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BAOHUA XIE, JIEYAN WANG AND YUEPING JIANG

In this paper, we will describe a method to obtain the generators system
of Gauss–Picard modular group PU(3, 1; Z[i]). More precisely, we will
show that PU(3, 1; Z[i]) can be generated by five given transformations:
two Heisenberg translations, two Heisenberg rotations and one involution.
Indeed, the same method works for the other higher-dimensional Euclidean
Picard modular groups.

1. Introduction

There are some natural algebraic generalizations of the classical modular group
PSL(2,Z). For example, a Bianchi group is a group of the form PSL(2,Od), where
d is a positive square-free integer. Here, PSL denotes the projective special linear
group and Od is the ring of integers in the imaginary quadratic number field Q(

√
−d).

These groups were first studied by Bianchi [1892] as a natural class of discrete
subgroups of PSL(2,C). A general method to determine finite presentation for
each PSL(2,Od) was developed by Swan [1971] based on the geometrical work
of Bianchi, while a separate purely algebraic method was given by Cohn [1968].
As another generalization of the modular group, the construction was generalized
by Picard [1883; 1884]. Suppose H is a Hermitian matrix of signature (2, 1) with
entries in Od , and let SU(H;Od) denote the subgroup of SU(H) consisting of those
matrices whose entries lie in Od . Picard studied the group PU(H;Od) acting on
the complex hyperbolic plane H2

C
. Now, Picard modular groups PU(H;Od) have

attracted a great deal of attention both for their intrinsic interest as discrete groups
and also for their applications in complex hyperbolic geometry.

One can view the modular group or a Bianchi group acting discontinuously
on hyperbolic spaces. Then Poincaré’s polyhedra theorem provides a geometric
method to obtain their generators from their fundamental polyhedra. But [Mostow
1980] told us that the explicit construction of fundamental domains for lattices in
complex hyperbolic spaces was particularly difficult. Until recently, the geometry
of SU(H;O3) had been studied by Falbel and Parker [2006], while the geometry of
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SU(H;O1) had been studied by Francsics and Lax [2005a; 2005b; 2006] and Falbel,
Francsics and Parker [Falbel et al. 2011b]. By applying similar ideas to those of
[Falbel and Parker 2006; Falbel et al. 2011b], Zhao [2012] obtained generators of
the Euclidean Picard groups PU(2, 1;Od) for d = 2, 7, 11.

There are some simple algorithms to obtain the generators of the modular group
or some Picard modular groups. For example, the continued fraction algorithm
may be applied to any element of the modular group PSL(2,Z). This shows that
S(z)=−1/z and T (z)= z+1 generate PSL(2,Z). This algorithm was extended to
PU(2, 1;O1) in [Falbel et al. 2011a], which provided a different system of generators
from those obtained via a fundamental domain in [Falbel et al. 2011b]. In [Wang
et al. 2011], the authors applied the continued fraction algorithm to PU(2, 1;O3)

and produced a different system of generators from that obtained in [Falbel and
Parker 2006].

There is an obvious generalization of Picard modular groups to higher complex
dimensions. We observe that very little is known about the geometry and algebraic
properties, e.g., explicit fundamental domain or generating system of the higher-
dimensional Picard modular groups PU(n, 1;Od). In [Xie et al. 2013], the continued
fraction algorithm was generalized to Picard modular groups in higher complex
dimensions. It contained the first generalization that we were aware of to a group
of 4× 4 matrices. However, it seems very difficult to extend the continued fraction
algorithm to other higher-dimensional Picard modular groups. Using a combination
of the ideas from [Falbel et al. 2011a; Xie et al. 2013] and [Falbel and Parker
2006; Zhao 2012], we will present a method to obtain the generating system of
the Gauss–Picard modular group PU(3, 1;Z[i]). We first get the generators of the
stabilizer of infinity of PU(3, 1;Z[i]) by applying a similar argument as in our
previous paper [Xie et al. 2013]. Then we will construct a subset in the boundary of
complex hyperbolic space which contains the fundamental domain for the stabilizers
of infinity in PU(3, 1;Z[i]). Finally, we will show the boundaries of some isometric
spheres that contain this subset. This method works for the other higher-dimensional
Euclidean Picard modular groups.

2. Preliminaries

2.1. The Siegel domain. We recall some basic notions of complex hyperbolic
geometry. For more details we refer the reader to [Goldman 1999; Parker 2010].

Let Cn,1 denote the vector space Cn+1 equipped with the Hermitian form of
signature (n, 1) given by the matrix

J =

0 0 1
0 In−1 0
1 0 0

.
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The Hermitian product of two vectors z and w is given by 〈z,w〉 = w∗ J z, where
w∗ denotes the Hermitian transpose of w.

We denote by V− and V0 the negative and null cones associated to the Hermitian
form, respectively. The complex hyperbolic n-space Hn

C
is the projectivization

of V−, and its boundary is the projectivization of V0. The model of Hn
C

associated
to the Hermitian form given above is often referred to as the Siegel model of Hn

C
.

We define the Siegel domain S of the complex hyperbolic n-space Hn
C

by
identifying points of S with their horospherical coordinates,

z = (ζ, v, u) ∈ Cn−1
×R×R+.

The boundary of S is given by H0 ∪ {q∞}, where q∞ is a distinguished point at
infinity and H0 = Cn−1

×R×{0}.

2.2. Heisenberg group. The boundary of a complex hyperbolic space is identi-
fied with the one-point compactification of the Heisenberg group. The (2n−1)-
dimensional Heisenberg group H2n−1 is Cn−1

×R with the group law

(ξ, ν) · (z, u)= (ξ + z, ν+ u+ 2=〈〈ξ, z〉〉).

Here 〈〈ξ, z〉〉 = z∗ξ is the standard positive definite Hermitian form on Cn−1. In
particular, we write ‖ξ‖2 = ξ∗ξ .

The Heisenberg group acts on itself by Heisenberg translation. For (τ, t)∈H2n−1,
this translation is

N(τ,t)(ξ, ν)= (τ + ξ, t + ν+ 2=〈〈τ, ξ〉〉).

The unitary group U (n−1) acts on the Heisenberg group by Heisenberg rotation.

2.3. Holomorphic isometries. Define a map S→ CPn by

ψ : (ξ, ν, u) 7→

 1
2(−‖ξ‖

2
− u+ iν)
ξ

1

, ψ : q∞ 7→


1
0
...

0

.
Then ψ maps the set of points z ∈S homeomorphically to the set of points z ∈CPn

with 〈z, z〉< 0, and maps the set of points in ∂S homeomorphically to the set of
points z ∈ CPn with 〈z, z〉 = 0. We write ψ(z)= z.

The Bergman metric on S is given by the distance formula

cosh2 ρ(z, w)
2
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

.

The holomorphic isometry group of S with respect to the Bergman metric is the
projective unitary group PU(n, 1), and it acts on CPn by matrix multiplication.
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2.4. Picard modular groups. Let Od be the ring of integers in the imaginary
quadratic number field Q(i

√
d), where d is a positive square-free integer. If

d ≡ 1, 2 mod 4, then Od = Z[
√

di], and if d ≡ 3 mod 4, then Od = Z[(1+
√

di)/2].
The subgroup of PU(n, 1) with entries in Od is called the Picard modular group
for Od and is written as PU(n, 1;Od). Obviously, if d = 1, then the ring Od can be
written as Z[i].

Remark 1. The matrices corresponding to the generators obtained in this paper
belong to the group U (3, 1;Z[i]). In relation to complex hyperbolic isometries,
the relevant group is PU(3, 1;Z[i]) = SU(3, 1;Z[i])/Z4. The center of SU(3, 1)
is isomorphic to Z4, the group of fourth roots of unity. By abuse of notation,
we will denote the Gauss–Picard modular group in three complex dimensions by
U (3, 1;Z[i]).

2.5. Heisenberg automorphism groups. The action of Heisenberg isometries ex-
tends to the Siegel domain, fixing q∞. Some examples of Heisenberg isometries
are as follows: for U ∈U (n− 1) and (τ, t) ∈H2n−1, the Heisenberg rotation and
Heisenberg translation correspond to the matrices

MU =

1 0 0
0 U 0
0 0 1

 and N(τ,t) =

1 −τ ∗ 1
2(−‖τ‖

2
+ i t)

0 In−1 τ

0 0 1


in SU(n, 1), respectively. The Heisenberg dilation by r fixing q∞ and 0 corresponds
to the matrix Ar ∈ SU(n, 1), where

Ar =

r 0 0
0 In−1 0
0 0 1/r

.
Finally, the Heisenberg inversion interchanging q∞ and 0 corresponds to the

matrix R ∈ SU(n, 1), where

R =

0 0 1
0 −In−1 0
1 0 0

.
2.6. Isometric spheres. Given an element G ∈ PU(3, 1) such that G(q∞) 6= q∞,
we define the isometric sphere of G to be the hypersurface

{z ∈ H3
C : |〈z, q∞〉| = |〈z,G−1(q∞)〉|}.
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For example, the isometric sphere of

R =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0


is

B0 =
{
(ζ1, ζ2, t, u) ∈S :

∣∣|ζ1|
2
+ |ζ2|

2
+ u+ i t

∣∣= 2
}

in horospherical coordinates.
All other isometric spheres are images of B0 by Heisenberg dilations, rotations

and translations. Thus, the isometric sphere with radius r and center (ζ 0
1 , ζ

0
2 , t0, 0)

is given by{
(ζ1, ζ2, t, u) :

∣∣|ζ1− ζ
0
1 |

2
+ |ζ2− ζ

0
2 |

2
+ u+ i t − i t0

+ 2i=(ζ1ζ
0
1 + ζ2ζ

0
2 )
∣∣= r2}.

If G has the matrix form 
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

,
then G(q∞) 6= q∞ if and only if a41 6= 0. The isometric sphere of G has radius
r =
√

2/|a41| and center G−1(q∞), which in horospherical coordinates is

(ζ 0
1 , ζ

0
2 , t0, 0)= (a42/a41, a43/a41, 2=(a44/a41), 0).

3. The generators of the stabilizer

Let 0∞ be the stabilizer subgroup of q∞ in PU(n, 1). That is,

0∞ ≡ {g ∈ PU(n, 1) : g(q∞)= q∞}.

We recall from [Falbel et al. 2011a; Francsics and Lax 2005a; 2005b; Xie et al.
2013] that the Langlands decomposition can be used to parametrize a transformation
in the stabilizer subgroup of q∞.

Lemma 2 (Langlands decomposition). Any element P ∈ 0∞ can be decomposed
as a product of a Heisenberg translation, dilation, and a rotation:

P = N(τ,t)Ar MU =

r −τ ∗U (−‖τ‖2+ i t)/2r
0 U τ/r
0 0 1/r

.
The parameters satisfy the corresponding conditions. That is, U ∈U (n−1), r ∈R+

and (τ, t) ∈H2n−1.
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First, we describe the Heisenberg rotations in the Gauss–Picard modular group
U (3, 1;Z[i]). Let U (2;Z[i]) be the unitary group U (2) over the ring Z[i]. Then
we have the following result.

Lemma 3. U (2;Z[i]) can be generated by the two unitary matrices

U1 =

(
0 1
1 0

)
and U2 =

(
i 0
0 1

)
.

Remark 4. A similar lemma was proved for U (2;Z[(1+
√
−3)/2]) in [Xie et al.

2013].

Next, we characterize the elements of the stabilizer subgroup 0∞ of infinity in the
Picard modular group U (3, 1;Z[i]). We denote this stabilizer by 0∞(3, 1;Z[i]).

Lemma 5. An element P ∈ U (3, 1;Z[i]) lies in 0∞(3, 1;Z[i]) if and only if the
parameters in the Langlands decomposition of P satisfy the conditions

r = 1, t ∈ 2Z, τ = (τ1, τ2)
T
∈ Z[i]2, U ∈U (2;Z[i]), ‖τ‖ ∈ 2Z.

Proof. The proof of this lemma follows from the Langlands decomposition form of
P ∈ 0∞(3, 1;Z[i]). �

We are now in a position to determine the generators of the stabilizer subgroup
of q∞.

Proposition 6. Let 0∞(3, 1;Z[i]) be stated as above. Then 0∞(3, 1;Z[i]) is gen-
erated by the Heisenberg translations N((1,1)T ,0), N((0,0)T ,2) and the Heisenberg
rotations MUi (i = 1, 2).

Proof. Our proof starts with the observation that there is no dilation component of
P ∈ 0∞(3, 1;Z[i]) in its Langlands decomposition. That is, P must have the form

P = N(τ,t)MU =

1 −τ ∗ (−||τ ||2+ i t)/2
0 I2 τ

0 0 1

1 0 0
0 U 0
0 0 1

.
Since the unitary matrix U lies in U (2;Z[i]), the rotation component of P in the
Langlands decomposition is generated by MUi (i = 1, 2) by Lemma 3.

What is left is to consider the Heisenberg translation part N(τ,t) of P . Let

τ = (m1+ n1i,m2+ n2i)T ,

where m1, n1,m2, n2 ∈ Z. Since |τ |2 = m2
1 + n2

1 +m2
2 + n2

2 ∈ 2Z, there are two
cases:

(1) m2
1+ n2

1 ∈ 2Z and m2
2+ n2

2 ∈ 2Z;

(2) m2
1+ n2

1 ∈ 2Z+ 1 and m2
2+ n2

2 ∈ 2Z+ 1.
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We first consider the case (1). We can write τ as

τ =
(
k1(1+ i)+ l1(1− i), k2(1+ i)+ l2(1− i)

)
,

where k1, l1, k2, l2 ∈ Z. N(τ,t) splits as

N(τ,t) = N((0,0)T ,t) ◦ N(τ,0).

Since t = 2k ∈ 2Z, N((0,0)T ,t) = N k
((0,0)T ,2). We also have

N(τ,0)=N k1
((1+i,0)T ,0)◦N

l1
((i−1,0)T ,0)◦N

2k1l1
((0,0)T ,2)◦N

k2
((0,1+i)T ,0)◦N

l2
((0,1+i)T ,0)◦N

−2k2l2
((0,0)T ,2).

We observe that

N((1+i,0)T ,0) = N((1,1)T ,0) ◦ N((i,−1)T ,0) ◦ N((0,0)T ,2),

N((i−1,0)T ,0) = N((i,1)T ,0) ◦ N−1
((1,1)T ,0) ◦ N−1

((0,0)T ,2),

N((0,1+i)T ,0) = N((1,1)T ,0) ◦ N((−1,i)T ,0) ◦ N((0,0)T ,2),

N((0,i−1)T ,0) = N((1,i)T ,0) ◦ N−1
((1,1)T ,0) ◦ N−1

((0,0)T ,2).

It is easy to see that

N((i,1)T ,0) = MU2 N((1,1)T ,0)M
−1
U2
,

N((i,−1)T ,0) = MU1 M2
U2

MU1 MU2 N((1,1)T ,0)M
3
U2
(MU1 MU2 MU1)

2,

N((−1,i)T ,0) = M2
U2

MU1 MU2 MU1 N((1,1)T ,0)M
2
U2
(MU1 MU2 MU1)

3,

N((1,i)T ,0) = MU1 MU2 MU1 N((1,1)T ,0)(MU1 MU2 MU1)
3.

In case (2), similar considerations apply to the translation N(τ,0) ◦ N((1,1)T ,0),
where N(τ,0) belongs to case (1). �

4. Fundamental domain for the stabilizer in PU(2, 1; Z[i])

In [Falbel et al. 2011b], the authors described a method to find the fundamental
domain for the stabilizer of q∞ in the Gauss–Picard modular group PU(2, 1;Z[i])
in two complex dimensions. We review it now.

Let 0 be PU(2, 1;Z[i]) and 0∞ be the stabilizer of q∞. Every element of
0∞ is upper triangular, and its diagonal entries are units in Z[i]. Recall that the
units of Z[i] are ±1,±i . Therefore 0∞ contains no dilations and fits into the
exact sequence

0−→ Z−→ 0∞
5∗
−→1−→ 1,

where 1 ⊂ Isom Z[i] is of index 2 and 5 is the vertical projection defined by
5 : (z, t) ∈H 7→ z ∈ C.
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0 1

i

Figure 1. A fundamental domain for the index two subgroup 1⊂
Isom Z[i] is a triangle M with vertices 0, 1, i .

As the first step toward the construction of a fundamental domain for the action
of 0∞ on H, one should construct a fundamental domain in C of 1 ⊆ Isom Z[i].
From the generators of 1, one finds that a fundamental domain for 1⊆ Isom Z[i]
is the triangle M with vertices 0, 1, i ; see Figure 1.

In order to produce a fundamental domain for 0∞, we look at all the preimages
of the triangle (that is, a fundamental domain of 5∗(0∞)) under the vertical projec-
tion 5 and we intersect this with a fundamental domain for ker(5∗). The inverse
image of the triangle under 5 is an infinite prism. The kernel of 5∗ is the infinite
cyclic group generated by T , the vertical translation by (0, 2). Hence, a fundamental
domain for 0∞ is the prism in H with vertices (0,±1), (1,±1), (i,±1).

5. Statement of the results

In this section, we recall the geometric method used in [Falbel and Parker 2006;
Falbel et al. 2011b] to determine the generators of the Euclidean Picard groups, and
then state our method and results.

The geometric method is based on the special feature that the Euclidean Picard
modular orbifold has only one cusp for d = 1, 2, 3, 7, 11. The basic idea of the
proof can be described easily. Analogously to Theorem 3.5 of [Falbel and Parker
2006], it can be proved that 〈0∞, R〉 has only one cusp. The fact that PU(2, 1;Od)

has the same cusp and the stabilizer of infinity as the group generated by 〈0∞, R〉
shows that they are the same. The key step is to find a union of isometric spheres so
that a fundamental domain for 0∞ is contained in the intersection of their exteriors
and a fundamental domain for the stabilizer, which implies that the group 〈0∞, R〉
has only one cusp. In other words, one should show that the union of the boundaries
of these isometric spheres in the Heisenberg group contains a fundamental domain
for the stabilizer of infinity.

We will prove our result by using a similar idea. The main observation is that
there is no need to know the exact fundamental domain for the stabilizer of infinity.
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We will construct a set in the Heisenberg group which contains a fundamental
set for the stabilizer of infinity as a subset. Then we show that the union of the
boundaries of some isometric spheres in the Heisenberg group covers this set. This
also show that the group 〈0∞, R〉 has only one cusp.

More precisely, let 6 be the set

{(ξ1, ξ2, t) : ξi ∈M,−1≤ t ≤ 1}.

Here M is the fundamental domain of 1⊂ Isom Z[i].
Note that 6 is not a fundamental domain for the stabilizer of infinity because

this set is preserved by some Heisenberg rotations.

Proposition 7. 6 contains a fundamental domain for the stabilizer of infinity.

Proof. The restriction of the action of the stabilizer of infinity on each copy of C

has the same fundamental domain M as 1 ⊂ Isom Z[i]. Then 6 is the preimage
of M× M under vertical projection intersected with a fundamental domain for the
vertical translation by ((0, 0)T , 2). It is clear that 6 is preserved by the Heisenberg
rotations MU1 . Hence, a fundamental domain for 0∞ lies inside 6. �

In next section we will prove our main theorem. Our main step is to show that 6
lies inside the boundaries of some isometric spheres in the Heisenberg group. It is
obvious that the geodesic cone from q∞ over 6 contains a fundamental domain for
the Gauss–Picard modular group U (3, 1;Z[i]).

Theorem 8. The Picard modular group U (3, 1;Z[i]) is generated by the Heisen-
berg translations

N((1,1)T ,0) =


1 −1 −1 −1
0 1 0 1
0 0 1 1
0 0 0 1

, N((0,0)T ,2) =


1 0 0 i
0 1 0 0
0 0 1 0
0 0 0 1

,
the Heisenberg rotations

MU1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, MU2 =


1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

,
and the involution

R =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

.



206 BAOHUA XIE, JIEYAN WANG AND YUEPING JIANG

0 1
2 1

i
2

i+1
2

i

S1

S2 S3

Figure 2. The decomposition of the fundamental domain M for
1⊂ Isom Z[i] into three parts.

6. Proof of Theorem 8

In this section we will prove that the generators of Picard modular groups consist
of the generators of the stabilizer and the involution.

Recall that the Cygan sphere B0 is the isometric sphere of R. The boundary S0

of B0 is called the Heisenberg sphere in the Heisenberg group. S0 is defined by

S0 =
{∣∣|ξ1|

2
+ |ξ2|

2
+ ti

∣∣= 2
}
.

Indeed, we only need to consider the boundaries of isometric spheres in the
Heisenberg group because two isometric spheres have a nonempty interior intersec-
tion if and only if the boundaries have a nonempty interior intersection.

It is not hard to see that parts of 6 lie outside S0. Therefore we need to find
more isometric spheres whose boundaries together with S0 contain the set 6.

Note that 6 has the form

6 = {(ξ1, ξ2, t) : ξ1 ∈M, ξ2 ∈M,−1≤ t ≤ 1}.

First, we decompose M into three parts. We write M= S1 ∪ S2 ∪ S3, where S1 is a
triangle with vertices i, i

2 ,
1
2(1+ i), S2 is a square with vertices 0, i

2 ,
1
2 ,

1
2(1+ i),

and S3 is a triangle with vertices 0, 1, 1
2(1+ i); see Figure 2.

Therefore, 6 will be decomposed into nine subsets:

• 61 = {(ξ1, ξ2, t) : ξ1 ∈ S1, ξ2 ∈ S1,−1≤ t ≤ 1},

• 62 = {(ξ1, ξ2, t) : ξ1 ∈ S1, ξ2 ∈ S2,−1≤ t ≤ 1},

• 63 = {(ξ1, ξ2, t) : ξ1 ∈ S1, ξ2 ∈ S3,−1≤ t ≤ 1},

• 64 = {(ξ1, ξ2, t) : ξ1 ∈ S2, ξ2 ∈ S1,−1≤ t ≤ 1},

• 65 = {(ξ1, ξ2, t) : ξ1 ∈ S2, ξ2 ∈ S2,−1≤ t ≤ 1},

• 66 = {(ξ1, ξ2, t) : ξ1 ∈ S2, ξ2 ∈ S3,−1≤ t ≤ 1},
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• 67 = {(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1,−1≤ t ≤ 1},

• 68 = {(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S2,−1≤ t ≤ 1},

• 69 = {(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S3,−1≤ t ≤ 1}.

We first prove that S0 covers the subsets 62, 64, 65, 66, 68.
If (ξ1, ξ2, t) ∈65, then

|ξ1|
2
+ |ξ2|

2
≤
(√2

2

)2
+
(√2

2

)2
= 1,

so ∣∣|ξ1|
2
+ |ξ2|

2
+ i t

∣∣≤√1+ 1=
√

2< 2.

Hence 65 ⊂ S0.
If (ξ1, ξ2, t) ∈62, then

|ξ1|
2
+ |ξ2|

2
≤ 1+

√
2

2 =
3
2 ,

so ∣∣|ξ1|
2
+ |ξ2|

2
+ i t

∣∣≤√( 3
2

)2
+ 1=

√
13
4 < 2.

Therefore 62 ⊂ S0.
Similarly, we can show that 64, 66, 68 are included in S0.
In order to prove this theorem, it is sufficient to prove that the remaining four

subsets are covered by some Heisenberg spheres.
For the set 69, we consider the map N((1,1)T ,0)RN−1

((1,1)T ,0). The isometric
sphere B1 of this map is the Cygan sphere centered at the point ((1, 1)T , 0, 0)
(in horospherical coordinates) with radius 1. The boundary of B1 is a Heisenberg
sphere given by

S1 =
{∣∣|ξ1− 1|2+ |ξ2− 1|2+ i(t + 2=(ξ1+ ξ2))

∣∣= 2
}
.

If (ξ1, ξ2, t) ∈69, then ξ1 ∈ S3, ξ2 ∈ S3,−1≤ t ≤ 1. We get that

0≤ =ξi ≤
1
2 , |ξi − 1|2 ≤ 1

2 ,

so
−1≤ t + 2=(ξ1+ ξ2)≤ 3.

Let T = N((0,0)T ,2). It is easy to see that the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S3,−1≤ t + 2=(ξ1+ ξ2)≤ 1}

lies inside S1 and the set

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S3, 1≤ t + 2=(ξ1+ ξ2)≤ 3}



208 BAOHUA XIE, JIEYAN WANG AND YUEPING JIANG

lies inside

T−1(S1)=
{∣∣|ξ1− 1|2+ |ξ2− 1|2+ i(t − 2+ 2=(ξ1+ ξ2))

∣∣= 2
}
.

Therefore, S1 and T−1(S1) cover the set 69.
For the set 67, we consider the map N((1,i)T ,0)RN−1

((1,i)T ,0). The isometric
sphere B2 of this map is the Cygan sphere centered at the point ((1, i)T , 0, 0).
The boundary of B2 is given by

S2 =
{∣∣|ξ1− 1|2+ |ξ2− i |2+ i(t + 2=(ξ1)+ 2<(ξ2))

∣∣= 2
}
.

If (ξ1, ξ2, t) ∈67, then ξ1 ∈ S3, ξ2 ∈ S1,−1≤ t ≤ 1. We get that

0≤ =ξ1 ≤
1
2 , 0≤<ξ2 ≤

1
2 , |ξ1− 1|2 ≤ 1

2 , |ξ2− i |2 ≤ 1
2 ,

so
−2≤ t + 2=(ξ1+ ξ2)≤ 2.

If −1≤ t + 2=(ξ1+ ξ2)≤ 1, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1,−1≤ t + 2=(ξ1+ ξ2)≤ 1}

lies inside S2.
If −2≤ t + 2=(ξ1+ ξ2)≤−1, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1,−2≤ t + 2=(ξ1+ ξ2)≤−1}

lies inside T (S2).
If 1≤ t + 2=(ξ1+ ξ2)≤ 2, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1, 1≤ t + 2=(ξ1+ ξ2)≤ 2}

lies inside T−1(S2).
For the set 61, we consider the map N((i,i)T ,0)RN−1

((i,i)T ,0). The isometric sphere
B3 of this map is the Cygan sphere centered at the point ((i, i)T , 0, 0). The boundary
of B3 is a Heisenberg sphere given by

S3 =
{∣∣|ξ1− 1|2+ |ξ2− 1|2+ i(t + 2=(ξ1+ ξ2))

∣∣= 2
}
.

If (ξ1, ξ2, t) ∈61, then ξ1 ∈ S1, ξ2 ∈ S1,−1≤ t ≤ 1. We get that

0≤<ξi ≤
1
2 , |ξi − 1|2 ≤ 1

2 ,

so
−3≤ t + 2=(ξ1+ ξ2)≤ 1.

As before, we can see that 61 is covered by the Heisenberg spheres corresponding
to the maps

N((i,i)T ,0)RN−1
((i,i)T ,0) and T N((i,i)T ,0)RN−1

((i,i)T ,0)T
−1.
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It remains to consider the set 63. We consider the map N((i,1)T ,0)RN−1
((i,1)T ,0).

The isometric sphere B4 of this map is the Cygan sphere centered at the point
((i, 1)T , 0, 0). The boundary of B4 is a Heisenberg sphere given by

S4 =
{∣∣|ξ1− i |2+ |ξ2− 1|2+ i(t − 2<(ξ1)+ 2=(ξ2))

∣∣= 2
}
.

If (ξ1, ξ2, t) ∈61, then ξ1 ∈ S1, ξ2 ∈ S3,−1≤ t ≤ 1. We get that

0≤<ξ1 ≤
1
2 , 0≤ =ξ1 ≤

1
2 , |ξ1− i |2 ≤ 1

2 , |ξ2− 1|2 ≤ 1
2 ,

so
−2≤ t − 2<(ξ1)+ 2=(ξ2)≤ 2.

If −1≤ t − 2<(ξ1)+ 2=(ξ2)≤ 1, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1,−1≤ t − 2<(ξ1)+ 2=(ξ2)≤ 1}

lies inside S4.
If −2≤ t − 2<(ξ1)+ 2=(ξ2)≤−1, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1,−2≤ t − 2<(ξ1)+ 2=(ξ2)≤−1}

lies inside T (S4).
If 1≤ t − 2<(ξ1)+ 2=(ξ2)≤ 2, then the subset

{(ξ1, ξ2, t) : ξ1 ∈ S3, ξ2 ∈ S1, 1≤ t − 2<(ξ1)+ 2=(ξ2)≤ 2}

lies inside T−1(S4). Thus 63 is covered by the Heisenberg spheres corresponding
to the maps

N((i,1)T ,0)RN−1
((i,1)T ,0), T N((i,1)T ,0)RN−1

((i,1)T ,0)T
−1,

and
T−1 N((i,1)T ,0)RN−1

((i,1)T ,0)T .

Remark 9. This method works for the other higher-dimensional Euclidean Picard
modular groups PU(n, 1;Od) for d = 2, 7, 11 and n ≥ 3. But the calculation will be
more complicated. For example, the set 6 will be decomposed into smaller parts.
Then one needs more Heisenberg spheres to cover the set 6 which contains the
fundamental set.
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