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UNIMODAL SEQUENCES AND “STRANGE” FUNCTIONS:
A FAMILY OF QUANTUM MODULAR FORMS

KATHRIN BRINGMANN, AMANDA FOLSOM AND ROBERT C. RHOADES

We construct an infinite family of quantum modular forms from combinato-
rial rank “moment” generating functions for strongly unimodal sequences.
The first member of this family is Kontsevich’s “strange” function studied
by Zagier. These results rely upon the theory of mock Jacobi forms. As a
corollary, we exploit the quantum and mock modular properties of these
combinatorial functions in order to obtain asymptotic expansions.

1. Introduction and statement of results

A sequence of integers {a j }
s
j=1 is called a strongly unimodal sequence of size n if

there exists an integer k such that

(1-1) 0< a1 < a2 < · · ·< ak > ak+1 > · · ·> as > 0

and a1+ · · ·+ as = n. A number of familiar sequences are strongly unimodal, for
example, the sequence of binomial coefficients

{( n
j−1

)}n+1
j=1 with n even. Attached

to strongly unimodal sequences is a notion of rank, analogous to the well-known
notion of the rank of an integer partition. For more on partition ranks, see for
example original works in [Ramanujan 1919; Dyson 1944; Atkin and Swinnerton-
Dyer 1954], and the more recent joint work of [Bringmann and Ono 2010] related
to mock modular forms. The rank of a strongly unimodal sequence is equal to
s− 2k+ 1, the number of terms after the maximal term minus the number of terms
that precede it. For example, there are six strongly unimodal sequences of size 5: {5},
{1, 4}, {4, 1}, {1, 3, 1}, {2, 3}, {3, 2}. Their respective ranks are 0,−1, 1, 0,−1, 1.
By letting w (resp. w−1) keep track of the terms after (resp. before) a maximal
term, we have that u(m, n), the number of size n and rank m sequences, satisfies

(1-2) U (w; q) :=
∞∑

n=1

∞∑
m=−∞

u(m, n)(−w)mqn
=

∞∑
n=0

(wq; q)n
(
w−1q; q

)
nqn+1,
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where we set (w; q)n :=
∏n−1

j=0(1−wq j ), for n ∈ N0.
Recently, Bryson, Ono, Pitman, and the third author [Bryson et al. 2012] studied

this function in the special case w = 1, namely,1

U (1; q)=
∞∑

n=1

∞∑
m=−∞

(−1)mu(m, n)qn
=

∞∑
n=1

(ue(n)− uo(n))qn,

where ue(n) (resp. uo(n)) denotes the number of unimodal sequences of size n with
even (resp. odd) rank. They showed that for every root of unity ζ ,

U (1; ζ )= F
(
ζ−1),

where Kontsevich’s “strange” function is defined by

F(q) :=
∞∑

n=0

(q; q)n.

Previously, Zagier [2001] proved that this function satisfies the “identity”

(1-3) F(q)=−
1
2

∞∑
n=1

n
(

12
n

)
q(n

2
−1)/24,

where
(
·

·

)
is the Kronecker symbol. The two sides of (1-3) don’t make sense

simultaneously. Indeed, the right-hand side of (1-3) converges in the unit disk
|q| < 1, but nowhere on the unit circle. The identity (1-3) means that at roots of
unity ζ , F(ζ ) (which is clearly a finite sum) agrees with the limit as q approaches ζ
radially within the unit disk of the function on the right-hand side of (1-3). Moreover,
Zagier proved that for x ∈Q \ {0},

(1-4) φ(x)+ (−i x)−3/2φ

(
−

1
x

)
=

√
3i

2π

∫ i∞

0
(w+ x)−3/2η(w) dw,

where
φ(x) := e−π i x/12 F

(
e−2π i x)

and

η(w) := eπ iw/12
∞∏

n=1

(
1− e2π inw)

is the Dedekind eta function. Note that the constant
√

3i/2π in (1-4) is given
explicitly in [Bryson et al. 2012]. There, the authors also gave a new proof of
(1-4), using the fact that U (1; q) is a (weak) mixed mock modular form for |q|< 1.
Here, we slightly modify the definition of “mixed mock modular form” given in

1Note that the function U (w; q), given in (1-2), is equal to the function U (−w; q) as defined in
[Bryson et al. 2012].
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[Dabholkar et al. 2014] to mean functions that lie in the tensor product of the
general spaces of mock modular forms and weakly holomorphic modular forms
(up to possible rational multiples of q powers). In particular, we do not require
these functions to be holomorphic at the cusps, as in [loc. cit.]. Weak mixed mock
modular forms in this sense occur in a variety of areas including combinatorics
[Andrews 2005], algebraic geometry [Vafa and Witten 1994], Lie theory [Kac and
Wakimoto 2001], Joyce invariants [Mellit and Okada 2009], and quantum black
holes [Manschot 2011; Dabholkar et al. 2014].

The similarity between (1-4) and the usual modular transformation formula of a
modular form in part motivated Zagier [2010] to introduce the notion of a quantum
modular form. A quantum modular form of weight k ∈ 1

2 Z is a complex-valued
function f on Q such that for all γ =

(
a b
c d

)
∈ SL2(Z), the complex-valued function

hγ defined on Q \ γ−1(∞) by

(1-5) hγ (x) := f (x)− ε(γ )(cx + d)−k f
(

ax + b
cx + d

)
satisfies a “suitable” property of continuity or analyticity. The ε(γ ) in (1-5) are
suitable complex numbers, such as those in the theory of half-integral weight
modular forms when k ∈ 1

2 Z \Z.
This paper gives an infinite family of quantum modular forms from the “moments”

of the unimodal rank statistic. In general, such moment functions are of both number
theoretic and combinatorial interest. For example, in their celebrated work, Atkin
and Garvan [2003] discovered a partial differential equation relating the bivariate
generating functions for the partition statistics rank and crank, leading to exact
linear relations between rank and crank moments. Andrews [2007] provided a
beautiful combinatorial interpretation of partition rank moments in terms of “k-
marked Durfee symbols”. Andrews [2008] also discovered a relationship between
partition rank moments and the “smallest parts” partition statistic, which has led to
further work by Garvan [2011], for example. In addition to intrinsic combinatorial
interest, moment functions have been shown to satisfy modular properties. For
example, works including [Bringmann et al. 2009; 2010; Alfes et al. 2011] exhibit
relationships to weak Maass forms and mock theta functions.

To state our results, we define for r ∈ N0 the “weighted” moment functions

(1-6) φr (τ ) := (π i)2r+1
∞∑

n=1

∑
m∈Z

(−1)mu(m, n)Qr
(
m2, n− 1

24

)
qn− 1

24 ,

where here and throughout we set q := e2π iτ and

(1-7) Qr (X, Y ) :=
∑

0≤µ≤r
0≤`≤r−µ

cr (µ, `)X`Yµ ∈Q[X, Y ],
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the rational coefficients cr (µ, `) being defined in (1-9). For example, the first few
polynomials

(
normalized, with Y → Y − 1

24

)
are given by

Q0
(
X, Y − 1

24

)
=−2,

Q1
(
X, Y − 1

24

)
=−4(X + 2Y ),

Q2
(
X, Y − 1

24

)
=−

4
105

(
10X + 35X2

+ 6Y + 180XY + 108Y 2),
Q3
(
X, Y − 1

24

)
=−

4
3465

(
7X + 140X2

+ 154X3
+ 2Y + 420XY

+ 1260X2Y + 120Y 2
+ 2520XY 2

+ 720Y 3).
Note that in particular the first member of the family φr (τ ) is (up to a constant)

the “strange” function studied by Zagier and Kontsevich discussed above. That
is, φ0(τ ) = −2π iq−1/24U (1; q) = −2π iφ(τ). It is not difficult to see that the
functions φr (τ ) may also be written in terms of the “twisted” unimodal moment
functions ur , defined for integers r ≥ 0 by

ur (q) :=
∞∑

n=1

∑
m∈Z

(−1)mu(m, n)mr qn.

The moments
∑

m u(m, n)mr of the unimodal rank statistic are analogous with the
rank and crank partition moments, functions which have drawn wide combinatorial
interest since Atkin and Garvan [2003] famously introduced them. There is a vast
literature on such objects, including asymptotic questions and congruence properties.
While the unimodal rank moments are exponentially large for even r [Bringmann
et al. ≥ 2015], it is surprising that the twisted moments

∑
m(−1)mu(m, n)mr , as a

consequence of our results, are only polynomially large in n. We have chosen to
handle the more complicated expressions

∑
m(−1)mu(m, n)Qr (m2, n− 1

24) because
the generating functions for these numbers have a fixed weight as modular objects
as seen in Theorem 1.1, while the generating function for the twisted moments
will have a mixed weight. To relate these generating functions φr (τ ) to the twisted
unimodal moments ur (τ ), by symmetry, we note that u2r+1(q) = 0 for integers
r ≥ 0. In particular, using (1-6), we find that

(1-8) φr (τ )= (π i)2r+1
∑

0≤µ≤r
0≤`≤r−µ

cr (µ, `)

(2π i)µ
·
∂µ

∂τµ

(
u2`(q)q−

1
24
)
,

where we define

(1-9) cr (µ, `) :=
−22`+16µ0

( 1
2 + 2r −µ

)
0
( 1

2 + 2r
)
µ!(2`)!(2r − 2µ− 2`+ 1)!

∈Q.

The coefficients cr (µ, `) are indeed in Q, as it is well known for integers k ∈N0, that
0( 1

2+k)∈
√
π ·Q. The twisted moment functions also naturally extend the unimodal

function U (1; q) discussed above; namely, u0(q)=U (1; q)=−q1/24(2π i)−1φ0(τ ).
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To state our first result, we define another polynomial

(1-10) Pr (X, Y ) :=
∑

0≤N≤r
0≤M≤3r

br (N ,M)X2N+1Y M ,

where the coefficients br (N ,M) are given explicitly in (3-13). Our first theorem
establishes that the unimodal moment functions φr are quantum modular forms on
Q\{0}, and that their transformation law also extends to H. The function Hr below
is defined in (3-14).

Theorem 1.1. Let r ∈ N0. If τ ∈ H∪Q\{0}, we have

(1-11) φr (τ )− (−iτ)−3/2−2rφr

(
−

1
τ

)
=

∫
R

Pr
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw+Hr (τ ),

where Hr (τ ) = 0 for τ ∈ Q \ {0}. In particular, the functions φr are quantum
modular forms.

Remarks. (1) The transformation law given in (1-11) in the case τ ∈H essentially
establishes the mock modular properties of the unimodal rank moment functions
φr (τ ).

(2) In the course of proving (1-11) in the case τ ∈Q \ {0}, we show that for each
integer r ≥ 0, the function φr is defined for τ ∈ Q. Moreover, in Theorem 5.1
of Section 5, we pay special attention to the case r = 1, and establish an explicit
finite value for φ1(h/k) (h, k ∈ Z) as the value of a polynomial in the root of unity
e2π ih/k .

(3) Our functions naturally arise from mock Jacobi forms. It would be interesting
to investigate whether a theory of quantum Jacobi forms could be developed that
contains functions arising in this paper as special cases.

Our next theorem exploits the automorphic properties given in Theorem 1.1,
and establishes the asymptotic behavior of the moment functions ur . While such
properties are of independent interest, we also point out that these functions are
related to the quantum moment functions φr by (1-8). To describe their asymptotic
behavior, we use the Bernoulli polynomials Bk(x) and Euler polynomials Ek(x),
defined by the generating functions

(1-12)
zexz

ez − 1
=

∞∑
k=0

Bk(x)
zk

k!
and

(1-13)
2exz

ez + 1
=

∞∑
k=0

Ek(x)
zk

k!
.
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Theorem 1.2. For nonnegative integers r , as t→ 0+, we have

eπ t/12u2r
(
e−2π t)
=

32r+1

2r + 1

∞∑
k=0

(3π t)k

k!

∑
0≤n≤r

(2r+1
2n

)
3−2n B2n

(
1
2

)
E2r+1+2k−2n

(
5
6

)
,

In particular, we have

eπ t/12u2r
(
e−2π t)

∼
2 · 62r

2r + 1

(
B2r+1

(
2
3

)
+ B2r+1

(
5
6

))
.

The paper is organized as follows. In Section 2 we provide relevant background
information on modular forms, Jacobi forms, and mock Jacobi forms, as well as
Bernoulli and Euler polynomials. In Section 3 we prove Theorem 1.1, and in
Section 4 we establish Theorem 1.2. In Section 5 we pay special consideration to
the moment function φ1.

2. Preliminaries

Here, we provide preliminary information on automorphic forms in Section 2A,
and Bernoulli and Euler polynomials in Section 2B.

2A. Automorphic forms. In this section, we recall some fundamental properties
of certain modular and (mock) Jacobi forms. We start with the well-known trans-
formation law for the Dedekind η-function.

Lemma 2.1. For γ =
(

a b
c d

)
∈ SL2(Z), we have

(2-1) η(γ τ)= χ(γ )(cτ + d)1/2η(τ),

where χ(γ ) is a 24-th root of unity, which can be given explicitly in terms of
Dedekind sums [Rademacher 1973]. In particular, we have

η
(
−

1
τ

)
=
√
−iτη(τ).

Here and throughout the square root is defined by the principal branch of the
logarithm. Moreover, we require the usual Jacobi theta function, defined for z ∈ C

and τ ∈ H by

(2-2) ϑ(z; τ) :=
∑
ν∈ 1

2+Z

eπ iν2τ+2π iν(z+ 1
2).

This function is well known to satisfy the following transformation law [Rademacher
1973, (80.31) and (80.8)]:
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Lemma 2.2. For λ,µ ∈ Z and γ =
(

a b
c d

)
∈ SL2(Z), we have

ϑ(z+ λτ +µ; τ)= (−1)λ+µq−λ
2/2e−2π iλzϑ(z; τ),

ϑ

(
z

cτ + d
; γ τ

)
= χ3(γ )(cτ + d)1/2eπ icz2/(cτ+d)ϑ(z; τ).

In particular,

ϑ

(
z
τ
;−

1
τ

)
=−i
√
−iτeπ i z2/τϑ(z; τ).

The Jacobi theta function also satisfies the well-known triple product identity
(w = e2π i z)

ϑ(z; τ)=−iq1/8w−1/2
∞∏

n=1

(
1− qn)(1−wqn−1)(1−w−1qn).

Additionally, we require the following classical Taylor expansion (see for example
[Zagier 1991]):

(2-3) ϑ(z; τ)=−2π z · η3(τ ) exp
(
−2

∞∑
k=1

G2k(τ )
(2π i z)2k

(2k)!

)
.

Here for even integers k ≥ 2, the Eisenstein series are defined by

Gk(τ ) := −
Bk

2k
+

∞∑
n=1

σk−1(n)qn,

where σ`(n) :=
∑

d |n d` and Bk denotes the k-th Bernoulli number.
We also make use of Zwegers’ functions A`(z1, z2; τ) [2010] (see also [Bring-

mann 2008; Andrews et al. 2013]), defined for ` ∈ N, τ ∈ H, z2 ∈ C, and
z1 ∈ C \ (Zτ +Z) by

(2-4) A`(z1, z2; τ) := e`π i z1
∑
n∈Z

(−1)`nq`n(n+1)/2e2π inz2

1− qne2π i z1
.

These functions may be “completed” into nonholomorphic Jacobi forms by setting

Â`(z1, z2; τ) := A`(z1, z2; τ)+ R`(z1, z2; τ).

The nonholomorphic completions of these higher-level Appell functions are defined
by

R`(z1, z2; τ) :=
i
2

`−1∑
k=0

e(kz1)ϑ
(

z2+ kτ + `−1
2
; `τ
)

R
(
`z1− z2− kτ − `−1

2
; `τ
)
,

where e(x) := e2π i x and where (with τ = u+ iv)
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R(z; τ) :=
∑

n∈ 1
2+Z

(
sgn(n)− E

((
n+

Im(z)
v

)
√

2v
))
(−1)n−

1
2 q−n2/2e−2π inz,

with E(z) := 2
∫ z

0 e−π t2
dt. Proposition 2.3 below shows that the so-called “error

to modularity” of the function R(z; τ) is the Mordell integral, defined for z ∈ C

and τ ∈ H by

(2-5) h(z; τ) :=
∫

R

eπ iτw2
−2π zw

cosh(πw)
dw.

Proposition 2.3 [Zwegers 2002]. For z ∈ C and τ ∈ H, we have

R(z+ 1; τ)=−R(z; τ),

R
( z
τ
;−

1
τ

)
=
√
−iτe−π i z2/τ (−R(z; τ)+ h(z; τ)).

The completed higher-level Appell functions A`(z1, z2; τ) transform as follows.

Proposition 2.4 [Zwegers 2010]. For n1, n2,m1,m2 ∈ Z and γ =
(

a b
c d

)
∈ SL2(Z),

we have

Â`(z1+ n1τ +m1, z2+ n2τ +m2; τ)

= (−1)`(n1+m1)e(z1(`n1− n2)− n1z2)q`n
2
1/2−n1n2 Â`(z1, z2; τ),

Â`

(
z1

cτ + d
,

z2

cτ + d
; γ τ

)
= (cτ + d)e

(
c(−`z2

1+ 2z1z2)

2(cτ + d)

)
Â`(z1, z2; τ).

We further require “dissection properties” of the functions ϑ and R (see [Shimura
1973; Zwegers 2010; Bringmann and Folsom 2013]).

Lemma 2.5. With notation as above, we have for n ∈ N,

ϑ
(

z; τ
n

)
=

n−1∑
`=0

q(`−
n−1

2 )
2
/(2n)e2π i(`− n−1

2 )(z+
1
2)ϑ

(
nz+

(̀
−

n−1
2

)
τ +

n−1
2
; nτ

)
,

R
(

z; τ
n

)
=

n−1∑
`=0

q−(`−
n−1

2 )
2
/(2n)e−2π i(`− n−1

2 )(z+
1
2)R

(
nz+

(̀
−

n−1
2

)
τ+

n−1
2
; nτ

)
.

2B. Bernoulli and Euler polynomials. In this section, we recall certain properties
of the Bernoulli polynomials Bk(x) and Euler polynomials Ek(x), defined in (1-12)
and (1-13), respectively, as well as their special values

Bk := Bk(0), Ek := 2k Ek
( 1

2

)
.
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One property we make use of is a “dissection” property of the Bernoulli polynomials
(see [Abramowitz and Stegun 1964, Chapter 23])

(2-6) Bk(mx)= mk−1
m−1∑
a=0

Bk

(
x +

a
m

)
for m ∈ 2N0+ 1.

Another “splitting” property that we use is

(2-7) 2k Bk

(
x + y

2

)
=

k∑
j=0

(k
j

)
B j (x)Ek− j (y),

which follows easily from the definition of the Euler and Bernoulli polynomials,
using the fact that

2z · e(x+y)z

e2z − 1
=

zexz

ez − 1
·

2eyz

ez + 1
.

Here and throughout, we let ζN := e2π i/N for N ∈ N. The next lemma expresses
derivatives of secant in terms of Euler polynomials.

Lemma 2.6. With notation as above, we have, for c ∈ N0,

sec(2c+1)(π
3

)
= (−1)c

√
3 · 62c+1 E2c+1

( 5
6

)
.

Proof. This follows quickly from [Cvijović 2009, Theorem 2]. Namely, using the
facts that E2c−1

( 1
6

)
=−E2c−1

( 5
6

)
and E2c−1

( 1
2

)
= 0 gives the claim. �

A fourth property that we use expresses the Euler numbers as integrals. Namely,
it is known (see [Erdélyi et al. 1981, p. 42, Equation (18)] for example) that for
k ∈ N0,

(2-8)
∫

R

w2k

cosh(πw)
dw = (2i)−2k E2k .

Note that E2k−1 = 0 for k ∈ N.

3. Proof of Theorem 1.1

Here, we ultimately conclude Theorem 1.1 from Propositions 3.6–3.8 below. In
Section 3A, we establish properties of mock Jacobi forms related to the unimodal
rank generating function; and in Section 3B, we construct mock modular forms from
its Taylor coefficients. In Section 3C, we establish quantum modularity and prove
Theorem 1.1. Until otherwise indicated, throughout this section, we take τ ∈ H.
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3A. Mock Jacobi forms and unimodal ranks. Here we establish properties of
mock Jacobi forms associated to the unimodal rank generating function. We begin
by writing U (w; q) in terms of the Appell functions A`(u, v; τ) defined in (2-4).
Throughout, for w1, w2 ∈ C, we let

U(w1;w2) :=U (e(w1); e(w2)).

Lemma 3.1. Let w = e(z). With notation as above, we have

U(z; τ)=
1(

w1/2−w−1/2
)
(q; q)∞

(
A1(z,−z; τ)−w−1 A3(z,−τ ; τ)

)
.

Proof. Entry 3.4.7 of “Ramanujan’s lost notebook” (see [Andrews and Berndt 2009,
p. 67]) gives with a =−w, b =−w−1 that U(z; τ) equals

(3-1)
−1

(1−w)(1−w−1)

∞∑
n=0

qn2

(wq; q)n(w−1q; q)n

+
1

(1−w−1)(q; q)∞

∑
n∈Z

(−1)nqn(n+1)/2w−n

1−wqn .

We note that the second sum on the right-hand side of (3-1) is easily seen to equal

1
(w1/2−w−1/2)(q; q)∞

A1(z,−z; τ).

Using these facts, the result follows after applying the identity (see [Atkin and
Swinnerton-Dyer 1954])

−1
(1−w−1)(1−w)

∞∑
n=0

qn2

(wq; q)n(w−1q; q)n

=
−1

(w1/2−w−1/2)

1
(q; q)∞

A3(z,−τ ; τ). �

Next we define a normalization of the function U(z; τ)

(3-2) Y+(z; τ) := −
(
w1/2
−w−1/2)q−1/24

·U(z; τ)

= η−1(τ )
(
w−1 A3(z,−τ ; τ)− A1(z,−z; τ)

)
,

where the second equality follows from Lemma 3.1. Using Proposition 3.3, we
now establish a transformation law for Y+, which is a key step in showing quantum
modularity of the functions φr . To state this, we define

H(z; τ) :=
i
2
ϑ(z; τ)
η(τ )

h(2z; τ)− g(z; τ),
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where h(z; τ) is given in (2-5), and

g(z; τ) :=
i
√

3

∫
R

eπ iτw2/3−2πwz sinh
( 2πw

3

)
cosh(πw)

dw.

Proposition 3.2. With notation as above, we have

−ie3π i z2/τY+
(

z
τ
;−

1
τ

)
1
√
−iτ
− Y+(z; τ)= H(z; τ).

To prove Proposition 3.2 we rather work with a second normalization of the
function U(z; τ), namely,

X+(z; τ) := −e−3π z2/(2v)(w1/2
−w−1/2)(q; q)∞U(z; τ)

=
(
w−1 A3(z,−τ ; τ)− A1(z,−z; τ)

)
e−3π z2/(2v).

Moreover we need the completed function

(3-3) X̂(z; τ) :=
(
w−1 Â3(z,−τ ; τ)− Â1(z,−z; τ)

)
e−3π z2/(2v)

=
(

Â3(z, 0; τ)− Â1(z,−z; τ)
)
e−3π z2/(2v),

where the second equality follows from the first transformation in Proposition 2.4.
Using Proposition 2.4, it is not difficult to establish a modularity result for

X̂(z; τ):

Proposition 3.3. With notation as above, for γ =
(

a b
c d

)
∈ SL2(Z), we have

X̂
(

z
cτ + d

; γ τ

)
= (cτ + d)X̂(z; τ).

From Proposition 3.3, we can establish a transformation property of X+(z; τ):

Proposition 3.4. With notation as above, we have that

X+
( z
τ
;−

1
τ

)
τ−1
− X+(z; τ)

=

(
i
2
ϑ(z; τ)h(2z; τ)+

i

2
√

3
η(τ)

∑
±

±h
(

z± 1
3
;
τ

3

))
e−3π z2/(2v).

Proof. Using Proposition 3.3 we obtain that(
X+
( z
τ
;−

1
τ

)
τ−1
− X+(z; τ)

)
2i = f1(z; τ)+ f2(z; τ),
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with

f1(z; τ) := ϑ
(
−

1
τ
;−

3
τ

)
e−3π z2τ/(2vτ)τ−1

∑
±

±e±2π i z/τ R
(3z
τ
±

1
τ
;−

3
τ

)
−ϑ(τ ; 3τ)e−3π z2/(2v)

∑
±

±e±2π i z R(3z∓ τ ; 3τ),

f2(z; τ) :=ϑ
( z
τ
;−

1
τ

)
R
(2z
τ
;−

1
τ

)
e−3π z2τ/(2vτ)τ−1

−ϑ(z; τ)R(2z; τ)e−3π z2/(2v).

We next simplify f1 and f2. Firstly, using Lemma 2.2 and Proposition 2.3, we
obtain that

(3-4) f2(z; τ)=−ϑ(z; τ)h(2z; τ)e−3π z2/(2v).

Next Lemma 2.2 and Proposition 2.3 yield that

ϑ
(
−

1
τ
;−

3
τ

)
e−3π z2τ/(2vτ)τ−1

∑
±

±e±2π i z/τ R
(3z
τ
±

1
τ
;−

3
τ

)
=−

1
3

e−3π z2/(2v)ϑ
(
−

1
3
;
τ

3

)∑
±

±

(
−R

(
z± 1

3
;
τ

3

)
+ h

(
z± 1

3
;
τ

3

))
.

Now Lemma 2.5, the fact that ϑ(0; τ)= 0, and Proposition 2.3, give that

ϑ
(
−

1
3
;
τ

3

)
= 2i sin

(
π

3

)
q1/6ϑ(τ ; 3τ),

R
(

z± 1
3
;
τ

3

)
=−q−

1
6 e2π i(z± 1

3)R(3z− τ ; 3τ)+ R(3z; 3τ)

− q−1/6e−2π i(z± 1
3)R(3z+ τ ; 3τ).

Thus ∑
±

∓R
(

z± 1
3
;
τ

3

)
= 2i sin

(2π
3

)
q−1/6

∑
±

±e±2π i z R(3z∓ τ ; 3τ),

and hence

(3-5) f1(z; τ)=−
i
√

3
q1/6ϑ(τ ; 3τ)

∑
±

±h
(

z± 1
3
;
τ

3

)
e−3π z2/(2v).

Combining (3-4), (3-5), and the fact that ϑ(τ ; 3τ)=−iq−1/6η(τ) gives the claim.
�

Proof of Proposition 3.2. First note that∑
±

±h
(

z± 1
3
;
τ

3

)
= 2i
√

3 · g(z; τ).
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The result now follows immediately from Proposition 3.4 and Lemma 2.1, using
the fact that

Y+(z; τ)=
e3π z2/(2v)

η(τ)
X+(z; τ). �

3B. Taylor coefficients and unimodal ranks. Using the results from Section 3A,
we next construct mock modular forms from the Taylor coefficients of the unimodal
rank generating function. The functions H(z; τ) and Y+(z; τ) are holomorphic in
z, and it is not difficult to see that they are both odd functions in z. So we may write

Y+(z; τ)=
∞∑

r=0

a2r (τ )z2r+1,(3-6)

H(z; τ)=
∞∑

r=0

h2r (τ )z2r+1.(3-7)

The next lemma describes the modularity properties of the Taylor coefficients
a2r (τ ) of Y+(z; τ).

Lemma 3.5. With notation as above, we have

a2r

(
−

1
τ

)
(−iτ)−3/2−2r

=

∑
0≤ j≤r

(3π)r− j

(r − j)!
(−1) j+1(−iτ) j−r (a2 j (τ )+ h2 j (τ )).

Proof. Proposition 3.2 directly yields

Y+
( z
τ
;−

1
τ

)
= ie−3π i z2/τ

√
−iτ(Y+(z; τ)+ H(z; τ)).

Inserting (3-6), (3-7), and the Taylor expansion of the exponential function, we
obtain
∞∑

r=0

a2r

(
−

1
τ

)( z
τ

)2r+1

= i
√
−iτ

∞∑
`=0

(−3π i z2/τ)`

`!

∞∑
j=0

(a2 j (τ )+ h2 j (τ ))z2 j+1

= i
√
−iτ

∞∑
r=0

z2r+1
∑

0≤ j≤r

(3π)r− j

(r − j)!
(−1)r+ j (−iτ) j−r (a2 j (τ )+ h2 j (τ )).

Equating the coefficients of z2r+1 gives the claim. �

To prove the transformation law for the functions φr , we define for r ∈ N0,

(3-8) b2r (τ ) :=
∑

0≤µ≤r

(3π i)µ0
(1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!

a(µ)2r−2µ(τ ).
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We will later show that φr (τ )= b2r (τ ). The functions b2r (τ ) transform as described
in the following proposition, a fact which follows as in [Eichler and Zagier 1985],
using Lemma 3.5.

Proposition 3.6. With notation as above, for r ∈ N0, we have

b2r

(
−

1
τ

)
(−iτ)−3/2−2r

− b2r (τ )

=−(−iτ)−3/2−2r
∑

0≤µ≤r

(3π i)µ0
( 1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!

×

∑
0≤ j≤r−µ

(3π)r−µ− j (−1) j

(r −µ− j)!
∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h2 j (τ )
)
.

Our next proposition shows that the “errors to modularity” h2r are C∞, a fact
we use in the course of establishing the quantum modularity of the unimodal rank
functions φr in Theorem 1.1. In doing so, we split the Taylor expansion of H(z; τ)
into two pieces

(3-9) H(z; τ)= H1(z; τ)+ H2(z; τ),

with

H1(z; τ)=
∞∑

r=0

h1,2r (τ )z2r+1
:=

i
2
ϑ(z; τ)
η(τ )

h(2z; τ),

H2(z; τ)=
∞∑

r=0

h2,2r (τ )z2r+1
:= −g(z; τ).

Proposition 3.7. The functions h2r are C∞ on R. To be more precise, h1,2r (τ )

vanishes to infinite order for τ ∈Q, and we extend this function to equal 0 on all
of R. Moreover, for τ ∈ H∪Q, the function h2,2r satisfies

h2,2r (τ )=
i
√

3

(2π)2r+1

(2r + 1)!

∫
R

eπ iτw2/3w2r+1 sinh
( 2πw

3

)
sinh(πw)

dw.

Proof. Firstly, we have

H1(z; τ)

=
i

2η(τ)

∞∑
r=0

∂r

∂zr [ϑ(z; τ)h(2z; τ)]z=0
zr

r !

=
i

2η(τ)

∞∑
r=0

z2r+1

(2r + 1)!

r∑
`=0

(
2r + 1
2`+ 1

)
∂2`+1

∂z2`+1 [ϑ (z; τ)]z=0
∂2r−2`

∂z2r−2` [h(2z; τ)]z=0,
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so that

h1,2r (τ )=
i

2η(τ)

r∑
`=0

1
(2`+1)!(2r−2`)!

∂2`+1

∂z2`+1 [ϑ(z; τ)]z=0
∂2r−2`

∂z2r−2` [h(2z; τ)]z=0.

It is not hard to see that h(2z; τ) is C∞ as a function of τ near z = 0. Moreover by
(2-3), we see that

i
2η(τ)

∂2`+1

∂z2`+1 [ϑ(z; τ)]z=0

gives a linear combination of Eisenstein series multiplied by η2(τ ). It is well known
that the Eisenstein series satisfy

Gk

(
−

1
τ

)
= τ k Gk(τ ) (k > 2, even)

and
G2

(
−

1
τ

)
= τ 2G2(τ )+

iτ
4π
.

This implies that the function h2r (τ ) and its derivatives vanish exponentially for
τ ∈ Q. The second claim follows directly by inserting the Taylor expansion of
e−2π zx . �

3C. Quantum unimodal ranks. Building from the results in Sections 3A and 3B,
here we prove Theorem 1.1.

Proof of Theorem 1.1. We first relate the Taylor coefficients of Y+(z; τ) to the
unimodal moments u2r . Using the definition of u2r , it is not difficult to verify that

(3-10) U(z; τ)=
∞∑

r=0

u2r (q)
(2π i z)2r

(2r)!
.

Using the Taylor expansion of sin(π z) we find that

Y+(z; τ)=−2iq−1/24 sin(π z)U(z; τ)

=−(2π i z)
∞∑

r=0

(2π i z)2r
∑

0≤`≤r

u2`(q)q−1/2422`−2r

(2`)!(2r−2`+1)!
,

yielding

(3-11)
a2r (τ )

(2π i)2r+1 =−
∑

0≤`≤r

u2`(q)q−1/2422`−2r

(2`)!(2r − 2`+ 1)!
.

Using (3-11), the definition of φr (τ ) in (1-6), or its equivalent formulation given
in (1-8), as well as the definition of b2r (τ ) in (3-8), it is not difficult to see that for
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each r ∈ N0, b2r (τ )= φr (τ ). Combining this with the fact that

h2 j (τ )= h1,2 j (τ )+ h2,2 j (τ ),

Proposition 3.6 yields

(3-12) φr

(
−

1
τ

)
(−iτ)−3/2−2r

−φr (τ )

=−(−iτ)−3/2−2r
∑

0≤µ≤r
0≤ j≤r−µ

(3π)r− j (−1) j iµ0
( 1

2 + 2r −µ
)

0(1
2 + 2r)µ!(r −µ− j)!

×
∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 (h1,2 j (τ )+ h2,2 j (τ ))
)
.

By continuation, (3-12) and what follows hold on H∪Q \ {0}.
We first consider the first summand. We have by Proposition 3.7

∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h2,2 j (τ )
)

=
i
√

3

(2π)2 j+1

(2 j + 1)!

×

∫
R

µ∑
`=0

(
µ

`

)
∂`

∂τ `

(
(−iτ) j+r−µ+ 3

2

) ∂µ−`
∂τµ−`

(
eπ iw2τ/3

)
w2 j+1 sinh

(2πw
3

)
cosh(πw)

dw

=

µ∑
`=0

(−1)`iµ+1π2 j+1+µ−`22 j+13`−µ−
1
2

(
µ

`

)
0
(

j + r −µ+ 5
2

)
(2 j + 1)!0

(
j + r −µ+ 5

2 − `
)

× (−iτ) j+r+ 3
2−µ−`

∫
R

w2 j+2µ−2`+1eπ iw2τ/3 sinh
( 2πw

3

)
cosh(πw)

dw.

We now define the numbers

br (µ, j, `) :=

i(−1) j+`+µ22 j+1πr+ j+µ+1−`3r+`−µ− j− 1
20
( 1

2 + 2r −µ
)
0
(

j + r −µ+ 5
2

)
(2 j + 1)!`!(µ− `)!(r −µ− j)!0

( 1
2 + 2r

)
0
(

j + r −µ+ 5
2 − `

) ,

and let

(3-13) br (N ,M) :=
∑

0≤µ≤r

∑
0≤ j≤r−µ

0≤`≤µ
N= j+µ−`

M=µ+`+r− j

br (µ, j, `).
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Moreover, we define Hr (τ ) to be

(3-14) (−iτ)−
3
2−2r

×

∑
0≤µ≤r

0≤ j≤r−µ

(3π)r− j (−1) j iµ0
( 1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!(r −µ− j)!

∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h1,2 j (τ )
)
.

Note that Hr (τ )= 0 for τ ∈Q \ {0}. We have thus shown for τ ∈ H∪Q \ {0},

(−iτ)−
3
2−2rφr

(
−

1
τ

)
−φr (τ )

=−

∫
R

Pr
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw−Hr (τ ),

as claimed in (1-11).
Finally, under the translation τ → τ + 1, it is clear using the definition of φr (τ )

in (1-6) that φr (τ + 1) = e−π i/12φr (τ ). With the proof of Proposition 3.8 below,
using (1-8), Theorem 1.1 now follows. �

We are left to show the existence of the moment functions and their derivatives.

Proposition 3.8. For r, n ∈ N0, the moment functions

∂n

∂τ n

[
q−1/24u2r (q)

]
are defined for every root of unity q = ζ and lie in Z[ζ ].

Proof. For ease of notation, we let

Dα := α
∂

∂α
,

Jm(w; q) := (wq; q)m
(
w−1q; q

)
m .

To finish the proof it is enough to show that for m sufficiently large, and every
n, r ∈ N0, the function

(3-15) Dn
q
(
Dr
w[Jm(w; q)]w=1

)
vanishes for q = ζ .

It is not difficult to see that for m ∈ N,

(3-16)
Dw(Jm(w; q))

Jm(w; q)
=−

m∑
k=1

wqk

1−wqk +

m∑
k=1

w−1qk

1−w−1qk =: Rm(w; q).
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We further relax notation and let J := Jm(w; q), R := Rm(w; q), and R(r) := Dr
wR

for r ∈ N0. Using (3-16), we find that

Dw J = J R,

D2
w J = J

(
R2
+ R(1)

)
,

D3
w J = J

(
R3
+ 3R R(1)+ R(2)

)
,

D4
w J = J

(
R4
+ 4R R(2)+ 3

(
R(1)

)2
+ 6R2 R(1)+ R(3)

)
,

...

Note that each Dr
w J can be expressed as J multiplied by a sum over the partitions of

r . That is, given a partition π = `1(π)·1+`2(π)·2+· · ·+`r−1(π)·(r−1)+`r (π)·r
of r (where each ` j (π) ∈ N0), we may assign the product∏

1≤ j≤r

(
D j−1
w R

)` j (π)
.

Conversely, every such product appearing as a summand as above for Dr
w J corre-

sponds to a partition of r . In general, we have

Dr
w[Jm(w; q)]w=1 = (q; q)2m

∑
π`r

c(π)
∏

1≤ j≤r

(
D j−1
w [Rm(w; q)]w=1

)` j (π)
,

where we sum over all partitions π of r . The exponents ` j (π) correspond to the
number of parts of the partition π of r , and the constants c(π)= cr (π) also depend
on the partition π of r . Now using the definition of Rm(w; q) in (3-16), we may
write

(3-17)
∑
π`r

c(π)
∏

1≤ j≤r

(
D j−1
w [Rm(w; q)]w=1

)` j (π)

=

∑
Ek=(k1,...,kc)

PEk,r (q)∏c
j=1(1− qk j )r

=: Rm,r (q),

where c = cr ∈ N depends only on r , and PEk,r ∈ Z[q]. Next we apply the operator
Dn

q to (q; q)2m multiplied by Rm,r (q) in (3-17) above. Using the product rule, we
have (3-15) equals ∑

0≤ j≤n

(n
j

)
D j

q
(
(q; q)2m

)
Dn− j

q (Rm,r (q)).

It is not difficult to see that

Dq
(
(q; q)2m

)
(q; q)2m

=−2
m∑

k=1

kqk

1− qk =: Tm(q),
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and for l ∈ N, that

D`−1
q (Tm(q))=

m∑
k=1

Qk,l(q)
(1− qk)`

,

with Qk,l(q) ∈ Z[q]. Therefore, we may conclude that (3-15) has the shape

(q; q)2m
∑

Ek=(k1,...,kd )

PEk,r,n(q)∏d
j=1
(
1− qk j

)r+n ,

where d = dr,n ∈ N depends only on r and n, and PEk,r,n ∈ Z[q]. Now if ζ = ζm

then (q; q)2M (M ∈ N) vanishes at q = ζ of order ≥ 2bm/Mc. On the other hand,
each term

PEk,r,n(q)∏d
j=1
(
1− qk j

)r+n

vanishes at q = ζ of order at most d(r + n), which is a constant independent of m.
Thus, the claim follows. �

4. Proof of Theorem 1.2

To prove Theorem 1.2, we recall (3-2). It is not difficult to see from Proposition 3.2
that

Y+(z; i t)=−H(z; i t)+
∑
r≥0

βr (t)zr

with

βr (t)�r e−N/t

for some N > 0. To find the asymptotic expansion of H(z; i t), we split as in (3-9)
and bound using (2-3)

h1,2r (i t)� e−M/t

for some M > 0. Thus we are left to determine the asymptotic expansion of
H2(z; i t). For this, we write

H2(z; i t)=−
i
√

3

∫
R

e−π tw2/3−2πwz sinh
( 2πw

3

)
cosh(πw)

dw

=−
i
√

3

∞∑
r=0

(−2π z)2r+1

(2r + 1)!

∞∑
k=0

(−π t/3)k

k!

∫
R

w2r+2k+1 sinh
( 2πw

3

)
cosh(πw)

dw,(4-1)
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where the identity in (4-1) refers to an asymptotic expansion. Thus, to determine
the asymptotic expansion of H2(z; i t), we are left to evaluate explicitly for a ∈ N0,

Ca :=

∫
R

w2a+1 sinh
( 2πw

3

)
cosh(πw)

dw

=
1
2

∫
R

w2a+1
(
e2πw/3

− e−2πw/3
)

cosh(πw)
dw =

∞∑
r=1

( 2π
3

)2r−1

(2r − 1)!

∫
R

w2a+2r

cosh(πw)
dw.

From (2-8), we have that the integral above equals (2i)−2a−2r E2a+2r , yielding

Ca = (−2i)−2a−1
∞∑

r=1

(
π i
3

)2r−1

(2r − 1)!
E2a+2r = (−2i)−2a−1

∞∑
r=0

(
π i
3

)r
r !

E2a+r+1.

The second equality above holds because E j = 0 for j odd.
We are thus left to understand

∑
∞

r=0(v
r/r !)Er+b for positive integers b and

v = π i/3. Set

f (v) :=
∞∑

r=0

Er

r !
vr
= sech(v),

where the second equality above is simply the definition of the Euler numbers. Then

f (b)(v)=
∞∑

r=0

Er+b

r !
vr .

Thus

(4-2) Ca = (−2i)−2a−1 sech(2a+1)
(
π i
3

)
= 2−2a−1 sec(2a+1)

(
π

3

)
.

Next we deduce from (1-12) that

i
2

1
sin(π z)

=−

∞∑
n=0

B2n
(1

2

)
(2n)!

(2π i z)2n−1.

Combining the above, we have established that the asymptotic expansion of
U(z; i t)eπ t/12 as t→ 0+ is given by

1
√

3

∞∑
r=0

(2π i z)2r (−1)r
∑

0≤n≤r

B2n
( 1

2

)
(2n)!

(−1)n

(2r − 2n+ 1)!

∞∑
k=0

(
−π t/3

)k

k!
Cr−n+k .

Thus, using (4-2), we have the asymptotic expansion as t→ 0+,

(4-3) eπ t/12u2r
(
e−2π t)

=
(2r)!(−1)r 2−2r−1

√
3

∞∑
k=0

tk

k!

(
−
π

3

)k
2−2k

×

∑
0≤n≤r

(−1)n B2n
( 1

2

)
22n

(2n)!(2r − 2n+ 1)!
sec(2r−2n+2k+1)

(
π

3

)
.
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Using Lemma 2.6 together with (4-3), we have

(4-4) eπ t/12u2r
(
e−2π t)

=
32r+1

2r + 1

∞∑
k=0

(3π t)k

k!

∑
0≤n≤r

(2r+1
2n

)
3−2n B2n

(
1
2

)
E2r+2k+1−2n

(
5
6

)
,

which concludes the proof of the first statement of Theorem 1.2.
Next we prove the claimed asymptotic for the main term. Since B2n+1

( 1
2

)
= 0,

we may rewrite the k = 0 summand of (4-4) as

(4-5)
32r+1

2r + 1

∑
0≤n≤2r+1

(2r+1
n

)
3−n Bn

(
1
2

)
E2r+1−n

(
5
6

)
.

Now we use (2-6), which yields that

Bn

(
1
2

)
= 3n−1

2∑
a=0

Bn

(
1
6
+

a
3

)
.

Thus, (4-5) equals

32r

2r + 1

2∑
a=0

∑
0≤n≤2r+1

(
2r+1

n

)
Bn

(
1
6
+

a
3

)
E2r+1−n

(
5
6

)
.(4-6)

Using (2-7), (4-6) reduces to

2 · 62r

2r + 1

2∑
a=0

B2r+1

(
1
2
+

a
6

)
.

Noting again that B2r+1
( 1

2

)
= 0, we find that as claimed, as t→ 0+,

eπ t/12u2r
(
e−2π t)

∼
2 · 62r

2r + 1

(
B2r+1

(
2
3

)
+ B2r+1

(
5
6

))
.

5. An example: the moment function φ1(τ)

In this section, we give an exact value for the quantum moment function

(5-1)
φ1(τ )= 4π3iq−1/24

∞∑
n=1

∑
m∈Z

(−1)mu(m, n)
(
m2
+ 2n

)
qn

= 4π3iq−1/24
(

u2(q)− iπ−1 ∂

∂τ
u0(q)

)
.
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To describe this, we define for positive integers n the polynomials

dn(q) := n(q; q)2n−1qn
− 2qn+2(q; q)n

n∑
j=1

jq j−1
n∏

k=1
k 6= j

(
1− qk)

∈ Z[q],(5-2)

bn(q) := qn+1
n∑

j=1

q j
n∏

k=1
k 6= j

(
1− qk)2

∈ Z[q].(5-3)

Theorem 5.1. If h, k ∈ N, with gcd(h, k)= 1, we have

φ1

(
h
k

)
= 8π3iζ−h

24k

( k∑
n=1

dn
(
ζ h

k
)
−

2k−1∑
n=1

bn
(
ζ h

k
))
.

Remark. Theorem 5.1, together with (1-11) in the case τ ∈Q\{0} of Theorem 1.1,
gives an exact value for the integral∫

R

P1
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw.

To prove Theorem 5.1, we first establish Propositions 5.2 and 5.3 below. These
propositions give alternate expressions for the functions defining φ1(τ ) (see (5-1)),
which we subsequently evaluate for q = ζ , where ζ is any root of unity.

Proposition 5.2. With notation as above, we have

∂

∂τ
u0(q)= 2π i

∑
n≥1

dn(q).

Moreover, if gcd(h, k)= 1, we have

∂

∂τ
[u0(q)]q=ζ h

k
= 2π i

k∑
n=1

dn
(
ζ h

k
)
.

Proof. The first statement follows by straightforward differentiation, using that
u0(q) = U(0; τ), definition (1-2), and the fact that 1/(2π i)(∂/∂τ) = q(d/dq).
To prove the second statement, we observe that dn(q) is of the form dn(q) =
(q; q)n−1d̃n(q), where d̃n(ζ

h
k ) <∞. The statement now follows, observing that for

n ≥ k+ 1, the factor (q; q)n−1 of dn(q) vanishes when q = ζ h
k . �

Proposition 5.3. With notation as above, we have

(2π i)2u2(q)=
∂2

∂z2 [U(z; τ)]z=0 =−2(2π i)2
∑
n≥1

bn(q).
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Moreover, if h, k ∈ N, with gcd(h, k)= 1, we have

(2π i)2u2
(
ζ h

k
)
=−2(2π i)2

2k−1∑
n=1

bn
(
ζ h

k
)
.

Proof. The first statement follows by straightforward differentiation, using definition
(1-2), and the fact that 1/(2π i)(∂/∂z) = w(d/dw) for w = e2π i z . To prove the
second statement, using the first statement, we see for n ≥ 2k, the j-th summand
defining bn(q) (for any j ≥ 1) contains either the factor (1− qk) or (1− q2k) (or
both), both of which vanish when q = ζ h

k . �

Proof of Theorem 5.1. Theorem 5.1 now follows from the definition of φ1(τ ) (see
(5-1)), Propositions 5.2 and 5.3. �
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