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FIXED-POINT RESULTS AND THE HYERS–ULAM STABILITY
OF LINEAR EQUATIONS OF HIGHER ORDERS

BING XU, JANUSZ BRZDĘK AND WEINIAN ZHANG

We present a general method for investigation of the Hyers–Ulam stability
of linear equations (differential, difference, functional, integral) of higher
orders. It is shown that in many cases, that kind of stability for such equa-
tions is a consequence of a similar property of the corresponding first-order
equations. Some particular examples of applications for differential, in-
tegral, difference and functional equations are described. The method is
based on some fixed-point results that are proved in this paper.

1. Introduction

Sometimes we have to deal with functions that satisfy some equations only approx-
imately. One of the possible ways to treat them is just to replace such functions by
suitably corresponding exact solutions to those equations. Therefore it seems to be
important to know when, why and to what extent we can do this, and what errors
we thus commit. Some tools for evaluation of that issue are offered by the theory
of Ulam-type stability.

Some information on that theory and further references concerning it are given
in Section 3. The following definition somehow describes the main ideas of that
kind of stability (N stands for the set of positive integers, R+ := [0,∞), and C D

denotes the family of all functions mapping a set D 6=∅ into a set C 6=∅):

Definition 1.1. Let n ∈ N, A be a nonempty set, (X, d) be a metric space, E ⊂

C⊂ R+
An

be nonempty, T be an operator (not necessarily linear) mapping C into
R+

A, and F1, F2 be operators (not necessarily linear) mapping a nonempty D⊂ X A

into X An
. We say that the operator equation

(1) F1ϕ(x1, . . . , xn)= F2ϕ(x1, . . . , xn)

is (E,T)-stable, provided for every ε ∈ E and ϕ0 ∈ D with

(2) d(F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn))≤ ε(x1, . . . , xn), x1, . . . , xn ∈ A,
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there exists a solution ϕ ∈ D of (1) such that

(3) d(ϕ(x), ϕ0(x))≤ Tε(x), x ∈ A.

Roughly speaking, (E,T)-stability of (1) means that every approximate (in the
sense of (2)) solution of (1) is always close (in the sense of (3)) to an exact solution
to (1).

In the particular case when E contains only all constant functions, (E,T)-stability
is called Hyers–Ulam stability. In this paper we describe (in the terms of fixed
points) a general method for investigation of the Hyers–Ulam stability of various
higher-order linear (differential, integral, difference or functional) equations in a
single variable, that is, for n = 1. In this way we show how to generalize and easily
extend numerous results given in, e.g., [Takahasi et al. 2002; Miura et al. 2003a;
2003b; 2004; 2012; Jung 2004; 2005; 2006; Popa 2005b; Trif 2006; Wang et al.
2008; Brzdȩk et al. 2008; 2010; 2011b; Li and Shen 2009; Brzdȩk and Jung 2010].

In what follows, R and C denote the sets of real and complex numbers, respec-
tively. Also, X is a Banach space over a field K ∈ {R,C}, m ∈ N is fixed and in
general we assume that m > 1 (unless explicitly stated otherwise), S is a nonempty
set, and a0, . . . , am−1 ∈ K. Additionally, U is a linear subspace of X S (the linear
space over K of all the functions mapping S into X ), F ∈U is fixed, L :U→ X S is
a linear operator, Pm : C→ C is a polynomial given by Pm(z) := zm

+
∑m−1

j=0 a j z j

and r1, . . . , rm ∈ C are the roots of the equation

(4) Pm(z)= 1.

Moreover, we write Um := { f ∈U :Li f ∈U for i = 1, . . . ,m−1} and define a
linear operator Pm(L) :Um→ X S by Pm(L) :=Lm

+
∑m−1

j=0 a j L
j , where L0

:= I

is the identity operator (i.e., I f = f for f ∈ X S) and Lk
:=L◦Lk−1 for any k ∈N.

In the next section we present some fixed-point results for the operator

PF
m := Pm(L)+ F

(i.e., PF
m(ϕ)= Pm(L)(ϕ)+ F for ϕ ∈Um).

2. Fixed-point results

For the sake of simplicity we use the notion ‖ f ‖ := supx∈S ‖ f (x)‖ for f ∈ X S ,
which can be considered as an extension (because it admits an infinite value) of the
usual supremum norm ‖ · ‖∞ defined on the linear space (over K) of all bounded
functions from X S . In this section, we write

(5) Lv
i := L+ (1− ri )I− v, v ∈ X S, i ∈ {1, . . . ,m}
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(i.e., Lv
i (ϕ) :=L(ϕ)+ (1−ri )ϕ−v for ϕ ∈U), provided r1, . . . , rm ∈K. The next

two fixed-point theorems are the main tools in this paper; we present their proofs at
the end of the paper.

Theorem 2.1. Let r1, . . . , rm ∈K and ξi :R+→R+ for i =1, . . . ,m. Suppose that

(6) δ := ‖PF
mϕs −ϕs‖<∞

for some ϕs ∈Um and that the following fixed-point property holds for i = 1, . . . ,m:

(Li ) For every ψ, v ∈ U such that δ := ‖Lv
i ψ −ψ‖ <∞, there is a fixed point

φ ∈U of Lv
i such that ‖ψ −φ‖ ≤ ξi (δ).

Then there exists a fixed point ϕ ∈Um of PF
m such that

(7) ‖ϕs −ϕ‖ ≤ ξm ◦ · · · ◦ ξ1(δ).

Moreover, if L(U)⊂U and there is an L ∈R+ with |ri |> L for i = 1, . . . ,m and
‖L f ‖ ≤ L‖ f ‖ for f ∈U, then there is exactly one fixed point ϕ ∈U of PF

m with

(8) ‖ϕs −ϕ‖<∞.

Remark 2.2. From the proof of Theorem 2.1 (see Section 5), ϕ is equal to φm ,
with φm obtained, step by step, by the following procedure.

Write φ0=−F , ψm = ϕs , and ψ j (z)=Lψ j+1−r j+1ψ j+1 for j = 1, . . . ,m−1.
Then, for i = 1, . . . ,m, φi ∈U is a fixed point of the operator L+ (1−ri )I−φi−1

with ‖ψi−φi‖≤ ξi ◦· · ·◦ξ1(δ). By (Li ), such a φi ∈U exists for each i ∈{1, . . . ,m}.
In many cases such a φi can be described quite precisely (see, e.g., Remark 2.4).

Concerning operators satisfying (Li ), some recent results can be found in, e.g.,
[Brzdȩk and Jung 2011, Theorem 5.1; Badora and Brzdȩk 2012, Theorem 2.1].

In what follows, we say that U is closed in the norm ‖ · ‖∞ if U contains every
function f ∈ X S for which there is a sequence of functions ( fn) in U that is
uniformly convergent to f (i.e., limn→∞‖ f − fn‖∞ = 0).

Theorem 2.3. Let L(U)⊂U and let U be closed in the norm ‖ · ‖∞. Suppose that
there are κ ∈ R+ and ϕs ∈U such that (6) holds, that

(9) ‖L f ‖ ≤ κ‖ f ‖, f ∈U,

and that one of the following two conditions is valid:

(α) ri ∈ K and |ri |> κ for i = 1, . . . ,m;

(β) |ri |> 2κ for i = 1, . . . ,m.

Then there is a unique fixed point ϕ ∈U of PF
m such that ‖ϕs−ϕ‖<∞; moreover,

(10) ‖ϕs −ϕ‖ ≤
δ

(|r1| − ρκ) · · · (|rm | − ρκ)
,
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where

ρ :=

{
1 if (α) holds,
2 if (β) holds.

Remark 2.4. From the proof of Theorem 2.3 (see Section 6) and Remark 2.2, we
can deduce that the function ϕ can be described analogously to Remark 2.2, with
the functions φi (denoted in (Li ) by φ) given by φi (x) := limn→∞Ti

nψi (x) for
i = 1, . . . ,m, x ∈ S, where Ti is defined by (32).

3. Hyers–Ulam stability

Let b0, . . . , bm ∈K, with bm 6= 0, let Qm :C→C be given by Qm(z) :=
∑m

j=0 b j z j ,
and let q1, . . . , qm ∈ C be the roots of the equation

(11) Qm(z)= 0.

We define a linear operator Qm(L) :Um→ X S by Qm(L) :=
∑m

j=0 b j L
j . In this

section, we describe some direct consequences of Theorems 2.1 and 2.3 concerning
the Hyers–Ulam stability of the operator equation

(12) Qm(L)ϕ = G

(for functions ϕ ∈Um and with a fixed G ∈ X S), under the assumption

(G) G ∈U or (12) has a solution ϕ̂ ∈Um .

Let us mention that Hyers–Ulam stability is related to the notions of shadowing
and controlled chaos (see, e.g., [Pilyugin 1999; Palmer 2000; Hayes and Jackson
2005; Stević 2008]) as well as the theories of perturbation (see, e.g., [Chang and
Howes 1984; Lin and Zhou 1995]) and optimization. At the moment it is a very popu-
lar subject of investigation (for more details, references and examples of some recent
results, see, e.g., [Hyers 1941; Ulam 1964; Forti 1995; 2007; Hyers et al. 1998; Jung
2001; 2011; Agarwal et al. 2003; Popa 2005a; Jabłoński and Reich 2006; Bahyrycz
2007; Jung and Rassias 2007; 2008; Moszner 2009; Paneah 2009; Ciepliński 2010;
2011; 2012b; Sikorska 2010; Forti and Sikorska 2011; Piszczek 2013a; 2013b]).

Under suitable assumptions, we have the following natural examples of (12):

• The linear differential equation

(13) bmϕ
(m)(z)+ bm−1ϕ

(m−1)(z)+ · · ·+ b1ϕ
′(z)+ b0ϕ(z)= G(z).

• The linear recurrence (or difference) equation

(14) bmϕ(n+m)+ bm−1ϕ(n+m− 1)+ · · ·+ b1ϕ(n+ 1)+ b0ϕ(n)= G(n).

• The well-known linear functional equation

(15) bmϕ( f m(z))+ bm−1ϕ( f m−1(z))+ · · ·+ b1ϕ( f (z))+ b0ϕ(z)= G(z).
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For results on the Hyers–Ulam stability of (13) see [Miura et al. 2003b] (with
G(z)≡ 0). Equation (14) is a discrete case of (15); its Hyers–Ulam stability was
discussed in [Popa 2005a; 2005b; Brzdȩk et al. 2006; 2010]. Equation (15) is one
of the most important functional equations, and many results on its solutions can
be found in [Kuczma 1968; Kuczma et al. 1990] (see also the references therein);
its Hyers–Ulam stability was discussed, e.g., in [Kim 2000; Trif 2002] for m = 1
and in [Trif 2006; Brzdȩk et al. 2008; 2011b; Brzdȩk and Jung 2010] for m > 1.

The fixed-point approach has been already applied in the investigation of the
Hyers–Ulam stability [Baker 1991; Jung and Chang 2005; Jung and Kim 2006;
Mirzavaziri and Moslehian 2006; Jung 2007; Brzdȩk et al. 2011a; Brzdȩk and
Ciepliński 2011; Ciepliński 2012a]. In this section we continue this direction and
present two corollaries on such stability, obtained from Theorems 2.1 and 2.3. The
first one corresponds to the results in [Brzdȩk et al. 2008]. Namely, it states that, in
some cases, the Hyers–Ulam stability of (12) can be derived from the analogous
properties of the corresponding first-order operator equations, which we express in
the form of the following hypothesis:

(Hi ) ρi : R+→ R+ is a function such that, for every ϕs, η ∈U and δ ∈ R+ with
‖Lϕs − qiϕs − η‖ ≤ δ, there is ϕ ∈U such that ‖ϕs −ϕ‖ ≤ ρi (δ) and

(16) Lϕ = qiϕ+ η.

For examples of operators satisfying (Hi ) see [Brzdȩk et al. 2010; 2011b] and
Section 4.

Corollary 3.1. Suppose that G ∈ X S , (G) and (Hi ) hold for i = 1, . . . ,m, δ ∈ R+,
and ϕs ∈Um satisfies

(17) ‖Qm(L)ϕs −G‖ ≤ δ.

Then there exists a solution ϕ ∈Um of (12) such that

(18) ‖ϕs −ϕ‖ ≤ ρm ◦ · · · ◦ ρ1

(
δ

|bm |

)
.

Moreover, if L(U)⊂U, and there is L ∈ R+ with ‖L f −Lg‖ ≤ L‖ f − g‖ for
f, g ∈U and |qi |> L for i = 1, . . . ,m, then there is exactly one solution ϕ ∈U of

(12) with

(19) ‖ϕs −ϕ‖<∞.

Proof. Assume first that G ∈U. Let

F =−
1

bm
G, a0 =

b0

bm
+ 1, and ai =

bi

bm
for i = 1, . . . ,m− 1.
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Then (17) implies that ‖P F
m (L)ϕs − ϕs‖ ≤ δ/|bm |. Further, it is easily seen that

q1, . . . , qm are the roots of (4) and (Hi ) yields (Li ) for i = 1, . . . ,m with ξi = ρi .
So, by Theorem 2.1, there is a fixed point ϕ ∈Um of P F

m (L) such that (18) holds.
Clearly ϕ is a solution to (12).

Now consider the case where (12) has a solution ϕ̂ ∈Um . Let ζs := ϕs− ϕ̂. Then
ζs ∈Um and ‖Qm(L)ζs −G0‖ = ‖Qm(L)ζs‖ ≤ δ, where G0 ∈ X S and G0(x)≡ 0.
Clearly G0 ∈U. Hence, by the first part of the proof, there exists a solution ζ ∈Um

of (12) (with G = G0) such that

‖ζs − ζ‖ ≤ ρm ◦ · · · ◦ ρ1

(
δ

|bm |

)
.

Now, it is easily seen that ϕ := ζ + ϕ̂ is a solution of (12), and (18) holds.
It remains to show the statement concerning the uniqueness of ϕ. So, suppose

that there is an L ∈ R+ such that ‖L f ‖ ≤ L‖ f ‖ for f ∈ U and |qi | > L for
i = 1, . . . ,m. Then such a ϕ is the unique fixed point of PF

m satisfying (19), and
therefore it is also the unique solution of (12) such that (19) is valid. �

It is easily seen that [Brzdȩk et al. 2008, Theorem 1] is a particular case of our
Corollary 3.1.

Remark 3.2. In the case where |qi |< L for some i ∈ {1, . . . ,m}, it follows from
[Brzdȩk et al. 2010, Theorem 3(c)] that in the general situation we may not have
uniqueness of ϕ in Corollary 3.1.

Corollary 3.3. Let L(U)⊂U, G ∈ X S , (G) be valid, U be closed in the supremum
norm ‖ · ‖∞, δ, κ ∈ R+, ϕs ∈U, (17) hold, and

(20) ‖L f −Lg‖ ≤ κ‖ f − g‖, f, g ∈U.

Assume that one of the following two conditions is valid:

(α) qi ∈ K and |qi |> κ for i = 1, . . . ,m;

(β) |qi |> 2κ for i = 1, . . . ,m.

Then there is a unique solution ϕ ∈U of (12) with ‖ϕs −ϕ‖<∞; moreover,

(21) ‖ϕs −ϕ‖ ≤
δ

|bm |(|q1| − ρκ) · · · (|qm | − ρκ)
,

where

ρ :=

{
1 if (α) holds,
2 if (β) holds.
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Proof. Arguing analogously as in the proof of Corollary 3.1, we deduce the statement
from Theorem 2.3. �

If σ : S→ K is bounded, f : S→ S, and Lg := σg ◦ f for g ∈ U, then (20)
holds with κ := supt∈S |σ(t)|. So, Corollary 3.3 yields the following result, which
complements (and generalizes to a certain extent) some results in [Trif 2006; Brzdȩk
et al. 2008; 2011b]:

Corollary 3.4. Let one of the conditions (α), (β) of Corollary 3.3 hold, and let
σ : S→K, G ∈ X S , f : S→ S, δ ∈ R+, ϕs : S→ X , κ := supt∈S |σ(t)|< |q j | for
j = 1, . . . ,m, and

(22) sup
t∈S

∥∥∥∥ m∑
j=0

b jσ j (t)ϕs( f j (t))−G(t)
∥∥∥∥≤ δ,

where σ0(t) = 1 and σ j (t) = σ j−1(t)σ ( f j−1(t)) for t ∈ S, j = 1, . . . ,m. Then
there is a unique solution ϕ : S→ X of the functional equation

(23)
m∑

j=0

b jσ j (t)ϕ( f j (t))= G(t)

such that (21) holds. Moreover, if S is endowed with a topology and σ1, . . . , σm

and f are continuous, then the following two statements are valid:

(i) If ϕs and G are continuous, then ϕ is continuous.

(ii) If X = K and ϕs and G are Borel measurable, then ϕ is Borel measurable.

Proof. It is enough to take Lξ = σ ξ ◦ f for ξ ∈ X S in Corollary 3.3. Moreover, if
S is endowed with a topology and σ1, . . . , σm and f are continuous, then taking
U := {ξ ∈ X S

: ξ is continuous} or U := {ξ ∈ X S
: ξ is Borel measurable} we obtain

that ϕ is continuous or Borel measurable, respectively. �

Remark 3.5. The form of σ j seems to be a bit complicated for greater m, but for
instance with m = 2, (23) has the simple and quite general form

b2σ(t)σ ( f (t))ϕ( f 2(t))+ b1σ(t)ϕ( f (t))+ b0ϕ(t)= G(t).

4. Some further consequences

Let I be an open real interval, let C1(I, X) denote the space of strongly differentiable
functions mapping I into X , and let U = C1(I, X) and L = d/dt . In the next
remark we show that, in view of [Miura et al. 2004, Remark 1, Corollaries 2, 3]
(see also [Takahasi et al. 2002]), hypothesis (Hi ) holds for each i ∈ {1, . . . ,m} such
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that <qi 6= 0, where <z denotes the real part of the complex number z for K = C

and <z = z for K = R, with

(24) ρi (δ) :=
δ

|<qi |
, δ ∈ R+.

Moreover, in the case where I is finite and<qi=0, (Hi ) holds for each i ∈{1,. . .,m},
with

(25) ρi (δ) := d(I )δ, δ ∈ R+,

where d(I ) denotes the diameter of I ; see [Miura et al. 2004, Remark 1, Corollary 4].

Remark 4.1. For i ∈ {1, . . . ,m} and δ ∈ R+, we write

(26) ρi (δ)=

{
d(I )δ if <qi = 0 and d(I ) <∞,
δ/|<qi | if <qi 6= 0.

Let L = d/dt and η ∈ U. Take ϕs ∈ U, i ∈ {1, . . . ,m}, and δ ∈ R+ with
‖Lϕs − qiϕs − η‖ ≤ δ. There is a solution ϕ0 ∈U of the equation Lϕ0 = qiϕ0+ η.
Write ϕ1= ϕs−ϕ0. Then ‖Lϕ1−qiϕ1‖= ‖Lϕs−qiϕs−η‖≤ δ. Hence, according
to the results in [Miura et al. 2004], there is ϕ̂ ∈ U such that ‖ϕ1 − ϕ̂‖ ≤ ρi (δ)

and Lϕ̂ = qi ϕ̂. Now, it is easily seen that ϕ := ϕ̂ + ϕ0 satisfies (16) and that
‖ϕs −ϕ‖ = ‖ϕ1− ϕ̂‖ ≤ ρi (δ).

If d(I )=∞, then (Hi ) may not be valid for i ∈ {1, . . . ,m} with <qi = 0 (see,
e.g., [Takahasi et al. 2002, Theorem 2.1(iii)]).

In view of Remark 4.1, from Theorem 2.1 we can deduce the following corollary,
which generalizes the main result obtained in [Miura et al. 2003b], although it was
proved in that paper by a different method.

Corollary 4.2. Let I be an open real interval, and let G ∈ C0(I, X), qi ∈ K for
i = 1, . . . ,m, δ ∈ R+ and ϕs ∈ Cm(I, X) satisfy

(27) ‖bmϕ
(m)
s + · · ·+ b1ϕ

′

s + b0ϕs −G‖ ≤ δ.

Suppose that d(I ) <∞ or <qi 6= 0 for i = 1, . . . ,m. Then there exists a solution
ϕ ∈ Cm(I, X) of (13) such that

(28) ‖ϕs −ϕ‖ ≤
δ

|bm |

m∏
i=1

Di ,

where

(29) Di =

{
d(I ) if <qi = 0 and d(I ) <∞,
1/|<qi | if <qi 6= 0.
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Proof. There is a function ϕ0 ∈ Cm(I, X) satisfying the equation

bmϕ
(m)
0 (x)+ bm−1ϕ

(m−1)
0 (x)+ · · ·+ b1ϕ

′

0(x)+ b0ϕ0(x)= G(x).

Let ζs := ϕs −ϕ0. Then, by (27),

‖bmζ
(m)
s + bm−1ζ

(m−1)
s + · · ·+ b1ζ

′

s + b0ζs‖ ≤ δ,

i.e., (17) is valid with G(x) ≡ 0. As we have already observed in Remark 4.1,
hypothesis (Hi ) holds for i = 1, . . . ,m with U=C1(I, X), L= d/dt and ρi given
by (26). So, by Corollary 3.1, there is a solution ζ ∈ Cm(I, X) of the equation

bmζ
(m)(x)+ bm−1ζ

(m−1)(x)+ · · ·+ b1ζ
′(x)+ b0ζ(x)= 0

such that

‖ζs − ζ‖ ≤
δ

|bm |

m∏
i=1

Di ,

where Di is given by (29). Now, it is easily seen that ϕ := ζ +ϕ0 is a solution of
(13), and (28) holds. �

Similar results for integral equations can be derived from [Miura et al. 2012] in
analogous ways. It seems that so far that no paper has been published containing
stability results (of the type discussed in this paper) for linear integral equations
of higher orders.

5. Proof of Theorem 2.1

This proof proceeds via induction with respect to m. The case m=1 is a consequence
of (L1) with v = −F . Assume that the theorem is true for m = k. Let ϕs ∈ Um

satisfy (6) with m = k+ 1, which in view of the Viète formulas can be written in
the form

δ = ‖PF
k+1ϕs −ϕs‖ =

∥∥∥∥Lk+1ϕs +

k∑
j=0

a j L
jϕs + F −ϕs

∥∥∥∥
=

∥∥∥∥Lk+1ϕs + (−1)
(k+1∑

j=1

r j

)
Lkϕs + · · ·+ (−1)k+1r1 · · · · · rk+1ϕs + F

∥∥∥∥.
Let ψs := Lϕs − rk+1ϕs . Since L :U→ X S is a linear operator, we have

Lpψs = Lp+1ϕs − rk+1Lpϕs
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for p = 1, . . . , k, whence∥∥∥∥Lkψs + (−1)
( k∑

j=1

r j

)
Lk−1ψs + · · ·+ [(−1)kr1 · · · rk + 1]ψs + F −ψs

∥∥∥∥
=

∥∥∥∥Lkψs + (−1)
( k∑

j=1

r j

)
Lk−1ψs + · · ·+ (−1)kr1 · · · rkψs + F

∥∥∥∥
=

∥∥∥∥Lk+1ϕs − rk+1Lkϕs + (−1)
( k∑

j=1

r j

)
(Lkϕs − rk+1Lk−1ϕs)

+ · · ·+ (−1)kr1 · · · rk(Lϕs − rk+1ϕs)+ F
∥∥∥∥

=

∥∥∥∥Lk+1ϕs + (−1)
(k+1∑

j=1

r j

)
Lkϕs + · · ·+ (−1)k+1r1 · · · rk+1ϕs + F

∥∥∥∥≤ δ.
Since, by the Viète formulas, r1, . . . , rk are the roots of the equation

1= (z− r1)(z− r2) · · · (z− rk)+ 1

= zk
+ (−1)

( k∑
j=1

r j

)
zk−1
+ · · ·+ [(−1)kr1 · · · rk + 1]z0,

by the inductive assumption, there is ψ ∈Uk such that

(30) ψ = Lkψ + (−1)
( k∑

j=1

r j

)
Lk−1ψ + · · ·+ [(−1)kr1 · · · rk + 1]ψ + F

and ‖Lψ

k+1ϕs −ϕs‖ = ‖Lϕs − rk+1ϕs −ψ‖ = ‖ψs −ψ‖ ≤ ξk ◦ · · · ◦ ξ1(δ). Hence,
in view of (Lk+1), there is a fixed point ϕ ∈U of L

ψ

k+1 with

‖ϕs −ϕ‖ ≤ ξk+1(ξk ◦ · · · ◦ ξ1(δ)).

Note that Lϕ = ψ + rk+1ϕ, whence Lϕ ∈U, which means that ϕ ∈U 2. Analo-
gously, step by step, finally we get ϕ ∈Uk+1. Consequently, (30) yields

0= Lk+1ϕ− rk+1Lkϕ+ (−1)
( k∑

j=1

r j

)
(Lkϕ− rk+1Lk−1ϕ)

+ · · ·+ (−1)kr1 · · · rk(Lϕ− rk+1ϕ)+ F

= Lk+1ϕ+ (−1)
(k+1∑

j=1

r j

)
Lkϕ+ · · ·+ (−1)k+1r1 · · · rk+1ϕ+ F

= Pm(L)ϕ+ F −ϕ.
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It remains to prove the statement of the uniqueness of ϕ. Notice that if ϕ1, ϕ2 ∈U

are both fixed points of PF
m with ‖ϕs −ϕi‖<∞ for i = 1, 2, then ‖ϕ1−ϕ2‖<∞.

So, it suffices to prove that ϕ1 = ϕ2 if ϕ1, ϕ2 ∈U are fixed points of PF
m such that

(31) M := ‖ϕ1−ϕ2‖<∞.

The proof of uniqueness proceeds via induction with respect to m. For m = 1 we
have r1= 1−a0 and, therefore, for arbitrary fixed points ϕ1, ϕ2 ∈U of PF

m satisfying
(31), we have |r1|

n
‖ϕ1−ϕ2‖= ‖L

nϕ1−Lnϕ2‖≤ Ln M for n ∈N, whence ϕ1= ϕ2,
because |r1|> L . We further assume that the fact is true for m = k. Consider fixed
points ϕ1, ϕ2 ∈U of PF

k+1 satisfying (31), and write φi :=Lϕi−rk+1ϕi for i = 1, 2.
Then, arguing analogously as before for ψs , we see that φ1, φ2 ∈U are fixed points
of PF

m with m = k and appropriate (possibly different) a0, . . . , ak−1. Moreover,
‖φ1−φ2‖≤ (L+|rk+1|)M . Hence, according to the inductive assumption, φ1= φ2

and, analogously to the case m = 1, finally we obtain that ϕ1 = ϕ2. �

6. Proof of Theorem 2.3

First, consider the case of (α). In view of Theorem 2.1, it is enough to show that
(Li ) holds for i = 1, . . . ,m. Fix i ∈ {1, . . . ,m}, v ∈U and ψ ∈U and assume that
δ0 := ‖L

v
i ψ −ψ‖<∞. Write

(32) Ti :=
1
ri
(L− v).

In view of (5), ‖Tiψ −ψ‖ ≤ δ0/ |ri |, and, for every f, g ∈U,

‖Ti f −Ti g‖ =
∥∥∥∥ 1

ri
L f −

1
ri

Lg
∥∥∥∥≤ κ

|ri |
‖ f − g‖.

Define a generalized metric (i.e., admitting an infinite value) d in X S by d( f, g)=
‖ f −g‖ for f, g ∈ X S (see [Luxemburg 1958]). Applying the fixed-point alternative
of J. B. Diaz and B. Margolis [1968, p. 306–307], we see that (for the generalized
metric d) the limit φ := limn→∞Ti

nψ exists in X S and φ is the unique fixed point
of Ti with

‖ψ −φ‖ ≤
δ0

|ri |

1
1− κ/|ri |

=
δ0

|ri | − κ
.

Since the sequence (Ti
nψ) converges to φ uniformly and U is closed in the norm

‖·‖∞, φ belongs to U. Next, Lv
i φ=Lφ+(1−ri )φ−v=ri Tiφ+v+(1−ri )φ−v=φ,

implying that (Li ) is valid, which completes the proof in the case of (α).
Now, consider the case when (β) is valid and K = R. As is well-known

(see, e.g., [Fabian et al. 2001, p. 39; Ferrera and Muñoz 2003] or [Kadison and
Ringrose 1997, p. 66, Exercise 1.9.6]), X2 is a complex Banach space with lin-
ear structure defined by the operations (x, y) + (z, w) := (x + z, y + w) and
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(α + iβ)(x, y) := (αx − βy, βx + αy) and the Taylor norm ‖ · ‖T given by
‖(x, y)‖T := sup0≤θ≤2π‖(cos θ)x+(sin θ)y‖ for x, y, z, w ∈ X , α, β ∈R. Clearly,

(33) max{‖x‖, ‖y‖} ≤ ‖(x, y)‖T ≤ ‖x‖+‖y‖, x, y ∈ X.

We write pi (w1, w2) :=wi forw1, w2∈ X, i=1, 2 and ‖µ‖T := supx∈S ‖µ(x)‖T

for µ ∈ (X2)S . Let U0 := {µ : S→ X2
: pi ◦µ ∈ U, i ∈ {1, 2}} and L0µ(x) :=(

L(p1 ◦µ)(x),L(p2 ◦µ)(x)
)

for µ ∈U0, x ∈ S. Since L is linear and U is a linear
subspace of X over K = R, we see that U0 is a linear subspace of X2 over C and
L0 is a linear operator (also over C) such that L0(U0)⊂U0.

Choose µ ∈ (X2)S and consider a sequence (µn) in U0 which is uniformly
convergent to µ (in the Taylor norm). Then, by (33),

max{‖p1 ◦µn − p1 ◦µ‖, ‖p2 ◦µn − p2 ◦µ‖} ≤ ‖µn −µ‖T , n ∈ N,

which means that pi ◦µn is uniformly convergent to pi ◦µ for i =1, 2. Consequently,
p1 ◦µ, p2 ◦µ ∈ U, whence µ ∈ U0. Thus, U0 is closed in the supremum norm
connected with the norm ‖ · ‖T . Further, according to (9) and (33), we have

‖L0µ‖T = ‖(L(p1 ◦µ),L(p2 ◦µ))‖T ≤ ‖L(p1 ◦µ)‖+‖L(p2 ◦µ)‖

≤ κ‖p1 ◦µ‖+ κ‖p2 ◦µ‖ ≤ 2κ max{‖p1 ◦µ‖, ‖p2 ◦µ‖} ≤ 2κ‖µ‖T

for every µ ∈U0. We write χ := (ϕs, 0) and v0 = (v, 0) for v ∈U. Then we have
‖L0χ + (1− ri )χ − v0− χ‖T = ‖Lϕs + (1− ri )ϕs − v− ϕs‖ = δ <∞, because
p2◦χ(x)=0 for x ∈ S. So, we have again the case of (α), where L, κ , ϕs , F , U, PF

m
are replaced with L0, 2κ , χ , F0 := (F, 0), U0 and P̂F

m := Pm(L0)+F0, respectively.
So, by the first part of the proof, there is a fixed point H ∈U0 of P̂F

m with

(34) ‖χ − H‖T ≤
δ

(|r1| − 2κ) · · · (|rm | − 2κ)
.

Observe that ϕ := p1 ◦ H is a fixed point of PF
m . Moreover, by (34), (10) holds

with ρ = 2.
It remains to prove the statement of the uniqueness of ϕ. Let ϕ0 ∈U be a fixed

point of PF
m such that ‖ϕs −ϕ0‖<∞. Write H0(x) := (ϕ0(x), 0) for x ∈ S. Note

that H0 ∈U0 is a fixed point of P̂F
m . Moreover, ‖χ − H0‖T = ‖ϕs −ϕ‖<∞. By

Theorem 2.1 (with L = 2κ), we deduce that H0 = H , whence ϕ0 = p1 ◦ H0 =

p1 ◦ H = ϕ. �
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[Popa 2005b] D. Popa, “Hyers–Ulam stability of the linear recurrence with constant coefficients”,
Adv. Difference Equ. 2005:2 (2005), 101–107. MR 2006k:39009 Zbl 1095.39024

[Sikorska 2010] J. Sikorska, “On a direct method for proving the Hyers–Ulam stability of functional
equations”, J. Math. Anal. Appl. 372:1 (2010), 99–109. MR 2011f:39042 Zbl 1198.39039
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