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ON A PRIME ZETA FUNCTION OF A GRAPH

TAKEHIRO HASEGAWA AND SEIKEN SAITO

In the first half of this paper, we introduce a prime zeta function associated
with the Ihara zeta function, and study several properties of this function.
In the last half, using results of the first half, we present graph-theoretic
analogues to Mertens’ theorems.

1. Introduction

Throughout this paper, we use the notation of [Stark and Terras 1996; Terras 2011]
for graph theory and the theory of (Ihara) zeta functions Z X (u) of graphs, and the
notation of [Hardy and Wright 2008] and [Titchmarsh 1958; 1986] for the theory
of functions and the Riemann zeta function ζ(s).

In the analytic theory of the Riemann zeta function, the following theorems are
well-known:

• Mertens’ first theorem [1874, Equality (5)] (also see [Hardy and Wright 2008,
Theorem 425], [Jameson 2003, Theorem 2.6.3], and [Titchmarsh 1986, Equal-
ity (3.14.3)]): as x→∞,∑

p≤x

log p
p
= log x + O(1).

• Mertens’ second theorem [1874, Equality (13)] (also see [Hardy and Wright
2008, Theorem 427], [Jameson 2003, Theorem 2.6.4/Exercise 4, p. 191], and
[Titchmarsh 1986, Equality (3.14.5)]): as x→∞,∑

p≤x

1
p
= log(log x)+ B1+ O

( 1
logk x

)
for each k ≥ 1, where B1 = 0.26149 . . . is the Mertens constant.

• Mertens’ third theorem [1874, Equality (15)] (also see [Hardy and Wright
2008, Theorem 429], [Jameson 2003, Exercise 1, p. 96], and [Titchmarsh 1986,
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Equality (3.15.2)]): as x→∞,∏
p≤x

(
1− 1

p

)
∼

e−γ

log x
,

where γ = 0.57721 . . . is the Euler–Mascheroni constant.

• Prime number theorem (proved by de la Vallée Poussin and Hadamard in 1896;
see, e.g., [Hardy and Wright 2008, Theorem 6], [Jameson 2003, Theorem 3.4.3],
and [Titchmarsh 1986, Equality (3.7.1)]): as x→∞,

π(x)∼ x
log x

,

where π(x) denotes the number of rational prime numbers p less than x , that is,

π(x) :=
∣∣{p : p is a rational prime number with p ≤ x}

∣∣.
All proofs of the above formulae are related to the Riemann zeta function

ζ(s)=
∏
p∈P

(
1− 1

ps

)−1
,

where P denotes the set of all rational prime numbers, that is,

P := {p ∈ Z : p is a rational prime number},

and to the prime zeta function, defined first by Glaisher [1891],

P(s)=
∑
p∈P

1
ps .

In graph theory, there exists an analogue of the Riemann zeta function, the
so-called (Ihara) zeta function Z X (u) of a graph X (see [Ihara 1966]). Therefore,
studying graph-theoretic analogues of these theorems is very interesting. Indeed,
Terras and coworkers gave an analogue of the prime number theorem (see Theo-
rem 2.10 in [Horton et al. 2006], and also Theorem 10.1 in [Terras 2011]):

If 1X divides n, then, as n→∞,

πX (n)∼
1X

n · Rn
X
,

and otherwise πX (n) ∼ 0. (For the definitions of πX (n) and RX , see this sec-
tion, and for that of 1X , see Section 3.) This is called the graph-theoretic prime
number theorem.
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In this paper, we define a prime zeta function of a graph, and investigate several
properties of this function. In particular, we show that this has a natural bound-
ary. Moreover, by using this function, we present graph-theoretic analogues of
Mertens’ theorems.

We shall note a relation between previous works and our works. A zeta function of
a graph can be specialized from a dynamical zeta function for a flow (see Chapter 4
in [Terras 2011]), and dynamical-systemic analogues to the above formulae are
already known (see, e.g., [Sharp 1991] for Mertens’ theorems, and [Parry 1983;
Parry and Pollicott 1983] for a prime number theorem). In that sense, our statements
for Mertens’ theorems are not new (see Remark 17). However, since our proofs are
graph-theoretic and elementary, they are completely different from previous proofs.

In this section, we first recall the notation for graph theory and zeta functions of
graphs, define a prime zeta function of a graph, and finally state the main theorem.

Now we recall the notation of graph theory. Throughout this paper, we always
assume that X is a finite, connected, non-cycle and undirected graph without degree-
one vertices. Let X be a graph with vertex set V , with ν := |V |, and edge set E ,
with ε := |E |. Simply, such a graph X is denoted by X := (V, E). Note that ε is
the number of edges of X .

An oriented edge (or an arc) a from a vertex u to a vertex v is denoted by
a= (u, v), and the inverse of a is denoted by a−1

= (v, u). The origin and terminus
of a are denoted by o(a) and t (a), respectively. We can now orient the edges of X ,
and label the edges as follows:

EE = {e1, e2, . . . , eε, eε+1 = e−1
1 , eε+2 = e−1

2 , . . . , e2ε = e−1
ε }.

A path C = a1 · · · as , where the ai are oriented edges, is said to have a backtrack
(resp. tail) if a j+1 = a−1

j for some j (resp. as = a−1
1 ), and a path C is called a

cycle (or a closed path) if o(a1)= t (as). The length `(C) of a path C = a1 · · · as is
defined by `(C)= s.

A cycle C is called prime (or primitive) if it satisfies the following:

• C does not have backtracks or a tail;

• no cycle D exists such that C = D f for some f > 1.

The equivalence class [C] of a cycle C = a1 · · · as is defined as the set of cycles

[C] := {a1a2 · · · as−1as, a2 · · · as−1asa1, . . . , asa1a2 · · · as−1},

and an equivalence class [P] of a prime cycle P is called a prime in the graph X .
Throughout this paper, we denote a prime by the symbol [P] . Two cycles C1 and C2

are called equivalent if C2 ∈ [C1]. Note that if [C1] = [C2], then `(C1) = `(C2),
and thus u`(C1) = u`(C2).
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Next, we recall the zeta function of a graph X = (V = {v1, . . . , vν}, E), and we
define a prime zeta function associated with it. Let u be a complex variable, and
let fX (u) denote

fX (u) := det(Iν − Au+ Qu2),

where Iν is the ν× ν identity matrix, A is the adjacency matrix of X (see Defini-
tion 2.1 in [Terras 2011]), and

Q = diag(deg(v1)− 1, . . . , deg(vν)− 1).

Let πX (n) denote

π(n)= πX (n) :=
∣∣{[P] : [P] is a prime in X with `(P)= n}

∣∣.
Throughout this paper, we fix an arbitrary real number t>1 (that is, log t>0), and

we set u = t−s . The (Ihara) zeta function of X (see Definition 2.2 and Theorem 2.5
in [Terras 2011]) and the prime zeta function of X are defined as follows:

Z X (u) : =
∏
[P]

(1− u`(P))−1
=

1
(1− u2)ε−ν fX (u)

, ZX (s) := Z X (t−s),

PX (u) : =
∑
[P]

u`(P) =
∞∑

n=1

πX (n)un, PX (s) := PX (t−s),

with |u| sufficiently small, where [P] runs through all primes in X . In this paper,
we do not distinguish between the two functions Z X (u) and ZX (s), or between
PX (u) and PX (s). The right-hand side of the first equality is called the Ihara–Bass
formula (see [Bass 1992]). Note that, owing to our assumption for X , the zeta
function Z X (u) is expressible like that.

Note that, for two finite connected graphs X1 and X2 without degree-one vertices,
PX1(u)= PX2(u) if and only if Z X1(u)= Z X2(u) (see Proposition 7 in [Storm 2010]).

Let

T :=
∞⋃

n=1

Tn and Tn := {u ∈ C : fX (un)= 0}

be the zeroes of the fX (un). Note that the elements of Tn are poles of Z X (un).
The radius of convergence of Z X (u) is denoted by RX . Note that 0 < RX < 1
since X is a non-cycle graph (see, e.g., [Terras 2011, p. 197]). It follows from the
graph-theoretic prime number theorem (see Theorem 10.1 in [Terras 2011]) that
the radius of convergence of the other function PX (u) is also equal to RX . Note
that the point u = RX is a singularity of PX (u), and that

PX (u)∼−log(RX − u)
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as u ↑ RX , which is similar to

P(s)∼−log(s− 1)

as s ↓ 1 (see, e.g., [Fröberg 1968]), where P(s)=
∑

p 1/ps denotes the prime zeta
function associated with the Riemann zeta function.

Euclid proved that the number of primes p is infinite. Euler showed that the
prime zeta function

∑
p 1/p diverges, and as an application he proved the infinitude

of primes. In graph theory, it is also well known that the number of primes [P]
in X is infinite. We can give another proof “à la Euler” for this fact since u = RX

is a singularity of PX (u).
Our main theorem is:

Main Theorem. Suppose that X = (V, E) is a finite, connected and non-cycle
graph without degree-one vertices.

(1) Let µ(n) denote the Möbius function. If |u|< RX , then

PX (u)=
∞∑

n=1

µ(n)
n

log Z X (un).

Furthermore, the right-hand side is absolutely convergent for u satisfying
|u| < 1 and u /∈ T , and so PX (u) has an analytic extension to the region
{u ∈ C : |u|< 1} \ T .

(2) The imaginary axis Re(s) = 0 is a natural boundary for the function PX (s),
that is, every point on this line can be realized as a limit point of singularities
of PX (s).

(3) (Graph-theoretic Mertens’ first theorem) As N →∞,∑
n≤N

n ·πX (n)Rn
X = N + O(1).

(4) (Graph-theoretic Mertens’ second theorem) There exists a constant BX such
that, as N →∞,∑

n≤N

πX (n)Rn
X = log N + BX + O

( 1
N

)
.

(5) (Graph-theoretic Mertens’ third theorem) Let γ = 0.57721 . . . denote the
Euler–Mascheroni constant. As N →∞,∏

`(P)≤N

(1− R`(P)X )∼
e−γ

CX
·

1
N
,



128 TAKEHIRO HASEGAWA AND SEIKEN SAITO

where

CX =−
1

(1− R2
X )
ε−νRX f ′X (RX )

(for the definition, in detail, see Section 3 in this paper).

The contents of this paper are as follows. In the next section, we prove the first
two claims in the main theorem, that is, several properties of PX (u). In Section 3,
we prove the remaining claims in the main theorem, namely, the graph-theoretic
Mertens theorems.

2. Prime zeta function of a graph

In this section, we give a proof of parts (1) and (2) of the Main Theorem introduced
in Section 1.

The following facts about Z X (u), etc., are known, and are often used in this paper.

Facts 1. (1) (Basic facts) For an arbitrary real number t > 1, set u= t−s . Then the
function ZX (s) is absolutely convergent and holomorphic for all s satisfying
Re(s) >−log RX/log t (≥ 0).

Since the function Z X (u) is the reciprocal of a polynomial by the Ihara–Bass
formula, the function Z X (u) is meromorphic for all u ∈C, and therefore ZX (s)
is also meromorphic for all s ∈ C.

(2) [Kotani and Sunada 2000, Theorem 1.3(1)] Let q+1 and p+1 be the maximum
and minimum degrees of a graph X , respectively. Then 1/q ≤ RX ≤ 1/p, the
point u = RX is a simple pole of Z X (u), and every pole of Z X (u) satisfies
RX ≤ |u| ≤ 1.

(3) [Terras 2011, p. 197] Suppose that X is a finite connected graph without degree-
one vertices. Then RX = 1 if and only if X is a cycle graph. This follows from
the equation p = q = 1.

(4) [Kotani and Sunada 2000, p. 8] The leading coefficient of the polynomial fX is
given by

c =
∏
v∈V

(deg(v)− 1),

and therefore that of the polynomial 1/Z X is equal to c2ε = (−1)ε−νc.

In this section, the following lemma is important.

Key Lemma 2. Let

φ(u)= 1+
d∑

i=1

ci ui
∈ Z[u]
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be a polynomial function of degree d ≥ 0, and let

T = {u ∈ C : there exists n ≥ 1 such that φ(un)= 0}

denote the zeroes of the φ(un). Suppose that r is an arbitrary real number, and
assume that 8(u) is a series defined by

8(u)=
∞∑

n=1

1
nr logφ(un).

Then 8(u) is absolutely convergent for u satisfying |u|< 1 and u /∈ T .

Proof. First, we suppose that d = 0. Then the φ(un)= 1 are constant, and therefore
8(u) = 0 is also constant. Hence, the claim is trivial. From now on, we assume
that d ≥ 1. Set c :=max{|ci | : 1 ≤ i ≤ d}, choose a number C0 with C0 ≥ cd + 1
(≥ 2), and fix it.

Let rn (n ≥ 3) be a number defined by

rn :=

(
1− exp(−1/n2−r )

C0

)1/n

.

Note that rn < (1/C0)
1/n , the sequence {rn}n≥3 is increasing, and limn→∞ rn = 1.

Take u satisfying |u| < 1 and u /∈ T , and fix it. Then there exists a number N
such that |u| ≤ rN , and thus |u|< rn for all n ≥ N + 1. Now we fix such numbers
N and n.

Since |u|< (1/C0)
1/n and |un

| ≤ |u|< 1, we obtain, by the triangle inequality,

(1) 0< 1−C0|un
| ≤ |φ(un)|, and so −log |φ(un)| ≤ −log(1−C0|un

|).

On the other hand, since |u| < rn , then C0|un
| < 1 − exp(−1/n2−r ), so we

obtain the inequality −log(1−C0|un
|) < 1/n2−r . Combining this result with (1),

we obtain

(2) Re(−logφ(un))=−log |φ(un)|<
1

n2−r .

The first inequality in (1) also shows that the function logφ(un) is holomorphic in
the closed disk |u| ≤ rN+1. By applying the Borel–Carathéodory theorem (see, e.g.,
[Titchmarsh 1958, §5.5]) to the function logφ(un) and the two circles |u| = rN+1,
|u| = rN , we obtain

|logφ(un)| ≤ max
|u|=rN
|logφ(un)| ≤ K max

|u|=rN+1
Re(−logφ(un))≤ K

1
n2−r ,

where K := 2rN/(rN+1− rN ). Therefore, it follows that
∞∑

n=N+1

1
nr |logφ(un)| ≤ K

∞∑
n=N+1

1
n2 < K · ζ(2) <∞.
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Hence, for u satisfying |u|< 1 and u /∈ T , the series 8(u) converges absolutely. �

Using this lemma, we can prove the following proposition.

Proposition 3. Let µ(n) denote the Möbius function. If |u|< RX , then

(3) PX (u)=
∞∑

n=1

µ(n)
n

log Z X (un).

Moreover, the right-hand side of (3) is absolutely convergent for u satisfying |u|< 1
and u /∈T , and therefore PX (u) extends analytically to the region {u∈C : |u|<1}\T .

Equivalently, if Re(s) >−log RX/log t , then

(4) PX (s)=
∞∑

n=1

µ(n)
n

log ZX (ns).

The right-hand side of (4) is absolutely convergent for s satisfying Re(s) > 0 and
t−s /∈ T , and so (4) gives the analytic continuation of PX (s) to the region.

Proof. Note that RX ≤ 1 (from Fact 1(2)) and exp(z) =
∏
∞

n=1(1− zn)−µ(n)/n for
|z|< 1. Suppose that |u|< RX . Since |u`(P)| ≤ |u|< 1, we obtain the equality

exp(PX (u))=
∏
[P]

exp(u`(P))=
∏
[P]

∞∏
n=1

(1− un`(P))−µ(n)/n
=

∞∏
n=1

Z X (un)µ(n)/n,

and therefore (3) holds for u satisfying |u|< RX .
Set

1/Z X (u)= (1− u2)ε−ν fX (u)= 1+ c1u+ · · ·+ c2εu2ε
∈ Z[x],

c = max{|ci | : 1 ≤ i ≤ 2ε} and C0 = 2εc ≥ 2. By applying Key Lemma 2 to
φ(u) = 1/Z X (u) and r = 1, it follows that, for u satisfying |u| < 1 and u /∈ T ,
the series

∑
∞

n=1 log Z X (un)/n is absolutely convergent, and so the right-hand side
of (3) is absolutely convergent. �

Moreover, for a Ramanujan graph, we can prove the following.

Corollary 4. Suppose that X is a finite connected Ramanujan graph with degree
q + 1, that is, Z X (u) satisfies the Riemann hypothesis (see Theorem 7.4 in [Terras
2011]). Then the function PX (u) is absolutely convergent for u satisfying |u|< 1
and |u| 6= (1/q)1/n for all n.

Equivalently, the function PX (s) is absolutely convergent for s such that Re(s)>0
and Re(s) 6= log q/ log tn for all n.

Proof. Since X is a Ramanujan graph, by Theorem 1.3 in [Kotani and Sunada 2000],
every real (resp. nonreal) zero of fX (u) satisfies |u| = 1 or 1/q (resp. |u| = 1/

√
q).

Thus, every point |u| 6= (1/q)1/n is not zero of fX (un). Hence, the proof of the
assertion follows from Proposition 3. �
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We can completely interchange the roles of the functions PX (u) and log Z X (u).

Corollary 5. If |u|< 1 and u /∈ T , then

(5) log Z X (u)=
∞∑

n=1

1
n

PX (un).

Equivalently, if Re(s) > 0 and t−s /∈ T , then

(6) log ZX (s)=
∞∑

n=1

1
n

PX (ns).

Proof. By applying the Möbius inversion formula (see, e.g., Theorem 270 in [Hardy
and Wright 2008], or Theorem 2.2.8 in [Jameson 2003]) to the equality (3) for
|u|< 1, we obtain the equality (5). �

Remark 6. The equalities (4) and (6) indicate that PX (s) is a graph-theoretic
analogue to the prime zeta function P(s) for the Riemann zeta function ζ(s). The
relations between P(s) and ζ(s) are given as follows (see [Glaisher 1891], and also
[Fröberg 1968] and Equality (1.6.1) in [Titchmarsh 1986]):

For Re(s) > 1,

P(s)=
∞∑

n=1

µ(n)
n

log ζ(ns) and log ζ(s)=
∞∑

n=1

1
n

P(ns).

We can orient the edges of X , and label the edges as follows:

EE = {a1, a2, . . . , aε, aε+1 = a−1
1 , aε+2 = a−1

2 , . . . , a2ε = a−1
ε }.

Let W = WX := (wi j ) denote the edge adjacency matrix of a graph X , that is, a
2ε× 2ε matrix defined by

wi j :=

{
1 if t (ai )= o(a j ) and a j 6= a−1

i for ai , a j ∈ EE,
0 otherwise

(see p. 28 in [Terras 2011]). Let λ1, . . . , λk be the distinct eigenvalues of W , and let
e1, . . . , ek be their multiplicities. Note that

∑k
i=1 ei = 2ε. Let e :=

∑k
i=1,λi 6=±1 ei .

By the determinant formula given by Hashimoto [1989] and Bass [1992], the
polynomial 1/Z X (u) can be written as

1/Z X (u)= det(I2ε −W u)=
k∏

i=1

(1− λi u)ei .

Note that fX (1)= 0. We now define a polynomial gX (u) by

gX (u) := fX (u)/(1− u).
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Note that since f ′X (1)= 2(ε− ν)κ by [Northshield 1998, Theorem],

gX (1)=− f ′X (1)=−2(ε− ν)κ,

where κ is the complexity of X , that is, the number of spanning trees in X . Since
X is a non-cycle graph, that is, ε 6= ν, the polynomial gX (u) can be also written as

(7) gX (u)=
1/Z X (u)

(1− u2)ε−ν(1− u)
= (1+ u)2ν−1−e

k∏
i=1

λi 6=±1

(1− λi u)ei .

We can show that the function PX (s) has a natural boundary.

Proposition 7. Let X = (V, E) be a finite, connected and non-cycle graph without
degree-one vertices.

(1) There exists an eigenvalue λ of W such that |λ|> 1.

(2) The imaginary axis Re(s) = 0 is a natural boundary for the function PX (s),
that is, every point on this line can be realized as a limit point of singularities
of PX (s).

Proof. (1) The leading coefficient c2ε of the polynomial 1/Z X (u) is given by

(−1)ε−ν
∏
v∈V

(deg(v)− 1)= c2ε =

k∏
i=1

λ
ei
i

(from Fact 1(4)). By our assumption for X , the graph X is not a 2-regular graph.
Thus |c2ε |> 1 and so there exists an eigenvalue λi with |λi | 6= 1. Note that every
pole 1/λi of Z X (u) satisfies |1/λi |≤ 1 by Fact 1(2). So there exists an eigenvalue λi

with |λi |> 1.

(2) Note that exp(z)=
∏
∞

n=1(1− zn)−µ(n)/n for |z|< 1. If |u|< 1 and u /∈ T , then

exp(PX (u))=
∞∏

n=1

Z X (un)µ(n)/n

=

( ∞∏
n=1

(1− u2n)−µ(n)/n
)ε−ν( ∞∏

n=1

(1− un)−µ(n)/n
) ∞∏

n=1

gX (un)−µ(n)/n

= exp((ε− ν)u2
+ u)

∞∏
n=1

gX (un)−µ(n)/n,

and therefore the equality

PX (u)= (ε− ν)u2
+ u−

∞∑
n=1

µ(n)
n

log gX (un)

holds.
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Note that u = t−s . By using the equalities (7) and 2, the function PX (s) can be
written as

PX (s)= (ε− ν)t−2s
+ t−s

−

∞∑
n=1

µ(n)
n

(
(2ν− 1− e) log(1+ t−ns)+

k∑
i=1

λi 6=±1

ei log(1− λi t−ns)

)

for all s satisfying Re(s) > 0. By part (1), there exists λ such that |λ| > 1
among the eigenvalues λ1, . . . , λk of W . Note that 1 − λt−ns

= 0 if and only
if s = r(λ, n,m), where

r(λ, n,m) :=
log |λ|
n log t

+ i
Arg(λ)+ 2πm

n log t
,

and Arg(λ) is the argument of λ with −π ≤ Arg(λ) < π . Note that

εn :=
log |λ|
n log t

→ 0

as n→∞. We now fix an arbitrary point α = ia on the imaginary axis Re(s)= 0.
Then, we can arrange a sequence of integers {mn} for each integer n so that

Arg(λ)+ 2πmn

n log t
→ a

as n→∞. Hence, each point α on the boundary is a limit point of singularities
of PX (s). Since εn > 0 for all n, we cannot continue PX (s) beyond the boundary
at Re(s)= 0. �

Remark 8. Proposition 7(2) is an analogue of the fact that the imaginary axis
Re(s)= 0 is a natural boundary for the prime zeta function P(s) of the Riemann
zeta function ζ(s) (see [Landau and Walfisz 1920]).

3. Graph-theoretic Mertens’ theorem

In this section, we prove parts (3)–(5) of the Main Theorem introduced in Section 1.
Throughout this section, we always assume that X = (V, E) is a finite, connected,

non-cycle graph without degree-one vertices. Note in particular that ν 6= ε and
0< RX < 1.

First, we define the constants HX , CX and γX , and study their properties, which
play important roles in this section. Let u be a complex variable. We define a
function by

HX (u) := log Z X (u)− PX (u)=
∑
n≥2

1
n

PX (un)=
∑
[P]

∑
n≥2

1
n

un`(P).
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Note that the point u= RX is a common pole of Z X (u) and PX (u) by Fact 1(2), and
that the series HX (u) is absolutely convergent for u satisfying |u|< 1 and u /∈ T ,
from Corollary 5.

Since u = RX is a simple pole of Z X (u), we can define constants cX and CX by

cX := − Res
u=RX

Z X (u)= lim
u↑RX

(RX − u)Z X (u)=
−1

(1− R2
X )
ε−ν f ′X (RX )

and CX := cX/RX .

Lemma 9. (1) The value HX := HX (RX ) is finite.

(2) The constants cX and CX are positive.

Proof. (1) Since Rn
X < RX < 1 (n ≥ 2), the function PX (u) is holomorphic at

u = Rn
X , and therefore PX (un) is holomorphic at u = RX . We have

HX (RX )=
∑
[P]

∑
n≥2

1
n

Rn`(P)
X ≤

∑
[P]

∑
n≥2

Rn`(P)
X

=

∑
[P]

R2`(P)
X

1− R`(P)X

≤
1

1− RX

∑
[P]

R2`(P)
X =

PX (R2
X )

1− RX
<+∞,

and the assertion follows.

(2) Note that the leading coefficient of the polynomial fX is given by

c =
∏
v∈V

(deg(v)− 1) > 0

by Fact 1(4). Then fX factors as the product of irreducible polynomials such that

fX (u)= c
m1∏
i=1

(u−αi ) ·

m2∏
j=1

f j (u),

where the f j are monic of deg f j = 2, and deg fX = 2ν = m1 + 2m2. Note that
m1 is even. Since u = RX is a simple pole of Z X (u), it is a simple zero of fX . We
may assume that α1 = RX . Since αi > RX (2 ≤ i ≤ m1) and the discriminants of
the f j are negative, the sign of

f ′X (RX )= c
m1∏
i=2

(RX −αi )

m2∏
j=1

f j (RX )

is equal to (−1)m1−1
=−1, i.e., f ′X (RX ) < 0, so cX > 0 and CX = cX/RX > 0. �
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Since the function Z X (u)− cX/(RX − u) is holomorphic at u = RX , we can
define a constant γX by

γX := lim
u↑RX

(
Z X (u)−

cX

RX − u

)
,

which is an analogue of the Euler–Mascheroni constant γ = lims↓1(ζ(s)−1/(s−1))
for ζ(s).

In a neighborhood of u = RX , the function Z X (u) can be expanded as

Z X (u)=
cX

RX − u
+ γX + O(RX − u),

and so

(8) log Z X (u)= log
cX

RX − u
+ O(RX − u).

Similarly, in a neighborhood of u = RX , the function PX (u) can be expanded as

PX (u)= log
cX

RX − u
−HX (u)+O(RX−u)= log

cX

RX − u
−HX (RX )+O(RX−u).

In this section, the following facts are used.

Facts 10. (1) (See, for example, Theorem 18.1 in [Korevaar 2002].) Let x be a
complex variable and let F(x) =

∑
∞

n=0 anxn be a power series with an ≥ 0 that
converges for |x |< 1. Suppose that

F(x)− C
1−x

= O(1)

as x→ 1. Then the partial sum A(N )=
∑

n≤N an satisfies

A(N )= C · N + O(log N )

as N →∞.

(2) (See, for example, Exercises 9-6 in [Apostol 1974], and Theorem 1.3.6 in
[Jameson 2003], the Abel partial summation formula). Let {an} be real numbers,
and let f (t) be a (real- or complex-valued) function with a continuous derivative in
the interval [1, N ]. Then∑

n≤N

an f (n)= A(N ) f (N )−
∫ N

1
A(t) f ′(t) dt.

By using Fact 10, we can prove the following proposition.

Proposition 11. Suppose that X is a finite, connected and non-cycle graph with-
out degree-one vertices. In a neighborhood of u = RX , expand Z X (u) into the
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power series

Z X (u)=
∞∑

n=0

a′nun.

Then, as N →∞, ∑
n≤N

a′n Rn
X = CX · N + O(log N ).

Proof. First, for simplicity of arguments, we normalize the function Z X (u):

F(x)= Z X (RX x)=
∞∑

n=0

a′n Rn
X xn
=

∞∑
n=0

anxn,

where an = a′n Rn
X . Note that the normalized function F(x) converges for |x |< 1.

Since all coefficients a′n are nonnegative (by page 13 in [Terras 2011]), all coeffi-
cients an are also nonnegative. Since X is a non-cycle graph, the point x = 1 is a
simple pole of F(x). Hence, we obtain

F(x)−
CX

1− x
= O(1)

as x→ 1. By applying Fact 10(1) to this equality, as N →∞,∑
n≤N

an = CX · N + O(log N ), and so
∑
n≤N

a′n Rn
X = CX · N + O(log N )

holds, and the assertion follows. �

Now, we compute the following example.

Example 12 [Terras 2011, Example 2.8, p. 18]. Consider the graph X = K4 −

{one edge}. Then

fX (u)= (1−u)(1+u2)(1+u+2u2)(1−u2
−2u3) and Z X (u)−1

= (1−u2) fX (u).

Since the radius of convergence RX of Z X (u) is the smallest positive real zero
of fX (u),

RX =
1
6(α− 1+α−1)= 0.6572981 . . . , α = (53+ 6

√
78)1/3.

Then CX is computed as CX = 0.5540954 . . . . For example, if N = 50000, then

1
N

∑
n≤N

a′n Rn
X = 0.5540867 . . .≈ CX .
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Let X = (V, E) be a graph, and set |V |= ν and |E |= ε. Let W =WX be the edge
adjacency matrix of X (see page 28 in [Terras 2011], or Section 2 in this paper), and
let Spec(W ) denote the spectrum of W , that is, the list of its eigenvalues together
with their multiplicities. Note that |Spec(W )| = 2ε. The polynomial 1/Z X (u) has
an expression different from that in Section 2. In fact, this can be written as

1/Z X (u)= det(I2ε −W u)=
∏

λ∈Spec(W )

(1− λu)
(
=

k∏
i=1

(1− λi u)ei

)
.

Since the points u = 1/λ are the poles of Z X (u), we obtain 1 ≤ |λ| ≤ 1/RX by
Fact 1(2).

The following lemma is used in the proof of Theorem 14 in this section.

Key Lemma 13. Suppose that X is a finite, connected and non-cycle graph without
degree-one vertices.

(1) As N →∞, we have

N∑
n=1

∑
λ∈Spec(W )

(λRX )
n
= N + O(1).

(2) Let 0< α < 1
2 be a fixed real number. Then there exists a natural number N0

such that, for any n ≥ N0,∣∣∣∣n ·π(n)− ∑
λ∈Spec(W )

λn
∣∣∣∣< 2ε

( 1
RX

)(1−α)n
.

Proof. (1) Let 1X denote

1=1X := gcd{`(P) : [P] is a prime in X}

(see Definition 2.12 in [Terras 2011]). It follows from Theorem 1.4 in [Kotani
and Sunada 2000] that the poles of Z X (u) on the circle |u| = RX have the form
u = RX e2π ia/1 (1≤ a ≤1). It is well known that

1∑
a=1

e2π ian/1
=

{
1 if 1 | n,
0 otherwise

(see, e.g., Exercise 10.1 in [Terras 2011]). Then we obtain∣∣∣∣N − ∑
|λ|=1/RX

N∑
n=1

(λRX )
n
∣∣∣∣= ∣∣∣∣N − N∑

n=1

1∑
a=1

e2π ian/1
∣∣∣∣= N −

[N
1

]
1<1,



138 TAKEHIRO HASEGAWA AND SEIKEN SAITO

where [r ] denotes the integer part of the real number r . On the other hand, we obtain∣∣∣∣ ∑
|λ|<1/RX

N∑
n=1

(λRX )
n
∣∣∣∣< 2ε

∑
n≥1

(ρRX )
n
=

2ερRX

1− ρRX
,

where
ρ :=max{|λ| : λ ∈ Spec(W ), |λ|< 1/RX }.

Combining these inequalities, by the triangle inequality we obtain∣∣∣∣N − N∑
n=1

∑
λ∈Spec(W )

(λRX )
n
∣∣∣∣<1+ 2ερRX

1− ρRX

as N →∞, and the assertion follows.

(2) Let µ(n) denote the Möbius function. Note that
∑

d|n |µ(d)| ≤ n. It is
known that

π(n)= 1
n

∑
d|n

µ(d)Nn/d and Nn =
∑

λ∈Spec(W )

λn

(see (10.3) and (10.4) in [Terras 2011]). Combining these equalities, we obtain

n ·π(n)=
∑

λ∈Spec(W )

∑
d|n

µ(d)λn/d ,

and thus∣∣∣∣n ·π(n)− ∑
λ∈Spec(W )

λn
∣∣∣∣= ∣∣∣∣ ∑

λ∈Spec(W )

∑
d|n
d≥2

µ(d)λn/d
∣∣∣∣

≤

∑
λ∈Spec(W )

∑
d|n
d≥2

|µ(d)| · |λ|n/d ≤
∑

λ∈Spec(W )

∑
d|n
d≥2

|µ(d)| · |λ|n/2

≤ n
∑

λ∈Spec(W )

( 1
RX

)n/2
≤ 2εn

( 1
RX

)n/2
.

On the other hand, since RX < 1 and 0< α < 1
2 by our assumptions, there exists

a natural number N0 such that, for any n ≥ N0,

n ≤
( 1

RX

)(1/2−α)n
, and so n

( 1
RX

)n/2
≤

( 1
RX

)(1−α)n
.

Hence, for any n ≥ N0,∣∣∣∣n ·π(n)− ∑
λ∈Spec(W )

λn
∣∣∣∣≤ 2ε

( 1
RX

)(1−α)n
,
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and the assertion follows. �

At last, we can prove the main theorem in this section.

Theorem 14. Suppose that X is a finite, connected and non-cycle graph without
degree-one vertices. Let γ = 0.57721 . . . be the Euler–Mascheroni constant, and
let HX = HX (RX ) and CX be the constants.

(1) (Graph-theoretic Mertens’ first theorem) As N →∞,∑
n≤N

n ·π(n)Rn
X = N + O(1).

(2) (Graph-theoretic Mertens’ second theorem) There exists a constant BX such
that, as N →∞,∑

n≤N

π(n)Rn
X = log N + BX + O

( 1
N

)
.

(3) The equality BX = γ + log CX − HX holds. Equivalently,

BX = γ + log CX −
∑
[P]

∑
n≥2

1
n

Rn`(P)
X

= γ + log CX +
∏
[P]

(
log(1− R`(P)X )+ R`(P)X

)
.

(4) (Graph-theoretic Mertens’ third theorem) As N →∞,∏
`(P)≤N

(
1− R`(P)X

)
=

∏
n≤N

(1− Rn
X )
π(n)
∼

e−γ

CX
·

1
N
.

Proof. (1) Let N0 be a number as in the proof of Key Lemma 13(2), and let K
denote the constant

K :=
∣∣∣∣N0−1∑

n=1

n ·π(n)Rn
X −

N0−1∑
n=1

∑
λ∈Spec(W )

(λRX )
n
∣∣∣∣.

Assume that N is sufficiently large. Then it follows from Key Lemma 13(2) that∣∣∣∣ N∑
n=1

n ·π(n)Rn
X −

N∑
n=1

∑
λ∈Spec(W )

(λRX )
n
∣∣∣∣≤ K +

∣∣∣∣ N∑
n=N0

Rn
X

(
n ·π(n)−

∑
λ∈Spec(W )

λn
)∣∣∣∣

≤ K + 2ε
N∑

n=N0

Rαn
X < K +

2ε
1− RαX

,
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and therefore by Key Lemma 13(1) we have

N∑
n=1

n ·π(n)Rn
X =

N∑
n=1

∑
λ∈Spec(W )

(λRX )
n
+ O(1)= N + O(1) as N →∞.

(2) We set an = n ·π(n)Rn
X . By part (1), we obtain A(t)= t + O(1). By applying

Fact 10(2) with f (t)= 1/t , we get

∑
n≤N

π(n)Rn
X =

A(N )
N
+

∫ N

1

A(t)
t2 dt =

N + O(1)
N

+

∫ N

1

t + O(1)
t2 dt

= 1+ O
( 1

N

)
+

∫ N

1

(1
t
+ O

( 1
t2

))
dt

= 1+ O
( 1

N

)
+

[
log t + O

(1
t

)]N

1

= 1+ O
( 1

N

)
+ log N + O

( 1
N

)
+ O(1)= log N + O(1)+ O

( 1
N

)
,

and the assertion follows.

(3) Fix an arbitrary x satisfying 0< x<1. By applying Fact 10(2) with an=π(n)Rn
X

and f (t)= x t ,

∑
n≤N

π(n)Rn
X xn
= A(N )x N

− log x
∫ N

1
x t A(t) dt

holds. It follows from part (2) that

∑
n≤N

π(n)Rn
X xn
=

(
log N+BX+O

( 1
N

))
x N
−log x

∫ N

1
x t
(

log t+BX+O
(1

t

))
dt,

and, moreover, as N →∞,

(9) PX (RX x)=−log x
∫
∞

1
x t
(

log t + BX + O
(1

t

))
dt.

In order to calculate the right-hand side of this equality, for simplicity of argu-
ments, we define the functions In = In(x):

−log x
∫
∞

1
x t
(

log t + BX + O
(1

t

))
dt = I1+ I2+ O(I3),
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where

I1 =−log x
∫
∞

1
x t log t dt,

I2 =−BX · log x
∫
∞

1
x t dt = BX · x, and

I3 =−log x
∫
∞

1

x t

t
dt.

First, we compute the function I1:

I1 =−

∫
∞

1
(x t)′ log t dt =

∫
∞

1

x t

t
dt.

Now we take r =−t log x . Note that log x < 0. Then we obtain

I1 =

∫
∞

−log x

e−r

r
dr =−Ei(log x),

where Ei(z) (z ∈ C and |Arg(−z)|< π ) is the exponential integral

−Ei(−z)=
∫
∞

z

e−r

r
dr

(see, e.g., Equality (3.1.3) in [Lebedev 1972]). Since the function Ei(z) expands as

Ei(z)= γ + log(−z)+
∞∑

k=1

zk

k · k!

(see Equality (3.1.6) in [ibid.]),

I1 =−γ − log(−log x)+ O(log x)=−γ − log(−log x)+ O(1− x).

Next we calculate the function I3. It follows from the above result that

I3 =−log x
∫
∞

1

x t

t
dt = (−log x)I1 = O(1− x)

as x ↑ 1.
By combining the above results, the equality (9) is written as follows:

PX (RX x)=−γ − log(−log x)+ BX x + O(1− x),

and, moreover, as x ↑ 1,

PX (RX x)+ log(−log x)→ BX − γ.(10)

On the other hand, since

log Z X (RX x)= log 1
1−x

+ log CX + O(1− x)
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from the equality (8), as x ↑ 1,

(11) log Z X (RX x)+ log(−log x)= log
(
−log x
1− x

)
+ log CX → log CX .

Combining (10) with (11), we obtain

HX = lim
x↑1

HX (RX x)= lim
x↑1

(
log Z X (RX x)− PX (RX x)

)
= lim

x↑1

(
(log Z X (RX x)+ log(−log x))− (PX (RX x)+ log(−log x))

)
= log CX + γ − BX .

(4) Fix an arbitrary positive real number N . We define the following functions:

H≤N
X =

∑
n≤N

π(n)
∞∑

m=2

1
m

Rmn
X and H>N

X =

∑
n>N

π(n)
∞∑

m=2

1
m

Rmn
X .

Note that HX = H≤N
X + H>N

X . From parts (2) and (3), we obtain∑
n≤N

π(n)Rn
X + H≤N

X = log N + γ + log CX − H>N
X + O

( 1
N

)
.

Since the left-hand side of this equality is equal to

∑
n≤N

π(n)Rn
X + H≤N

X =

∑
n≤N

π(n)
∞∑

m=1

1
m

Rmn
X

=−

∑
n≤N

π(n) log(1− Rn
X )=− log

(∏
n≤N

(1− Rn
X )
π(n)
)
,

we obtain ∏
n≤N

(1− Rn
X )
π(n)
=

e−γ

CX
·

1
N

exp
(

H>N
X + O

( 1
N

))
.

Since H>N
X → 0 and 1/N → 0 as N →∞, the assertion follows. �

Last, we compute the following example.

Example 15 (continued from Example 12). Consider the graph X=K4−{one edge}.
Then

HX = 0.25613 . . . , BX = γ + log CX − HX =−0.26933 . . . .
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For example, if N = 550, then∑
n≤N

π(n)Rn
X − log N =−0.26842 · · · ≈ BX ,

∏
n≤N

(1− Rn
X )
π(n)
= 0.18447 · · · ≈

e−γ

CX
·

1
N
= 0.18457 . . . .

Remark 16. (See [Mertens 1874, Equation (17)], or [Hardy and Wright 2008,
Theorem 428].) A number-theoretic analogue to part (3) in the preceding theorem is

B1 = γ − H = γ +
∑

p

(
log
(

1− 1
p

)
+

1
p

)
,

where H =
∑

n≥2 P(n)/n is a constant, and P(s) is the prime zeta function.

Remark 17. We now compare parts (2)–(4) of our Theorem 14 with Theorem 1 in
[Sharp 1991]. We define

h X := −log RX , N (P)= eh X`(P) and x = eh X N .

The quantity h X is called the topological entropy of a flow in ergodic theory (see
[Sharp 1991]), which is a constant in our setting. Note that `(P)≤ N if and only if
N (P)≤ x . Note that R`(P)X = 1/N (P). Then our Mertens’ second theorem can be
rewritten as ∑

N (P)≤x

1
N (P)

= log(log x)+ B+ O
( 1

log x

)
,

where B := −log h X + BX , and, similarly, our Mertens’ third theorem becomes∏
N (P)≤x

(
1−

1
N (P)

)
∼

1
CX/h X

·
e−γ

log x
.

In Theorem 1 in [Sharp 1991], our constant CX/h X , which is equal to a residue
(up to sign) of the Ihara zeta function, corresponds with that of a dynamical zeta
function for a flow.

Moreover, our Theorem 14(3) becomes

B = γ + log(CX/h X )+
∑
[P]

(
log
(

1−
1

N (P)

)
+

1
N (P)

)
.

Remark 18. Let X = (V, E) be a finite, connected, non-cycle graph without degree-
one vertices, and let S = (V ′, E ′) be its k-subdivision (that is, let S be the graph
obtained from X by adding k new vertices to each edge of X ) (see Examples 6.4
and 8.5 in [Terras 2011]). Then

HX = HS, CX = (k+ 1)CS, and BX = BS + log(k+ 1).
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This is proved as follows: note that 1S = (k+ 1)1X , Rk+1
S = RX , and

πS(n)=
{
πX (n/(k+ 1)) if (k+ 1) | n,
0 otherwise.

Therefore,

HS =
∑
m≥2

1
m

PS(Rm
S )=

∑
m≥2

1
m

∞∑
n=1

πS(n)Rmn
S =

∑
m≥2

1
m

∞∑
n=1

πX (n)R
(k+1)mn
S

=

∑
m≥2

1
m

∞∑
n=1

πX (n)Rmn
X =

∑
m≥2

1
m

PX (Rm
X )= HX .

Note that ν ′ = ν+ kε, ε′ = (k+ 1)ε, and ZS(u)= Z X (uk+1), and so

(1− u2)ε−ν fS(u)= (1− u2(k+1))ε−ν fX (uk+1),

(1− R2
S)
ε−νRS f ′S(RS)= (k+ 1)(1− R2

X )
ε−νRX f ′X (RX ).

Therefore,

(k+ 1)CS =
−(k+ 1)

(1− R2
S)
ε′−ν′RS f ′S(RS)

= CX ,

and so

BX = γ + log CX − HX = γ + log CS − HS + log(k+ 1)= BS + log(k+ 1).
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