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Q-BASES OF THE NÉRON–SEVERI GROUPS
OF CERTAIN ELLIPTIC SURFACES

MASAMICHI KURODA

P. Stiller computed the rank of the Néron–Severi group (known as the Pi-
card number) for several families of elliptic surfaces. However, he did not
give the generators of these groups. In this paper we give Q-bases of these
groups explicitly. If these surfaces are rational, we also show that they are
Z-bases.

1. Introduction

An elliptic surface is a surface which has a surjective map onto a curve such that
the generic fiber is a curve of genus one (see [Kodaira 1963a; 1963b]). The Néron–
Severi group is the group of divisors modulo algebraic equivalence (see [Hartshorne
1977, Exercise V.1.7]). This group is known to be a finitely generated abelian
group, and its rank is called the Picard number. P. Stiller [1987] computed the
Picard numbers of several families of elliptic surfaces by studying the action of
certain automorphisms on the cohomology group. However he did not give the
generators of these groups. The purpose of this paper is to give explicit Q-bases of
the Néron–Severi groups of Stiller’s list [1987, Examples 1–5] of elliptic surfaces.

We explain briefly how to construct such Q-bases. Let E be an elliptic surface.
We denote by NS(E) the Néron–Severi group of E . T. Shioda [1972] proved that
NS(E) is generated by fibral divisors and horizontal divisors. Here we mean by a
fibral divisor a sum of irreducible components of fibers, and by a horizontal divisor
a sum of images of sections. Let En→P1

C
(n ∈N) be one of the families of elliptic

surfaces of [Stiller 1987], and let En be the generic fiber of En for each n. The En

are elliptic curves over the function field C(t). Computing the Picard number of an
elliptic surface is equivalent to determining the Mordell–Weil rank (i.e., the rank of
the Mordell–Weil group) of the generic fiber. Stiller [1987, Examples 1–5] proved
that for each family En → P1

C
(n ∈ N), there exists a finite set Admi (1 ≤ i ≤ 5)

of natural numbers such that the Mordell–Weil rank∗ of En/C(t) is r =
∑
d|n

d∈Admi

ϕ(d),

MSC2010: 14J27.
Keywords: elliptic surfaces, Néron–Severi groups.
∗The referee pointed out that a related or a similar formula is obtained in [Silverman 2000] for

arbitrary elliptic surfaces defined over number fields under the Tate conjecture.
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where ϕ is the Euler totient function. In this paper we shall construct r rational
points of En in an ad hoc manner, and show the linear independence of the associated
divisors in NS(En). If En is rational, then we further show that they form a Z-basis.

This paper is organized as follows. Section 2 is a quick review of some basic
results on the Néron–Severi groups of elliptic surfaces. Section 3 is the heart of
this paper. We give a number of Q-bases or Z-bases of the Néron–Severi groups
of Stiller’s list of elliptic surfaces. In Section 4, we give an alternative proof of
Stiller’s computations of the Picard numbers.

2. The Néron–Severi group of an elliptic surface

In this paper, we mean by an elliptic surface a surjective morphism f : E → C
onto a curve with a section (say zero section) such that the generic fiber of f is
an elliptic curve. Let f : E → P1

C
be a nonsplit minimal elliptic surface, and let

E/C(t) be the generic fiber. There is a natural group isomorphism between the
Mordell–Weil group of E/C(t), denoted by E(C(t)), and the group of sections
of E over P1

C
, denoted by E(P1

C
) (see [Silverman 1994, Proposition 3.10(c)]):

(1)
E(C(t)) ∼−→ E(P1

C),

P = (xP , yP) 7−→ (σP : t 7→ (xP(t), yP(t), t)).

According to the Mordell–Weil theorem, E(C(t)) is a finitely generated group. In
the following, for each P ∈ E(C(t)), we denote by (P) the image in E of the section
corresponding to P . For simplicity, we denote by∞ the image of the zero section,
that is, the section corresponding to zero element O ∈ E(C(t)).

The singular fibers are classified by Kodaira [1963a; 1963b]. We shall follow
Kodaira’s notation. Let6(E) be the finite set of points t in P1

C
such that Et := f −1(t)

is a singular fiber. For each t ∈P1
C

, let mt be the number of irreducible components
of the fiber Et , and we denote by Ft,a (0≤ a ≤mt − 1) the irreducible components.
If t ∈ P1

C
\6(E), then Et = Ft,0 is a smooth fiber, and we have

{t ∈ P1
C | mt ≥ 2} = {t ∈6(E) | mt ≥ 2}.

We fix a general fiber C0 := Et0, t0 ∈ P1
C
\6(E), and we take Ft,0 to be the unique

component of Et intersecting with∞.
Let E(C(t))free denote the quotient group E(C(t))/E(C(t))tor, where E(C(t))tor

is the torsion subgroup. Let r be the Mordell–Weil rank of E/C(t), that is, the rank
of E(C(t)), and we take r generators P1, . . . , Pr of E(C(t))free. We put

Di = (Pi )−∞∈ Div(E) (1≤ i ≤ r),

where Div(E) is the group of divisors on E .
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Proposition 2.1 [Shioda 1972, Theorem 1.1]. The free part of the Néron–Severi
group NS(E) of the elliptic surface E , denoted by NS(E)free, is generated by the
divisors

(2) C0,∞, D1, . . . , Dr , Ft,a (t ∈6(E), 1≤ a ≤ mt − 1).

In particular, the Picard number ρ of the elliptic surface E is given by

ρ = r + 2+
∑

t∈6(E)

(mt − 1).

Stiller computed the Mordell–Weil rank r , but did not give Di ’s explicitly. We
will give r linearly independent points of the Mordell–Weil group in Section 3.
Note that these points are not always generators of the group. We end this section
by introducing a practical way to show the linear independence of the divisors
C0,∞, D1, . . . , Dr , Ft,a (t ∈6(E), 1≤a≤mt−1), or equivalently the intersection
matrix M of these divisors has a nonzero determinant.

For each Pi ∈ E(C(t)), we have Di ·C0 = ((Pi )−∞) ·C0 = 1− 1 = 0. Then
there exists a fibral divisor 8i ∈ Div(E)⊗Q such that

(Di +8i ) · F = 0 for all fibral divisors F ∈ Div(E).

More explicitly the divisor 8i is obtained in the following way (see [Silverman
1994, Proposition 8.3]). We set at0(Pi )= 0 for all t ∈ P1

C
. Further, when mt ≥ 2

we consider the following system of linear equations:

mt−1∑
k=1

atk(Pi )Ft,k · Ft,l =−Di · Ft,l (1≤ l ≤ mt − 1).

This is a system of mt − 1 equations in the mt − 1 variables atk(Pi ). Since the
intersection matrix (Ft,i · Ft, j )1≤i, j≤mt−1 has a nonzero determinant, this system of
equations has a unique solution in rational numbers atk(Pi ) ∈Q. Then the divisor

8i :=
∑
t∈P1

C

mt−1∑
k=0

atk(Pi )Ft,k =
∑

t∈{t1,...,ts}

mt−1∑
k=1

atk(Pi )Ft,k ∈ Div(E)⊗Q

has the desired property, where we set {t1, . . . , ts} = {t ∈6(E) |mt ≥ 2}. Note that
since Ftα,k · Ftβ ,l = 0 (α 6= β), we have

0= (Di +8i ) · Ftα, j =

(
Di +

mtα−1∑
k=1

atαk(Pi )Ftα,k

)
· Ftα, j .

We fix a uniformizer ut ∈C(t) at t , that is, ordt(ut)= 1. Let f ∗ :Div(P1
C
)→Div(E)

be a homomorphism defined by extending (t) 7→
∑mt−1

j=0 ordFt, j (ut ◦ f )Ft, j linearly.
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For each two points t1, t2 ∈ P1
C
\ 6(E) with t1 6= t2, since C0 is algebraically

equivalent to f ∗(ti ) (i = 1, 2), we have

C2
0 = f ∗(t1) · f ∗(t2)= 0.

Now it is not hard to show the following lemma.

Lemma 2.2 [Cox and Zucker 1979]. Let M be the intersection matrix of divisors
C0,∞, D1, . . . , Dr , Ft,a (t ∈ 6(E), 1 ≤ a ≤ mt − 1), and let Mα (1 ≤ α ≤ s) be
the intersection matrix of divisors Ftα,1, . . . , Ftα,mtα−1. Put

N =

(D1+81) · D1 · · · (D1+81) · Dr
...

. . .
...

(Dr +8r ) · D1 · · · (Dr +8r ) · Dr

 .
Then we have

det M =− det N
s∏

α=1
det Mα.

In particular, det M 6= 0 if and only if det N 6= 0 since Mα has nonzero determinant
for each α. Note that each Mα gives one of the root lattices An, Dn, E6, E7 or E8,
and det Mα equals the number of simple components of the singular fiber Etα .

3. Stiller’s list of elliptic surfaces

In this section, we give explicit Q-bases of the Néron–Severi groups of the elliptic
surfaces in Stiller’s Examples 1–5. If these surfaces are rational, then we also show
that they are Z-bases. Note that these Néron–Severi groups are torsion-free, by
[Cox and Zucker 1979] or [Shioda 1990].

We give a proof in detail in the case of Stiller’s Example 4. In the other cases
we just give results, because the argument is the same.

Throughout this paper, ζn will denote a primitive n-th root of unity for a natural
number n.

Stiller’s Example 4. This example is the minimal elliptic surface whose generic
fiber is the elliptic curve defined by the equation

(3) Y 2
= 4X3

− 3u4n X + u5n(un
− 2) (u ∈ P1

C, n ∈ N)

over C(u). We perform the change of variables

X =
23(3x + 1)

36t2n , Y =
−25
√

2 y

37
√

3t3n
, u = n

√
−4
27 t−1.

Then the defining equation (3) becomes

(4) y2
= x3
+ x2
+ tn (t ∈ P1

C, n ∈ N).
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Let En be the elliptic curve defined by (4) and f : En→P1
C

be the associated elliptic
surface. For the later use, we write down the construction of En . Put

X1 =
{
([X : Y : Z ], t) ∈ P2

C×A1
t | Y

2 Z = X3
+ X2 Z + tn Z3},

g1 : X1→ A1
t ; ([X : Y : Z ], t) 7→ t.

Let us write n = 6l + k with 1 ≤ k ≤ 6. By putting x = x/t2(l+1), y = y/t3(l+1),
t = 1/t , we obtain the minimal Weierstrass form

y2
= x3
+ t 2(l+1)x2

+ t 6−k .

over t =∞. Put

X2 =
{
([X : Y : Z ], t ) ∈ P2

C×A1
t | Y

2 Z = X3
+ t 2(l+1)X2 Z + t 6−k Z3},

g2 : X2→ A1
t ; ([X : Y : Z ], t ) 7→ t .

By gluing the surfaces X1 and X2, we obtain a projective surface W together with
a surjective morphism g :W → P1

C
. The surface W has singularities in g−1(0) and

g−1(∞). Taking the minimal resolution of singularities of W , we obtain En with
f : En→ P1

C
.

Using Tate’s algorithm (see [Silverman 1994]), one can show that the surface En

has singular fibers of type In over 0, type I1 over ζ i
n

n√
−4/27 (0≤ i ≤ n−1) and type

II∗ (resp. IV∗, I∗0, IV, II, I0) over∞ as n ≡ 1 (resp. 2, 3, 4, 5, 0) modulo 6. Stiller
computed the Mordell–Weil rank r = rank(En(C(t))) and hence the Picard number
ρ = rank(NS(En)), which is given in Table 1. The result for r can be summarized
in the following way. Put Adm4 = {2, 3, 4, 5}. Then

(5) r =
∑
d|n

d∈Adm4

ϕ(d),

where ϕ is the Euler function. We now define ϕ(d) rational points of Ed for each
d ∈ Adm4.

Definition 3.1. For d ∈ Adm4 and j ∈ (Z/dZ)×, we define C(t)-rational points
Pd, j of Ed as follows.

P2,1 = (0,−t),

P3, j = (−ζ
j

3 t,−ζ j
3 t),

P4,1 =
(√

2t + 2t2,
√

2t + 3t2
+ 2
√

2t3),
P4,3 =

(
−2+ 2(−1)1/4t,−2

√
−1+ 4

√
−1(−1)1/4t + t2),

P5, j =
(
2−2/5ζ

2 j
5 t2, 2−2/5ζ

2 j
5 t2
+ 2−3/5ζ

3 j
5 t3).
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n r ρ

6l + 1, l ≥ 0 r =
{

4 if l ≡ 4 mod 5,
0 otherwise.

ρ =

{
n+ 13
n+ 9

6l + 2, l ≥ 0 r =


7 if 3l + 1≡ 0 mod 10,
5 if 3l + 1≡ 5 mod 10,
3 if 3l + 1≡ 2, 4, 6, 8 mod 10,
1 otherwise.

ρ =


n+ 14
n+ 12
n+ 10
n+ 8

6l + 3, l ≥ 0 r =
{

6 if l ≡ 2 mod 5,
2 otherwise.

ρ =

{
n+ 11
n+ 7

6l + 4, l ≥ 0 r =


7 if 3l + 2≡ 0 mod 10,
5 if 3l + 2≡ 5 mod 10,
3 if 3l + 2≡ 2, 4, 6, 8 mod 10,
1 otherwise.

ρ =


n+ 10
n+ 8
n+ 6
n+ 4

6l + 5, l ≥ 0 r =
{

4 if l ≡ 0 mod 5,
0 otherwise.

ρ =

{
n+ 5
n+ 1

6l + 6, l ≥ 0 r =


9 if l + 1≡ 0 mod 10,
7 if l + 1≡ 5 mod 10,
5 if l + 1≡ 2, 4, 6, 8 mod 10,
3 otherwise.

ρ =


n+ 10
n+ 8
n+ 6
n+ 4

Table 1. The Mordell–Weil rank r and the Picard number ρ.

For any d that divides n, there is the surjective map ρ : En→ Ed given by (x, y, t) 7→
(x, y, tn/d), and then the inverse image ρ∗(Pd, j ) defines a C(t)-rational point of En .
In what follows, we use the same symbol Pd, j for ρ∗(Pd, j ) since the context will
prevent any confusion.

Theorem 3.2. Let f : En → P1
C
(n ∈ N) be the elliptic surfaces associated to the

elliptic curves En : y2
= x3

+ x2
+ tn(n ∈ N) over P1

C
. Then, for each n ∈ N,

NS(En) has a Q-basis C0,∞, Dd, j , Ft,a (d ∈ Adm4, d|n, j ∈ (Z/dZ)×, t ∈6(En),
1≤ a ≤ mt − 1), where Dd, j = (Pd, j )−∞ and the other notations are the same as
Section 2. Moreover if En is rational (i.e., n ≤ 6), these divisors form a Z-basis.

Proof. In the cases of n= 6l+1 with l 6≡ 4 mod 5 or n= 6l+5 with l 6≡ 0 mod 5,
we have r = 0 by Table 1, so the assertion follows immediately from Proposition 2.1.
We consider the other cases. All we have to do is to show the linear independence of
the divisors in Theorem 3.2. Let d(n) be the least common multiple of all numbers
in {d ∈ Adm4 : d|n}. Note that the set is nonempty in these cases. Since n is
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divisible by d(n), there exists a rational map

En→ Ed(n),

(x, y, t) 7→ (x, y, tn/d(n)).

This map induces an injection

Ed(n)(C(t)) ↪→ En(C(t)),

(x(t), y(t)) 7→ (x(tn/d(n)), y(tn/d(n))).

We obtain rank(Ed(n)(C(t)))= rank(En(C(t))) by (5), hence linearly independent
points of Ed(n)(C(t)) remain so in En(C(t)). There exists an injection

Ed(n)(C(t)) ↪→ E60(C(t)),

(x(t), y(t)) 7→
(
x(t60/d(n)), y(t60/d(n))

)
.

In particular, points in Ed(n)(C(t)) are linearly independent if and only if their
images are independent in E60(C(t)). Therefore it is sufficient to show the assertion
in the case of n = 60. Recall that the surface E60 has singular fibers of type I60 over
0, type I1 over ζ i

60
60
√
−4/27 (0≤ i ≤ 59) and type I0 over∞.

We want to show that the divisors C0, ∞, D2,1, D3,1, D3,2, D4,1, D4,3, D5,1,
D5,2, D5,3, D5,4, F0,1, . . . , F0,59 are a Q-basis of NS(E60). Equivalently the matrix

N =

(D2,1+82,1) · D2,1 · · · (D2,1+82,1) · D5,4
...

. . .
...

(D5,4+85,4) · D2,1 · · · (D5,4+85,4) · D5,4


has a nonzero determinant (see Section 2 for the notations).

Firstly we compute the self intersection numbers∞2, (P2,1)
2, (P3,i )

2, (P4, j )
2,

(P5,k)
2.

Lemma 3.3. Let n = 6l + k with l ≥ 0, 1 ≤ k ≤ 6. Then the canonical divisor
KEn of the elliptic surface f : En → P1

C
is KEn

∼= f ∗OP1
C
(l − 1), and we have

(P)2 =∞2
=−(l + 1) for each point P ∈ En(C(t)). In particular, if n equals 60,

then we have

(6) (P2,1)
2
= (P3,i )

2
= (P4, j )

2
= (P5,k)

2
=∞

2
=−10.

Proof. By Kodaira’s canonical bundle formula (see [1963a; 1963b]), we get

(7) KEn
∼= f ∗OP1

C
(d − 2), d = 1

12

∑
t∈6(En)

ε(t),

where ε(t) is defined as follows:

type In II III IV I∗n II∗ III∗ IV∗

ε(t) n 2 3 4 n+ 6 10 9 8
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By the reduction type of the singular fibers of En , we have d = l + 1. Thus

(8) KEn
∼= f ∗OP1

C
(d − 2)= f ∗OP1

C
(l − 1).

By (1), each point P ∈ En(C(t)) corresponds to a section σP : P1
C
→ En . The

translation-by-P map on En can be uniquely extended to a map τP : En → En

by the minimality of En (see [Silverman 1994, Proposition 9.1]). It follows that
τ ∗P D1 · τ

∗

P D2 = D1 · D2 for any two divisors D1, D2 ∈ Div(En). Hence (P)2 =
τ ∗P(P) · τ

∗

P(P)=∞
2.

Since ∞ is isomorphic to P1
C

, ∞ is of genus zero. Thus, by the adjunction
formula, we get

1
2(∞

2
+ KEn ·∞)+ 1= 0, that is,∞2

=−(KEn ·∞+ 2).

On the other hand, we can compute

KEn ·∞ = ( f ∗OP1
C
(l − 1)) ·∞ = (l − 1) f ∗(OP1

C
(1)) ·∞

= (l − 1)C0 ·∞ = l − 1

by (8). Therefore we get (P)2 =∞2
=−(l + 1) for all P ∈ En(C(t)). �

Next we compute the intersection numbers of the divisors ∞, (P2,1), (P3,i ),
(P4, j ), (P5,k), F0,a (1≤ a ≤ 59) in E60. In the affine surface X1 : y2

= x3
+x2
+ t60,

the divisors (P2,1), (P3,i ), (P4, j ) and (P5,k) are given by

(P2,1)=
(
x = 0, y =−t30),

(P3,i )=
(
x =−ζ i

3t20, y =−ζ i
3t20),

(P4,1)=
(
x =
√

2t15
+ 2t30, y =

√
2t15
+ 3t30

+ 2
√

2t45),
(P4,3)=

(
x =−2+ 2(−1)1/4t15, y =−2

√
−1+ 4

√
−1(−1)1/4t15

+ t30),
(P5,k)=

(
x = 2−2/5ζ 2k

5 t24, y = 2−2/5ζ 2k
5 t24

+ 2−3/5ζ 3k
5 t36).

Thus (P4,3) does not pass through the singular point (0, 0, 0) of X1, however (P2,1),
(P3,i ), (P4,1) and (P5,k) pass through this point. Since this singular point is of type
A59, we can resolve it blowing up 30 times. We denote by (x(m), y(m), t(m)) the
coordinates in the neighborhood of the singular point after the m-th blowing-up
(1 ≤ m ≤ 29), and denote by (P2,1)

(m), (P3,i )
(m), (P4,1)

(m), (P5,k)
(m) the m-th

blowing-up of (P2,1), (P3,i ), (P4,1), (P5,k), respectively. These curves are given by

(P2,1)
(m)
=
(
x(m) = 0, y(m) =−t30−m

(m)

)
,

(P3,i )
(m)
=
(
x(m) =−ζ i

3t20−m
(m) , y(m) = ζ i

3t20−m
(m)

)
,

(P4,1)
(m)
=
(
x(m) =

√
2t15−m

+ 2t30−m, y(m) =
√

2t15−m
+ 3t30−m

+ 2
√

2t45−m),
(P5,k)

(m)
=
(
x(m) = 2−2/5ζ 2k

5 t24−m
(m) , y(m) = 2−2/5ζ 2k

5 t24−m
(m) + 2−3/5

ζ 3k
5 t36−m

(m)

)
.
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In particular, in E60 the divisors (P3,i ) (resp. (P4,1), (P5,k)) intersect with either of
two P1

C
which appear by the 20-th (resp. 15, 24-th) blowing-up, and the divisors

(P2,1) intersect with unique P1
C

which appears by the 30-th blowing-up. Hence
we may assume that (P2,1) (resp. (P3,i ), (P4,1), (P4,3), (P5,k)) intersects with F0,30

(resp. F0,20, F0,15, F0,0, F0,24). In addition, in X1 ∩ (t 6= 0),

(P2,1)∩ (P3,i )=∅,

(P2,1)∩ (P4,1)=
{(

0,−1
2 , t
)
| t15
=−

1
√

2

}
,

(P2,1)∩ (P4,3)=
{
(0,−
√
−1, t) | t15

= (−1)3/4
}
,

(P2,1)∩ (P5,k)=∅,

(P3,1)∩ (P3,2)=∅,

(P3,i )∩ (P4,1)=
{( 1
√

2
, 1
√

2
, t
)
| t5
=−ζ 2i

3
1
√

2

}
,

(P3,i )∩ (P4,3)=
{
(x(t), y(t), t) | ζ 2i

3 t10
− (1+

√
−1)((−1)1/4ζ i

3t5
− 1)= 0

}
,

(P3,i )∩ (P5,k)=∅,

(P4,1)∩ (P4,3)=∅,

(P4,1)∩ (P5,k)=
{
(x(t), y(t), t) | 27/10ζ 3k

5 t6
+ ζ 4k

5 t3
+ 23/10

= 0
}
,

(P4,3)∩ (P5,k)=
{
(x(t), y(t), t) | ζ 3k

5 t6(ζ 3k
5 t6
− 24/5(−1)1/4ζ 4k

5 t3
+ 23/5

√
−1

)
− 21/5(1+

√
−1)

(
21/5(−1)1/4ζ 4k

5 t3
−
√
−1

)
= 0

}
,

(P5,k1)∩ (P5,k2)=∅ (k1 6= k2).

and the local intersection numbers of the divisors (P2,1), (P3,i ), (P4, j ), (P5,k) at
these intersection points are all one.

On the other hand, in the ∞-model X2 (the surface obtained by the variable
transformation x = x/t20, y = y/t30, t = 1/t) or its projection X2, the divisors
(P2,1), (P3,i ), (P4, j ) and (P5,k) are given by

(P2,1)= (x = 0, y =−1),

(P3,i )= (x =−ζ i
3, y =−ζ i

3 t 10),

(P4,1)=
{
([
√

2t 20
+ 2t 5

:
√

2t 30
+ 3t 15

+ 22/3
: t 15
], t ) | t ∈ A1},

(P4,3)=
(
x =−2t 20

+ 2(−1)1/4 t 5, y =−2
√
−1t 30

+ 4
√
−1(−1)1/4 t 15

+ 1
)
,

(P5,k)=
{
([2−2/5ζ 2k

5 t 2
: 2−2/5ζ 2k

5 t 12
+ 2−3/5ζ 3k

5 : t
6
], t ) | t ∈ A1}.

Thus when t equals 0 (t equals∞), the divisors (P4,1), (P5,k) and∞ intersect at
([0 : 1 : 0], 0) ∈ X2 and the other pairs of (P2,1), (P3,i ), (P4, j ), (P5,k) and∞ do
not intersect. Moreover the local intersection number of (P4,1) and∞ at this point
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is five, and the numbers of the other pairs of (P4,1), (P5,k) and∞ are two. From
the above and (6), we obtain

(P2,1) · (Pd,l)=


−10 (d = 2),

0 (d = 3, 5),
15 (d = 4),

(P3,i ) · (Pd,l)=


−10 (d = 3, i = l),

0 (d = 3, i 6= l),
5 (d = 4, j = 1),

10 (d = 4, j = 3),
0 (d = 5),

(P4, j ) · (Pd,l)=


−10 (d = 4, j = l),

0 (d = 4, j 6= l),
8 (d = 5, j = 1),

12 (d = 5, j = 3),

(P5,k) · (P5,l)=

{
−10 (k = l),

2 (k 6= l).

Finally we give 8d,l for d ∈ Adm4, l ∈ (Z/dZ)× by the method mentioned in
Section 2 and compute (Dd,l +8d,l) · Dd ′,l ′ where d, d ′ ∈ Adm4, l ∈ (Z/dZ)×,
l ′ ∈ (Z/d ′Z)×. Recall that 8d,l is defined by 8d,l =

∑59
i=1 ai (Pd,l)F0,i and

(a1(Pd,l), . . . , a59(Pd,l))=−(Dd,l · F0,1, . . . , Dd,l · F0,59)(F0,i · F0, j )
−1.

For integers 1≤ m ≤ 59, since∞· F0,m = 0, we have, in Kronecker delta notation,

D2,1 · F0,m = (P2,1) · F0,m = δm,30,

D3,i · F0,m = (P3,i ) · F0,m = δm,20,

D4,1 · F0,m = (P4,1) · F0,m = δm,15,

D4,3 · F0,m = (P4,3) · F0,m = 0,

D5,k · F0,m = (P5,k) · F0,m = δm,24.

Since the reduction type of (E60)0 is I60, we have the intersection matrix

(F0,i · F0, j )1≤i, j≤59 =


–2 1 · · · 0

1 –2
. . .

...
...
. . .

. . . 1
0 · · · 1 –2

 .
It is an easy exercise to show that the j-th row of the inverse of this matrix is
−1
60 [60− j, 2·(60− j), . . . , j ·(60− j), j ·(59− j), . . . j ·2, j]. Therefore we obtain
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a1(P4,3)= · · · = a59(P4,3)= 0 and

(a1(P2,1), . . . , a59(P2,1))=
1

60 [30, 2 · 30, . . . , 30 · 30, . . . , 30 · 2, 30],

(a1(P3,i ), . . . , a59(P3,i ))=
1

60 [40, 2 · 40, . . . , 20 · 40, . . . , 20 · 2, 20],

(a1(P4,1), . . . , a59(P4,1))=
1

60 [45, 2 · 45, . . . , 15 · 45, . . . , 15 · 2, 15],

(a1(P5,k), . . . , a59(P5,k))=
1

60 [36, 2 · 36, . . . , 24 · 36, . . . , 24 · 2, 24].

In particular, 84,3 = 0 and 83,i , 85,k do not depend on i, k, so we put 82 =

82,1,83 = 83,i ,84 = 84,1,85 = 85,k . We can compute (Dd,l + 8d) · Dd ′,l ′ ,
where d, d ′ ∈ Adm4, l ∈ (Z/dZ)×, l ′ ∈ (Z/d ′Z)×, as follows:

(D2,1+82) · Dd,l =



−5 (d = 2),
0 (d = 3),
15
2 (d = 4, l = 1),

5 (d = 4, l = 3),
0 (d = 5),

(D3,i +83) · Dd,l =


−

20
3 (d = 3, i = l),

10
3 (d = 3, i 6= l),

0 (d = 4, 5),

(D4, j +84) · Dd,l =


−

75
4 (d = 4, j = l = 1),
−20 (d = 4, j = l = 3),
−15 (d = 4, j 6= l),
0 (d = 5),

(D5,k +85) · Dd,l =

{
−

48
5 (d = 5, k = l),

12
5 (d = 5, k 6= l).

Since (Dd,l +8d) · F = 0 for all fibral divisors F , we have (Dd,l +8d) · Dd ′,l ′ =

(Dd ′,l ′ +8d ′) · Dd,l . Thus we obtain

N =



–5 0 0 15
2 5 0 0 0 0

0 – 20
3

10
3 0 0 0 0 0 0

0 10
3 – 20

3 0 0 0 0 0 0
15
2 0 0 – 75

4 –15 0 0 0 0

5 0 0 –15 –20 0 0 0 0

0 0 0 0 0 – 48
5

12
5

12
5

12
5

0 0 0 0 0 12
5 – 48

5
12
5

12
5

0 0 0 0 0 12
5

12
5 – 48

5
12
5

0 0 0 0 0 12
5

12
5

12
5 – 48

5



,
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and det N = −283554
6= 0. Therefore the divisors C0,∞, D2,1, D3,i , D4, j , D5,k ,

F0,1, . . . , F0,59 form a Q-basis of NS(E60).
Similarly in the cases of n ≤ 6, we can compute det M = ±1, where M is the

intersection matrix of the divisors in Theorem 3.2 (see Lemma 2.2 ). In particular,
the divisors form a Z-basis of NS(En). �

Stiller’s Example 1. This example is the minimal elliptic surface whose generic
fiber is the elliptic curve defined by

Y 2
= 4X3

− 3u3n X − u5n (u ∈ P1
C, n ∈ N)

over C(u). By changing the variables suitably, the defining equation becomes

(9) y2
= x3
+ tnx + tn (t ∈ P1

C).

We denote by En the elliptic curve defined by (9) and by f : En→P1
C

the associated
elliptic surface. Stiller [1987] proved that the Mordell–Weil rank r= rank(En(C(t)))
is given by

(10) r =
∑
d|n

d∈Adm1

ϕ(d),

where ϕ is the Euler function and Adm1 = {1, 2, 3, 7, 8, 10, 12, 15, 18, 20, 42}.

Remark 3.4. For use in Section 4, we note that d ∈ Adm1 if and only if each
j ∈ { j ∈ N : 9d ≤ 12 j ≤ 10d} is not relatively prime to d. Such d’s are called
admissible in [Stiller 1987].

Definition 3.5. For d ∈ Adm1 and j ∈ (Z/dZ)×, we define C(t)-rational points
Pd, j of Ed as follows.

P1,1 =
(
−1,
√
−1

)
,

P2,1 =
(√
−1 t,−t

)
,

P3, j =
(
−ζ

j
3 t,
√
−1ζ 2 j

3 t2),
P7, j =

(
−ζ

2 j
7 t2
− ζ

3 j
7 t3,

√
−1(ζ 3 j

7 t3
+ ζ

4 j
7 t4
+ ζ

5 j
7 t5)

)
,

P8, j =

( 2∑
i=0

ai (8, j)t i+2,

3∑
i=0

bi (8, j)t i+3
)
,

P10, j =
(
22/5

ζ
4 j
10 t4,−ζ

5 j
10 t5
− 21/5

ζ
7 j
10 t7),

P12, j =

( 2∑
i=0

ai (12, j)t4+i ,

3∑
i=0

b0(12, j)t6+i
)
,
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P15, j =
(
−ζ

5 j
15 t5
− 31/5

ζ
6 j
15 t6
− 32/5

ζ
7 j
15 t7,

√
−1(33/5

ζ
8 j
15 t8
+ 34/5

ζ
9 j
15 t9
+ 2ζ 10 j

15 t10
+ 31/5

ζ
11 j
15 t11)

)
,

P18, j =

( 2∑
i=0

ai (18, j)(ζ j
18t)6+2i ,

3∑
i=0

bi (18, j)(ζ j
18t)9+2i

)
,

P20, j =

( 2∑
i=0

ai (20, j)(ζ j
20t)6+2i ,

3∑
i=0

bi (20, j)(ζ j
20t)9+2i

)
,

P42, j =

( 5∑
i=1

ai (ζ
j

42t)12+2i ,

7∑
i=1

bi (ζ
j

42t)19+2i
)
,

where the coefficients ak(d, j), bk(d, j) are given by Table 2 and the set of complex
numbers (a1, . . . , a5, b1, . . . , b7) are solutions of a system of equations

b2
7 = a3

5,

2b6b7 = 3a4a2
5 + a5,

2b5b7+ b2
6 = 3a3a2

5 + 3a2
4a5+ a4,

2b4b7+ 2b5b6 = 3a2a2
5 + 6a3a4a5+ a3

4 + a3,

2b3b7+ 2b4b6+ b2
5 = 3a1a2

5 + (6a2a4+ 3a2
3)a5+ 3a3a2

4 + a2,

2b2b7+ 2b3b6+ 2b4b5 = (6a1a4+ 6a2a3)a5+ 3a2a2
4 + 3a2

3a4+ a1,

2b1b7+ 2b2b6+ 2b3b5+ b2
4 = (6a1a3+ 3a2

2)a5+ 3a1a2
4 + 6a2a3a4+ a3

3,

2b1b6+ 2b2b5+ 2b3b4 = 6a1a2a5+ (6a1a3+ 3a2
2)a4+ 3a2a2

3,

2b1b5+ 2b2b4+ b2
3 = 3a2

1a5+ 6a1a2a4+ 3a1a2
3 + 3a2

2a3,

2b1b4+ 2b2b3 = 3a2
1a4+ 6a1a2a3+ a3

2,

2b1b3+ b2
2 = 3a2

1a3+ 3a1a2
2,

2b1b2 = 3a2
1a2,

b2
1 = a3

1 + 1.

The system is given by comparing the coefficients of (b1t21
+ b2t23

+· · ·+ b7t33)2

with those of (a1t14
+a2t16

+· · ·+a5t22)3+ t42(a1t14
+a2t16

+· · ·+a5t22)+ t42.

Theorem 3.6. Let f : En → P1
C
(n ∈ N) be the elliptic surfaces associated to the

elliptic curves En : y2
= x3
+tnx+tn (n∈N) over P1

C
. Then, for each n∈N, NS(En)

has a Q-basis C0,∞, Dd, j , Ft,a(d ∈Adm1, d|n, j ∈ (Z/dZ)×, t ∈6(En), 1≤ a ≤
mt − 1). Moreover if En is rational (i.e., n = 1, 2, 3, 4, 6, 7, 8 or 12), then these
divisors form a Z-basis.

The argument of the proof is the same as the previous one, though the computation
is very complicated.
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j)

9/
2

b 3
(2

0,
j)

( 12
(a

0(
20
,

j)
7 a 1
(2

0,
j)
−

a 0
(2

0,
j)

5 )
a 2
(2

0,
j)
−

a 0
(2

0,
j)

6 a 1
(2

0,
j)

3
+

15
a 0
(2

0,
j)

4 a 1
(2

0,
j)

2
+

9a
0(

20
,

j)
2 a 1
(2

0,
j)
+

1) /1
6a

0(
20
,

j)
15
/
2

Table 2. Coefficients ak(d, j), bk(d, j)
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Stiller’s Example 2. This example is the minimal elliptic surface whose generic
fiber is the elliptic curve defined by

Y 2
= 4X3

− 3un X − u2n (u ∈ P1
C, n ∈ N)

over C(u). By putting X =−9x/4, Y = 27
√
−1y/4, u = n√

−27/4t , the defining
equation becomes

(11) y2
= x3
+ tnx + t2n (t ∈ P1

C).

We denote by E2
n the elliptic curve defined by (11) and by f : E2

n → P1
C

the
associated elliptic surface. Similarly to Stiller’s Example 1, the Mordell–Weil rank
r = rank(En(C(t))) is given by

r =
∑
d|n

d∈Adm2

ϕ(d),

where ϕ is the Euler function and Adm2 = {1, 2, 5, 6, 8, 9, 12, 14, 20, 21, 30}.
We now denote by E1

n the elliptic surface of Stiller’s Example 1 and by E1
n the

associated elliptic curve. Recall that

E1
n : y

2
= x3
+ tnx + tn.

We assume that n is even and write n = 2m. By putting x = x/t2m , y = y/t3m ,
t = 1/t , we obtain

y2
= x3
+ t 2m x + t 4m .

Since this equation is the defining equation of E2
2m , we obtain an isomorphism

(12)
E1

2m
∼
−→ E2

2m,

(x, y, t) 7−→ (x/t2m, y/t3m, 1/t).

Therefore we define the ϕ(d) rational points of E2
d for each d(≥ 2) ∈ Adm2 as the

images of the points of Definition 3.5 via this isomorphism.

Definition 3.7. For d ∈ Adm2 and j ∈ (Z/dZ)×, we define C(t)-rational points
Pd, j of E2

d as follows.

P1,1 = (0,−t),

P2,1 =
(√
−1 t,−t2),

P5, j =
(
22/5

ζ
3 j
5 t3,−21/5

ζ
4 j
5 t4
− t5),

P6, j =
(
−ζ

4 j
6 t4,

√
−1ζ 5 j

6 t5),
P8, j =

( 2∑
i=0

ai (8, j)t6−i ,

3∑
i=0

bi (8, j)t9−i
)
,
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P9, j =

( 2∑
i=0

ai (18, j̃)(ζ j
9 t)6−i ,

3∑
i=0

bi (18, j̃)(ζ j
9 t)9−i

)
,

P12, j =

( 2∑
i=0

ai (12, j)t8−i ,

3∑
i=0

bi (12, j)t12−i
)
,

P14, j =
(
−ζ

8 j
14 t8
− ζ

10 j
14 t10,

√
−1(ζ 11 j

14 t11
+ ζ

13 j
14 t13

+ ζ
15 j
14 t15)

)
,

P20, j =

( 2∑
i=0

ai (20, j)(ζ j
20t)14−2i ,

3∑
i=0

bi (20, j)(ζ j
20t)21−2i

)
,

P21, j =

( 5∑
i=1

ai (ζ
j

21t)15−i ,

7∑
i=1

bi (ζ
j

21t)22−i
)
,

P30, j =
(
−32/5

ζ
16 j
30 t16

− 31/5
ζ

18 j
30 t18

− ζ
20 j
30 t20,

√
−1(31/5

ζ
23 j
30 t23

+ 2ζ 25 j
30 t25

+ 34/5
ζ

27 j
30 t27

+ 31/5
ζ

29 j
30 t29)

)
,

where j̃ equals j if j is odd and equals j + 9 if j is even, and the coefficients
ak(d, j), bk(d, j), a1, . . . , a5, b1, . . . , b7 are same as them of Definition 3.5.

The following theorem follows from the isomorphism (12) and Theorem 3.6.

Theorem 3.8. Let f : En → P1
C
(n ∈ N) be the elliptic surfaces associated to the

elliptic curves En : y2
= x3
+tnx+t2n(n∈N) over P1

C
. Then, for each n∈N, NS(En)

has a Q-basis C0,∞, Dd, j , Ft,a(d ∈Adm2, d|n, j ∈ (Z/dZ)×, t ∈6(En), 1≤ a ≤
mt − 1). Moreover if En is rational (i.e., n = 1, 2, 3, 4, 5, 6, 8, 9 or 12), then these
divisors form a Z-basis.

Stiller’s Example 3. Here we consider the minimal elliptic surface whose generic
fiber is the elliptic curve defined by

Y 2
= 4X3

− 3u3n(un
−

8
9

)
X + u4n(u2n

−
4
3 un
+

8
27

)
(u ∈ P1

C, n ∈ N)

over C(u). By changing the variables suitably, the defining equation becomes

(13) y2
= x3
+ x2
+ tnx + 1

4 t2n (t ∈ P1
C).

We denote by En the elliptic curve defined by (13) and by f : En → P1
C

the
associated elliptic surface. By [Stiller 1987, Example 3], the Mordell–Weil rank
r = rank(En(C(t))) equals 1 if n is even and equals 0 if n is odd. Therefore similarly
to Examples 1, 2 and 4, we obtain r =

∑
d∈Adm3

d|n

ϕ(d), Adm3 = {2}, and we can show:

Theorem 3.9. Let f : En → P1
C
(n ∈ N) be the elliptic surfaces associated to the

elliptic curves En : y2
= x3
+x2
+ tnx+ t2n/4 (n ∈N) over P1

C
. For each n ∈N, if n
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is odd, then NS(En) has a Z-basis C0,∞, Ft,a (t ∈6(En), 1≤ a ≤mt−1), and if n
is even, then the group has a Q-basis C0,∞, D2,1, Ft,a (t ∈6(En), 1≤ a≤mt−1),
where D2,1 = (P2,1)−∞ and C(t)-rational point P2,1 is defined by

P2,1 =
(
−

1
2 tn, 1

4

√
−2t3n/2).

Moreover if En is rational (i.e., n ≤ 3), then these divisors form a Z-basis.

Stiller’s Example 5. We finally consider the minimal elliptic surface whose generic
fiber is the elliptic curve defined by the equation†

Y 2
= 4X3

− 3u12k+3(u4k+1
−

3
4

)
X − u20k+5(u4k+1

−
9
8

)
(u ∈ P1

C, k ∈ N)

over C(u). By changing the variables suitably, the defining equation becomes

y2
= x3
+ x2
+ t4k+1x (t ∈ P1

C).

Here we discuss a slightly more general equation:

(14) y2
= x3
+ x2
+ tnx (t ∈ P1

C, n ∈ N).

We denote by En the elliptic curve defined by (14) and by f : En → P1
C

the
associated elliptic surface. The surface En has singular fibers of type I2n over 0, type
I1 over ζ i

n
n√1/4 (0 ≤ i ≤ n− 1) and III∗ (resp. I∗0, III, I0) over∞ as n ≡ 1 (resp.

2, 3, 0) modulo 4. Using Stiller’s method, one can show that the Mordell–Weil rank
r = rank(En(C(t))) is given by

r =
∑
d|n

d∈Adm5

ϕ(d),

where ϕ is the Euler function and Adm5 = {2, 3}. We obtain the following theorem
similarly to the other examples.

Theorem 3.10. Let f : En→ P1
C
(n ∈ N) be the elliptic surfaces associated to the

elliptic curves En : y2
= x3

+ x2
+ tnx (n ∈ N) over P1

C
. Then, for each n ∈ N,

NS(En) has a Q-basis C0,∞, Dd, j , Ft,a (d ∈Adm5, d|n, j ∈ (Z/dZ)×, t ∈6(En),
1≤ a ≤ mt − 1), where Dd, j = (Pd, j )−∞ and C(t)-rational points P2,1, P3, j are
defined by

P2,1 =
(√
−1 tn/2,

√
−1 tn/2),

P3, j =
(
22/3ζ

j
3 tn/3, 22/3ζ

j
3 tn/3

+ 21/3ζ
2 j
3 t2n/3).

Moreover if En is rational (i.e., n ≤ 4), then these divisors form a Z-basis.

†The equation in [Stiller 1987, page 188] is incorrect.
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4. Alternative proof of Stiller’s computations

Each surface in [Stiller 1987, Examples 1–5] has an automorphism such that it
acts in multiplicity one (i.e., each eigenspace is one-dimensional) on the second
de Rham cohomology modulo zero and fibral divisor classes. Stiller showed this
by using the inhomogeneous de Rham cohomology, and this is essentially used in
his argument on the computation of Picard numbers.

We gave the explicit Q-bases of the Néron–Severi groups in the last section,
where we used his results on the Picard numbers. However once one has the divisors
as in the last section, one can conclude that they automatically form a Q-basis of
the Néron–Severi group. We show it in this section.

Let f : En→ P1
C
(n ∈ N) be one of the families of elliptic surfaces of Examples

1–5. Let NS(En)
′ be the subgroup of NS(En) which is generated by all the divi-

sors in Theorem 3.2, 3.6, 3.8, 3.9 or 3.10, as the case may be. Put H 2
tr(En) =

H 2(En,Q)/NS(En)Q, V (En) = H 2(En,Q)/NS(En)
′

Q
. The goal is to show that

NS(En)Q = NS(En)
′

Q
, or equivalently

(15) dim V (En)≤ dim H 2
tr(En).

We give a proof of (15) only for Stiller’s Example 1 since the same argument
works in the other cases. We already know the dimension of V (En). In the case at
hand, the result can be written as

(16) dim V (En)=
∑

d∈S1
n

ϕ(d),

where we put S1
n = {d ∈N : d|n, d 6∈Adm1 ∪{4, 6}} and ϕ(d) is the Euler function.

In particular, when n = 1, 2, 3, 4, 6, 7, 8 or 12, the value of (16) is zero and there is
nothing to prove. We assume n 6= 1, 2, 3, 4, 6, 7, 8 or 12.

Let σ : En→ En be an automorphism which is defined by (x, y, t) 7→ (x, y, ζ−1
n t),

and let σ ∗ be the automorphism on H 2
tr(En) induced by σ . We denote by f (T ) the

minimal polynomial of σ ∗ over Q. If we have

(17) f (ζd)= 0 for each d ∈ S1
n ,

then d-th cyclotomic polynomial divides into f (T ) and hence we have

dim H 2
tr(En)≥ deg f (T )≥

∑
d∈S1

n

ϕ(d)= dim V (En)

and (15) follows. Let us prove (17).

Lemma 4.1. Let n = 12l + k with l ≥ 0, 1 ≤ k ≤ 12. If n equals 1, 2, 3, 4, 6, 7, 8
or 12, then H 0(En, �

2
En
)= 0. Otherwise, H 0(En, �

2
En
) has a basis

t2n−a(n)−3dt dx
y
, . . . , t2n−a(n)−b(n)−3dt dx

y
,
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k 1 2 3 4 5 6
a(n) 9l − 1 9l 9l + 1 9l + 2 9l + 2 9l + 3
b(n) l − 1 l − 1 l − 1 l − 1 l l − 1

k 7 8 9 10 11 12
a(n) 9l + 4 9l + 5 9l + 5 9l + 6 9l + 7 9l + 8
b(n) l − 1 l − 1 l l l l − 1

Table 3. Definitions of a(n) and b(n) for Lemma 4.1.

where a(n), b(n) are defined in Table 3.

Proof. The proof is left as an exercise (see, for example, [Stiller 1987, Proposi-
tion 3.3] for details). �

For an integer i with 0≤ i ≤ b(n), since we have

σ ∗
(

t2n−a(n)−i−3dt dx
y

)
= ζ a(n)+i+2

n

(
t2n−a(n)−i−3dt dx

y

)
,

the automorphism σ ∗ on H 2
tr(En) over Q has eigenvalues ζ a(n)+i+2

n , so we have
f (ζ a(n)+i+2

n )= 0 (0≤ i ≤ b(n)). On the other hand, since we have

J (n) := {a(n)+ 2, . . . , a(n)+ b(n)+ 2} = { j ∈ N | 9n < 12 j < 10n},

we obtain {(a(d)+ 2)n/d, . . . , (a(d)+ b(d)+ 2)n/d} ⊂ J (n) for each d which
divides into n. Then J (d)=∅ if and only if d = 1, 2, 3, 4, 6, 7, 8 or 12. In addition,
d ∈ Adm1 if and only if each j ∈ { j ∈ N | 9d ≤ 12 j ≤ 10d} is not relatively prime
to d (see Remark 3.4). Therefore for each d ∈ S1

n , there exists a natural number
j which is relatively prime to d such that jn/d ∈ J (n), and we have ζ jn/d

n = ζ
j

d .
This implies (17).

Acknowledgements

The author would like to thank Professor Masanori Asakura for helpful comments
and suggestions. He also thanks Professor Matthias Schütt whose comments made
enormous contribution to this paper.

References

[Cox and Zucker 1979] D. A. Cox and S. Zucker, “Intersection numbers of sections of elliptic
surfaces”, Invent. Math. 53:1 (1979), 1–44. MR 81i:14023 Zbl 0444.14004

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer,
New York, 1977. MR 57 #3116 Zbl 0367.14001

[Kodaira 1963a] K. Kodaira, “On compact analytic surfaces, II”, Ann. of Math. (2) 77 (1963),
563–626. MR 32 #1730 Zbl 0118.15802

http://dx.doi.org/10.1007/BF01403189
http://dx.doi.org/10.1007/BF01403189
http://msp.org/idx/mr/81i:14023
http://msp.org/idx/zbl/0444.14004
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/57:3116
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.2307/1970131
http://msp.org/idx/mr/32:1730
http://msp.org/idx/zbl/0118.15802


Q-BASES OF THE NÉRON–SEVERI GROUPS OF CERTAIN ELLIPTIC SURFACES 121

[Kodaira 1963b] K. Kodaira, “On compact analytic surfaces, III”, Ann. of Math. (2) 78 (1963), 1–40.
MR 32 #1730 Zbl 0171.19601

[Shioda 1972] T. Shioda, “On elliptic modular surfaces”, J. Math. Soc. Japan 24 (1972), 20–59.
MR 55 #2927 Zbl 0226.14013

[Shioda 1990] T. Shioda, “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Paul. 39:2
(1990), 211–240. MR 91m:14056 Zbl 0725.14017

[Silverman 1994] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate
Texts in Mathematics 151, Springer, New York, 1994. MR 96b:11074 Zbl 0911.14015

[Silverman 2000] J. H. Silverman, “A bound for the Mordell–Weil rank of an elliptic surface after a
cyclic base extension”, J. Algebraic Geom. 9:2 (2000), 301–308. MR 2001a:11107 Zbl 0951.14023

[Stiller 1987] P. F. Stiller, “The Picard numbers of elliptic surfaces with many symmetries”, Pacific J.
Math. 128:1 (1987), 157–189. MR 88c:14054 Zbl 0591.14022

Received September 23, 2013.

MASAMICHI KURODA

DEPARTMENT OF MATHEMATICS

HOKKAIDO UNIVERSITY

SAPPORO 060-0810
JAPAN

m-kuroda@math.sci.hokudai.ac.jp

http://dx.doi.org/10.2307/1970500
http://msp.org/idx/mr/32:1730
http://msp.org/idx/zbl/0171.19601
http://dx.doi.org/10.2969/jmsj/02410020
http://msp.org/idx/mr/55:2927
http://msp.org/idx/zbl/0226.14013
http://www.rkmath.rikkyo.ac.jp/math/shioda/papers/mwl.pdf
http://msp.org/idx/mr/91m:14056
http://msp.org/idx/zbl/0725.14017
http://dx.doi.org/10.1007/978-1-4612-0851-8
http://msp.org/idx/mr/96b:11074
http://msp.org/idx/zbl/0911.14015
http://msp.org/idx/mr/2001a:11107
http://msp.org/idx/zbl/0951.14023
http://dx.doi.org/10.2140/pjm.1987.128.157
http://msp.org/idx/mr/88c:14054
http://msp.org/idx/zbl/0591.14022
mailto:m-kuroda@math.sci.hokudai.ac.jp




PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 273 No. 1 January 2015

1Maximal estimates for Schrödinger equations with inverse-square potential
CHANGXING MIAO, JUNYONG ZHANG and JIQIANG ZHENG

21Vassiliev Invariants of Virtual Legendrian Knots
PATRICIA CAHN and ASA LEVI

47Some results on the generic vanishing of Koszul cohomology via
deformation theory

JIE WANG

75Conformal metrics with constant curvature one and finitely many conical
singularities on compact Riemann surfaces

QING CHEN, WEI WANG, YINGYI WU and BIN XU

101Q-bases of the Néron–Severi groups of certain elliptic surfaces
MASAMICHI KURODA

123On a prime zeta function of a graph
TAKEHIRO HASEGAWA and SEIKEN SAITO

147On Whittaker modules for a Lie algebra arising from the 2-dimensional torus
SHAOBIN TAN, QING WANG and CHENGKANG XU

169Fréchet quantum supergroups
AXEL DE GOURSAC

197Generators of the Gauss–Picard modular group in three complex dimensions
BAOHUA XIE, JIEYAN WANG and YUEPING JIANG

213Complete characterization of isolated homogeneous hypersurface
singularities

STEPHEN YAU and HUAIQING ZUO

225A theorem of Mœglin and Waldspurger for covering groups
SHIV PRAKASH PATEL

241Spanning trees and random walks on weighted graphs
XIAO CHANG, HAO XU and SHING-TUNG YAU

0030-8730(201501)273:1;1-6

Pacific
JournalofM

athem
atics

2015
Vol.273,N

o.1


	1. Introduction
	2. The Néron–Severi group of an elliptic surface
	3. Stiller's list of elliptic surfaces
	4. Alternative proof of Stiller's computations
	Acknowledgements
	References
	
	

