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SPANNING TREES AND RANDOM WALKS
ON WEIGHTED GRAPHS

XIAO CHANG, HAO XU AND SHING-TUNG YAU

Using two graph invariants arising from Chung and Yau’s discrete Green’s
function, we derive explicit formulas and new estimates of hitting times of
random walks on weighted graphs through the enumeration of spanning
trees.

1. Introduction

Every reversible Markov chain can be viewed as a random walk on a weighted
undirected graph G= (V, E) with edge weights wxy . We may assume that G has no
multiedges but may have a loop of weightwxx at each vertex x . The weighted degree
dx of x is the sum of all wxy , y ∈ V . The volume of a graph is vol(G)=

∑
v∈V dv .

The Laplacian of G is the matrix L = D− A, where D is the diagonal matrix
whose entries are dx , x ∈V and A is the adjacency matrix of G. Chung’s normalized
Laplacian, L= D−1/2L D−1/2, is

L(x, y)=


1−wxx/dx if x = y,
−wxy/

√
dx dy if x ∼ y,

0 otherwise,

where x ∼ y denotes that x and y are adjacent. Here we assume that dx 6= 0 for
all x ∈ V , since for a random walk it is natural to impose that G is connected and
wxy > 0 for all xy ∈ E .

If G is connected, denote by 0= λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 the eigenvalues of
L with the corresponding orthonormal basis of eigenvectors φ0, φ1, . . . , φn−1, as
n× 1 column vectors. Obviously φ0(x)=

√
dx/ vol(G).

Chung and Yau [2000] defined the discrete Green’s function G by

G=

n−1∑
j=1

1
λ j
φ jφ

∗

j ,
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which is uniquely determined by the relations GL = LG = I − P0 and GP0 = 0,
where P0 = φ0φ

t
0 is an n× n matrix.

A random walk on G is a Markov chain on V with transition probability matrix
(pxy)x,y∈V , where

pxy =

{
wxy/dx if x ∼ y,
0 otherwise.

The hitting time H(x, y) is the expected number of steps to reach vertex y when
started from vertex x . By using a result in [Aldous and Fill 2014], Chung and Yau
proved an expression for H(x, y) in terms of the discrete Green’s function:

Theorem 1.1 [Chung and Yau 2000]. On a connected graph G, the hitting time
H(x, y) and Green’s function G(x, y) satisfy

(1) H(x, y)= vol(G)
(

G(y, y)
dy

−
G(x, y)
√

dx dy

)
.

For a weighted graph G, we denote by �(G) the set of spanning trees of G. For
T ∈�(G), define the weight w(T ) of T to be

∏
e∈T we. Let τ(G) be the weighted

counting of spanning trees:

(2) τ(G)=
∑

T∈�(G)

w(T ).

Below is a typical identity expressing hitting times in terms of spanning trees (see
Theorem 2.11) arising from our study of Chung and Yau’s discrete Green’s function.

Theorem 1.2. Let G be a connected weighted graph and x, y ∈ V (G). Then

(3) H(x, y)=
1

τ(G)

∑
u∈V (G)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y}).

The paper is organized as follows. In Section 2, we introduce two graph invariants
and use them to derive explicit formulas for Chung and Yau’s discrete Green’s
functions and hitting times of random walks on weighted graphs. In Section 3, we
apply our formulas to obtain various estimates of hitting times on weighted graphs.
In Section 4, we prove an explicit formula for hitting times of random walks on
infinite trees. In Section 5, we apply our work to improve estimates of hitting times
under different weight schemes on a given simple finite graph.

2. The hitting time of random walks on weighted graphs

Kirchhoff discovered his matrix-tree theorem in 1847 in his work on electrical net-
works, and this theorem gives an efficient way to calculate τ(G) using linear algebra.
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Theorem 2.1 (Kirchhoff’s matrix-tree theorem). Let G be a connected weighted
graph.

(i) If the Laplacian L of G has eigenvalues 0= µ0 < µ1 ≤ · · · ≤ µn−1, then

(4)
n−1∏
k=1

µk = nτ(G).

(ii) Let L i j be the matrix obtained from L by deleting the i-th row and j-th column.
Then all cofactors (−1)i+ j det(L i j ) of L are equal and

(5) det L i i = nτ(G) for all 1≤ i ≤ n.

We also need the following version of Kirchhoff’s matrix-tree theorem for
weighted graphs. A proof, with slight changes, can be found in the cited reference.

Theorem 2.2 [Chung 2011, Theorem 1]. For a connected weighted graph G =
(V, E), we have

(6)
n−1∏
k=1

λk =
vol(G)τ (G)∏

v∈V dv
,

where 0= λ0 < λ1 ≤ · · · ≤ λn−1 are eigenvalues of L and τ(G) is defined in (2).

A weighted graph is a graph G equipped with a function w : E(G)→ R+ that
assigns a positive number to each edge. In the following, we fix a weighted graph
(G, w) and introduce two invariants for any induced subgraph S of G. Consider
the matrix

(7) B(x, y)=


d2

x s+ dx −wxx if x = y,
dx dys−wxy if x ∼ y,
dx dys otherwise,

where dx =wxx+
∑

y∼x wxy . Denote by BS the principle submatrix of B on indices
corresponding to the vertices of S; we define R(S) and Z(S) by

det BS = R(S)+ Z(S) · s.

In particular, R(∅)=1, Z(∅)=0 for the empty subgraph ∅, and R({x})=dx−wxx ,
Z({x})= d2

x for any x ∈ V (G).
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In the following four lemmas, S is an arbitrary induced subgraph of a fixed
weighted graph (G, w). The proofs of these lemmas are similar to those in [Xu
and Yau 2013a, Section 2], where we considered unweighted simple graphs with
we ≡ 1 for all e ∈ E(G).

Lemma 2.3. If S has k connected components S1, . . . , Sk , then

R(S)=
k∏

i=1

R(Si ), Z(S)=
k∑

i=1

Z(Si )

k∏
j=1
j 6=i

R(S j ).

Lemma 2.4. For any fixed vertex x ∈ V (S), we have

R(S)= (dx −wxx)R(S−{x})−
∑

y∈V (S)
y∼x

wxy

∑
P∈PS(x,y)

∏
e∈E(P)

we R(S−{P}),

and

Z(S)= (dx −wxx)Z(S−{x})

−

∑
y∈V (S)

y∼x

wxy

∑
P∈PS(x,y)

∏
e∈E(P)

we Z(S−{P})+ (dx −wxx)
2 R(S−{x})

+

∑
u,v∈V (S)

u 6=v

dudv
∑

P1∈PS(x,u)
P2∈PS(x,v)
P1∩P2=x

∏
e∈E(P1∪P2)

we R(S−{P1, P2}),

where PS(x, y) is the set of all simple paths (with no repeated vertices) connecting
x and y in S. We assume that PS(x, x) consists of the trivial path {x} only. Here
S−{P} means the graph obtained by removing P together with incident edges.

Lemma 2.5. We have

(8) Z(S)=
∑

x,y∈V (S)

dx dy

∑
P∈PS(x,y)

∏
e∈E(P)

we R(S−{P}).

Lemma 2.6. Regarding G as a subgraph of itself , we have R(G)= 0 and Z(G)=
vol(G)2τ(G). For any x, y ∈ V (G), we have

(9) R(G−{x})=
∑

P∈PG(x,y)

∏
e∈E(P)

we R(G−{P})= τ(G).

Now we come to an explicit formula for the Green’s function expressed in terms
of the above two invariants.
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Theorem 2.7. For a connected graph G and x, y ∈ V (G), the value of the Green’s
function G(x, y) is equal to√

dx dy

vol(G)2τ(G)

( ∑
P∈PG(x,y)

∏
e∈E(P)

we(R(G−{P})+ Z(G−{P}))

−

∑
u,v∈V (G)

u 6=v

dudv
∑

P1∈PG(x,u)
P2∈PG(y,v)
P1∩P2=∅

∏
e∈E(P1∪P2)

we R(G−{P1, P2})

)

−

√
dx dy

vol(G)2
.

In particular, when x = y,

G(y, y)=
dy

vol(G)2τ(G)
(R(G−{y})+ Z(G−{y}))−

dy

vol(G)2
.

Proof. The proof is almost the same as that of [Xu and Yau 2013a, Theorem 2.9]. �

Theorem 2.8. Given a connected graph G and x, y ∈ V (G), the expected hitting
time H(x, y) satisfies

(10) H(x, y)=
1

vol(G)τ (G)

(
Z(G−{y})−

∑
P∈PG(x,y)

∏
e∈E(P)

we Z(G−{P})

+

∑
u,v∈V (G)

u 6=v

dudv
∑

P1∈PG(x,u)
P2∈PG(y,v)
P1∩P2=∅

∏
e∈E(P1∪P2)

we R(G−{P1, P2})

)
.

Proof. This follows from Theorems 1.1 and 2.7 and Lemma 2.6. �

Corollary 2.9. On a connected weighted graph G, H(x, y) = H(y, x) for any
x, y ∈ V (G) if and only if Z(G−{x}) is independent of x ∈ V (G).

Proof. By (10), we have

H(x, y)− H(y, x)=
1

vol(G)τ (G)
(Z(G−{y})− Z(G−{x})),

which implies the corollary. �

Corollary 2.10. On a connected weighted graph G, H(x, y) = H(y, x) for any
x, y ∈ V (G) if and only if det BG−{x}|s=1 is independent of x ∈ V (G).

Proof. From det BG−{x}|s=1 = R(G − {x})+ Z(G − {x}), the conclusion follows
from Lemma 2.6 and the previous corollary. �
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Theorem 2.11. Let G be a connected weighted graph and x, y ∈ V (G). Then

(11) H(x, y)=
1

τ(G)

∑
u∈V (G)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

we R(G−{P, y}).

In fact, R(G − {P, y}) = τ(G/{P, y}), where G/{P, y} is obtained from G by
contracting {P, y} to a point.

Proof. The proof is almost identical to that of [Xu and Yau 2013b, Theorem 2.7].
R(G−{P, y})= τ(G/{P, y}) follows from Theorem 2.1(ii). �

Corollary 2.12. For any connected weighted graph G, we have

(12) Z(G−{x})= τ(G)
∑

y∈V (G)

dy H(y, x).

Proof. By (8) and (11), we have

Z(G−{x}, dG)=
∑

u,y∈V (G−{x})

dudy

∑
P∈PG−{x}(u,y)

∏
e∈E(P)

we R(G−{P, x})

=

∑
y,u∈V (G)

dydu

∑
P∈PG(y,u)

x /∈P

∏
e∈E(P)

we R(G−{P, x})

= τ(G)
∑

y∈V (G)

dy H(y, x). �

3. Identities and estimates of hitting times

It is natural to regard a weighted graph as an electrical network, where an edge xy
has conductance wxy and hence resistance 1/wxy . Chandra et al. [1989] proved
that the commute time κ(x, y) := H(x, y)+ H(y, x) can be expressed in terms of
the effective resistance Rxy between x , y,

(13) κ(x, y)= vol(G)Rxy .

The effective resistance Rxy can be expressed in terms of spanning trees (cf.
Theorem 3.2):

(14) Rxy =
τ(G/{x, y})
τ (G)

.

Tetali’s formula [1991] expresses H(x, y) in terms of effective resistances:

(15) H(x, y)= 1
2

∑
z∈V (G)

dz(Rxy + Ryz − Rxz).

We have the following well-known upper bound of Rxy .
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Theorem 3.1. Given a connected graph G and x, y∈V (G), we have Rxy≤d(x, y),
where the distance d(x, y) between x , y is defined by

d(x, y)=min
{ ∑

e∈E(P)

1
we

∣∣∣ P ∈ PG(x, y)
}
.

As remarked in [Lovász 1996, Corollary 4.2], the following formula could be
proved by the method of electric networks. Here we give a proof by using (11).

Theorem 3.2. Let x, y ∈ V (G) be two distinct vertices of a connected weighted
graph G. Then we have

(16) H(x, y)+ H(y, x)= vol(G)
τ (G/{x, y})
τ (G)

,

where G/{x, y} is obtained from G by contracting {x, y} to a point.

Proof. Define a graph G ′ by

G ′ =
{

G if x ∼ y,
G ∪ {xy} otherwise.

Namely, we modify G by adding an edge xy if x , y are not adjacent.
If u 6= x, y, define

�1 = {T ∈�(G ′) | T contains xy and a path from u to x not containing y},

�2 = {T ∈�(G ′) | T contains xy and a path from u to y not containing x},

�3 = {T ∈�(G ′) | T contains xy}.

It is not difficult to see that �1 ∪�2 =�3 =�(G/{x, y}). (More precisely, �3 is
in one-to-one correspondence with �(G/{x, y}).) Then, by (11),

H(x, y)+ H(y, x)

=
1

τ(G)

∑
u∈V (G)

du

( ∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})

+

∑
P∈PG(y,u)

x /∈P

∏
e∈E(P)

weτ(G/{P, x})

)

=
1

τ(G)

∑
u∈V (G)

du

(∑
T∈�1

∏
e∈T

we+
∑

T∈�2

∏
e∈T

we

)

=
1

τ(G)

∑
u∈V (G)

duτ(G/{x, y}).

The term in parenthesis on the third line is equal to τ(G/{x, y}), independently of
u ∈ V (G). �
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In the rest of this section, we apply Theorem 2.11 to prove some estimates for
the hitting time on weighted graphs. It is interesting to see the role of edge weights
in these estimates.

Corollary 3.3. Let G be a connected weighted graph with n vertices and x, y ∈
V (G). Then

(17) H(x, y)≤ (n− 1)2
dmax

wmin
,

where dmax =max{dv | v ∈ V (G)} and wmin =min{we | e ∈ E(G)}.

Proof. Fix x, y, u ∈ V (G) with y 6= u. Given a spanning tree T ∈ �(G) and an
edge e ∈ E(T ), denote by T (e) the subgraph of G ′ obtained from T by removing e
and adding an edge uy if uy /∈ E(T ), namely,

T (e)=
{

T if uy ∈ T,
T ∪ {uy}− {e} if uy /∈ T .

Define a subset S of �(G)× E(G) by

S = {(T, e) | T ∈�(G), e ∈ E(T ), T (e) ∈�(G ′)}

and let S′ = {T ∈ �(G ′) | T contains uy}. Then the map (T, e) → T (e) is a
surjective map from S to S′. Since⋃
P∈PG(x,u)

y /∈P

�(G/{P, y})

= {T ∈�(G ′) | T contains uy and a path from u to x not passing through y}

is a subset of S′ and the left-hand side is a disjoint union over P ∈PG(x, u), y /∈ P ,
we have ∑

P∈PG(x,u)
y /∈P

∏
e∈E(P)

weτ(G/{P, y})≤ (n− 1)τ (G)
1

wmin
.

Then (17) follows from (11). �

Corollary 3.4. Let G be a connected weighted graph and xy ∈ E(G). Then

H(x, y)≤
vol(G)− dy

wxy
.

Proof. Fix x, y, u ∈ V (G) with y 6= u. It is not difficult to see that⋃
P∈PG(x,u)

y /∈P

�(G/{P, y})

= {T ∈�(G) | T contains xy and a path from u to x not passing through y}
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is a subset of �(G) and the left-hand side is a disjoint union over P ∈ PG(x, u),
y /∈ P . Thus (11) implies that

H(x, y)≤
1

τ(G)

∑
u∈V (G)

u 6=y

du
τ(G)
wxy
=

vol(G)− dy

wxy
,

as claimed. �

Corollary 3.5. Let G be a connected weighted graph. Then for any two distinct
vertices x, y ∈ V (G), we have

(18) H(x, y)≤max
{

du

wyu

∣∣∣ u ∈ S

}
,

where S= {u ∈ V (G) | there is a path from x to u not passing through y}.

Proof. Fix two distinct vertices x, y ∈ V (G). We may assume that wyu > 0 for all
u ∈ S, i.e., there is an edge connecting y and u. Otherwise the right-hand side of
(18) is infinite. Define �xy = {T ∈�(G) | xy ∈ T } and

VT = {u ∈ V (G) | T contains a path from x to u not passing through y}.

Let S = {(T, u) | T ∈�xy, u ∈ VT }. Define a map f : S→�(G) by

f (T, u)=
{

T if u = x,
{T − xy} ∪ {uy} if u 6= x,

where we used the fact that dy = n− 1. It is not difficult to see that f is injective.
Thus, we have∑

u∈V (G)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})=
∑

u∈V (G)

du

wyu

∑
(T,u)∈S

w( f (T, u))

≤max
{

du

wyu

∣∣∣ u ∈ S

}
τ(G).

Therefore (11) implies (19). �

There is a direct probabilistic proof of Corollary 3.5 (see [Xu and Yau 2013b,
Remark 2.14]). In fact, all the above three corollaries may be obtained from the
following more refined estimates (see also [Chang and Xu ≥ 2015]):

Theorem 3.6. Let G be a connected weighted graph. Then

(19) H(x, y)≤max{du | u ∈0(y), u 6= y} +
∑

u∈V (G),u 6=y
u /∈0(y)

du min{d(x, y), d(u, y)},

where 0(y) is the set of vertices adjacent to y and d(x, y) is defined in Theorem 3.1.
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Proof. We split the right-hand side of (11) into two terms:

(20) H(x, y)=
1

τ(G)

∑
u∈0(y)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})

+
1

τ(G)

∑
u∈V (G)
u /∈0(y)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y}).

If u ∈ 0(y), then define

�uy = {T ∈�(G) | T contains uy and a path from x to u not passing through y}.

Since
⋃

u∈0(y)�uy is a disjoint union in �(G) and∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})=
∑

T∈�uy

w(T ) for all u ∈ 0(G),

the first summand in the right-hand side of (20) satisfies

(21)
1

τ(G)

∑
u∈0(y)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})≤max{du | u ∈0(y), u 6= y}.

By using (14) and the inequality

(22)
∑

P∈PG(x,u)
y /∈P

∏
e∈E(P)

weτ(G/{P, y})≤min{τ(G/{x, y}), τ (G/{u, y})},

the second summand in the right-hand of (20) satisfies

(23)
1

τ(G)

∑
u∈V (G)
u /∈0(y)

du

∑
P∈PG(x,u)

y /∈P

∏
e∈E(P)

weτ(G/{P, y})

≤

∑
u∈V (G)
u /∈0(y)

du min{Rxy, Ruy} ≤
∑

u∈V (G)
u /∈0(y)

du min{d(x, y), d(u, y)}.

The last inequality follows from Theorem 3.1. So (19) follows from (21) and (23). �

Corollary 3.7. Let G be a connected weighted graph. Then

(24) H(x, y)≤
∑

u∈V (G)
u 6=y

du min{Rxy, Ruy} ≤
∑

u∈V (G)
u 6=y

du min{d(x, y), d(u, y)}.

Proof. The first inequality follows from (14), (22) and Theorem 2.11. The second
inequality follows from Theorem 3.1. �
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4. Some examples

First we consider infinite but locally finite connected graphs. Since an infinite
(locally finite) graph can be considered as a limit of a sequence of finite graphs, the
hitting time formula (11) is still valid as long as the limit exists. A weighted tree T is
a locally finite tree (possibly with loops) whose edges are assigned positive weights.

Theorem 4.1. Let x, y be two distinct vertices of a weighted tree T , and denote by
Pxy the path [x = v0, v1, . . . , vk−1, vk = y] connecting x to y. For any vi ∈ V (Pxy),
we denote by Ti the component of T−E(Pxy) that contains vi , and denote bywi−1,i

the weight of the edge vi−1vi . Then the hitting time H(x, y) is given by

(25) H(x, y)=
k−1∑
j=0

(∑
u∈T j

du

)( k∑
i= j+1

1
wi−1,i

)
.

Proof. First we define induced subtrees T (N ) of T for N ∈ N. The vertices of
T (N ) are those vertices whose distances from x are within N . We may apply (11)
to get H(x, y) on T (N ), which increases as N increases. Then (25) follows easily.
We omit the details. �

Corollary 4.2. Let x, y be two distinct vertices of a weighted tree T . Then
H(x, y) <∞ if and only if ∑

u∈S

du <∞,

where S= {u ∈ V (T ) | there is a path from x to u not passing through y}.

Corollary 4.3. On the weighted one-dimensional lattice Z,

(26) H( j, j + 1)=

∑
i≤ j di

w j, j+1
.

Both corollaries follow easily from (25). For unweighted trees, formula (25) was
obtained in [Haiyan and Fuji 2004] (see also [Moon 1973]). Formula (26) can be
found in [Palacios and Tetali 1996], where it was used to study hitting times for
birth and death chains.

Now let G be a locally finite connected weighted graph and xy ∈ E(G). Then
the inequality of Corollary 3.4 still holds: H(x, y)≤ (vol(G)− dy)/wxy . Next we
show that the equality essentially holds when xy is a cut edge of G.

Let S= {u ∈ V (G) | there is a path from x to u not passing through y}. Let G ′

be the subgraph obtained by removing all vertices in V (G)/{S ∪ y} from G. If
xy ∈ E(G) is a cut edge of G, note that H(x, y) is the same for random walks on
either G or G ′. Moreover, for each spanning tree T of G ′ and u ∈ S, there exists a



252 XIAO CHANG, HAO XU AND SHING-TUNG YAU

path from x to u. Therefore,

H(x, y)=
1

τ(G ′)

∑
u∈S

du
1
wxy

τ(G ′)=
1
wxy

∑
u∈S

du =
vol(G ′)− d ′y

wxy
,

where d ′y is the degree of y in G ′.
Following [Georgakopoulos 2012], we call a weighted graph G reversible if

H(x, y)= H(y, x) holds for any x, y ∈ V (G). For simplicity, we assume that G
has no loops, i.e., wxx = 0 for all x ∈ V (G), and all edge weights of G are positive.
It is interesting to study restrictions on edge weights for a reversible graph G.

Conjecture 4.4. Let G be a weighted cycle on n vertices. Assume all edge weights
of G are positive. Denote wn,n+1 = wn,1.

(i) If n is odd, then G is reversible if and only if there exists some a > 0 such that
wi,i+1 = a for all 1≤ i ≤ n.

(ii) If n is even, then G is reversible if and only if there exist a, b > 0 such that
w1,2 = w3,4 = · · · = wn−1,n = a and w2,3 = w4,5 = · · · = wn,1 = b.

The sufficiency in (ii) follows from Corollary 2.10.

5. Weight schemes on graphs

Given a simple, connected, undirected graph G with n vertices, we obtain a weighted
graph by assigning a positive number we to each edge e ∈ E(G). The hitting and
cover times of a simple random walk on G (i.e., we = 1, for all e ∈ E(G)) have
order O(n3). The work of [Ikeda et al. 2009; Abdullah 2011] showed that if a token
knows not only the degree of the current vertex that it is on, but also the degrees of
neighboring vertices, we can guarantee O(n2) hitting times.

In this section, we will denote by d(u) the number of edges adjacent to a vertex u
in G and assume that G has no loops.

Lemma 5.1. Let G be connected graph with n vertices and u0 = x, u1, . . . , ul = y
a shortest path (achieving minimum l) connecting any two distinct vertices x and y.
Then

∑l
i=0 d(ui )≤ 3n− 4. More precisely,

l∑
i=0

d(ui )≤

{
2n− 2 if l = 1,
3n− l − 3 if l ≥ 2.

Proof. The proof is due to [Ikeda et al. 2009, Theorem 2]. Each vertex of V (G)
not lying on the path can be connected to at most 3 vertices of the path, due to its
minimality, which also implies that ui , u j are adjacent if and only if |i − j | = 1.
The asserted inequalities follow easily. �
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Next we will apply Theorem 3.6 to estimate hitting times under three different
weight schemes: wuv = 1/

√
d(u)d(v), 1/min{d(u), d(v)} or 1/max{d(u), d(v)}.

The leading terms of the bounds in Theorems 5.2 and 5.3 were obtained in [Ikeda
et al. 2009, Theorem 2] and [Abdullah 2011, Theorem 68] respectively.

Theorem 5.2. Let G be a graph with assigned weights wuv = 1/
√

d(u)d(v) for
each edge uv. Then the hitting time satisfies H(x, y)≤ 3n2

− 9n+ 15
2 .

Proof. For the two terms in the right-hand side of (19), we have the estimates

(27) du =
∑
v∈0(u)

1
√

d(u)d(v)
≤

1
2

∑
v∈0(u)

(
1

d(u)
+

1
d(v)

)
≤

1
2
+

d(u)
2
≤

n
2
.

and, by using
∑

u∈V (G)

∑
v∈0(u)

1
2(1/d(u)+ 1/d(v))= n,

(28)
∑

u∈V (G),u 6=y
u /∈0(y)

du ≤
∑

u∈V (G),u 6=y
u /∈0(y)

∑
v∈0(u)

1
2

(
1

d(u)
+

1
d(v)

)
≤n−1−

d(y)
2
≤n−

3
2
.

Let u0 = x, u1, . . . , ul = y be a shortest path (achieving minimum l) connecting
x and y. Then

(29) d(x, y)≤
l−1∑
i=0

√
d(ui )d(ui+1)≤

l−1∑
i=0

d(ui )+ d(ui+1)

2
≤ 3n− 5.

The last inequality follows from Lemma 5.1. By (19), we have

H(x, y)≤ (3n− 5)(n− 3
2)+

1
2 n = 3n2

− 9n+ 15
2 ,

as claimed. �

Theorem 5.3. Let G be a graph with assigned weights wuv = 1/min{d(u), d(v)}
for each edge uv. Then the hitting time satisfies H(x, y)≤ 6n2

− 18n+ 14.

Proof. For the two terms in the right-hand side of (19), we have

(30) du =
∑
v∈0(u)

1
min{d(u), d(v)}

≤ d(u)≤ n− 1

and, similarly to (28),

(31)
∑

u∈V (G),u 6=y
u /∈0(y)

du ≤
∑

u∈V (G),u 6=y
u /∈0(y)

∑
v∈0(u)

(
1

d(u)
+

1
d(v)

)
≤ 2n− 3.
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Similarly to (29), we have

d(x, y)≤
l−1∑
i=0

min{d(ui ), d(ui+1)} ≤

l−1∑
i=0

d(ui )≤ 3n− 5.

The desired upper bound of H(x, y) follows from (19). �

Theorem 5.4. Let G be a graph with assigned weights wuv = 1/max{d(u), d(v)}
for each edge uv. Then the hitting time satisfies H(x, y)≤ 6n2

− 23n+ 23.

Proof. For the two terms in the right-hand side of (19), we have

du =
∑
v∈0(u)

1
max{d(u), d(v)}

≤ 1 and
∑

u∈V (G),u 6=y
u /∈0(y)

du ≤ n− 2.

Similar to (29), we have

d(x, y)≤
l−1∑
i=0

max{d(ui ), d(ui+1)} ≤

l−1∑
i=0

(d(ui )+ d(ui+1)− 1)≤ 6n− 11.

The desired upper bound of H(x, y) follows from (19). �
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