= H 0(X0, ωX0)

and
H 0(X0, ωX0)= span{ωi | i = 1, . . . , g}.
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L′

OE(v)

KC(u)

KE(u)

KC(u)⊗ L′−1

KE(u− v)

KC(u)⊗ L′

KE(u+ v)

L0 ωX0 ωX0 ⊗ L−1
0 ωX0 ⊗ L0

Figure 1. The line bundles on the central fiber.

Notice also that every section in H 0(X0, ωX0) vanishes at u.
Now suppose Kr−p,0(C, L ′; KC)=0. We want to show that Kr−p,0(X0, L0;ωX0)

can be generated by pure tensors in∧r−p H 0(X0, L0)⊗ H 0(X0, ωX0).

To this end, consider the commutative diagram∧r−p+1 H 0(L ′)⊗ H 0(KC ⊗ L ′−1)

��

∼= //
∧r−p+1 H 0(L0)⊗ H 0(ωX0 ⊗ L−1

0 )

δ−1

��∧r−p H 0(L ′)⊗ H 0(KC)

��

φ⊗ψ //
∧r−p H 0(L0)⊗ H 0(ωX0)

δ0
��∧r−p−1 H 0(L ′)⊗ H 0(KC ⊗ L ′) //

∧r−p−1 H 0(L0)⊗ H 0(ωX0 ⊗ L0).

The top horizontal arrow is an isomorphism since any section in H 0(X0, ωX0⊗L−1
0 )

restricts to zero on the E component.
Now let {σ0, . . . , σr } be a basis of H 0(C, L ′). Extend each σk uniquely to X0 to

form a basis of H 0(X0, L0), still denoting them by σk .
We can write any element in Ker(δ0) as∑

k1,...,kr−p
j≤g−1

αk1,...,kr−p, j σk1∧· · ·∧σkr−p⊗ω j+
∑

k1,...,kr−p

βk1,...,kr−p σk1∧· · ·∧σkr−p⊗ωg.

Since the image under δ0 of the second term β restricts to 0 on C (since ωg does),
so does the image of the first term α. By our assumption, the left column of the
above diagram is exact in the middle and therefore α ∈ Im(δ−1).
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We conclude that∑
k1,...,kr−p

βk1,...,kr−p σk1 ∧ · · · ∧ σkr−p ⊗ωg ∈ Ker(δ0),

and this can happen only if∑
k1,...,kr−p

βk1,...,kr−p σk1 ∧ · · · ∧ σkr−p ∈
∧r−p V,

where V ⊂ H 0(X0, L0) is the codimension-one subspace consisting of sections
which restrict to zero on E . Also, it is easy to see that a basis of∧r−p V ⊗C ·ωg

is linearly independent even modulo Im(δ−1).
We have proved:

Lemma 3.2. If Kr−p,0(C, L ′; KC)= 0, we have an isomorphism

Kr−p,0(X0, L0;ωX0)
∼=
−−→

∧r−p V ⊗C ·ωg.

4. Infinitesimal calculations

In this section, we carry out the computation of first-order obstructions described
in the introduction. We will use the deformation theory of complexes, which was
developed in [Green and Lazarsfeld 1987]. The general set-up is as below.

Let S be a smooth variety and F• a bounded complex of locally free sheaves on S:

· · · −→ F p+1 dp+1
−−−−→ F p dp

−−−→ F p−1
−→ · · · .

Given a point t ∈ S, denote by F•(t) the complex of vector spaces at t determined
by the fibers of F•; that is,

F•(t)= F•⊗C(t),

where C(t) is the residue field of S at t .
The deformation theory of H i (F•(t)) as t moves near 0 ∈ S is controlled by the

derivative complex, which associates to a tangent vector v ∈ T0S a complex

· · · −→ H p+1(F•(0))
Dv(dp+1)
−−−−−→ H p(F•(0))

Dv(dp)
−−−−→ H p−1(F•(0))−→ · · · .

A (co)homology class [c] ∈ H p(F•(0)) deforms to first order along v if and only
if Dv(dp)([c])= 0 ∈ H p−1(F•(0)).

To describe the Dv(dp), recall that a tangent vector v ∈ T0S corresponds to an
embedding of the dual numbers D into S, so one gets a short exact sequence

0−→ C(0)−→ D −→ C(0)−→ 0.
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Tensoring the sequence with F• yields a short exact sequence of complexes, which
in turn gives rise to connecting homomorphisms

H p(F•⊗C(0))
Dv(dp)// H p−1(F•⊗C(0))

H p(F•(0)) H p−1(F•(0))

One checks that Dv(dp) ◦ Dv(dp+1)= 0.
Now let (X0, L0) be the pair constructed in the previous section. We will further

assume that both (C, L ′) and the crossing point u are general. (X0, L0) determines
a limit linear series in the sense of [Eisenbud and Harris 1986]. By counting
Brill–Noether numbers, it is easy to see this limit linear series is deformable to
general pairs (X t , L t). Let L→ X → 1 be the total space of a one-parameter
family of general pairs (X t , L t) ∈ G r

g+1,d+1 degenerating to (X0, L0). We will
apply the deformation theory described above to the Koszul complex computing
Kr−p,0(X t , L t ;ωX t ):∧r−p+1 H 0(L t)⊗ H 0(ωX t ⊗ L−1

t ) ↪−→
∧r−p H 0(L t)⊗ H 0(ωX t )

δt
−−→

∧r−p−1 H 0(L t)⊗ H 0(ωX t ⊗ L t).

By the Gieseker–Petri theorem, the left arrow is injective for all t (even at
time zero), so kr−p,0(X t , L t ;ωX t ) can only increase at t = 0 if Ker(δt) does. We
would like to compute the derivative of δt at t = 0:

(4-1) Kr−p,0(X0, L0;ωX0)
D(δt )|t=0
−−−−−→ Kr−p−1,1(X0, L0;ωX0).

To illustrate the idea, let us first take a look at the simpler case when p = r − 1.
(On the other hand, the main case we are interested in is the case p = 1.) The
general case is just notationally more complicated. In this special case, the Koszul
differential δt becomes the multiplication map µt∧2 H 0(L t)⊗ H 0(ωX t ⊗ L−1

t ) ↪−→ H 0(L t)⊗ H 0(ωX t )
µt
−−→ H 0(ωX t ⊗ L t),

and the derivative map is

K1,0(X0, L0;ωX0)
D(µt )|t=0
−−−−−→ K0,1(X0, L0;ωX0).

For simplicity, denote ωg ∈ H 0(X0, ωX0) by ω. If K1,0(C, L ′, KC)= 0, then by
Lemma 3.2 we have

K1,0(X0, L0;ωX0)
∼=
−−→ V ⊗C ·ω ⊂ V ⊗ H 0(X0, ωX0).

Remark. Even if K1,0(C, L ′, KC) 6= 0, we nevertheless have the containment
V ⊗C ·ω ⊂ K1,0(X0, L0;ωX0).
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L′(−u)

OE(u+ v)

KC(2u)

KE

M N

Figure 2. The twisted line bundles on the central fiber.

So, let σ ∈ V . By the description of the derivative complex at the beginning of
this section, to compute

D(µt)|t=0(σ ⊗ω),

we have to lift σ⊗ω to first order in t , apply the Koszul differential µt to the lifting,
then restrict the outcome divided by t to X0.

So, let σ̃ , ω̃ be sections of L and ωX/1 extending σ and ω, respectively.
Since σ̃ vanishes on E and ω̃ vanishes on C , we can write

(4-2) σ̃ = σ̃ ′sE

and

(4-3) ω̃ = ω̃′sC ,

where sE and sC are sections of OX (E) and OX (C) vanishing precisely on E and
C , respectively, and σ̃ ′ and ω̃′ are global sections of

M := L(−E)|X0
∼= L(C)|X0 and N := ωX/1(−C)|X0

∼= ωX/1(E)|X0,

respectively. Notice that tensoring L by OX (−E) will increase the degree by 1
on the E component and decrease the degree by 1 on the C component. The line
bundles M and N are described in Figure 2. Notice that M ⊗ N ∼= ωX0 ⊗ L0.

By the construction of the derivative complex,

(4-4) D(µt)|t=0(σ⊗ω)=
σ̃ · ω̃

t

∣∣∣
X0
=
(σ̃ ′sE) · (ω̃

′sC)

t

∣∣∣
X0
= (σ̃ ′ω̃′)|X0 mod Imµ0.

The general case is just notationally more complicated.
Let

σi1 ∧ · · · ∧ σir−p ⊗ω ∈
∧r−p V ⊗ H 0(E, KE).
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We will compute its image under D(δt)|t=0. Similarly to the simpler case, we have
to lift σi1∧· · ·∧σir−p⊗ω to first order, apply the Koszul differential δt to the lifting,
then restrict the outcome divided by t to X0.

To this end, let σ̃ik , ω̃ be sections of L and ωX/1 extending σik and ω, respectively.
Since σ̃ik vanishes on E and ω̃ vanishes on C , we can write

(4-5) σ̃ik = σ̃
′

ik
sE

and

(4-6) ω̃ = ω̃′sC ,

as before.
We compute

(4-7) D(δt)|t=0(σi1 ∧ · · · ∧ σir−p ⊗ω)

=
δ(σ̃i1 ∧ · · · ∧ σ̃ir−p ⊗ ω̃)

t

∣∣∣
X0

=

r−p∑
k=1

(−1)k
σ̃i1 ∧ · · · ∧

ˆ̃σik ∧ · · · ∧ σ̃ir−p ⊗ (σ̃
′

ik
sE)(ω̃

′sC)

t

∣∣∣
X0

=

r−p∑
k=1

(−1)kσi1 ∧ · · · ∧ σ̂ik ∧ · · · ∧ σir−p ⊗ (σ̃
′

ik
ω̃′)|X0 mod Im δ0.

5. The study of obstruction classes

As explained in the introduction, our goal is to show that the rank of the obstruction
map

Kr−p,0(X0, L0;ωX0)
D(δt )|t=0
−−−−−→ Kr−p−1,1(X0, L0;ωX0)

is as big as it could be, as this would imply Kr−p,0(X t , L t ; K X t ) is as small as it
could be for t 6= 0.

Again let us analyze the simpler case p = r − 1 first. By [Arbarello and Sernesi
1978], the multiplication map

H 0(X t , L t)⊗ H 0(X t , ωX t )
µt
−−→ H 0(X t , ωX t ⊗ L t)

is already surjective for the general fiber, which implies K1,0(X t , L t ; K X t ) is of the
expected dimension. So, we are not proving anything new here, but it is helpful to
redo this case via infinitesimal methods, because this method has the potential to
generalize.

First notice that

H 0(X0, L0)⊗ H 0(X0, ωX0)
µ0
−−→ H 0(X0, ωX0 ⊗ L0)
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is not surjective. The problem is that any section in H 0(X0, ωX0) vanishes at u, but
there is a section in H 0(X0, ωX0 ⊗ L0) not vanishing at u. Moreover, µ0 is exactly
of corank one. This is because on the E component, µ0 becomes

H 0(OE(v))⊗ H 0(OE(u))−→ H 0(OE(u+ v)),

which is of corank 1 (see Figure 1). Since by [Arbarello and Sernesi 1978] (or by
the induction hypothesis if one wants an independent proof), the map

H 0(C, L ′)⊗ H 0(KC)−→ H 0(L ′⊗ KC)

is surjective, we see that if a section τ ∈ H 0(X0, ωX0⊗ L0) vanishes at u, then it is
in the image of µ0. Therefore k1,0(X t , L t ; K X t ) jumps up by one at t = 0.

Now by the computation of the obstruction class in (4-4),

(σ̃ ′ω̃′)|X0

is in the image of

H 0(X0,M)⊗ H 0(X0, N )−→ H 0(X0, ωX0 ⊗ L0).

Since there are always sections in H 0(X0,M) and H 0(X0, N ) not vanishing at u,
we can easily choose σ̃ ′ and ω̃′ such that (σ̃ ′ω̃′)|X0 does not vanish at u. (Notice
that any (global) sections of M and N will extend to nearby fibers.) Therefore there
is at least a one-dimensional subspace of K1,0(X0, L0; K X0) that does not deform
to a nearby fiber, namely (σ̃ ′sE)(ω̃

′sC). This means K1,0(X t , L t ; K X t ) is of the
expected dimension for t 6= 0. This proves the simpler case.

The case for general p is much more delicate. There are two possible ways to
show the obstruction classes in (4-7) are not in the image of δ0.

The easier way is to mimic the simpler case is to show (σ̃ ′ik
ω̃′)|X0 does not lie in

the image of

H 0(X0, L0)⊗ H 0(X0, ωX0)
µ0
−−→ H 0(X0, ωX0 ⊗ L0).

(As we have seen before, µ0 is of corank one.) This will be the case if (σ̃ ′ik
ω̃′)|X0 does

not vanish at u. Then the obstruction class in (4-7) has no chance to be in Im(δ0).
To make this idea more precise, choose a basis {σ1, . . . , σr } of V adapted to u,

that is, σk |C vanishes to order exactly k along u (therefore σk |E = 0 for k ≥ 1).
Using the same notation as (4-2) and (4-3), we have that

(σ̃ ′1ω̃
′)|X0

is not in the image of µ0 because σ1|C vanishes to order exactly 1 at u, and any
extension σ̃1 = σ̃

′

1 · sE we choose would have σ̃ ′1 nonvanishing at u (because sE |C

vanishes to order 1 at u, σ̃ ′1 does not vanish). Similarly the extension ω̃′ does not
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vanish at u. (Although the choice of extensions is not unique, different choices give
the same obstruction class modulo Im(δ0).)

However, for k ≥ 2, because σk |C vanishes to order at least 2 at u, we could
choose a suitable extension σ̃k (modulo Im(δ0) this does not depend on the choice
of extension) such that σ̃k = σ̃

′′

k s2
E , and therefore

(σ̃ ′kω̃
′)|E = (σ̃

′′

k sE ω̃
′)|E = 0.

Thus for any 1= i1 < i2 < i3 < · · ·< ir−p ≤ r ,

D(δt)|t=0(σ1∧σi2∧···∧σir−p⊗ω)

=−σi2∧···∧σir−p⊗(σ̃
′

1ω̃
′)|X0+

r−p∑
k=2

(−1)kσi1∧···∧σ̂ik∧···∧σir−p⊗(σ̃
′

ik
ω̃′)|X0 .

By looking at its restriction to E , we see immediately that the set

{D(δt)|t=0(σ1 ∧ σi2 ∧ · · · ∧ σir−p ⊗ω) | 2≤ i2 < i3 < · · ·< ir−p ≤ r}

is linearly independent in Kr−p−1,1(X0, L0;ωX0).
Thus at this point the rank of D(δt)|t=0 is at least(r−1

p

)
,

and therefore

(5-1) kr−p,0(X t , L t ;ωX t )≤
( r

p

)
−

(r−1
p

)
=

( r−1
p−1

)
for t 6= 0.

The second way to show obstructions are nontrivial is more delicate. As we
have already seen, for 2≤ i1 < · · ·< ir−p ≤ r , restricting to E does not give any
information about D(δt)|t=0(σi1 ∧ · · · ∧ σir−p ⊗ω), since they all restrict to zero
on E . We will have to study the restriction of D(δt)|t=0(σi1 ∧ · · ·∧σir−p ⊗ω) to C .

Equation (4-7) restricted to C becomes

D(δt)|t=0(σi1 ∧ · · · ∧ σir−p ⊗ω)|C

=

r−p∑
k=1

(−1)kσi1 ∧ · · · ∧ σ̂ik ∧ · · · ∧ σir−p ⊗ (σ̃
′

ik
ω̃′)|C mod Im δ0

Here σ̃ ′ik
|C ∈ H 0(C, L ′(−u)) and is equal to σik for ik ≥ 1, if we abuse notation by

thinking of σik as sections of L ′(−u) instead of L ′. (Thus σ1 is a section of L ′(−u)
which does not vanish at u and σ2 vanishes to order 1 at u, etc.) On the other hand,
ω̃′|C ∈ H 0(KC(2u)) and does not vanish at u; denote it by ω′. With the notation
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above, the obstruction class becomes

(5-2)
r−p∑
k=1

(−1)kσi1 ∧ · · · ∧ σ̂ik ∧ · · · ∧ σir−p ⊗ (σikω
′)= δ0(σi1 ∧ · · · ∧ σir−p ⊗ω

′).

Remark. Here we are still using δ0 to denote the restriction to C of the original
Koszul differential δ0 on X0. Equation (5-2) does not mean

D(δt)|t=0(σi1 ∧ · · · ∧ σir−p ⊗ω)|C ∈ Im(δ0),

since ω′ /∈ H 0(KC).

Now the nontriviality of obstruction classes on X0 boils down to a question
on (C ′, L ′):

Theorem 5.1. Let C be a general curve of genus g, L ′ a gr
d on C such that

Kr−p,0(C, L ′; KC) = 0 and {σ0, . . . , σr } is a basis of H 0(C, L ′) adapted to a
general point u ∈ C , and let ω′ ∈ H 0(C, KC(2u)) \ H 0(C, KC). Consider the
obstruction classes

(5-3) {δ0(σi1∧· · ·∧σir−p⊗ω
′) | 2≤ i1 < · · ·< ir−p ≤ r} ⊂ Kr−p−1,1(C, L ′; KC).

(a) If these classes are linearly independent in Kr−p−1,1(C, L ′, KC), then

Kr−p,0(X t , L t ;ωX t )
∼= K p−1,2(X t , L t)

∨
= 0.

(b) On the other hand, if these classes span Kr−p−1,1(C, L ′; KC), then

kr−p,0(X t , L t ;ωX t )≤
( r−1

p−1

)
− kr−p−1,1(C, L ′; KC)=−bp+1(X t , L t),

which implies K p,1(X t , L t)= 0.

Proof. The hypothesis in case (a) implies that D(δt)|t=0 in (4-1) is either injective,
which means no elements in Kr−p,0(X0, L0;ωX0) will extend to nearby. In case
(b), the rank of D(δt)|t=0 is

kr−p−1,1(C, L ′; KC)+
(r−1

p

)
,

which implies that

kr−p,0(X t , L t ;ωX t )≤
( r−1

p−1

)
− kr−p−1,1(C, L ′; KC)=−bp+1(X t , L t).

Therefore only a subspace of Kr−p,0(X0, L0;ωX0) of correct dimension will extend
to nearby fibers to first order. �
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Now we give a sufficient condition for the obstruction classes in (5-3) to be
linearly independent. Consider the diagram of complexes∧r−p+1 H 0(L ′)⊗ H 0(KC ⊗ L ′−1)� _

��

∧r−p+1 H 0(L ′)⊗ H 0(KC ⊗ L ′−1)� _

��∧r−p H 0(L ′)⊗ H 0(KC)

δ0
��

� � α //
∧r−p H 0(L ′)⊗ H 0(KC(2u))

δ

��∧r−p−1 H 0(L ′)⊗ H 0(KC ⊗ L ′) //
∧r−p−1 H 0(L ′)⊗ H 0(KC ⊗ L ′(2u))

Lemma 5.2. Under the same assumptions as Theorem 5.1, if the right column of
the above diagram is exact in the middle (the left column is exact by assumption),
then the obstruction classes in (5-3) are linearly independent modulo Im(δ0). As a
consequence of Theorem 5.1 then, Kr−p,0(X t , L t ;ωX t )= 0.

Proof. The assumption implies that

Ker(δ)= Ker(δ0)∼=
∧r−p+1 H 0(L ′)⊗ H 0(KC ⊗ L ′−1).

If a linear combination of the obstruction classes δ0(σi1∧· · ·∧σir−p⊗ω
′) is equal to

δ0(c) for some c∈
∧r−p H 0(L ′)⊗H 0(KC), then the same linear combination of the

{σi1∧· · ·∧σir−p⊗ω
′
}minus α(c) is in Ker(δ)=Ker(δ0). This contradicts the fact that

{σi1 ∧ · · · ∧ σir−p ⊗ω
′
}

is linearly independent in
∧r−p H 0(L ′)⊗H 0(KC(2u)) modulo the image of α. �

To end this section, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. There are two cases:

(a) K p,1(C, L ′) = 0: By Proposition 3.1, K p,1(X0, L0) = 0, and GV(p)rg+1,d+1
follows from upper-semicontinuity of Koszul cohomology.

(b) K p−1,2(C, L ′)∼= Kr−p,0(C, L , ; KC)
∨
= 0: Starting from the defining sequence

for the kernel bundle ML ′ ,

0−→ ML ′ −→ H 0(L ′)⊗OC −→ L ′ −→ 0,

taking the (r − p)-th wedge, twisting by KC (respectively KC(2u)) and then taking
global sections, we get

0−→
∧r−p ML ′ ⊗ KC −→

∧r−p H 0(L ′)⊗ H 0(KC)

δ0
−−→

∧r−p−1 H 0(L ′)⊗ H 0(KC ⊗ L ′)−→ 0,
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and therefore

(5-4) Ker(δ0)= H 0(C,∧r−p ML ′ ⊗ KC
)
.

Similarly,

(5-5) Ker(δ)= H 0(C,∧r−p ML ′ ⊗ KC(2u)
)
.

If

h0(C,∧r−p ML ′ ⊗ KC
)
= h0(C,∧r−p ML ′ ⊗ KC(2u)

)
,

we conclude that

Ker(δ0)∼= Ker(δ),

which implies Kr−p,0(X t , L t ;ωX t )
∼= K p,2(X t , L t)

∨
= 0 by Lemma 5.2. �

6. Some applications to the maximal rank conjecture

In the case p= 1, we can reduce condition (1-4) in Theorem 1.3 to a statement about
the tangential variety TC of C ; namely, the existence of a quadric containing C but
not containing TC . The condition on the tangential variety is quite interesting in its
own right. Theorem 1.4 follows immediately from Theorem 1.3 and Lemma 6.1.

Lemma 6.1. For a general L ′ = gr
d on a general curve C of genus g such that

K0,2(C, L ′) = 0 (i.e., µ in (1-1) is surjective), if there exists a quadric Q ⊂ Pr

containing φ|L ′|(C) but not containing its tangential surface TC :=
⋃

u∈C TuC ⊂Pr ,
then

H 0(C,∧r−1 ML ′ ⊗ KC
)
= H 0(C,∧r−1 ML ′ ⊗ KC(2u)

)
.

Proof. Notice that ∧r ML ′ ∼= L ′−1,

and therefore ∧r−1 M∨L ′ ∼= ML ′ ⊗ L ′.

By the Riemann–Roch theorem, it suffices to show that

h0(ML ′ ⊗ L ′(−2u))= h0(ML ′ ⊗ L ′)− 2r.

The ≥ part is automatically true, and only the ≤ part needs to be proved.
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We have a diagram with exact columns

0

��

0

��
H 0(ML ′ ⊗ L ′(−2u))

��

� � // H 0(ML ′ ⊗ L ′)

��
H 0(L ′)⊗ H 0(L ′(−2u))

µ′

��

� � // H 0(L ′)⊗ H 0(L ′)

µ

��
H 0(L ′2(−2u)) �

� // H 0(L ′2)

��
0

We need to show
dimC Ker(µ′)≤ dimC Ker(µ)− 2r.

Let Hu := H 0(L ′)⊗ H 0(L ′(−2u)), and H u its image in

H 0(L ′)⊗ H 0(L ′)∧2 H 0(L ′)
∼= S2 H 0(L ′).

H u is the space of quadrics which contain the tangent line of C at u.
We have

Ker(µ′)= Ker(µ)∩ Hu .

By hypothesis, Ker(µ) 6⊆ H u for general u (since Q /∈ H u), and it follows that

dimC(Ker(µ′))= dimC(Ker(µ)∩ Hu)≤ dimC(Ker(µ)∩ H u)

≤ dimC(Ker(µ))− 1=: m− 1.

Thus
dimC(Ker(µ′))≤ m− 1+ dimC

(∧2 H 0(L ′)∩ Hu
)

= m− 1+ dimC

(∧2 H 0(L ′(−2u))
)

= m− 1+
(r−1

2

)
= m+

(r+1
2

)
− 2r

= dimC(Ker(µ))− 2r. �

Let us go the proof of Corollary 1.5. The numerical assumption in Corollary 1.5
turns out to be a technical assumption needed to verify the assumption about TC in
Theorem 1.4(b). This is equivalent to the numerical assumption in Lemma 6.2. By
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the Appendix, if L ′ is a general nonspecial gr
2r−3 on a general curve C of genus

r − 3, the number of quadrics containing TC is at most(r−4
2

)
.

Lemma 6.2. Let C ⊂ Pr be a general curve of genus g embedded by L ′ a general
gr

d with h1(L ′)≤ 1. Suppose(r+2
2

)
− (2d − g+ 1) >

(r−4
2

)
(
i.e., the number of independent quadrics containing C is at least

(r−4
2

))
; then there

exists a quadric Q on Pr containing C but not containing TC.

Proof. Degenerate (C, L ′) to (C0, L ′0), where C0 is a nodal curve with two smooth
components Y and Z meeting at a general point u. Depending on the value of
h1(L ′), there are two cases:

(a) h1(L ′) = 0: In this case, L ′ = gr
g+r for g ≥ 0. If 0 ≤ g ≤ r − 3, take gY = 0,

gZ = g, L ′0|Y = OP1(r) and L ′0|Z = g0
g. (One could easily show such a (C0, L ′0)

can deform to (C, L ′).) Since there are only(r−2
2

)
quadrics containing the tangential variety of the rational normal curve in Pr (see the
Appendix) and in this range of g, the number of quadrics containing C is at least(r+2

2

)
− (2d − g+ 1)=

(r+2
2

)
− (g+ 2r + 1) >

(r−2
2

)
,

we conclude that there exists a quadric containing the nearby fiber C but not
containing TC .

If g > r − 3, we take gY = r − 3, gZ = g− r + 3, L ′0|Y = gr
2r−3 (a general one)

and L ′0|Z = g0
g−r+3. By Proposition A.1 in the Appendix, the number of quadrics

containing TC for nearby C is at most
(r−4

2

)
. By the numerical hypothesis, we get

our conclusion.

(2) h1(L ′)= 1: The argument is similar to the above, except that we need to deal
with L ′ = gr

g+r−1 for g ≥ r + 1. Again, if r + 1 ≤ g ≤ 2r − 2, we take gY = 0,
Z = C , L ′0|Y =OP1(r) and L ′0|Z = L ′(−ru)= g0

g−1.
If g > 2r − 2, take gY = r − 3, gZ = g− r + 3, L ′0|Y = gr

2r−3, L ′0|Z = g0
g−r+2.

Here L ′0|Z comes from a general gr
g+2 on Z twisted by OZ (−ru). The rest of the

argument is exactly the same as in case (a). �



GENERIC VANISHING OF KOSZUL COHOMOLOGY VIA DEFORMATION THEORY 67

Proof of Corollary 1.5. First notice that, by Corollary 2.2, to show projective
normality of a general pair, it suffices to show (1-1) is surjective. We will fix h1

and r and induct on g.
For the h1

= 0 case, we start with the fact that a rational normal curve is
projectively normal (i.e., (MRC)r0,r holds). For the h1

= 1 case, we use the fact that
a general canonical curve is projectively normal (i.e., (MRC)rr+1,2r holds). Now
assuming (MRC)rg,d holds, by Lemma 6.2, as long as

(6-1)
(r+2

2

)
− (2d − g+ 1) >

(r−4
2

)
,

Theorem 1.4(b) is satisfied, which implies (MRC)rg+1,d+1 (which is equivalent to
projective normality). Plugging d = g+ r − h1 into (6-1), we immediately get the
bound on d as in the statement of the theorem. �

Proof of Corollary 1.8. The r = 1, 2 cases is trivial. The arguments for r = 3, 4
are completely similar, so we will only prove the case r = 4. Again, we induct
on g. First suppose we have proved (MRC) for the base cases g = 5h1, L = g4

4h1+4.
Then notice that for r = 4,

(r−4
2

)
= 0, and therefore there is no quadric containing

the tangential variety in Theorem 1.4(b). Thus (MRC)4g,d implies (MRC)4g+1,d+1.
It remains to prove (MRC) for the base cases. When h1

≤ 1, (MRC)45h1,4h1+4 is
clear. If h1

≥ 2, we need to show µ in (1-1) is injective. For h1
= 2, (MRC)410,12

is well known and is proved in [Farkas and Popa 2005]. If h1
≥ 3, we could

degenerate again to C0 = Y ∪ Z with gY = 10, gX = 5h1
− 10, L0|Y = g4

12,
L0|Z =g0

4h1−8=g4
4h1−4(−4u). Again it is easy to check such (C0, L0) is smoothable

in G 4
5h1,4h1+4 (see [Wang 2013, Corollary 6.1] for details). The injectivity of µ in

this case follows from the same argument as in Proposition 3.1. �

It was also proved in [Farkas 2009] that for any integer s≥1, (MRC)2s
s(2s+1),2s(s+1)

holds. In this case, ρ=0 and h1
= s. Thus by Theorem 1.4 (a), we have the following

corollary:

Corollary 6.3. (MRC)2s
s(2s+1)+k,2s(s+1)+k holds for all s ≥ 1, k ≥ 0; that is, (MRC)

holds if r = 2h1.

7. Higher syzygies

As we mentioned in the introduction, the difficulty in generalizing the inductive
argument to higher syzygies is due to the lack of known cases to start the induction
with and the lack of an analog of Theorem 1.4 for higher syzygies. Nevertheless,
we collect some vanishing results we could obtain in this section.

Proposition 7.1. For L a general gr
d on a general curve X with g ≥ r + 1,

K p,1(X, L)= 0 for p ≥ b(r + 1)/2c.
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Proof. Start with the case gX = r + 1, L ′ = K X . Thanks to Voisin’s solution to
the generic Green conjecture, K p,1(X, K X )= 0 for p ≥ b(r + 1)/2c. If g > r + 1,
we degenerate to X0 = Y ∪ Z with gY = r + 1, gZ = g − r − 1, L0|Y = KY ,
L0|Z = g0

d−2r = gr
d−r (−ru). The statement then follows from the same argument

as in Proposition 3.1. �

Remark. Using the same degeneration as in Proposition 7.1, we also have

kp,1(X, L)≤ kp.1(Y, KY )=
[(r−1

p

)
−

( r−1
p−1

)]
r +

(r+1
p

)
−

( r+1
p+1

)
for 1≤ p< b(r+1)/2c. We will improve this bound using an infinitesimal argument.

Even though we do not have an analog of Theorem 1.4, when g is not too big
compared to p, the inductive argument still go through:

Lemma 7.2. Let C be a general curve of genus g and L ′ a gr
d with h1(L ′) = 1.

If p ≤ r −b(g+ 1)/2c, then the sequence∧r−p+1 H 0(L ′)⊗ H 0(KC ⊗ L ′−1) ↪−→
∧r−p H 0(L ′)⊗ H 0(KC(2u))
δ
−−→

∧r−p−1 H 0(L ′)⊗ H 0(KC ⊗ L ′(2u))

is exact in the middle.

Proof. Let t ∈H 0(KC⊗L ′−1) be a generator. Multiplication by t gives an embedding

H 0(L ′)
· t
−−→ H 0(KC).

Denote its image by W . Let C ′ be the image of C under the map given by |KC(2u)|.
C ′ is of arithmetic genus g+ 1 and has a cusp. We can identify H 0(C, KC(2u))
with H 0(C ′, ωC ′), where ωC ′ is the dualizing sheaf of C ′. With the above notation,
we can identify the cohomology group in question with Kr−p,1(C ′, ωC ′;W ) ⊂

Kr−p,1(C ′, ωC ′). Since curves in K 3 surfaces satisfy the Green conjecture (see
[Voisin 2002; 2005]), by degenerating C ′ to a cuspidal curve in K 3 surface, we have

Kr−p,1(C ′, ωC ′)= 0

for r − p ≥ b(g+ 1)/2c. �

Again we start our induction with a general curve of genus r + 1, and L ′ = KC .
For p < b(r + 1)/2c, we have

K p−1,2(C, KC)
∨ ∼= Kr−p,1(C, KC)= 0.

Now we apply the construction in Section 3. By Lemma 5.2 and Lemma 7.2, we
get:
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Proposition 7.3. For L a general gr
d on a general curve X with h1(L)= 1:

(a) kp−1,2(X, L)= kr−p,0(X, L; K X )= 0 if p ≤ r −bg/2c.

(b) kp−1,2(X, L)≤ (g− 2r + 2p− 1)
(r−1

p−1

)
if p > r −bg/2c.

Proof. Again we start our induction on g with a general curve of genus r + 1 and
L ′ = KC . We always have

K p−1,2(C, KC)
∨ ∼= Kr−p,1(C, KC)= 0

for r − p ≥ b(r + 1)/2c.
Now we apply the construction in Section 3. If bg/2c ≤ r − p, Lemmas 5.2

and 7.2 apply, and we get (a).
When bg/2c gets past r − p (or equivalently g > 2r − 2p+ 1), we nevertheless

have estimate (5-1) for each attached elliptic tail. Thus the bound in (b) follows. �

Combining the results of Propositions 7.1 and 7.3, we get Theorem 1.7.

Remark. For line bundles with h1
= 1, the assumption p≤ r−bg/2c is equivalent

to the condition that d ≥ 2g− 2+ p− b(g− 1)/2c. Thus Proposition 7.3 is the
generic version of the generalized Green–Lazarsfeld conjecture [1986] for special
linear series. However this generic version is known to follow from the generic
Green conjecture (see [Aprodu and Farkas 2011, Proposition 4.30]). It seems to the
author that the bound in (b) is new.

Appendix

We prove the following statement, which is needed in the proof of Corollary 1.5.

Proposition A.1. For a general curve C of genus r − 3 embedded in Pr by a
general gr

2r−3, the number of quadrics containing TC is at most(r−4
2

)
.

Consider the rational normal curve C of degree d in Pd . It is well known that
there are (d

2

)
independent quadrics containing C . Denote them by 1a,b for 0≤ a < b ≤ d − 1,
where 1a,b is the 2× 2 minor corresponding to columns a and b of the matrix(

x0 x1 x2 · · · xd−2 xd−1

x1 x2 x3 · · · xd−1 xd

)
,

with the usual convention that 1a,b =−1b,a .
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It is proved in [Eisenbud 1992] that there are(
d − 2

2

)
quadrics containing TC . They are

0a,b =1a+2,b− 21a+1,b+1+1a,b+2

for 0≤ a, b ≤ d − 3.
Now, consider the projection C ′ of C to Pr (d = 2r − 3, r ≥ 3) given by

t −→ [1, t2, t4, . . . , t2r−6, t2r−5, t2r−4, t2r−3
].

C ′ has arithmetic genus r − 3 and has a unique singular point at t = 0 locally
isomorphic to Spec(C[t2, t2r−5

]).

Lemma A.2. The complete linear system |OC ′(1)| has projective dimension r ; that
is, C ′ ⊂ Pr is linearly normal. As a consequence, C ′ is smoothable in Pr .

Proof. Let L l = span{P1, P3, . . . , P2k−1} ⊂ P2r−3, where

Pi = [0, 0, . . . , 1(i-th), . . . , 0], i = 0, 1, . . . , r,

and denote by Ck ⊂ P2r−3−k the projection of C with center Lk . The curve Ck

has a unique singular point locally isomorphic to Spec(C[t2, t2k+1
]). Note that

C ′ = Cr−3 ⊂ Pr . We use induction to show that the complete linear system
OP2r−3−k (1)|Ck has projective dimension 2r − 3− k. The natural projection map
Prk : Ck → Ck+1 induces an inclusion H 0(OCk+1(1)) ⊂ H 0(OCk (1)). By the
inductive hypothesis, h0((OCk (1))= h0(OP2r−3−k (1))= 2r−2−k. Since we obtain
Ck+1 from Ck by projection from a point, h0((OCk+1(1))≥ h0((OCk (1))− 1. Since
Ck+1 has arithmetic genus one higher than Ck , H 0(OCk+1(1)) 6⊆ H 0(OCk (1)). Thus
h0((OCk+1(1))= 2r − 3− k. For the last statement, note that the curve C ′ has only
a plane curve singularity, and thus is smoothable (as an abstract curve). Moreover,
since h0(OC ′(1)) = r + 1, OC ′(1) is a complete nonspecial gr

2r−3. For any one-
parameter smoothing (Ct , L t) of the pair (C ′,OC ′(1)), since h0 of the central fiber
does not jump up, all r + 1 global sections of OC ′(1) deform to L t . �

Proof of Proposition A.1. We could explicitly compute the quadrics containing TC ′:
they are just quadrics in P2r−3 containing TC with singular locus containing the
center of projection Lr−3 = span{P1, P3, . . . , P2r−7}. Now if we think of each
quadric 0a,b as a (2r − 2)× (2r − 2) symmetric matrix, we are just looking for
matrices Q ∈ S0 := span{0a,b | 0≤ a < b ≤ 2r − 6} such that Lr−3 ⊂Ker Q. (We
think of Q as a linear operator on C2r−2 and Lr−3 as a subspace of C2r−2.)
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Notice that each 0a,b, as a matrix, can have nonzero entries at the (i, j)-spot
(0≤ i, j ≤ 2r − 3) only if

i + j = a+ b+ 3.

Stated differently, each 0a,b, as a matrix, is supported on one of the diagonals.
For each 4 ≤ k ≤ 4r − 10, there are (bk/2c − 1) of the 0a,b contributing to

nonzero entries on the line

i + j = k, for 4≤ k ≤ 2r − 3,

and (2r − 4−b(k+ 1)/2c) of the 0a,b if 2r − 3< k ≤ 4r − 10.
Write

S0 =
4r−10⊕
k=4

Sk,

where Sk = span{0a,b | 0 ≤ a < b ≤ 2r − 6, a + b = k − 3}. It is obvious that if
Q ∈ S0 vanishes on Lr−3, then its Sk component also vanishes on Lr−3. Thus it
suffices to count how many quadrics in each Sk vanish on Lr−3.

Let’s just consider the case 4≤ k ≤ 2r − 3; the other case is similar.
When k is odd, vanishing on Lr−3 imposes (k − 1)/2 independent conditions

on Sk , more than the dimension of Sk . Thus no quadric in Sk vanishes on Lr−3.
When k is even, vanishing on Lr−3 only imposes dk/4e independent conditions.

We conclude that for 4≤ k ≤ 2r − 3, there are

∑
8≤k≤2r−4

k even

(
k
2
− 1−

⌈
k
4

⌉)
=

⌊
r2
− 8r + 16

4

⌋

quadrics containing TC ′ (if r ≤ 5 there are none!).
Similarly, for 2r − 3< k ≤ 4r − 10, we count that there are⌊

r2
− 8r + 16

4

⌋
−

⌊
r − 4

2

⌋
quadrics containing TC ′.

So we get a total of⌊
r2
− 8r + 16

4

⌋
+

⌊
r2
− 8r + 16

4

⌋
−

⌊
r − 4

2

⌋
=

(
r − 4

2

)
quadrics containing TC ′. By specializing to C ′, we conclude our proof. �
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