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SHIV PRAKASH PATEL

Let E be a nonarchimedean local field of characteristic zero and residual
characteristic p. Let G be a connected reductive group defined over E and
π an irreducible admissible representation of G(E). A result of C. Mœglin
and J.-L. Waldspurger (for p 6= 2) and S. Varma (for p = 2) states that the
leading coefficient in the character expansion of π at the identity element of
G(E) gives the dimension of a certain space of degenerate Whittaker forms.
In this paper we generalize this result of Mœglin and Waldspurger to the
setting of covering groups of G(E).

1. Introduction

Let E be a nonarchimedean local field of characteristic zero, G a connected split
reductive group defined over E , and G = G(E). Let g= Lie(G) be the Lie algebra
of G and g= g(E). Let (π,W ) be an irreducible admissible representation of G.
A theorem of F. Rodier [1975] relates the dimension of the space of nondegenerate
Whittaker forms of π to coefficients in the character expansion of π around the
identity. More precisely, Rodier proved that if the residual characteristic of E is large
enough and the group G is split then the dimension of any space of nondegenerate
Whittaker functionals for (π,W ) equals the coefficient in the character expansion
of π at the identity corresponding to an appropriate maximal nilpotent orbit in the Lie
algebra g. Rodier proved his theorem assuming that the residual characteristic of E
is greater than a constant which depends only on the root datum of G. C. Mœglin and
J.-L. Waldspurger [1987] generalized this theorem of Rodier in several directions: in
particular, they proved the result for fields E whose residual characteristic is odd, and
they removed the assumption that G is split. The Mœglin–Waldspurger theorem is
a more precise statement about the coefficients appearing in the character expansion
around the identity and certain spaces of “degenerate” Whittaker forms. In [Varma
2014], this theorem has been proved for fields with even residual characteristic
by modifying certain constructions in [Mœglin and Waldspurger 1987] (see the
remark at the end of the introduction). So the Mœglin–Waldspurger theorem is
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true for all connected reductive groups without any restriction on the residual
characteristic of the field E . We now recall the theorem. To state it we need to
introduce some notation. Let Y be a nilpotent element in g and suppose ϕ :Gm→G
is a one-parameter subgroup satisfying

(1) Ad(ϕ(t))Y = t−2Y.

Associated to such a pair (Y, ϕ) one can define a certain space W(Y,ϕ), called the
space of degenerate Whittaker forms of (π,W ) relative to (Y, ϕ) (see Section 4 for
the definition).

Define NWh(π) to be the set of nilpotent orbits O of g for which there exists
an element Y ∈ O and a ϕ satisfying (1) such that the space W(Y,ϕ) of degenerate
Whittaker forms relative to the pair (Y, ϕ) is nonzero.

Recall that the character expansion of (π,W ) around the identity is a sum∑
O cOµ̂O, where O varies over the set of nilpotent orbits of g, cO ∈ C and µ̂O is the

Fourier transform of a suitably chosen measure µO on O. One defines Ntr(π) to be
the set of nilpotent orbits O of g such that the corresponding coefficient cO in the
character expansion of π around the identity is nonzero.

We have the standard partial order on the set of nilpotent orbits in g: O1 ≤ O2 if
O1 ⊂ O2. Let Max NWh(π) and Max Ntr(π) denote the sets of maximal elements in
NWh(π) and Ntr(π), respectively, with respect to this partial order.

Theorem 1 [Mœglin and Waldspurger 1987, Chapter I]. Let G be a connected
reductive group defined over E. Let π be an irreducible admissible representation
of G = G(E). Then

Max NWh(π)=Max Ntr(π).

Moreover, if O is an element in either of these sets, then for any (Y, ϕ) as above
with Y ∈ O we have

cO = dim W(Y,ϕ).

If one considers the case of the pair (Y, ϕ) with Y a regular nilpotent element,
this theorem specializes to Rodier’s theorem.

In this paper we generalize the Mœglin–Waldspurger theorem to the setting of
a covering group G̃ of G. Let µr be the group of r-th roots of unity in C×. An
r -fold covering group G̃ of G is a central extension of locally compact groups by
µr := {z ∈ C : zr

= 1} giving rise to the short exact sequence

(2) 1−→ µr −→ G̃ −→ G −→ 1.

The representations of G̃ on whichµr acts by the natural embeddingµr ↪→C× are
called genuine representations. The definition of the space of degenerate Whittaker
forms of a representation of G involves only unipotent groups. Since the covering
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G̃→ G splits over any unipotent subgroup of G in a unique way (see [Mœglin
and Waldspurger 1995]) this makes it possible to define the space of degenerate
Whittaker forms for any genuine smooth representation (π,W ) of G̃. In particular,
it makes sense to talk of the set NWh(π).

The existence of the character expansion of an admissible genuine representation
(π,W ) of G̃ has been proved by Wen-Wei Li [2012]. At the identity, the Harish-
Chandra–Howe character expansion of an irreducible genuine representation has
the same form, and therefore we have Ntr(π). This makes it possible to have an
analogue of Theorem 1 in the setting of covering groups. The main aim of this
paper is to prove the following.

Theorem 2. Let π be an irreducible admissible genuine representation of G̃. Then

Max NWh(π)=Max Ntr(π).

Moreover, if O is an element in either of these sets, then for any (Y, ϕ) as above
with Y ∈ O we have

cO = dim W(Y,ϕ).

We will use the results in [Mœglin and Waldspurger 1987], and to accommodate
the even residual characteristic case we follow [Varma 2014]. Let us describe some
ideas involved in the proof. Let Y be a nilpotent element in g and ϕ a one-parameter
subgroup as above. Let gi be the eigenspace of weight i under the action of Gm

on g via Ad ◦ϕ. One can attach a parabolic subgroup P with unipotent radical
N whose Lie algebras are p :=

⊕
i≥0 gi and n=

⊕
i>0 gi respectively. The one-

parameter subgroup ϕ also determines a parabolic subgroup P− opposite to P with
Lie algebra p− =

⊕
i≤0 gi . For simplicity, assume g1 = 0 for the purpose of the

introduction. Then n=
⊕

i≥2 gi and χ : γ 7→ ψ(B(Y, log γ )) defines a character
of N = N(E), where B is an Ad(G)-invariant nondegenerate symmetric bilinear
form on g and ψ is an additive character of E . In this case (i.e., g1 = 0), the space
of degenerate Whittaker forms W(Y,ϕ) is defined to be the twisted Jacquet module
of π with respect to (N , χ). In the case where g1 6= 0, the definition of W(Y,ϕ)

needs to be appropriately modified (see Section 4).
On the other hand, to the pair (Y, ϕ) one attaches certain open compact sub-

groups Gn of G for large n and certain characters χn of Gn . One then proves
that the covering G̃ → G splits over Gn for large n, so that the Gn can be seen
as subgroups of G̃ as well. Let $ be a uniformizer of E . Let t := ϕ($) and t̃
be any lift of t in G̃. It turns out that t̃−nGn t̃n

∩ N becomes an “arbitrarily large”
subgroup of N and t̃−nGn t̃n

∩ P− becomes an “arbitrarily small” subgroup of P−,
as n becomes large. For large n, the characters χn have been so defined that the
character χ ′n := χn ◦ Int(t̃n) restricted to t̃−nGn t̃n

∩ N agrees with χ . Using the
Harish-Chandra–Howe character expansion, one proves that the dimension of the



228 SHIV PRAKASH PATEL

(Gn, χn)-isotypic component of W is equal to cO for large enough n, where O is
the nilpotent orbit of Y in g. Finally, one proves that there is a natural isomorphism
between the (t̃−nGn t̃n, χn ◦ Int(t̃n))-isotypic component of W and W(Y,ϕ).

Remark 3. The definition of W(Y,ϕ) (hence that of NWh(π)) depends on a choice
of an additive character ψ of E and a choice of Ad(G)-invariant nondegenerate
bilinear form B on g. On the other hand, in the character expansion, the cO (hence
Ntr(π)) depend on ψ , B, a measure on G and a measure on g. However, by
choosing a compatible measure on G and g via the exponential map, one gets rid
of the dependency of cO on these measures, and therefore the cO depend only on ψ
and B. For more detailed discussion about how our results depend on B and ψ , see
Remark 4 in [Varma 2014].

Remark 4. One aspect in Varma’s proof for p = 2 which does not obviously
generalize from the proof for p 6= 2 is the prescription of the character χn of Gn

given in [Mœglin and Waldspurger 1987], which is due to the somewhat bad behavior
of the Campbell–Hausdorff formula in the p = 2 case. Using Kirillov’s theory of
compact p-adic groups, Varma prescribed a χn (although not unique) which will
serve our purpose. On the other hand, the definition of degenerate Whittaker forms
of W has also been modified by Varma to accommodate the case p = 2.

Although the methods used in the paper are not new and heavily depend on the
proofs in the linear case, the result is useful in the study of representation theory of
covering groups. The author himself has made use of this result in his thesis, where
he attempts to generalize a result of D. Prasad [1992] in the setting of covering
groups, namely, in the harmonic analysis relating the pairs (GL2(E)∼,GL2(F))
and (GL2(E)∼, D×F ), where E/F is a quadratic extension of nonarchimedean local
field, DF is the quaternion division algebra with center F and GL2(E)∼ is a certain
twofold cover of GL2(E).

Let us briefly give an outline of the organization of the paper. In Section 2,
we recall the definition of the subgroups Gn and state some properties of the
character χn . In Section 3, we recall splitting of the covering groups over Gn and
describe an appropriate choice of the splitting over the subgroup Gn for large n. In
Section 4 we give the definition of the space of degenerate Whittaker forms and
describe important setup to prove the main theorem. In Section 5, we transfer some
results from linear groups to covering groups in a few lemmas, and, based on these
lemmas, we prove the main theorem.

2. Subgroups Gn and characters χn

In this section, we recall a certain sequence of subgroups Gn of G, which form
a basis of neighborhoods at the identity, and certain characters χn : Gn → C×.
The objects involved in this section were defined for linear groups in [Mœglin and
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Waldspurger 1987; Varma 2014], and we will lift them to covering groups in a
suitable way in Section 3 and work with these lifts in this paper.

Let OE denote the ring of integers in E . We fix an additive character ψ of E
with conductor OE . Fix an Ad(G)-invariant nondegenerate symmetric bilinear
form B : g× g→ E .

Let Y ∈ g be nilpotent. Choose a one-parameter subgroup ϕ :Gm→ G satisfying

(3) Ad(ϕ(s))Y = s−2Y for all s ∈ Gm .

For a given nilpotent element Y , the existence of such a ϕ is known from the theory
of sl2-triplets, but there are examples which do not come from this theory.

For i ∈ Z, define

gi = {X ∈ g : Ad(ϕ(s))X = si X for all s ∈ Gm}.

Set
n := n+ :=

⊕
i>0

gi , n− :=
⊕
i<0

gi , p− :=
⊕
i≤0

gi .

The parabolic subgroup P− of G stabilizing n− has p− as its Lie algebra. Let
N = N+ be the unipotent subgroup of G having the Lie algebra n.

Let G(Y ) be the centralizer of Y in G and Y # the centralizer of Y in g. The
G-orbit OY of Y can be identified with G/G(Y ) and therefore its tangent space
at Y can be identified with g/Y #. Note that

Y #
= {X ∈ g : [X, Y ] = 0}

= {X ∈ g : B([X, Y ], Z)= 0 for all Z ∈ g}

= {X ∈ g : B(Y, [X, Z ])= 0 for all Z ∈ g}.

The bilinear form B induces a nondegenerate alternating form

BY : g/Y #
× g/Y #

−→ E

defined by BY (X1, X2)= B(Y, [X1, X2]).
Let L ⊂ g be a lattice satisfying the following conditions:

(1) [L , L] ⊂ L;

(2) L =
⊕

i∈Z L i , where L i = L ∩ gi ;

(3) The lattice L/LY , where LY = L ∩ Y #, is self-dual with respect to BY , i.e.,
(L/LY )

⊥
= L/LY . (For any vector space V with a nondegenerate bilinear

form B and a lattice M in V , M⊥ := {X ∈ V : B(X, Y ) ∈OE for all Y ∈ V }.)

A lattice L satisfying these properties can be chosen by taking a suitable basis of all
the gi ; see [Mœglin and Waldspurger 1987]. Now we summarize a few well-known
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properties of the exponential map, and use them to define subgroups Gn and their
Iwahori decompositions.

Lemma 5. (1) There exists a positive integer A such that exp is defined and
injective on $ A L , with inverse log.

(2) The exponential map on $ n L is a homeomorphism onto its image Gn :=

exp($ n L), which is an open subgroup of G for all n ≥ A.

(3) Set P−n = exp($ n L ∩p−) and Nn = exp($ n L ∩n). Then we have an Iwahori
factorization

Gn = P−n Nn.

We will be working with a certain character χn of Gn , which we recall in the
next lemma.

Lemma 6. For large values of n there exists a character χn of Gn whose restriction
to exp((Y #

∩$ n L)+$ n+val 2L) coincides with γ 7→ψ(B($−2nY, log γ )). If P−n
is as in Lemma 5, the character χn can be chosen so that

χn(p)= 1 for all p ∈ P−n .

For a proof of this lemma and other properties of this character χn see Lemma 5
in [Varma 2014].

Remark 7. If p 6= 2, then the map γ 7→ ψ(B($−2nY, log γ )) itself defines a
character of Gn for large n and satisfies the properties stated in Lemma 6. But for
p = 2, there is more than one such character χn; for more details see [Varma 2014].

3. Covering groups

Let µr be the group of r -th roots of unity in C. Consider an r -fold covering G̃ of G.
Recall that this is a central extension of locally compact groups of the group G
by µr giving rise to the short exact sequence

1−→ µr −→ G̃ −→ G −→ 1.

Lemma 8. (1) The covering G̃→ G splits uniquely over any unipotent subgroup
of G.

(2) For large enough n the covering G̃ → G splits over Gn . Moreover, there
is a splitting s of G̃→ G restricted to

⋃
g∈G gGng−1 such that s(hth−1) =

hs(t)h−1 for all h ∈ G.

Proof. (1) This is well known; see [Mœglin and Waldspurger 1995]. For a simpler
proof in the case when E has characteristic zero, see Section 2.2 of [Li 2014].
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(2) Recall that the subgroups Gn form a basis of neighborhoods of the identity. It
is well known that the covering G̃→ G splits over a neighborhood of the identity.
Therefore, for large enough n, the covering splits over Gn . There is more than one
possible splitting of the cover G̃→G over Gn . If a splitting is fixed, then any other
splitting over Gn will differ from the above splitting by a character Gn→ µr .

Fix some m such that the covering splits over Gm = exp($m L). As mentioned
above, any two splittings over the subgroup Gm will differ by a character Gm→µr

and any such character is trivial over

Gr
m := {g

r
: g ∈ Gm}.

Hence all the possible splittings over Gm agree on Gr
m . The subset Gr

m is a subgroup
of Gm as it equals exp(r ·$m L). Let g, h ∈ G. We have

gGm g−1
∩ hGmh−1

⊃ gGr
m g−1

∩ hGr
mh−1.

This implies that any two splittings of G̃→ G restricted to gGr
m g−1

∩ hGr
mh−1,

one coming from the restriction of a splitting of G̃ → G over gGm g−1 and the
other coming from the restriction of a splitting over hGmh−1, are the same. Now
choose A′ so large such that Gn ⊂ Gr

m for n ≥ A′. We fix the splitting of Gn

which comes from that of the restriction of Gr
m . This gives us a splitting over⋃

g∈G gGng−1. �

Using this splitting we get that the exponential map is defined from a small
enough neighborhood of g to G̃, namely the usual exponential map composed with
this splitting, which one can use to define the character expansion of an irreducible
admissible genuine representation (π,W ) of G̃, which was done in [Li 2012].

Remark 9. If r is coprime to p, then as Gn is a pro-p group and (r, p)= 1, there
is no nontrivial character from Gn to µr . In that situation, the splitting in the
preceding lemma is unique.

From now onwards, for large enough n, we treat Gn not only as a subgroup of G
but also as one of G̃, with the above specified splitting. In other words, for the
covering group G̃ (as in the linear case) we have a sequence of pairs (Gn, χn) using
the splitting specified above which satisfies the properties described in Section 2.

Definition 10. Let H ⊂ G be an open subgroup and s : H ↪→ G̃ be a splitting.
Then for any φ ∈ C∞c (G) with supp(φ)⊂ H , define φ̃s ∈ C∞c (G̃) by

φ̃s(g) :=
{
φ(g′) if g = s(g′) ∈ s(H),
0 if g ∈ G̃ \ s(H).

Note that this definition depends upon the choice of splitting. Whenever the splitting
is clear in the context or it has been fixed and there is no confusion we write just φ̃
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instead of φ̃s and H for s(H). Recall that the convolution φ ∗φ′ for φ, φ′ ∈C∞c (G)
is defined by

φ ∗φ′(x)=
∫

G
φ(xy−1)φ′(y) dy.

Observe that
supp(φ ∗φ′)⊂ supp(φ) · supp(φ′),

which implies the lemma below.

Lemma 11. Let H be an open subgroup of G such that the covering G̃→ G has a
splitting over H , say, s : H ↪→ G̃, satisfying s(xy)= s(x)s(y) whenever x and y
are in H. If φ, φ′ ∈ C∞c (G) are such that supp(φ) and supp(φ′) are contained in H ,
then we have

φ̃ ∗φ′ = φ̃ ∗ φ̃′.

4. Degenerate Whittaker forms

In this section we give the definition of degenerate Whittaker forms for a smooth
genuine representation π of G̃. This is an adaptation of Section I.7 of [Mœglin and
Waldspurger 1987] and Section 5 of [Varma 2014].

Define

N := exp n= exp
⊕
i≥1

gi , N 2
:= exp

⊕
i≥2

gi , and N ′ := exp(g1 ∩ Y #)N 2.

It is easy to see that N 2 and N ′ are normal subgroups of N . Let H be the Heisenberg
group defined with g1/(g1 ∩ Y #)× E as underlying set using the symplectic form
induced by BY , i.e., for X, Z ∈ g1/(g1 ∩ Y #) and a, b ∈ E ,

(4) (X, a)(Z , b)=
(
X + Z , a+ b+ 1

2 BY (X, Z)
)
.

Consider the map N → H given by

exp X 7→ (X , B(Y, X)),

where X is the image of the g1 component of X in g1/(g1 ∩ Y #). The Campbell–
Hausdorff formula implies that this map is a homomorphism with kernel

N ′′ = {n ∈ N ′ : B(Y, log n)= 0}.

Let χ : N ′→ C× be defined by γ 7→ ψ ◦ B(Y, log γ ). Note that

γ 7→ B(Y, log γ ) ∈ E ∼= {0}× E ⊂ H

induces an isomorphism N ′/N ′′ ∼= E .
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We note that the cover G̃→G splits uniquely over the subgroups N , N ′ and N ′′.
We denote the images of these splittings inside G̃ by the same letters. For a smooth
genuine representation (π,W ) of G̃ we define

N 2
χW = {π(n)w−χ(n)w : w ∈W, n ∈ N 2

}

and
N ′χW = {π(n)w−χ(n)w : w ∈W, n ∈ N ′}.

Note that N normalizes χ , therefore H = N/N ′′ acts on W/N ′χW in a natural
way. This action restricts to N ′/N ′′ (the center of N/N ′′) as multiplication by
the character χ . Let S be the unique irreducible representation of the Heisenberg
group H with central character χ .

Definition 12. Define the space of degenerate Whittaker forms for (π,W ) associ-
ated to (Y, ϕ) to be

W := HomH (S,W/N ′χW ).

Remark 13. If g1 = 0, then N = N ′ = N 2. In this case, W ∼= W/NχW is the
(N , χ)-twisted Jacquet functor.

Definition 14. For a smooth representation (π,W ) of G̃, define NWh(π) to be the
set of nilpotent orbits O of g such that there exist Y ∈ O and ϕ as in (3), such that
the space of degenerate Whittaker forms for π associated to (Y, ϕ) is nonzero.

As g1/g1∩Y # is a symplectic vector space and L/LY is self-dual, it follows that
L H := (L ∩ g1)/(L ∩ g1 ∩ Y #) is a self-dual lattice in the symplectic vector space
H/Z(H)∼= g1/(g1 ∩ Y #).

Recall the definition (4) of the Heisenberg group H . Since ψ is trivial on OE , it
follows that one can extend the characterψ of E∼= Z(H) to a character of the inverse
image of 2L H under H→g1/(g1∩Y #) by defining it to be trivial on 2L H×{0}⊂ H .
From Lemma 4 in [Varma 2014], this character can be extended to a character χ̃
on the inverse image H0 of L H under the natural map H → g1/(g1 ∩ Y #).

Remark 15. There are one-parameter subgroups ϕ which do not arise from sl2-
triplets. If ϕ arises from an sl2-triplet, then it is easy to see that Y #

⊂
⊕

i≤0 gi . In
particular, we have g1 ∩ Y #

= {0} and hence the Heisenberg group H coincides
with g1× E .

Then, by Chapter 2, Section I.3 of [Mœglin et al. 1987], one knows that S =

indH
H0
χ̃ (induction with compact support). Since H0 is an open subgroup of the

locally profinite group H , we have the Frobenius reciprocity law

HomH (S, τ )= HomH (indH
H0
χ̃ , τ )= HomH0(χ̃ , τ |H0)

for any smooth representation τ of H . Thus, in the category of representations
of N on which N ′ acts via the character χ , the functor HomH (S,−) amounts to
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taking the χ̃ |H0-isotypic component. Since H0 is compact modulo the center, this
functor is exact. Thus, we have

W= HomH (S,W/N ′χW )∼= (W/N ′χW )(H0,χ̃).

where (W/N ′χW )(H0,χ̃) denotes the (H0, χ̃)-isotypic component of W/N ′χW .
Recall that we have defined certain characters χn in Section 2 and now we have a

character χ̃ . We need to choose them in a compatible way. First we fix a character χ̃
and consider it as a character of exp(g1∩L)N ′ in the obvious way (as exp(g1∩L)N ′

is the inverse image of H0 under N → H ). Let t := ϕ($) ∈ G. Let t̃ ∈ G̃ be any
lift of t in G̃. Let

G ′n = Int(t̃−n)(Gn), P ′n = Int(t̃−n)(P−n ) and V ′n = Int(t̃−n)(Nn).

It can be easily verified that V ′n contains exp(g1 ∩ L). We also have V ′n ⊂ V ′m for
large m, n with n ≤ m. Moreover,

exp(g1 ∩ L)N 2
=

⋃
n≥0

V ′n.

It can also be verified easily that χ̃◦Int(t̃−n) restricts to a character of Nn that extends
the character on Nn+val 2 N ′n given by γ 7→ ψ(B($−2nY, log γ )). Now define

(5) χn(pv)= χ̃(t̃−nvt̃n) for all p ∈ P−n and all v ∈ V ′n.

Lemma 16 [Varma 2014, Lemma 6]. Let χn be as defined in (5). Then χn is a
character of Gn and satisfies the properties stated in Lemma 6.

Define a character χ ′n on G ′n by

χ ′n := χn ◦ Int(t̃n).

Remark 17. The characters χn have been defined so that the χ ′n agree with χ on
the intersection of their domains, namely, for large n we have

χ ′n|V ′n = χ̃ |V ′n .

In particular, χ ′n|exp(L∩g1) = χ̃ |exp(L∩g1). One can also see that χ ′n and χ ′m (for large
n,m) agree on G ′n∩G ′m , because they agree on V ′n∩V ′m and also on P ′n∩ P ′m (being
trivial on it).

Set

(6) Wn := {w ∈W : π(γ )w = χn(γ )w for all γ ∈ Gn}

and

(7) W ′n := {w ∈W : π(γ )w = χ ′n(γ )w for all γ ∈ G ′n} = π(t̃
−n)Wn.
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For large m, n, define the map I ′n,m :W
′
n→W ′m by

(8) I ′n,m(w)=
∫

G ′m

χ ′m(γ
−1)π(γ )w dγ.

Let m, n be large with m> n. Since χ ′n is trivial on P ′n ⊃ P ′m and since G ′m = P ′m V ′m ,
for a convenient choice of measures we have

I ′n,m(w)=
∫

V ′m

χ ′m(x
−1)π(x)w dx

=

∫
exp(g1∩L)

χ̃−1(exp X)π(exp X)
∫

N 2∩G ′m

χ(x−1)π(x)w dx dX.

Now using the fact that exp(g1 ∩ L) lies in G ′n for large n and that it normalizes
the character χ |N 2 , we get

I ′n,m(w)=
∫

N 2∩G ′m

χ(x−1)π(x)w dx =
∫

N ′∩G ′m

χ(x−1)π(x)w dx .

From this the following is clear for large n,m with m > n:

(9) I ′n,m = I ′n+1,m ◦ I ′n,n+1.

For large n, this equation gives that ker I ′n,m ⊂ ker I ′n,p for n < m ≤ p. Set

W ′n,χ :=
⋃
m>n

ker I ′n,m .

Recall that for any unipotent subgroup U , character χ :U → C× and w ∈W , we
have that ∫

K
χ(x)−1π(x)w dx = 0

for some open compact subgroup K of U if and only if w ∈ UχW , where UχW
is the span of {π(u)w−χ(u)w : u ∈U, w ∈ W }. Thus we have Wn,χ ⊂ N 2

χW as
well as Wn,χ ⊂ N ′χW , which gives the natural maps

jn :W ′n/W ′n,χ −→W/N 2
χW and j ′n :W

′

n/W ′n,χ −→W/N ′χW,

and these give the diagram

(10) W ′n/W ′n,χ
j ′n //

jn

%%

W/N ′χW

W/N 2
χW

∃ natural

99
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By the compatibility between χ ′n and χ̃ , it is easy to see that the image of j ′n is
contained in (W/N ′χW )(H0,χ̃). Let w ∈W such that the image w of w in W/N ′χW
belongs to (W/N ′χW )(H0,χ̃). For large n, P ′n acts trivially onw, as (π,W ) is smooth.
Since G ′n = P ′nV ′n = V ′n P ′n , the element∫

V ′n

χ ′n(x
−1)π(x)w dx

belongs to W ′n . As χ ′n and χ are compatible, it can be seen that its image in W/N ′χW
is w. This gives us the following lemma.

Lemma 18. Let (Y, ϕ) be arbitrary. Then any element of (W/N ′χW )(H0,χ) belongs
to j ′n(W

′
n) for all sufficiently large n. In particular, if W 6= 0, then Wn and W ′n are

nonzero for large n.

5. Main theorem

Now recall that, by the work of Li [2012], the Harish-Chandra–Howe character
expansion of an irreducible admissible genuine representation of G̃ at the identity
element has an expression of the same form as that of an irreducible admissible
representation of a linear group. The proof of the following lemma for a covering
group follows verbatim that of Proposition I.11 in [Mœglin and Waldspurger 1987]
and Proposition 1 in [Varma 2014].

Proposition 19. Let W be the space of degenerate Whittaker forms for π with
respect to a given (Y, ϕ). If W 6= 0, then there exists a nilpotent orbit O in Ntr(π)

such that OY ≤ O, i.e., Y ∈ O.

Let the function φn : G→ C be defined by

φn(γ )=

{
χn(γ

−1) if γ ∈ Gn,

0 otherwise.

Consider the corresponding function φ̃n : G̃→ C. Write the character expansion at
the identity element as

2π ◦ exp=
∑

O

cOµ̂O.

Choose n large enough so that this expansion is valid over Gn , and then evaluate2π
at the function φ̃n . As π(φ̃n) is a projection from W to Wn , by definition we get
2π (φ̃n) = trace π(φ̃n) = dim Wn . Now assume that (Y, ϕ) is such that OY is a
maximal element in Ntr(π). On the other hand, if we evaluate

∑
O cOµ̂O(φ̃n), it

turns out that µ̂O(φ̃n) is zero unless O = OY . In addition, if we fix a G-invariant
measure on OY as in I.8 of [Mœglin and Waldspurger 1987] (for more details about
this invariant measure see Section 3 of [Varma 2014]), we get the following lemma.
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Lemma 20 (Lemma I.12 in [Mœglin and Waldspurger 1987] and Lemma 7 in
[Varma 2014]). If (Y, ϕ) is such that OY is a maximal element of Ntr(π). Then for
large n,

dim Wn = cOY .

In particular, the dimension of Wn is finite and independent of n, for large n.

From Lemma 18 we know that every vector in W is in the image of j ′n for
large n. In particular, if Wn is finite-dimensional, we get that the map j ′n is
surjective. Moreover, we have the following lemma, whose proof is verbatim
that of Corollary I.14 in [Mœglin and Waldspurger 1987] and Lemma 8 in [Varma
2014] in the case of a linear group.

Lemma 21. Let (Y, ϕ) be such that OY is a maximal element of Ntr(π). Then for
large n, the maps jn and j ′n are injections and the image of j ′n is (W/N ′χW )(H0,χ̃).

Let φ′n : G→ C be defined by

φ′n(γ )=

{
χ ′n(γ

−1) if γ ∈ G ′n,
0 otherwise.

Consider the corresponding function φ̃′n : G̃→ C.

Lemma 22. Consider a pair (Y, ϕ) such that O= OY is a maximal in Ntr(π). Then,
for large enough n:

(1) Let Yn ⊂ G ′n+1 ∩G(Y ) be a set of representatives for the G ′n double cosets in
G ′n(Gn+1 ∩G(Y ))G ′n . Then for large enough n,

φ̃′n ∗ φ̃
′

n+1 ∗ φ̃
′

n(g)=
{
λ · (χ ′n)

−1(h1h2) if g = h1 yh2 with y ∈ Yn, h1, h2 ∈ G ′n,
0 if g /∈ G ′nYnG ′n,

where λ=meas(G ′n ∩G ′n+1)meas(G ′n).

(2) For large n, I ′n,n+1 is injective.

Proof. From Lemma 9(a) in [Varma 2014], we have

φ′n ∗φ
′

n+1 ∗φ
′

n(g)=
{
λ · (χ ′n)

−1(h1h2) if g = h1 yh2 with y ∈ Yn, h1, h2 ∈ G ′n,
0 if g /∈ G ′nYnG ′n,

where λ=meas(G ′n ∩G ′n+1)meas(G ′n). Now part 1 follows from Lemma 11, as
we have

(11) φ̃′n ∗ φ̃
′

n+1 ∗ φ̃
′

n = (φ
′

n ∗φ
′

n+1 ∗φ
′

n)
∼.

Now we prove part 2. It is enough to say that π(φ̃′n ∗ φ̃
′

n+1 ∗ φ̃
′
n) acts by a nonzero

multiple of the identity on W ′n . This implies that I ′n+1,n◦ I ′n,n+1 is a nonzero multiple
of the identity on W ′n . From part 1, φ̃′n ∗ φ̃

′

n+1 ∗ φ̃
′
n is a positive linear combination
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of functions φ̃′n,y : γ 7→ φ̃′n(γ y−1), where y ∈ Gn+1 ∩G(Y ) is fixed and G(Y ) is
the centralizer of Y in G. Then the lemma follows from the fact that π(y) acts
trivially on W ′n for large n, so that

π(φ̃′n,y)|W ′n = π(φ̃
′

n)π(y)|W ′n = π(φ̃
′

n)|W ′n . �

Theorem 23. Let (π,W ) be an irreducible admissible genuine representation of G̃.

(1) The set of maximal elements in Ntr(π) coincides with the set of maximal
elements in NWh(π).

(2) Let O be a maximal element in Ntr(π). Then the coefficient cO equals the
dimension of the space of degenerate Whittaker forms with respect to any pair
(Y, ϕ) such that Y ∈O is arbitrary and ϕ :Gm→G satisfies Ad(ϕ(s))Y = s−2Y
for all s ∈ E×.

Proof. Let O be a maximal element in Ntr(π). Choose (Y, ϕ) such that Y ∈ O

and ϕ : Gm→ G satisfies Ad(ϕ(s))Y = s−2Y . Then, from Lemma 20, for large n
we have

dim Wn = cO.

Therefore Wn 6= 0 and W ′n 6= 0 for large n. From Lemma 21, the map j ′n is injective
and maps surjectively onto (W/N ′χW )(H0,χ̃). But from the second part of Lemma 22
and (9), I ′n,m is injective for large n and m > n, which implies that

W ′n,χ =
⋃
m>n

ker(I ′n,m)= 0.

Thus dim W = dim W ′n = dim Wn = cO, which proves part 2 of the theorem. In
particular, W 6= 0 and hence O ∈ NWh(π). Now we claim that O is maximal in
NWh(π). If not, there is a maximal orbit O′ ∈ NWh(π) such that O � O′. From
Proposition 19, there is O′′ ∈ Ntr(π) such that O′ ≤ O′′. Therefore, O � O′′ and
O,O′′ ∈ Ntr(π), a contradiction to the maximality of O in Ntr(π).

Let O be a maximal element in NWh(π). From Proposition 19, there is an element
in O′ ∈ Ntr(π) such that O≤ O′. Take a maximal such O′. Then, by the result in the
preceding paragraph, O′ is a maximal element in NWh(π). But O is also maximal in
NWh(π). Hence O= O′. This proves that O is a maximal element in Ntr(π) too. �
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