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Let X be a nonsingular projective variety in CPn−1. Then the cone over X in
Cn is an affine variety V with an isolated singularity at the origin. It is a very
natural and important question to ask when an affine variety with an iso-
lated singularity at the origin is a cone over nonsingular projective variety.

This problem is very hard in general. In this paper we shall treat the
hypersurface case. Given a function f with an isolated singularity at the
origin, we can ask whether f is a weighted homogeneous polynomial or a
homogeneous polynomial after a biholomorphic change of coordinates. The
former question was answered in a celebrated 1971 paper by Saito. How-
ever, the latter question had remained open for 40 years until Xu and Yau
solved it for f with three variables. Recently, Yau and Zuo solved it for f
with up to six variables. However, the methods they used are hard to gener-
alize. In this paper, we solve the latter question for general n completely; i.e.,
we show that f is a homogeneous polynomial after a biholomorphic change
of coordinates if and only if µ= τ = (ν− 1)n, where µ, τ and ν are the Mil-
nor number, Tjurina number and multiplicity of the singularity respectively.
We also prove that there are at most µ1/n+ 1 multiplicities within the same
topological type of the isolated hypersurface singularity, while the famous
Zariski multiplicity problem asserts that there is only one multiplicity.

1. Introduction

Let w = (w1, . . . , wn) be an n-tuple of positive rational numbers. A polynomial
f (z1, . . . , zn) is said to be a weighted homogeneous polynomial with weight w
if each monomial αza1

1 za2
2 · · · z

an
n of f satisfies a1w1+ · · · + anwn = 1. It has an

isolated critical point at 0 ∈ Cn if grad f = (∂ f/∂z1, . . . , ∂ f/∂zn) is zero at 0 but
grad f (z) 6= 0 for all z in a neighborhood of 0.
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Recall that a polynomial f (z1, . . . , zn) is called quasihomogeneous if f is in
the Jacobian ideal of f , i.e., f ∈ (∂ f/∂z1, . . . , ∂ f/∂zn).

By a theorem of Saito (see Theorem 2.7), if f is quasihomogeneous with an
isolated critical point at 0, then after a biholomorphic change of coordinates, f
becomes a weighted homogeneous polynomial.

Let f : (Cn, 0)→ (C, 0) be the germ of a complex analytic function with an
isolated critical point at the origin. Let V = {z ∈ Cn

: f (z) = 0}. It is a natural
question to ask when V is defined by a weighted homogeneous polynomial up to
biholomorphic change of coordinates. Saito [1971] solved this question. He gave a
necessary and sufficient condition for V to be defined by a weighted homogeneous
polynomial. It is a natural and important question to characterize homogeneous
polynomial with an isolated critical point at the origin. This question has remained
open for 40 years. In fact it is the first important case of the following interesting
problem. Let X be a nonsingular projective variety in CPn−1. Then the cone over
X in Cn is an affine variety V with an isolated singularity at the origin. It is then
natural to ask when an affine variety with an isolated singularity at the origin is a
cone over nonsingular projective variety.

For a two-dimensional isolated hypersurface singularity V , Xu and Yau [1992;
1993] found a coordinate-free characterization when V is defined by a homogeneous
polynomial. Recently, necessary and sufficient conditions were given for three-
dimensional isolated hypersurface singularities with pg ≥ 0 [Lin and Yau 2004;
Lin et al. 2006a; Xu and Yau 1996] and four-dimensional isolated hypersurface
singularities with pg > 0 [Chen et al. 2011], where pg is the geometric genus of
the singularity. Based on the classification of weighted homogeneous singularities,
Yau and Zuo [2012] solved the problem for f with up to six variables. However,
it is quite difficult to generalize their methods to characterize the homogeneous
polynomials for general n. Ten years ago, Yau formulated the Yau homogeneous
characterization conjecture: (1) Let µ and ν be the Milnor number and multiplicity
of (V, 0) respectively. Then µ ≥ (ν − 1)n , and equality holds if and only if f
is a semihomogeneous function (i.e., f = fν + g, where fν is a homogeneous
polynomial of degree ν defining an isolated singularity at the origin and g consists
of terms of degree at least ν + 1) after a biholomorphic change of coordinates.
(2) Moreover, if f is a weighted homogeneous function, then µ= (ν− 1)n if and
only if f is a homogeneous polynomial after a biholomorphic change of coordinates.
In this paper we verify the Yau homogeneous characterization conjecture affirma-
tively. As a result, we have solved the characterization problem of homogeneous
polynomials with an isolated critical point at the origin, i.e., we have shown that f
is a homogeneous polynomial after a biholomorphic change of coordinates if and
only if µ= τ = (ν− 1)n .
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Recall that the multiplicity of the singularity V is defined to be the order of the
lowest nonvanishing term in the power series expansion of f at 0. The Milnor
number µ and the Tjurina number τ of the singularity (V, 0) are defined by

µ= dim C{z1, z2, . . . , zn}/( fz1, . . . , fzn ),

τ = dim C{z1, z2, . . . , zn}/( f, fz1, . . . , fzn ).

They are numerical invariants of (V, 0).
Let π : (M, A)→ (V, 0) be a resolution of singularity of dimension n with

exceptional set A = π−1(0). The geometric genus pg of the singularity (V, 0) is
the dimension of H n−1(M,O) and is independent of the resolution M .

Using pg, µ and ν, Yau made another conjecture in 1995 (see [Lin and Yau
2004; Chen et al. 2011]) describing when a weighted homogeneous singularity is
a homogeneous singularity. Let f : (Cn, 0)→ (C, 0) be a weighted homogeneous
polynomial with an isolated singularity at the origin. Let µ, pg and ν be the Milnor
number, geometric genus and multiplicity of the singularity V ={z : f (z)= 0}; then

µ− p(ν)≥ n!pg,

where p(ν) = (ν − 1)n − ν(ν − 1) · · · (ν − n+ 1), and equality holds if and only
if f is a homogeneous polynomial after a biholomorphic change of coordinates.

In fact, we shall prove in this paper that if pg = 0, then the Yau homogeneous
characterization conjecture implies the 1995 Yau conjecture.

These conjectures are sharp estimates and have some important applications in
geometry. However, they were proved only for low-dimensional singularities. For
the Yau homogeneous characterization conjecture, Lin, Wu, Yau and Luk [Lin et al.
2006b] proved the following two theorems.

Theorem 1.1. Let f : (C2, 0)→ (C, 0) be the germ of a holomorphic function
defining an isolated plane curve singularity V = {z ∈ C2

: f (z)= 0} at the origin.
Let µ and ν be the Milnor number and multiplicity of (V, 0), respectively. Then

(1-1) µ≥ (ν− 1)2.

Furthermore, if V has at most two irreducible branches at the origin, or if f is
a quasihomogeneous function, then equality holds in (1-1) if and only if f is a
homogeneous polynomial (after a biholomorphic change of coordinates).

Theorem 1.2. Let f : (Cn, 0)→ (C, 0) be the germ of a holomorphic function
defining an isolated hypersurface singularity V = {z ∈ Cn

: f (z) = 0} at the
origin. Let µ, ν and τ = dim C{z1, . . . , zn}/( f, ∂ f/∂z1, . . . , ∂ f/∂zn) be the Milnor
number, multiplicity and Tjurina number of (V, 0), respectively. Suppose µ = τ
and n is either 3 or 4. Then

(1-2) µ≥ (ν− 1)n,
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and equality holds in (1-2) if and only if f is a homogeneous polynomial (after a
biholomorphic change of coordinates).

For the 1995 Yau conjecture, Lin, Tu and Yau [Lin and Yau 2004; Lin et al.
2006a] have the following theorem:

Theorem 1.3. Let (V, 0) be a three-dimensional isolated hypersurface singularity
defined by a weighted homogeneous polynomial f (x, y, z, w) = 0. Let µ, ν and
pg be the Milnor number, multiplicity and geometric genus of the singularity,
respectively. Then

(1-3) µ− (2ν3
− 5ν2

+ 2ν+ 1)≥ 4!pg

and equality holds in (1-3) if and only if f is a homogeneous polynomial.

Remark. The above theorem is proved in [Lin and Yau 2004] with pg > 0. For
pg = 0, the theorem is proved in [Lin et al. 2006a].

An immediate corollary of Theorem 1.3 is the following:

Corollary 1.4 [Lin et al. 2006a]. Let (V, 0) be a three-dimensional isolated hyper-
surface singularity defined by a polynomial f (x, y, z, w)= 0. Let µ, ν, pg and τ
be the Milnor number, multiplicity, geometric genus and Tjurina number of the sin-
gularity, respectively. Then f is a homogeneous polynomial after a biholomorphic
change of coordinates if and only if µ= τ and µ− (2ν3

− 5ν2
+ 2ν+ 1)= 4!pg.

Chen, Lin, Yau and Zuo generalized the above theorem to four-dimensional
isolated hypersurface singularities with the additional assumption pg > 0.

Theorem 1.5 [Chen et al. 2011]. Let (V, 0) be a four-dimensional isolated hypersur-
face singularity defined by a weighted homogeneous polynomial f (x, y, z, w, t)=0.
Let µ, ν and pg be the Milnor number, multiplicity and geometric genus of the
singularity, respectively. If pg > 0 then

(1-4) µ− [(ν− 1)5+ ν(ν− 1)(ν− 2)(ν− 3)(ν− 4)] ≥ 5!pg,

and equality holds in (1-4) if and only if f is a homogeneous polynomial after a
biholomorphic change of coordinates.

Corollary 1.6 [Chen et al. 2011]. Let (V, 0) be a four-dimensional isolated hyper-
surface singularity defined by a polynomial f (x, y, z, w, t)= 0. Let µ, ν, pg and
τ be the Milnor number, multiplicity, geometric genus and Tjurina number of the
singularity, respectively. Moreover, if pg > 0 then f is a homogeneous polynomial
after a biholomorphic change of coordinates if and only if µ= τ and

µ− [(ν− 1)5+ ν(ν− 1)(ν− 2)(ν− 3)(ν− 4)] = 5!pg.

Yau and Zuo [2012] proved the following theorem:
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Theorem 1.7. Let f : (Ck, 0)→ (C, 0), where k is either 5 or 6, be a polynomial
with an isolated singularity at the origin. Let µ, ν and τ be the Milnor number,
multiplicity and Tjurina number of the singularity V = {z : f (z)= 0} respectively.
Then f is a homogeneous polynomial after a biholomorphic change of coordinates
if and only if µ= τ = (ν− 1)k .

The purpose of this paper is to prove the following results:

Theorem A. Let f : (Cn, 0)→ (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ and ν be the Milnor number and
multiplicity of the singularity V = {z : f (z)= 0} respectively. Then

(1-5) µ≥ (ν− 1)n,

and equality holds in (1-5) if and only if f is a homogeneous polynomial after a
biholomorphic change of coordinates.

Corollary B. Let f : (Cn, 0)→ (C, 0) be a polynomial with an isolated singularity
at the origin. Let µ, ν and τ be the Milnor number, multiplicity and Tjurina number
of the singularity V = {z : f (z)= 0} respectively. Then f is a homogeneous polyno-
mial after a biholomorphic change of coordinates if and only if µ= τ = (ν− 1)n .

Proposition 3.1 and Theorem A answer the Yau homogeneous characterization
conjecture affirmatively, and Corollary B gives a complete characterization of
isolated homogeneous hypersurface singularities. Let (V, 0) and (W, 0) be two
isolated hypersurface singularities in Cn . We say that (V, 0) and (W, 0) have the
same topological type if (Cn, V, 0) is homeomorphically equivalent to (Cn,W, 0).
The famous Zariski multiplicity question asks whether (V, 0) and (W, 0) have the
same multiplicity if they have the same topological type, i.e., whether there is only
one multiplicity within the same topological type. For two-dimensional isolated
quasihomogeneous singularities, the Zariski multiplicity question was solved [Yau
1988; Xu and Yau 1989]. Proposition 3.1 says that there are at most µ1/n

+ 1
multiplicities within the same topological type. On the other hand, Theorem C
below confirms that the 1995 Yau conjecture is true for the case of pg = 0.

Theorem C. Let f : (Cn, 0)→ (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ, pg and ν be the Milnor number,
geometric genus and multiplicity of the singularity V ={z : f (z)=0}. If pg=0, then

µ− p(ν)≥ n!pg,

where p(ν)= (ν−1)n−ν(ν−1) · · · (ν−n+1) (= 0), and equality holds if and only
if f is a homogeneous polynomial after a biholomorphic change of coordinates.

In Section 2, we recall the material which is necessary to prove the main theorems.
In Section 3, we prove the main theorems.
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2. Preliminaries

In this section, we recall some known results which are needed to prove the main
theorems. Let f (z1, . . . , zn) be a germ of an analytic function at the origin such
that f (0)= 0. Suppose f has an isolated critical point at the origin, and suppose
f can be developed in a convergent Taylor series f (z1, . . . , zn)=

∑
aλzλ, where

zλ = zλ1
1 · · · z

λn
n . Recall that the Newton boundary 0( f ) is the union of compact

faces of 0+( f ), where 0+( f ) is the convex hull of the union of subsets {λ+Rn
+
} for

λ such that aλ 6= 0. Let 0−( f ), the Newton polyhedron of f , be the cone over 0( f )
with cone point at 0. For any closed face 1 of 0( f ), we associate the polynomial
f1(z)=

∑
λ∈1 aλzλ. We say that f is nondegenerate if f1 has no critical point in

(C∗)n for any 1 ∈ 0( f ), where C∗ = C−{0}. We say that a point p of the integral
lattice Zn in Rn is positive if all coordinates of p are positive.

Theorem 2.1 [Merle and Teissier 1980]. Let (V, 0) be an isolated hypersurface
singularity defined by a nondegenerate holomorphic function f : (Cn, 0)→ (C, 0).
Then the geometric genus pg = #{p ∈ Zn

∩0−( f ) : p is positive}.

Recall that a polynomial f (z1, . . . , zn) is a weighted homogeneous polynomial of
type (w1, . . . , wn), where w1, . . . , wn are fixed positive rational numbers, if it can
be expressed as a linear combination of monomials zi1

1 · · · z
in
n for which i1w1+· · ·+

inwn = 1. As a consequence of Theorem 2.1, for an isolated singularity defined by
a weighted homogeneous polynomial, computing the geometric genus is equivalent
to counting the number of positive integral points in the tetrahedron defined by
x1w1+ · · ·+ xnwn ≤ 1, x1 ≥ 0, . . . , xn ≥ 0. We also need the following result:

Theorem 2.2 [Milnor and Orlik 1970]. Let f (z1, . . . , zn) be a weighted homoge-
neous polynomial of type (w1, . . . , wn) with an isolated singularity at the origin.
Then the Milnor number µ is equal to (1/w1− 1) · · · (1/wn − 1).

Yau [1977] gave a lower bound for pg of a hypersurface singularity.

Theorem 2.3 [Yau 1977]. Let

f (z1, . . . , zn−1, zn)= zm
n + a1(z1, . . . , zn−1)zm−1

n + · · ·+ am(z1, . . . , zn−1)

be holomorphic near (0, . . . , 0). Let di be the order of the zero of ai (z1, . . . , zn−1)

at (0, . . . , 0), with di ≥ i . Let d =min1≤i≤m(di/ i). Suppose that

V = {(z1, . . . , zn) : f (z1, . . . , zn)= 0},

defined in a suitably small polydisc, has p = (0, . . . , 0) as its only singularity. Let
π : M→ V be a resolution of V . Then dim H n−2(M,O)> (m− 1)d − (n− 1).

Remark. Here, the singularity is (n− 1)-dimensional, so dim H n−2(M,O) = pg.
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Let f ∈ C{z1, . . . , zn} define an isolated singularity at the origin. Let w =
(w1, . . . , wn) be a weight on the coordinates (z1, . . . , zn) for positive integers wi ,
i = 1, . . . , n. We have the weighted Taylor expansion f = fρ + fρ+1+ · · · with
respect to w, where fρ 6= 0 and fk is a weighted homogeneous polynomial of type
(w1, . . . , wn; k) for k ≥ ρ, i.e., fk is a linear combination of monomials zi1

1 · · · z
in
n

for which i1w1+ · · ·+ inwn = k.

Theorem 2.4 [Furuya and Tomari 2004]. Let f ∈ C{z1, . . . , zn} define an isolated
singularity at the origin. With the above situation, then:

(1) The following inequality holds:

µ( f )≥
(
ρ

w1
− 1
)
· · ·

(
ρ

wn
− 1
)
.

(2) Equality holds in (1) if and only if fρ defines an isolated singularity at the origin.

Here we recall that f is called a semiquasihomogeneous function if the initial
term fρ defines an isolated singularity at the origin.

Definition 2.1. Let f, g : (Cn, 0)→ (C, 0) be germs of holomorphic functions defin-
ing isolated hypersurface singularities V f = {z : f (z)= 0} and Vg = {z : g(z)= 0}.
Let φ : (Cn, 0)→ (Cn, 0) be the germ of a biholomorphic map.

(1) f is contact-equivalent to g if φ(V f )= Vg.

(2) f is right-equivalent to g if g = f ◦φ.

The Milnor number is an invariant under right-equivalence and the Tjurina
number is an invariant under contact equivalence. It is a nontrivial theorem that the
Milnor number is indeed an invariant under contact equivalence:

Theorem 2.5 [Greuel 1975]. Let K be an algebraically closed field of characteristic
zero and f, g ∈K{z1, z2, . . . , zn}. If f is contact-equivalent to g, then µ( f )=µ(g).

Theorem 2.6 [Shoshitaishvili 1976; Benson and Yau 1990]. If f and g are germs
of isolated weighted homogeneous singularities at the origin in Cn , then f and g
are right-equivalent if and only if f and g are contact-equivalent.

Theorem 2.7 [Saito 1971]. Let f : (Cn, 0)→ (C, 0) be the germ of a complex
analytic function with an isolated critical point at the origin.

(a) f is right-equivalent to a weighted homogeneous polynomial if and only if
µ= τ or

f ∈ Jf :=

(
∂ f
∂z1

, . . . ,
∂ f
∂zn

)
.
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(b) If f is weighted homogeneous with normalized weight system (w1, . . . , wn, 1)
with 0<w1 ≤ · · · ≤ wn < 1 and if f ∈m3

Cn,0, then the weight system is unique
and 0<w1 ≤ · · · ≤ wn <

1
2 .

(c) If f ∈ Jf , then f is right-equivalent to a weighted homogeneous polynomial
g(z1, . . . , zk)+ z2

k+1 + · · · + z2
n with g ∈ m3

Cn,0. Specifically, its normalized
weight system satisfies 0<w1 ≤ · · · ≤ wk <wk+1 = · · · = wn =

1
2 .

(d) If f and f̄ ∈OCn,0 are right-equivalent and weighted homogeneous with normal-
ized weight systems (w1, . . . ,wn,1) and (w1, . . . ,wn,1) withw1≤· · ·≤wn≤

1
2

and w1 ≤ · · · ≤ wn ≤
1
2 , then wi = wi .

3. Proof of the main theorems

The following statement is well known.

Proposition 3.1 [Teissier 1973]. Let f : (Cn, 0)→ (C, 0) be a holomorphic germ
defining an isolated hypersurface singularity V = {z : f (z)= 0} at the origin. Let
µ and ν be the Milnor number and multiplicity of (V, 0) respectively. Then

(3-1) µ≥ (ν− 1)n,

and equality holds in (3-1) if and only if f is a semihomogeneous function (i.e.,
f = fν + g, where fν is a nondegenerate homogeneous polynomial of degree ν
and g consists of terms of degree at least ν+ 1) after a biholomorphic change of
coordinates.

Proof. Let f (z1, . . . , zn) : (C
n, 0)→ (C, 0) be a holomorphic function with an

isolated singularity at the origin. Let µ and ν be the Milnor number and multiplicity
of the singularity V = {z : f (z) = 0}. By an analytic change of coordinates, one
can assume that the zn-axis is not contained in the tangent cones of V , so that
f (0, . . . , 0, zn) 6= 0. By the Weierstrass preparation theorem, near 0, the germ f
can be represented as a product f (z1, . . . , zn)= u(z1, . . . , zn)g(z1, . . . , zn), where
u(0, . . . , 0) 6= 0 and

g(z1, . . . , zn−1, zn)= zνn + a1(z1, . . . zn−1)zν−1
n + · · ·+ aν(z1, . . . , zn−1),

where ν is the multiplicity of f (z1, . . . , zn) and ai ∈ (z1, . . . , zn−1)
i for i =1, . . . , ν.

Therefore f (z1, . . . , zn) is contact-equivalent to g(z1, . . . , zn).
Let di be the order of the zero of ai (z1, . . . , zn−1) at (0, . . . , 0), with di ≥ i . Let

d = min1≤i≤ν(di/ i); then d ≥ 1. We define a new weight w on the coordinate
system: w(zn)= d , w(zi )= 1 for 1≤ i ≤ n− 1. With respect to the new weights,
zνn has degree dν and ai (z1, . . . , zn−1)zν−i

n has degree at least d(ν − i) + di ≥

dν− di + di = dν. Thus the initial term of f (z1, . . . , zn) has degree ρ = dν. By
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Theorem 2.5, the Milnor number is an invariant under the contact equivalence. By
Theorem 2.4(1), we have

µ= µ(g)≥
(dν

d
− 1

)(dν
1
− 1

)
· · ·

(dν
1
− 1

)
= (ν− 1)(dν− 1)n−1

≥ (ν− 1)n.

Thus, we proved the inequality (3-1).
We need to show that equality in (3-1) holds if and only if f is a semihomoge-

neous function after a biholomorphic change of coordinates.

⇒: If µ = (ν − 1)n , then by the fact that µ ≥ (ν − 1)(dν − 1)n−1
≥ (ν − 1)n ,

we have d = 1, and by Theorem 2.4(2), gdν(z1, . . . , zn) = gν(z1, . . . , zn) is a
homogeneous polynomial of degree ν defining an isolated singularity. Hence
f (z1, . . . , zn) is contact-equivalent to a semihomogeneous singularity g; i.e., f is
a semihomogeneous function after a biholomorphic change of coordinates.

⇐ : Suppose f is a semihomogeneous polynomial after a biholomorphic change of
coordinates. Since the Milnor number of f is the same as the Milnor number of its
initial part (see [Arnold 1974]) which is a homogeneous polynomial with degree ν,
so µ= (ν− 1)n is obvious. �

Proof of Theorem A. By Proposition 3.1, it is sufficient to show that if f is a
weighted homogeneous singularity, then µ= (ν− 1)n if and only if f is equivalent
to a homogeneous singularity.

The “if ” part is trivial. We only need to consider the “only if ” part. By Saito’s
theorem (see Theorem 2.7(c)), we can choose normalized weights for f , which
means that these weights satisfy 0<wi ≤

1
2 , 1≤ i ≤ n. By what we have proved

above, we know that there exists a g(z1, . . . , zn) so that f is contact equivalent
to g; moreover the initial part of g is gν , a homogeneous polynomial with degree ν,
and gν also defines an isolated singularity at the origin. We can rewrite f and g as

f (z1, . . . , zn)= fν(z1, . . . , zn)+ fν+1(z1, . . . , zn)+ · · · ,

g(z1, . . . , zn)= gν(z1, . . . , zn)+ gν+1(z1, . . . , zn)+ · · · ,

where fi and gi , i ≥ ν, are the homogeneous parts of f and g respectively and
gν defines an isolated singularity at the origin. Since for weighted homogeneous
singularities contact equivalence is the same as right equivalence (see Theorem 2.6),
there exists a biholomorphism at the origin:

φ : (Cn, 0)→ (Cn, 0),

(z1, . . . , zn) 7→ (φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn)),
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such that f (z1, . . . , zn)= g(φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn)) and

φ1(z1, . . . , zn)= a11z1+ · · ·+ a1nzn + H 2
1 + H 3

1 + · · · ,

...

φn(z1, . . . , zn)= an1z1+ · · ·+ annzn + H 2
n + H 3

n + · · · ,

where H j
i =

∑
α1+···+αn= j ci (α1, . . . , αn)z

α1
1 · · · z

αn
n . Since φ is a biholomor-

phism at the origin, we have |(ai j )| = det(ai j ) 6= 0. It follows from the equality
f (z1, . . . , zn)= g(φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn)) that

gν(φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn))

+ gν+1(φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn))+ · · ·

= fν(z1, . . . , zn)+ fν+1(z1, . . . , zn)+ · · · .

Comparing the degree of each side, we have

gν(φ1(z1, . . . , zn), . . . , φn(z1, . . . , zn))= fν(z1, . . . , zn),

where φi = ai1z1+· · ·+ainzn , 1≤ i ≤ n. Since det(ai j ) 6= 0, fν is right-equivalent
to gν . Therefore fν also defines an isolated singularity. Now we have two normalized
weights for fν : one is (w1, . . . , wn), because each monomial in fν comes from f ,
and the other is (1/ν, . . . , 1/ν)which follows from the fact that fν is a homogeneous
polynomial with degree ν. By Theorem 2.7, we have w1 = w2 = · · · = wn = 1/ν.
Therefore f (z1, . . . , zn)= fν(z1, . . . , zn) is a homogeneous polynomial. �

Proof of Corollary B. This follows from Theorem A and Theorem 2.7(a). �

Proof of Theorem C. Since pg = 0, by Theorem 2.3, we have 0> (ν−1)d−(n−1),
where d = min1≤i≤ν(di/ i), and di is the order of the zero of ai (x1, . . . , xn) at
(0, . . . , 0), with di ≥ i . Then ν < (n − 1)/d + 1. Since d ≥ 1, ν is an integer at
least 2 for an isolated hypersurface singularity, so we have 2≤ ν ≤ n−1. Therefore
p(ν)= (ν− 1)n − ν(ν− 1) · · · (ν− n+ 1)= (ν− 1)n . The theorem is reduced to
proving that

µ≥ (ν− 1)n,

where equality holds if and only if f is a homogeneous polynomial after a biholo-
morphic change of coordinates. The proof follows from Theorem A immediately. �
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