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CONFORMAL METRICS WITH CONSTANT CURVATURE ONE
AND FINITELY MANY CONICAL SINGULARITIES

ON COMPACT RIEMANN SURFACES

QING CHEN, WEI WANG, YINGYI WU AND BIN XU

A conformal metric g with constant curvature one and finitely many coni-
cal singularities on a compact Riemann surface 6 can be thought of as the
pullback of the standard metric on the 2-sphere by a multivalued locally uni-
valent meromorphic function f on 6\{singularities}, called the developing
map of the metric g. When the developing map f of such a metric g on the
compact Riemann surface 6 has reducible monodromy, we show that, up
to some Möbius transformation on f , the logarithmic differential d(log f )
of f turns out to be an abelian differential of the third kind on 6, which
satisfies some properties and is called a character 1-form of g. Conversely
given such an abelian differential ω of the third kind satisfying the above
properties, we prove that there exists a unique 1-parameter family of con-
formal metrics on6 such that all these metrics have constant curvature one,
the same conical singularities, and have ω as one of their character 1-forms.
This provides new examples of conformal metrics on compact Riemann sur-
faces of constant curvature one and with singularities. Moreover we prove
that the developing map is a rational function for a conformal metric g with
constant curvature one and finitely many conical singularities with angles
in 2πZ>1 on the two-sphere.

1. Introduction

Let6 be a compact Riemann surface and p a point on6. A conformal metric g on6
has a conical singularity at p with singular angle 2πα> 0 if in a neighborhood of p,
g = e2ϕ

|dz|2, where z is a local complex coordinate defined in the neighborhood
of p with z(p)= 0 and ϕ− (α− 1) ln |z| is continuous in the neighborhood. Let

Chen is supported in part by the National Natural Science Foundation of China (grant no. 11271343).
Wu is supported in part by the National Natural Science Foundation of China (grant no. 11071249) and
the President Fund of UCAS. Xu is supported in part by Anhui Provincial Natural Science Foundation
(grant no. 1208085MA01) and the Fundamental Research Funds for the Central Universities (grant no.
WK0010000020).
MSC2010: primary 32Q30; secondary 34M35.
Keywords: conformal metric of constant curvature one, conical singularity, developing map,

character 1-form.

75

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.273-1


76 QING CHEN, WEI WANG, YINGYI WU AND BIN XU

p1, . . . , pn be points of 6 and g a conformal metric on 6 with conical singularity
at p j of singular angle 2πα j > 0 for j = 1, . . . , n. Then we say that the metric g
represents the divisor D :=

∑n
j=1(α j −1)Pj . The Gauss–Bonnet formula says that

the integral of the curvature on 6 equals 2π times

χ(6)+ deg D,

where χ(6) denotes the Euler number of 6 and deg D =
∑

j (α j − 1) the degree
of the divisor D. A classical problem is whether there exists a conformal metric on
6 of constant curvature K representing the divisor D. If K ≤ 0, then the unique
metric exists if and only if the left-hand side χ(6)+ deg D ≤ 0; see [McOwen
1988; Troyanov 1991].

If χ(6)+ deg D > 0, or equivalently K ≡ 1 if we multiply the original metric
by some constant, the problem turns to be quite subtle and is still open now, except
that there are some partial results. Troyanov [1989] considered the case of two
points on the sphere and proved that the necessary and sufficient condition in this
case is α1 = α2. A more general result also due to him [1991, Theorem 4] says that
there exists a metric of constant positive curvature if

(1) 0< χ(6)+ deg D <min{2, 2 minα j }.

Luo and Tian [1992] proved that the above condition is also necessary and the
metric is unique, provided that 6 is the 2-sphere and all angles lie in (0, 2π). In
case that 6 is a sphere and the divisor D is supported at three points, [Umehara
and Yamada 2000; Eremenko 2004; Furuta and Hattori 1998; Fujimori et al. 2011]
give a necessary and sufficient condition for the existence of the metric, which is
also unique if and only if none of the three angles belongs to 2πZ>0.

We attack the problem by using the idea of a developing map, due to R. Bryant
[1988, pp. 333–4], Umehara and Yamada [2000, p. 76] and Eremenko [2004,
p. 3350]. Let g be a conformal metric of constant curvature one on 6 representing
the divisor D. Let 6∗ = 6\{p1, . . . , pn}. Every point p in 6∗ has a neighbor-
hood Up isometric (so conformal) to an open set Up of the Riemann sphere C

endowed with the standard metric gst. Denoting by fp : Up → Up this isometry
(conformal map), Umehara and Yamada [2000] and Eremenko [2004] claimed
that fp can be extended to the whole of 6∗ by analytic continuation such that
the extension gives a multivalued locally univalent meromorphic function f on
6∗, whose monodromy belongs to the group PSU(2) of orientation-preserving
isometries of C (see Lemma 2.1). Hence the metric g can be thought of as the
pullback

g =
4| f ′(z)|2|dz|2

(1+ | f (z)|2)2
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under f of gst. Moreover, prompted by [Umehara and Yamada 2000, (2.10)] and
[Eremenko 2004, (2)], we show in Lemma 3.1 that the Schwarzian { f, z} of f in
a neighborhood U j of p j with complex coordinate z with z(p j )= 0 has the form

{ f, z} :=
f ′′′(z)
f ′(z)

−
3
2

(
f ′′(z)
f ′(z)

)2

=
c j

z2 +
d j

z
+ψ j (z),

where c j = (1−α2
j )/2, the d j are constants and the ψ j are holomorphic functions

in U j , dependent on the complex coordinate z. Since the value of c j is independent
of the choice of the complex coordinate z, we say that f is compatible with the
divisor D =

∑
j (α j − 1)Pj . We now arrive at:

Definition 1.1 [Umehara and Yamada 2000, p. 76]. Let g be a conformal metric
on 6 of constant curvature one representing the divisor D. We call a multivalued
locally univalent meromorphic function f on 6∗ a developing map of the metric g
if g = f ∗gst.

On the other hand, if there exists a multivalued meromorphic function f on 6∗

which is compatible with the divisor D and has monodromy in PSU(2), then there
exists a conformal metric g= f ∗gst with constant curvature one and representing D
(see Lemma 3.2). Therefore we can sum up the above into a necessary and sufficient
condition (see Theorem 3.4) for the existence problem of conical conformal metrics
of constant curvature one on 6.

In this manuscript, we mainly focus on a special class of conical conformal
metrics of constant curvature one, called reducible metrics, which we can classify
by using abelian differentials of the third kind.

Definition 1.2 [Umehara and Yamada 2000, p. 76]. We call a conformal metric
g on 6 of constant curvature one and with finitely many conical singularities an
irreducible metric if the monodromy group of a developing map of the metric g
cannot be diagonalized, that is, the monodromy group has no fixed point on the
Riemann sphere C (see Lemma 4.1). We call g reducible if the monodromy group
has at least one fixed point on C. We call a reducible metric (non)trivial if the
monodromy of a developing map of the metric is (non)trivial. Lemma 2.2 tells us
that these definitions do not depend on the choice of a developing map.

A trivial reducible metric is a pullback of gst under some rational function on
6 (Lemma 4.2). Each subgroup of PSU(2) having at least one fixed point on C

is abelian, and, up to conjugacy, can be thought of as a subgroup of the standard
maximal torus

U(1)=
{
diag

(
e
√
−1θ , e−

√
−1θ)
| θ ∈ R

}
/{±I2}
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of PSU(2) (see Lemma 4.1). Each fractional transformation in U(1) is multiplication
by e2

√
−1θ . Therefore, for a nontrivial reducible metric g on 6, by Lemma 2.2

there exist exactly two developing maps, say f and 1/ f , of the metric g, whose
monodromies belong to U(1).

Definition 1.3. Let g be a nontrivial reducible metric on a compact Riemann
surface 6. We call a developing map f of g multiplicative if the monodromy
of f belongs to U(1). Such an f is unique up to taking the reciprocal, and the
logarithmic differential

ω := d(log f )=
d f
f

of the multiplicative developing map f is a meromorphic 1-form on6∗. Actually, ω
can be extended to be an abelian differential of the third kind on6 (see Lemma 4.3),
which we call the character 1-form of the reducible metric g. Hence the character
1-form of a nontrivial reducible metric is unique up to sign.

Let g be a trivial reducible metric on 6. By Lemma 4.2, there exists a rational
function f :6→ C such that g = f ∗gst. By Lemma 2.2, each developing map of
the metric g is a rational function, and multiplicative. We call a character 1-form
of the metric g the logarithmic differential of a developing map of g. The character
1-forms of the trivial reducible metric g are automatically abelian differentials of
the third kind on 6.

To set up the notation for stating the properties of character 1-forms, we need say
something more about the standard metric gst on the Riemann sphere C, which is a
trivial reducible metric. The set of all developing maps of gst can be identified with
the group PSU(2). Up to taking the reciprocal, any two developing maps of gst,
fixing 0 and∞, respectively, differ by a multiple complex constant with modulus 1.
Up to sign, the logarithmic differentials of all the developing maps, leaving the
set {0,∞} invariant, coincide with the abelian differential 2 := d(logw)= dw/w,
which has two simple poles of 0 and∞. The residues of 2 at 0 and∞ equal 1
and −1, respectively. The algebraic dual X := w∂/∂w of 2 is a meromorphic
vector field with two simple zeroes of 0 and ∞. The index of X equals 1 at
both 0 and ∞. 8(w) = 4|w|2/(1+ |w|2) is a smooth Morse function on C,
whose complex gradient field 8·,w∂/∂w equals X . Moreover, 8 has only two
critical points, which are the minimal point 0 and the maximal point∞. Consider
a multiplicative developing map f of a reducible metric g on 6. Up to sign,
the character 1-form ω = d f/ f = d(log f ) equals the pullback f ∗2 of 2 by f .
Denote by Y := ( f (z)/ f ′(z))(∂/∂z) the algebraic dual vector field of ω, which
is a meromorphic vector field on 6. Then Y equals the complex gradient field
9 ·,z∂/∂z of the smooth function 9(z)= 4| f (z)|2/(1+ | f (z)|2) on 6∗, which can
be continuously extended to 6 (see Lemma 4.3).
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Using the above notations, we state more precisely the properties of the character
1-form of a reducible metric.

Theorem 1.4. Let g be a reducible metric representing the divisor

D =
n∑

j=1

(α j − 1)Pj with 1 6= α j > 0.

Let f be a developing map of g, and let f be multiplicative if g is nontrivial such
that the character 1-form ω = d f/ f of g equals f ∗2. Let Y be the algebraic dual
vector field of ω, and9(z)= 4| f (z)|2/(1+ | f (z)|2). Then the following statements
hold:

(1) The set of zeroes of the meromorphic vector field Y coincides with the extremal
point set of the function 9. Each zero of Y is simple, and Y vanishes at each
point p j where α j > 0 is a noninteger. The set of poles of Y coincides with the
saddle point set of 9. Each pole of Y is some conical singularity p j of the reducible
metric g, where α j is an integer greater than 1 and the order of the pole p j of Y
equals α j − 1.

(2) Let p1, . . . , pJ be the saddle points of 9, let pJ+1, . . . , pn be the singular
extremal points of 9, and let e1, . . . , eS be the smooth extremal points of 9 on 6∗.
Then the canonical divisor of the character 1-form ω has the form

(ω)=

J∑
j=1

(α j − 1)Pj −

n∑
k=J+1

Pk −

S∑
`=1

E`.

In particular, each pole of ω is simple; that is, ω is an abelian differential of the
third kind. The residue of ω at the pole e` equals 1 or −1, where e` is a minimal
or maximal point of 9; the residue of ω at the pole pk equals α j or −α j , where
pk is a minimal or maximal point of 9. Moreover the real part of ω is exact on
6′ :=6\{pJ+1, . . . , pn, e1, . . . , eS}:

2<ω = d(log | f |2).

(3) The developing map f extends over 6′ ∪6∗ and has the expression

f (z)= C exp
(∫ z

ω

)
for some nonzero complex constant C. In particular, the local monodromy of f
around each p j (1≤ j ≤ J ) is trivial, and the limit limp→p j f (p) exists and belongs
to C\{0}. If we continue analytically a function element f of f along a simple and
sufficiently small loop winding around pk (J + 1≤ k ≤ n) counterclockwise, then
we obtain f exp(2π

√
−1αk). The limit limp→pk | f (p)| exists, and equals 0 or +∞,

provided pk is a minimal or maximal point of 9(z). This is also the case for e`.
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Using abelian differentials of the third kind with the above properties, we can
construct new examples of conformal metrics with constant curvature one and with
finitely many conical singularities.

Theorem 1.5. Let ω be an abelian differential of the third kind having poles on
a compact Riemann surface 6, whose residues are all nonzero real numbers and
whose real part is exact outside the set of poles of ω. Then there exists a unique
1-parameter family {gλ : λ ∈ (0,+∞)} of reducible metrics on 6 such that ω is one
of the character 1-forms of each metric gλ := f ?λ gst, where

fλ(z)= λ · exp
(∫ z

ω

)
is a multivalued locally univalent meromorphic function on 6\{poles of ω} with
monodromy in U(1). Suppose that the canonical divisor of ω has the form

(ω)=

J∑
j=1

(α j − 1)Pj −

N∑
k=J+1

Qk,

where the α j are integers > 1. Then the divisor D represented by gλ has the form

D =
J∑

j=1

(α j − 1)Pj +

N∑
k=J+1

(|ResQk (ω)| − 1)Qk .

Moreover, the gλ are trivial reducible metrics if and only if the integral of ω
on each loop in 6\{poles of ω} is 2π

√
−1 times an integer. In particular, each

residue of ω is an integer.

Remark 1.6. Each reducible metric does not satisfy Troyanov’s condition (1) (see
Corollary 4.5). Therefore we obtain a class of new examples of conformal metrics
of constant curvature one with finitely many singularities, since there exist plenty
of abelian differentials of the third kind satisfying the condition in Theorem 1.5
(see [Springer 1957, Corollary 8-3]).

Troyanov’s condition (1) for the corresponding irreducible metrics depends only
on the values of angles. Example 4.7 shows that the existence of reducible metrics
does not depend only on angles but also on the position of singularities.

Remark 1.7. Umehara and Yamada [2000] called a nontrivial reducible metric
H1-reducible, and a trivial reducible metric H3-reducible.

Remark 1.8. Besides the previous reference, our motivation for defining character
1-form comes from [Chen and Wu 2011; Chen et al. 2013], where the authors use
character 1-form to completely classify HCMU metrics of nonconstant curvature on
compact Riemann surfaces. We will say more about this in the ending of Section 4.
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Theorem 1.9. A conformal metric of constant curvature one, representing an
effective Z-divisor D on the 2-sphere is a trivial reducible metric. That is, it is the
pullback under some rational function f on the 2-sphere of the standard metric gst

on the Riemann sphere C.

Remark 1.10. The case where D is an effective Z-divisor supported at two or
three points was proved in [Troyanov 1989; Furuta and Hattori 1998; Umehara and
Yamada 2000; Eremenko 2004]. However Theorem 1.9 does not hold in general
for compact Riemann surfaces of nonzero genus (see Example 4.6).

Since the rational function f in Theorem 1.9 has ramified divisor D, the theorem
reduces the problem of characterizing conformal metrics of constant curvature
one and representing an effective Z-divisor D on the two-sphere to the following
classical one: Which kind of divisors D can be a ramification divisor of some
rational function, and how many equivalent classes of rational functions have
the prescribed ramification divisor? Here we say that two rational functions are
equivalent if one of them is given by the postcomposition of the other with a Möbius
transformation.

When the points in the support of the ramified divisor lie in a general position,
L. Goldberg [1991] solved a special case of the latter problem, where each ramified
order equals one; I. Scherbak [2002] gave a complete answer for the general
case. [Eremenko and Gabrielov 2002; Eremenko et al. 2006] proved that there
exists a real rational function in each equivalence class if each point in the support
of D is real.

Remark 1.11. Since we only consider conformal metrics with finite area in this
manuscript, the singularities of “zero angle” would not show up (see [Bryant 1988,
Proposition 4]).

We explain the organization of this paper. In Section 2, we shall first make
a detailed exposition on developing map in Lemmas 2.1 and 2.2. We compute,
in Lemma 3.1 of Section 3, the Schwarzian of a developing map of a conformal
metric with constant curvature one representing a divisor D. In Lemma 3.2 we
show that the converse of Lemma 3.1 also holds. Then Theorem 1.9 follows from
these two lemmas. In Section 4 we prove Theorems 1.4 and 1.5 as applications of
Lemma 3.2. These two theorems are applied to give some examples of irreducible
and reducible metrics in Corollary 4.5 and Examples 4.6 and 4.7. In Section 5,
we give an alternative proof of a theorem of Troyanov [1989], as an application
of Theorems 1.9 and 1.4. Moreover we discuss the nonuniqueness of reducible
metrics representing a given divisor D. Last, we propose some questions about
both irreducible and reducible metrics.



82 QING CHEN, WEI WANG, YINGYI WU AND BIN XU

2. Existence of developing maps and their monodromy

Lemma 2.1. Let g be a conformal metric on a compact Riemann surface 6 of
constant curvature one, representing the divisor D =

∑n
j=1(α j − 1)Pj with α j > 0.

Then there exists a multivalued locally univalent holomorphic map f from 6∗ :=

6\{p1, . . . , pn} to the Riemann sphere C such that the monodromy of f belongs to
PSU(2) and

g = f ∗gst,

where gst = 4|dw|2/(1+ |w|2)2 is the standard metric over C.

Proof. Denote by d( · , · ) the distance on 6 induced by the metric g. Choose an
arbitrary point p in 6∗ and fix it. Take a positive number r = rp sufficiently small
such that d(p, {p1, . . . , pn}) > r and there exists a geodesic polar coordinate chart
in the open metric ball B(p, r)= {q ∈6 | d(p, q) < r} ⊂6∗. Choose a positively
oriented orthonormal basis {e1, e2

} = {e1
p, e2

p} of the tangent space Tp6. Choose
an arbitrary point p ∈ C and fix it. Since the Gauss curvature of (B(p, r), g) is
constant and equals one, by a theorem of Riemann [Petersen 2006, p. 136], there
exists an open metric ball B(p, r) in the Riemann sphere (C, gst) and an orientation-
preserving isometry fp from (B(p, r), g) onto (B(p, r), gst). Let e1

p := f∗(e1) and
e2
p := f∗(e2), which also form a positively oriented orthonormal basis of TpC. Then
fp is a conformal map from B(p, r) to B(p, r).

Take an arbitrary point q in 6∗ and a curve L : [0, 1]→6∗ joining p to q . Then
there exists some

0< δ <min
(
d
(
γ ([0, 1]), {p1, . . . , pn}

)
, rp

)
such that there exists a geodesic polar coordinate chart in the open metric ball B(a, δ)
for each point a on the curve L . If we properly divide the interval 0≤ t ≤ 1 into n
subintervals for sufficiently large n, 0= γ0 < γ1 < · · ·< γn = 1, then the curve L
splits into n subarcs L1, L2, . . . , Ln with Lg (g=1, . . . , n) joining L(γg−1)=: cg−1

to L(γg)=: cg. Moreover, if we denote by B0, B1, . . . , Bn the open metric balls with
centers a = c0, c1, . . . , cn and with radius δ, then the closed arcs Lg lie completely
in Bg−1 for g = 1, . . . , n. Let f0 be the restriction to B0 of the conformal map
fp : B(p, rp)→B(p, rp). Then f0 is an isometry (conformal map) from B0 onto
B0 :=B(p, δ). Choose a positively oriented orthonormal basis {e1

c1
, e2

c2
} of Tc16.

Since c1 ∈ B0, we let c1 := f0(c1) ∈ B0, e1
c1
:= ( f0)∗(e1

c1
) and e2

c1
:= ( f0)∗(e2

c1
).

Then there exists a unique isometry f1 : B1→B1 :=B(c1, δ) such that f1(c1)= c1

and f1 maps {e1
c1
, e2

c1
} to {e1

c1
, e2

c1
}. Then f1 = f0 on B0 ∩ B1. Since c2 ∈ L2 ⊂ B1,

f1 is an analytic continuation of f0 from point c0 to c2 along the arc L0 ∪ L1. In
this way, we obtain f0, . . . , fn , which are recursively defined on B0, . . . , Bn and
give an analytic continuation of fp from p to q along the curve L . Using the same
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argument as [Siegel 1969, pp. 13–15], we can show that this analytic continuation
is independent of the choice of division points on L . Moreover, if L∗ is another
curve in 6∗ joining a to b that is homotopic to L , then the result of doing analytic
continuation of fp along L∗ is the same as along L . Summing up, we obtain a
multivalued locally isometric (univalent conformal) map f from (6∗, g) to (C, gst).

At last, we prove that all the monodromy of f belongs to PSU(2). Suppose
L : [0, 1] → 6∗ is a closed curve with L(0) = L(1) = p. We use the notation
in the previous paragraph. Recall that f0 maps p = c0 to p, ( f0)∗ maps {e1, e2

}

to {e1
p, e

2
p}, fn maps p = cn to cn and ( fn)∗ maps {e1, e2

} to {e1
cn
, e2

cn
}. Then there

exists a unique isometry L ∈ PSU(2) of (C, gst) such that L(p)= cn and L∗ maps
{e1

p, e
2
p} to {e1

cn
, e2

cn
}. Therefore fn = L ◦ f0. �

Lemma 2.2. Any two developing maps f1, f2 of the metric g are related by a
fractional linear transformation L ∈ PSU(2), i.e., f2 = L ◦ f1. In particular, any
two developing maps of g have mutually conjugate monodromy in PSU(2). Then we
call this conjugate class the monodromy of the metric g. The space of developing
maps of the metric g has a one-to-one correspondence with the quotient group of
PSU(2) by the monodromy group of a developing map of g.

Proof. Take a point p ∈ 6∗ and a positively oriented orthonormal basis {e1, e2
}

of Tp6
∗. Let f j be a function element of f j near p for j = 1, 2. Denote p j := f j (p)

and ek
p j
:= (f j )∗(ek) for j, k = 1, 2. Then there exists a unique L ∈ PSU(2) such

that L(p1) = p2, and L∗ maps {e1
p1
, e2

p1
} to {e1

p2
, e2

p2
}. Then we obtain the equality

f2 = L ◦ f1 near p, which implies f2 = L ◦ f1. It follows from direct computation
that the monodromy of f1 and f2 are mutually conjugate.

Given a developing map f and a fractional linear transformation L ∈ PSU(2),
we can see L ◦ f = f if and only if there exists a point p ∈ 6∗ and a functional
element fp near p such that L ◦ fp is another function element of f near p. That is,
L belongs to the image of the monodromy representation of π1(6

∗, p) with respect
to f. Therefore PSU(2) acts in this way transitively on the set of all developing
maps with isotropy group isomorphic to the monodromy group. �

Remark 2.3. The developing maps also exist for flat or hyperbolic conformal met-
rics with finitely many conical or cusp singularities, and analogues of Lemmas 2.2
and 3.2 hold.

3. The Schwarzian of a developing map

Lemma 3.1. Let g be a conformal metric of constant curvature one on a compact
Riemann surface 6, and suppose g represents a divisor D =

∑n
j=1(α j − 1)Pj ,

where α j > 0 for all j . Suppose that f :6∗ =6\{p1, . . . , pn} → C is a developing
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map of g. Then the Schwarzian { f, z} of f equals

{ f, z} =
1−α2

j

2z2 +
d j

z
+ψ j (z)

in a neighborhood U j of p j with complex coordinate z and z(p j )= 0, where the
d j are constants and the ψ j are holomorphic functions in U j , depending on the
complex coordinate z.

Proof. If we rewrite the metric g = 4| f ′(z)|2|dz|2/(1+ | f (z)|2)2 as g = e2u
|dz|2,

then we find u = log | f ′(z)| + log 2 − log(1 + | f |2). The lemma on page 300
of [Troyanov 1989] tells us that

η(z)= 2
(
∂2u
∂z2 −

(
∂u
∂z

)2 )
dz2

defines a projective connection compatible with the divisor D. The interested reader
could find in the same reference the definition of the projective connection, which
we will not use in this paper. The compatibility of the projective connection η with
the divisor D on page 300 of [Troyanov 1989] means that

η(z)=
(1−α2

j

2z2 +
d j

z
+φ j (z)

)
dz2, φ j holomorphic,

where z is the complex coordinate near p j . Since the developing map f is a
projective multivalued function on 6∗, its Schwarzian { f, z} with respect to the
complex coordinate z near p j is a single-valued function of z. At last, we find

2
(
∂2u
∂z2 −

(
∂u
∂z

)2)
= 2

∂

∂z

(
f ′′(z)

2 f ′(z)
−

f ′(z) f
1+ | f |2

)
− 2

(
f ′′(z)

2 f ′(z)
−

f ′(z) f
1+ | f |2

)2

=

(
f ′′′(z)
f ′(z)

−

(
f ′′(z)
f ′(z)

)2

−
2 f ′′(z) f (z)

1+ | f |2
+ 2

(
f ′(z) f

1+ | f |2

)2)
−

(
1
2

(
f ′′(z)
f ′(z)

)2

−
2 f ′′(z) f (z)

1+ | f |2
+ 2

(
f ′(z) f

1+ | f |2

)2)
=

f ′′′(z)
f ′(z)

−
3
2

(
f ′′(z)
f ′(z)

)2

= { f, z}. �

A multivalued locally univalent meromorphic function h on 6∗ is said to be
projective if any two function elements h1, h2 of h near a point p ∈6∗ are related
by a fractional linear transformation L ∈ PGL(2,C), i.e., h1 = L ◦ h2.

Lemma 3.2. Let f :6∗→ C be a projective multivalued locally univalent mero-
morphic function, and suppose the monodromy of f belongs to a maximal compact
subgroup of PGL(2,C). If f is compatible with the divisor D=

∑
j (α j−1)Pj , then
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there exists a neighborhood U j of p j with complex coordinate z and L j ∈PGL(2,C)

such that z(p j ) = 0 and g j = L j ◦ f has the form g j (z) = zα j , where 0 < α j 6= 1
and c j = (1−α2

j )/2. Moreover there exists L ∈ PGL(2,C) such that the pullback
(L ◦ f )∗gst of the standard metric gst by L ◦ f is a conformal metric of constant
curvature one which represents the divisor D =

∑
j (α j −1)Pj . In particular, if the

monodromy of f belongs to PSU(2), then the fractional linear transformation L

turns out to be the identity map.

Proof. Recall the well-known fact that every maximal compact group of PGL(2,C)

is conjugate to the subgroup PSU(2). There exists a fractional linear transformation
L such that the monodromy of L ◦ f belongs to PSU(2). Hence we may assume
that this is the case for f without loss of generality.

We first show the first statement of Lemma 3.2: that there exists a neighborhood
U j of p j with complex coordinate z and some L j ∈PGL(2,C) such that g j = L j ◦ f
has the form zα j . Since f is compatible with D, we could choose a neighborhood
U j of p j and a complex coordinate x on U j such that x(p j )= 0 and

{ f, x} =
c j

x2 +
d j

x
+φ j (x),

where φ j (x) is holomorphic in U j and c j := (1 − α2
j )/2. By [Yoshida 1987,

Proposition, p. 39], in the neighborhood U j there are two linearly independent
solutions u0 and u1 of the equation

d2u
dx2 +

1
2

(
c j

x2 +
d j

x
+φ j (x)

)
u = 0,

with single-valued coefficient such that f (x) = u1(x)/u0(x). Actually we have
u0 = (d f/dx)−1/2 and u1 = f (x)u0. Moreover, if f changes projectively, i.e.,

f 7→
a f + b
c f + d

with ad − bc = 1,

then u0 and u1 change linearly, i.e.,(
u0

u1

)
7→

(
d c
b a

)(
u0

u1

)
,

and vice versa.
Define an operator L j := x2(d2/dx2)+q j (x)with q j (x)= (c j+d j x+x2φ j (x))/2.

Then both u0 and u1 are solutions of the equation L j u = 0. Since the monodromy
of f belongs to PSU(2), the cyclic group generated by the local monodromy of
the equation L j u = 0 around x = 0 is contained in a maximal compact subgroup
of PGL(2,C) conjugate to PSU(2). Note that the equation L j u = 0 has a regular
singularity at 0. We could apply the Frobenius method (see [Yoshida 1987, §2.5])
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to solve it. Note that the indicial equation

(2) f (s)= s(s− 1)+
1−α2

j

4
= 0

of the differential equation L j u = 0 at x = 0 has roots s0 = (1 − α j )/2 and
s1= (1+α j )/2, and s1−s0=α j > 0. Let

∑
∞

k=0 bk xk be the power series expansion
of q j (x), where b0 = c j/2. Let s be a parameter. Then u(s, x)= x s ∑∞

k=0 ck(s)xk ,
with c0(s)≡ 1, is an solution of L j u = 0 if and only if the equation

(]n) f (s+ n)cn + Rn = 0

holds for all n = 0, 1, 2, . . . , where

R0 = 0, and, for n > 0, Rn = Rn(c1, . . . , cn−1, s)=
n−1∑
i=0

ci bn−i .

Note that the equation (]0) is exactly the indicial equation (2). Since f (s1+ n) 6= 0
for all n ≥ 1, we find that u(s1, x) is a solution of the equation.

Case 1. Suppose that s1− s0 = α j is not an integer. Then, by the same reasoning,
u(s0, x) is another solution, which is linearly independent of u(s1, x). Summing up,
we have

u(s0, x)= x s0(1+ψ0) and u(s1, x)= x s1(1+ψ1),

where both ψ0 and ψ1 are holomorphic functions vanishing at 0. Here we take
a smaller neighborhood of 0 than U j to assure the convergence of the power
series defining ψk if necessary. Since both u0(x) and u1(x) are linear combi-
nations of u(s0, x) and u(s1, x), f (x) = u1(x)/u0(x) equals some fractional lin-
ear transform of u(s1, x)/u(s0, x). For simplicity of notation, we may assume
f (x) = u(s1, x)/u(s0, x) equals xα j times a holomorphic function ϕ j (x) with
ϕ j (0)= 1. Therefore we could choose another complex coordinate z = z(x) of U j

under which f = f (z)= zα j .

Case 2. Suppose that m := s1− s0 = α j is an integer ≥ 2.

Subcase 2.1. If Rm = 0, we can solve the equation (]n) for s = s0 for all n ≥ 1 by
choosing cm arbitrarily and obtain another solution u(s0, x) linearly independent of
u(s1, x). An argument similar to that in Case 1 completes the proof.

Subcase 2.2. Suppose Rm 6= 0. Define

u∗ = x s0

∞∑
k=0

ck(s0)xk,

where c0 = 1, the c j (1 ≤ j < m) are determined by (] j ), while cm is arbitrarily
fixed, and the c j ( j > m) are determined also by (] j ). Then the linear combination
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of u∗ and (∂/∂s)u(s, x)|s=s1

U0(x) := f ′(s1)u∗− Rm
∂

∂s
u(s, x)|s=s1

is a solution. It should be mentioned that since f and Rn are holomorphic with
respect to s, this is also the case for the cn . Then we correct a typo in [Yoshida
1987, p. 23] and find the two linearly independent solutions, given by(

U0(x)
u(s1, x)

)
=

(
x s0 x s1 log x
0 x s1

)(
f ′(s1)

∑
∞

k=0 ck(s0)xk
− Rm xm ∑∞

k=0 c′k(s1)xk∑
∞

k=0 ck(s1)xk

)
.

Then the local monodromy of the equation L j u = 0 at x = 0 is the conjugacy class
in PGL(2,C) of the matrix

M =
(

1 2π
√
−1

0 1

)
.

However, the cyclic group generated by M is a free abelian group, which has no
limit point under the usual topology of PGL(2,C), contradicting the fact that the
monodromy of the equation L j u = 0 is contained in a compact group of PGL(2,C).
That is, we rule out Subcase 2.2.

Summing up, we prove the statement where α j is an integer ≥ 2. Moreover we
can also see that in this case the local monodromy at p j is trivial; that is, p j is an
apparent singularity of the equation L j u = 0 and the multivalued function f .

Since f is locally univalent on 6∗ and has monodromy belonging to PSU(2),
f ∗gst is a well-defined smooth Riemannian metric on 6∗ with constant curvature
one. The first statement proved just now implies that this metric has conical
singularities at p j with angles 2πα j . �

Remark 3.3. Lemma 3.2 has some overlap with [Bryant 1988, Proposition 4], in
the sense that both say the same thing near each singularity.

We sum up the above two lemmas:

Theorem 3.4. There exists a conformal metric of constant curvature one represent-
ing a divisor D on a compact Riemann surface 6 if and only if there is a projective
multivalued meromorphic function on 6∗ =6\Supp D compatible with the divisor
D and having monodromy in PSU(2).

Proof of Theorem 1.4. Let f be a developing map of the metric g representing an
effective Z-divisor

∑
j n j Pj on the sphere. By Lemma 3.1, f has regular singularity

of weight (1−n2
j )/2 at p j . By Lemma 2.1, the monodromy of f belongs to PSU(2).

By Lemma 3.2, there exists L j ∈PGL(2,C) and a complex coordinate z near p such
that L j ◦ f has the form f (z)= zn j+1 near p j , which implies the local monodromy
of f at p j is trivial. Since the sphere is simply connected, the monodromy of f is
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trivial, that is, f is a single-valued meromorphic function outside {p j }. Moreover,
f can be extended meromorphically onto the whole sphere; that is, f is a rational
function on the sphere. �

At a point p ∈ 6 near which f = f (z) is univalent holomorphic, we find that
the Schwarzian { f, z} is holomorphic, and vice versa (see [Yoshida 1987, Remark,
p. 44]). Actually we can prove a more general result.

Lemma 3.5. Let U be an open disk containing 0 in the complex plane C with
coordinate w and f a projective multivalued meromorphic function on U\{0}
with regular singularity of weight zero at 0. That is, { f, w} equals d/w plus a
holomorphic function φ(w), where both the constant d and φ(w) depend on the
coordinate w. Assume that the subgroup of PGL(2,C) generated by the local
monodromy of f at 0 is precompact in PGL(2,C). Then there exists L ∈ PGL(2,C)

and another complex coordinate z of U such that L ◦ f (z)= z and z(0)= 0.

Proof. Use the same argument as Case 2 of the proof of Lemma 3.2. Also note that
the indicial equation here has two roots, 0 and 1. �

This lemma has the following geometric consequence.

Proposition 3.6. The conic singularity with angle 2π of a conformal metric with
constant curvature one is actually a smooth point of the metric.

4. Proof of Theorems 1.5 and 1.9

Lemma 4.1. (1) A subgroup G of PSU(2) can be diagonalized if and only if G
has a fixed point on C. Such a group is contained in some maximal torus T of
PSU(2). In particular, G is abelian.

(2) There exists an abelian subgroup of PSU(2) which has no fixed point on C.

Proof. (1) Consider the natural unitary representation ρ of SU(2) on V ∼= C2

endowed with the natural Hermitian inner product 〈 · , · 〉. For each subgroup H of
SU(2), ρ restricts to a faithful unitary representation ρH of H on V . Let G̃⊂SU(2)
be the lifting of G⊂PSU(2). We say that G can be diagonalized if the representation
(ρG̃, V ) can be decomposed into the direct sum of two one-dimensional subspaces:

V = Ce1⊕Ce2 and 〈ek, e`〉 = δk`.

Then, up to conjugacy, G̃ can be viewed as a subgroup of the standard maximal torus

U(1)=
{
diag

(
e
√
−1θ , e−

√
−1θ)
| θ ∈ R

}
of SU(2). Hence G = G̃/{±I2} is abelian.

Looking at the Riemann sphere C as the complex one-dimensional projective
space P(V ) with the natural projection π : V \{0} → P(V ), we can see that both
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π(e1) and π(e2) are two distinct fixed points of the G-action on P(V ) if G can
be diagonalized.

Suppose that G has a fixed point π(e1) on P(V ) with e1 ∈ V and 〈e1, e1〉 = 1.
Then e1 is a common eigenvector of all the elements in G̃. Since ρG̃ is a unitary
representation on V , it can be decomposed into V = Ce1⊕Ce2, where e2 is a unit
vector orthogonal to e1. That is, G can be diagonalized.

(2) The abelian subgroup D2 of PSU(2) generated by

z 7→ −z and z 7→
1
z

has no fixed point on C. �

Lemma 4.2. A trivial reducible metric g representing a divisor D on a compact
Riemann surface 6 is the pullback f ∗gst of gst by some rational function f on 6.

Proof. Let f :6∗→ C be a developing map of the metric g. Since the monodromy
of f is trivial, so is the local monodromy of f around each point in the support of D.
By Lemma 3.2 the divisor D must be an effective Z-divisor. Using Lemma 3.2 again,
we find that the holomorphic map f :6∗→C has a holomorphic extension to6. �

Lemma 4.3. Suppose that g is a reducible metric on 6 and f a multiplica-
tive developing map of g. Then the holomorphic 1-form d(log f ) on 6∗ can
be extended to be an abelian differential of the third kind on 6. The function
9 = 4| f (z)|2/(1+ | f (z)|2) on 6∗ can be extended continuously to 6.

Proof. The proof is contained in the following proof of Theorem 1.4. �

Proof of Theorem 1.4. (1–2) We show that if a point p ∈ 6∗ is a zero of Y (z) =
( f (z)/ f ′(z))(∂/∂z), then p is simple. We choose a function element f near p. Since
the monodromy of f belongs to U(1), Y = (f(z)/f′(z))∂/∂z, which is independent
of the choice of the function element f and the complex coordinate z. Since f is a
univalent meromorphic function near p, there exist L ∈ PGL(2,C) and a complex
coordinate z near p with z(p)= 0 such that L ◦ f = z. Then f= (az+ b)/(cz+ d)
with ad − bc = 1 near p, and Y = (az+ b)(cz+ d)∂/∂z. It is clear that p cannot
be a pole of Y . Since Y = 0 at z(p)= 0, bd = 0.

Case 1. Since ad − bc = 1 and bd = 0, we assume b = 0, d 6= 0 in this case. Then
ad = 1 and f(z) = az/(cz+ d). Then Y = az(cz + d)∂/∂z has a simple zero at
z(p)= 0. Hence ω = dz/(az(cz+ d)) has residue 1 at p. Since f (0)= 0, p is a
minimal point of 9 and 9(p)= 0.

Case 2. Similarly, when d = 0 and b 6= 0, Y also has simple zero at p, ω
has residue −1, limq→p | f (q)| = +∞, limq→p 9(q) = 4, and p is a maximal
point of 9.
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We show that each point q ∈ {p1, . . . , pn} must be a simple zero of Y , provided
the conical angle of the metric g at q equals 2πs > 0 and s is a noninteger. By
Lemmas 3.1 and 3.2, we can choose a function element f near q and a complex
coordinate z near q such that f= (azs

+b)/(czs
+ d) with ad−bc= 1. On the other

hand, since the monodromy of f belongs to U(1), so does the local monodromy of f.
Then there exists θ ∈ R such that

e2π
√
−1θ f= e2π

√
−1θ azs

+ b
czs + d

=
ae2π

√
−1szs

+ b

ce2π
√
−1szs + d

.

This is equivalent to the following equalities holding:

ace2π
√
−1s(1− e2π

√
−1θ)
= 0,(

ade2π
√
−1s
+ bc

)
− e2π

√
−1θ(bce2π

√
−1s
+ ad

)
= 0,

bd
(
1− e2π

√
−1θ)
= 0.

Solving the equation, we find that either c= b= 0 or a = d = 0, that is, f(z) equals
µzs (µ 6= 0) or λz−s (λ 6= 0). Hence Y =±sz(∂/∂z) has a simple zero at z(q)= 0.
Since f(0) equals 0 or∞, 9 is continuous at q, which is a minimal or maximal
point of 9 achieving value 0 or 4 if and only if ω has residue s > 0 or −s < 0 at p.

Let p be a singular point of the metric g with conical angle 2π times an integer
n > 1. Then

f(z)=
azn
+ b

czn + d
and Y =

(azn
+ b)(czn

+ d)
nzn−1

∂

∂z
.

Case A. Assume bd 6= 0. Then p is a pole of Y with order n−1 and a zero of ω with
order n− 1, and limz→p f (z)= f (0)= b/d ∈ C\{0}. Moreover 9 is continuous
at p, which is a saddle point of 9.

Case B. Assume bd = 0. Then it is easy to check that p is a simple zero of Y . If
b = 0 (resp. b 6= 0), then limq→p | f (p)| equals 0 (resp. +∞), where ω has residue
n (resp. −n). 9 is continuous at p, where it achieves the minimal value 0 or the
maximal value 4.

(3) The local monodromy property of f follows from Lemmas 3.1 and 3.2. �

Lemma 4.4. (1) Let g be a reducible metric on 6. Then each character 1-form ω

of g has at least two poles.

(2) Besides the assumption of (1), assume that ω has no zero and has only two
poles. Then 6 is the Riemann sphere C and g has two singularities with the
same angle, say α > 0. Moreover, if the two singularities are assumed to be 0
and∞, then ω = α(dz/z) up to sign.
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Proof. (1) Let f be the multiplicative developing map such that ω = d(log f ).
Since 9 = 4| f |2/(1+ | f |2) is a nonconstant continuous function on 6, it must
achieve its minimum and maximum. Either a minimal point or a maximal one of 9
is a pole of ω by Theorem 1.4.

(2) 6 = C follows from deg(ω)=−2. By the residue theorem, the two residues of
ω have different signs at the two poles, say 0 and∞. It follows from Theorem 1.4
that g has exactly two singularities 0 and∞ with the same angle, say α. Assume
that ω has residues α and −α at 0 and∞, respectively. Then ω = α(dz/z). �

Proof of Theorem 1.5. We divide the proof into the following two cases:

Case 1. Assume that the integral of ω at some loop in 6′ :=6\{poles of ω} does
not belong to the set 2π

√
−1Z. Since <ω is exact on 6′, solving the equation

ω = d(log f )

on 6′, up to a complex multiple with modulus one, we obtain a 1-parameter family
of multivalued locally univalent meromorphic functions

fλ(z)= λ · exp
(∫ z

ω

)
, λ ∈ (0,+∞).

Moreover, fλ has nontrivial monodromy belonging to U(1) and f ?λ gst is a nontrivial
reducible metric with character 1-form ω. Conversely, if g is a reducible metric
such that ω is one of its character 1-forms, then there exists a developing map
f̃ of g such that ω = d(log f̃ ). Since f̃ has nontrivial monodromy in U(1), g is
nontrivial. Solving the equation ω= d f̃ / f̃ , up to a complex multiple with modulus
one, we find that f̃ equals fλ for some λ > 0. Therefore such a reducible metric
g is unique. By the argument in the proof of Theorem 1.4, we find the divisor D
represented by g equals

J∑
j=1

(α j − 1)Pj +

N∑
k=J+1

(|ResQk (ω)| − 1)Qk .

Case 2. Assume that the monodromy given by ω is trivial; that is, the integral of ω
at each loop in 6′ := 6\{poles of ω} belongs to the set 2π

√
−1Z. The pullback

f ∗gst with f (z)= exp
(∫ z

ω
)

is a trivial reducible metric such that f is one of its
developing map and a rational function on 6 and ω is one of its character 1-forms.
Conversely, if g is a reducible metric with ω one of its character 1-forms, then
g = f̃ ∗gst with f̃ (z) = λ exp

( ∫ z
ω
)

for some λ > 0. Moreover, f̃ is a rational
function uniquely determined by ω and λ. Therefore, such a reducible metric g lies
in the 1-parameter family { f ∗λ gst : λ∈ (0,+∞)}. By a similar argument to the proof
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of Theorem 1.4, we can show that the effective divisor represented by g equals

J∑
j=1

(α j − 1)Pj +

N∑
k=J+1

(|ResQk (ω)| − 1)Qk . �

Corollary 4.5. Under the notation of Theorem 1.5, we have

χ(6)+ deg D ≥min(2, 2 min j α j ).

In particular, the divisor D does not satisfy Troyanov’s condition (1). In other
words, if D satisfies condition (1), then each conformal metric which has constant
curvature one and represents D is irreducible.

Proof. The character 1-form ω has at least two poles since the continuous function
9 = 4| f |2/(1+ | f |2) in Theorem 1.4 has at least a minimal point and a maximal
one. Then, using the equality

−χ(6)= deg(ω)=
J∑

j=1

(α j − 1)− (N − J ),

we have

χ(6)+ deg D = χ(6)+
J∑

j=1

(α j − 1)+
N∑

k=J+1

(|ResQk (ω)| − 1)

=

N∑
k=J+1

|ResQk (ω)| ≥min(2, 2 min j α j ). �

Example 4.6. Consider a conformal metric g on the two-sphere with constant
curvature one and finitely many conical singularities p1, . . . , pn . Let the angle at
p j be 2πα j . If n ≥ 3 and each α j is a noninteger, then g is irreducible. Otherwise,
by Theorem 1.4, the character 1-form of g would have at least three poles and
have no zeroes, a contradiction. In particular, we consider the conformal metric
g of constant curvature one with three angles π, π, π at 0, 1 and ∞ on the two-
sphere. Then the developing maps of g coincide with those projective solutions
with monodromy in PSU(2) of the Gauss hypergeometric equation

z(1− z)
d2u
dz2 + (c− (a+ b+ 1)z)

du
dz
− abu = 0,

where
|1− c| = |c− a− b| = |a− b| = 1

2

(see [Yoshida 1987, Section 5.3]). Then the monodromy group of a developing
map of g is conjugate to D2 in Lemma 4.1 and thus abelian, but g is irreducible.
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It follows from [Troyanov 1991, Theorem 4] that on a torus there exists a
conformal metric g with constant curvature one and a conical singularity p with
angle 2πα, where 1<α < 3. Then Corollary 4.5 tell us that g is not reducible. The
existence of such a irreducible metric having one angle 4π implies that Theorem 1.9
does not hold on a torus.

Example 4.7. We at first consider an elementary example of reducible metrics on
the Riemann sphere C. Let a, b be two positive numbers. Consider the 1-form

ω =

(
a
z
+

b
z− 1

)
dz,

which has residue −a − b at∞. Note that a/(a + b) is the zero of ω. Hence ω
satisfies the condition in Theorem 1.5 and thus gives a reducible metric on the
two-sphere with angles 2πa, 2πb, 2π(a + b) and 4π at 0, 1,∞ and a/(a + b),
respectively.

On the other hand, suppose that g is a reducible metric on the two-sphere having
angles 2πa, 2πb, 2π(a+b) and 4π at 0, 1,∞ and λ∈C\{0, 1}, respectively, where
a, b, a+ b are not integers. Then λ= a/(a+ b). Actually, letting ω be a character
1-form of g, we can see from Theorem 1.4 that 0, 1,∞ are simple poles of ω, and
λ is the zero of ω. By the residue theorem, we may assume that

Res0(ω)= a,

Res1(ω)= b,

Res∞(ω)=−a− b,

which implies that

ω =

(
a
z
+

b
z− 1

)
dz and λ=

a
a+ b

.

We then give an explicit construction of a general reducible metric g on the Rie-
mann sphere C. Suppose that z1, . . . , zk , k≥2, are all the poles ofω lying in C. Then

ω =

( k∑
j=1

a j

z− z j

)
dz,

where a j ∈ R\{0} is the residue of ω at z j for each j . Hence the zero set of
ω is determined by the poles of ω and their residues. In other words, the set
{(z j , a j ) : j = 1, 2, . . . , k} determines the positions of the singularities of g cor-
responding to the saddle points of the function 9 and the values of their conical
angles. Solving the ordinary differential equation d log f = ω, we find that there
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exists some λ > 0 such that the multivalued function

fλ(z)= λ ·
k∏

j=1

(z− z j )
a j

is a developing map of the metric g. This implies that the existence of reducible
metrics does not only depend on angles, but also on the position of singularities.

Remark 4.8. The monodromy of a developing map is irreducible for a hyperbolic
conformal metric with finitely many conical or cusp singularities. Moreover it is
also the case for a flat conformal metric with finitely many conical singularities
unless the metric is a smooth one on a torus. We leave the proof to interested readers.

We conclude this section by saying something more about the relationship
between reducible metrics and HCMU metrics. As a generalization with sin-
gularities on compact Riemann surfaces of Calabi’s extremal Kähler metric on
compact complex manifolds [Calabi 1982; 1985], X. Chen [2000] first introduced
the concepts of the HCMU metric and the extremal metric with singularities, and
proved some fundamental results. In particular, a conformal metric g̃ on a compact
Riemann surface with singularities is called HCMU if and only if it has finite
area and finite Calabi energy, and the complex gradient K ·,z∂/∂z of the Gauss
curvature K = K g̃ is a holomorphic vector field outside the singularities. Wang
and Zhu [2000] and Lin and Zhu [2002] obtained some interesting results and
generalized some results of X. Chen. Recently [Chen and Wu 2011; Chen et al.
2013] completely classified the nonconstant curvature HCMU metrics with conical
or cusp singularities, by using the character 1-form

ω̃ =
dz

K ·,zg̃

of an HCMU metric g̃. The properties that ω̃ is an abelian differential of the third
kind with real residues and its real part is exact outside the set of simple poles play
a crucial rule in the classification. The following observation puts both HCMU
metrics and metrics of constant curvature in the same philosophical frame.

Observation 4.9. Given a nonconstant curvature HCMU metric g̃ with singularities
on a compact Riemann surface 6, there exists a multivalued locally univalent
meromorphic function f̃ on 6∗ having monodromy in the abelian group{

exp
(√
−1θ

)
| θ ∈ R

}
,

and a football HCMU metric gfb (see [Chen 2000; Chen et al. 2005]) over C such
that g̃ = f̃ ∗g f b. Moreover the character 1-form of g̃ coincides with the logarithmic
differential d(log f ) of f , up to a constant.

This is not used in this paper and its proof will be left elsewhere.
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5. Discussion

As an application of Theorems 1.9 and 1.4, we shall show that if g is a conformal
metric on the sphere C of constant curvature one, representing the divisor D =
(α− 1)P + (β − 1)Q, where α, β > 0, then α = β.

Proof. Case 1. We assume that at least one of α and β is not an integer. Suppose
that this is the case for α. Since the punctured sphere C\{p, q} has fundamental
group isomorphic to Z, the metric g is a reducible metric. Let f be one of its
developing maps. By Lemmas 3.1 and 3.2, the local monodromy of f at p is
nontrivial. Hence g is nontrivial. We may assume that f is multiplicative so that
ω= d f/ f is the character 1-form of g. Theorem 1.4 tells us that p is a simple pole
of ω with residue ±α, and q is either a simple pole or a zero point of ω. If q is a
simple pole too, then the residue equals ±β. Since the canonical divisor (ω) has
degree −2, by Theorem 1.4, we find that ω has exactly two poles of p, q, which
implies α= β. It is impossible that q is a zero point of ω; otherwise ω must have at
least two simple poles in C\{p, q}, each of which has residue ±1 by Theorem 1.4.
This contradicts the fact that α /∈ Z.

Case 2. Suppose that both α and β are integers ≥ 2. By Theorem 1.9, each
developing map f of g is a rational function on C. Since the ramification divisor
R f of f equals (α−1)P+(β−1)Q, f has degree d = (α+β)/2 by the Riemann–
Hurwitz theorem. Suppose α 6= β, say α > β. Then f has expression z 7→ zα

near p, which implies f has degree ≥ α > d . Contradiction! �

We observe that the reducible metrics representing a given divisor are not unique
in general:

Proposition 5.1. Suppose that there exists a reducible metric g representing the
divisor D on the two-sphere. Denote by M(D) the space of conformal metrics of
constant curvature one representing D, by A(D) that of reducible metrics repre-
senting D.

(1) If D is supported at two points p1 and p2, M(D) = A(D), and g is unique
if and only if the two angles are equal and do not belong to 2πZ>1. If the
two angles are equal and belong to 2πZ>1, then A(D) is connected and has
dimension 1.

(2) If D is supported at three points and A(D) 6= ∅, then M(D) = A(D) is
connected. Moreover if g is trivial, dim A(D)= 3; otherwise dim A(D)= 1.

(3) Suppose that D is supported at more than three points and A(D) 6=∅. Then,
if g is trivial, dim A(D)= 3; otherwise dim A(D)≥ 1.

Proof. The first statement was proved by Troyanov [1989, Theorem I, p. 298]. The
second was shown in [Umehara and Yamada 2000, Corollary 2.3].
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Suppose that D is supported at more than three points. Following [Umehara and
Yamada 2000, (2.5)], we define

Ig := {ga = (a ? f )∗g | a ∈ PSL(2,C), a · Im ρ f · a−1
⊂ PSU(2)},

where a ? f denotes the Möbius transformation of f by a and

ρ f : π1(6
∗)→ PSU(2)

denotes the monodromy representation of the developing map f of the metric g.
Each metric ga in Ig has a developing map a ? f , which has the same Schwarzian
as f and monodromy conjugate to that of f . Hence Ig is contained in A(D). Then
it follows from [Umehara and Yamada 2000, Lemma B, p. 92] that if g is trivial,
dim A(D)≥ 3; otherwise dim A(D)≥ 1.

We consider the moduli of trivial reducible metrics representing an effective
Z-divisor D, which can be reduced to the space of rational functions with the same
ramification divisor D. We say that two rational functions are equivalent if one of
them is given by the postcomposition of the other with a Möbius transformation.
It follows from [Umehara and Yamada 2000, Lemma B, p. 92] that the trivial
reducible metrics having developing maps of the same type form a moduli of the
three-dimensional hyperbolic space H3. The beautiful theorem in [Scherbak 2002]
says that there is a least upper bound given by the Schubert calculus for the number
of equivalent classes of all the rational functions with ramification divisor D, which
can be achieved by a generic choice of the support of D. Hence we obtain the
corresponding information for the number of connected components of A(D). �

It is time to propose some questions interesting to us.

Question 5.2. Does there exist a divisor on some compact Riemann surface which
is represented by both an irreducible metric and a reducible one? It does not happen
for the divisors satisfying the Troyanov condition (1) by Corollary 4.5. It also does
not happen on the two-sphere under either of the following two conditions:

(1) The support of D consists of three points or less (see Proposition 5.1).

(2) Each α j is a noninteger for j = 1, 2, . . . , n, with n ≥ 3 (see Example 4.6).

Question 5.3. Suppose A(D) is nonempty for a divisor D on a compact Riemann
surface. Study the moduli space A(D) of reducible metrics representing a divisor
D on a compact Riemann surface, such as its dimension and the number of its
components. We know the answer on the two-sphere in the case that D has support
at two or three points or D is an effective Z-divisor in Proposition 5.1.

Question 5.4. Suppose that there exists an irreducible metric g representing D =∑
j (α j − 1)Pj . Is g the unique metric of constant curvature one representing D?

Luo and Tian [1992] showed this is the case on the two-sphere if each α j lies in
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(0, 1). Moreover, Umehara and Yamada [2000] gave a positive answer if D is a
divisor supported at three points on the two-sphere.

Question 5.5. Suppose that there exists an irreducible metric g representing D =∑
j (α j − 1)Pj . Does there exist an irreducible metric representing any divisor D′

sufficiently near D? On the two-sphere, if each α j lies in (0, 1), then the necessary
and sufficient condition is a topologically open one for the existence of a irreducible
metric representing D given by Troyanov [1991] and Luo and Tian [1992]. On
the two-sphere, if D has support at three points, so is the necessary and sufficient
condition given by Umehara and Yamada [2000]. S. K. Donaldson [2012] proved
an openness theorem for Kähler Einstein metrics on a Fano manifold with conical
singularity along the anticanonical divisor.
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Note added in proof

After this paper was accepted, the authors learned that Daniele Bartolucci, Francesca
De Marchis and Andrea Malchiodi [Bartolucci et al. 2011] proved a general existence
result for the problem of prescribing the Gaussian curvature on surfaces of positive
genus with conical singularities in supercritical regimes. Two years later, Bartolucci
and Malchiodi [2013] removed the assumption on the genus. As a consequence,
their results imply a new general existence theorem for conformal metrics with
constant curvature one and finitely many conical singularities which do not satisfy
the Troyanov condition (1). The authors observed that these metrics are irreducible.
Moreover, Bartolucci, De Marchis and Malchiodi [Bartolucci et al. 2011] proved
the existence of multiple solutions on surfaces of genus bigger than one, which
implies that the answer to Question 5.4 is negative.
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