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To the memory of Eugene Gutkin

Let C be a smooth, convex curve on either the sphere S2, the hyperbolic
plane H2 or the Euclidean plane E2 with the following property: there exists
α and parametrizations x(t) and y(t) of C such that, for each t , the angle
between the chord connecting x(t) to y(t) and C is α at both ends.

Assuming that C is not a circle, E. Gutkin completely characterized the
angles α for which such a curve exists in the Euclidean case. We study the
infinitesimal version of this problem in the context of the other two constant
curvature geometries, and in particular, we provide a complete characteri-
zation of the angles α for which there exists a nontrivial infinitesimal defor-
mation of a circle through such curves with corresponding angle α. We also
consider a discrete version of this property for Euclidean polygons, and in
this case, we give a complete description of all nontrivial solutions.

1. Introduction

Given a smooth, convex oriented closed curve C in the Euclidean plane E2 and
x, y ∈ C , x 6= y, let |xy| denote the oriented chord connecting x to y. Motivated
by his study of mathematical billiards, E. Gutkin [1993] asked the following:

Question 1. Assume the existence of parametrizations x(t) and y(t) of C such
that, for each t ,

(1) x ′(t), y′(t) 6= 0;

(2) x(t) 6= y(t);

(3) there exists α ∈ (0, π] such that both angles between C and |x(t)y(t)| equal α.

Then if C is not a circle, what are all possible values of α?
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Gutkin provides a complete answer to Question 1 by establishing the following
necessary and sufficient condition for α: there exists an integer k ≥ 2 such that

(1-1) k tanα = tan(kα);

see [Gutkin 1993; 2012; Tabachnikov 1995]. In particular, only a countable number
of values of the angle α are possible.

In terms of billiards, the billiard ball map on the interior of C has a horizontal
invariant circle given by the condition that the angle made by the trajectories with
the boundary of the table is equal to α. This statement can also be interpreted in
terms of capillary floating with zero gravity in neutral equilibrium; see [Finn 2009;
Finn and Sloss 2009].

We call a curve satisfying this equiangular chord property a Gutkin curve; we
will refer to the corresponding angle α as the contact angle.

We generalize Gutkin’s theorem in two directions: to curves in the standard
2-sphere S2 and the hyperbolic plane H2 and to polygons in E2 via a discretized
version of Question 1. For S2 and H2, we consider the following infinitesimal
version of Gutkin’s question:

Question 2. In either H2 or S2, for which angles α are there nontrivial infinitesimal
deformations of a radius-R circle through Gutkin curves with contact angle α?

Here, a nontrivial deformation of a circle is a deformation that does not corre-
spond to a circle solution (of a different radius).

Our first result yields an answer to Question 2:

Theorem 1.1. Assume that a circle of radius R in S2 or in H2 admits a nontrivial
infinitesimal deformation through Gutkin curves with contact angle α. Define
angles c via

cot c = cos R cotα

in the spherical case and
cot c = cosh R cotα

in the hyperbolic case. Then there exists k ∈ N, k ≥ 2, such that

k tan c = tan kc.

Thus, as in the Euclidean case, only a countable number of values of the contact
angle α are possible for a given radius R.

Note that, in the Euclidean plane, Gutkin curves with contact angle α = π/2 are
precisely the curves of constant width; the same holds in the spherical and hyperbolic
settings; see [Leichtweiss 2005] for curves of constant width in non-Euclidean
geometries.
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Figure 1. Gutkin (6, 2)-gon and (12, 4)-gon.

In Section 4, we consider the following analog of Gutkin’s theorem for polygons
in E2. Let P be a convex n-gon with vertices {v0, . . . , vn−1} in their cyclic order.
For k ∈ N, 2≤ k ≤ n/2, a k-diagonal is a straight line segment connecting vertices
of P whose indices differ by k modulo n. Then P is a nontrivial Gutkin (n, k)-gon
if P is not regular and there exists α such that, for any k-diagonal D, both contact
angles between D and P equal α (see Figure 1 for examples). That is, for each i ,

6 vi+1vivi+k = 6 vi+k−1vi+kvi = α,

where 6 vi+1vivi+k denotes the angle between the edge |vi+1vi | and the k-diagonal
|vivi+k |.

Our second result is a complete characterization of the pairs (n, k) for which a
nontrivial Gutkin (n, k)-gon exists:

Theorem 1.2. A nontrivial Gutkin (n, k)-gon in the Euclidean plane exists if and
only if n and k− 1 are not coprime.

Interestingly, the main ingredient of our proof is the Diophantine equation

tan krπ
n

tan π
n
= tan kπ

n
tan rπ

n
,

which is a discrete version of (1-1). This equation also appeared in [Tabachnikov
2006], and it was solved in [Connelly and Csikós 2009].

2. A proof of Gutkin’s theorem in E2

Although the existing proofs of Gutkin’s theorem in E2 [Gutkin 1993; 2012; Tabach-
nikov 1995] are very clear and simple, our goal in this paper is to study the situations
in S2 and H2. Therefore, in this section, we reprove (the necessary part of) Gutkin’s
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Figure 2. Curve 0 with chord xy.

theorem using methods that can be applied to the other constant-curvature settings.
This proof is motivated by the study of integrable billiards by M. Bialy [1993; 2013].

Let γ̃ : R→ R2 be a periodic unit-speed parametrization of a smooth strictly
convex curve 0. For x, y ∈ R, let X and Y be the points γ̃ (x) and γ̃ (y), φ and ψ
the angles made by the chord XY with 0, and L = |XY | the length of the chord,
the generating function of the billiard ball map. See Figure 2.

We have

(2-1)

L x =− cosφ, L y = cosψ,

L xy =
sinφ sinψ

L
, L xx =

sin2 φ

L
− κ(x) sinφ, L yy =

sin2 ψ

L
− κ(y) sinψ,

where κ is the curvature of the curve and subscripts denote partial differentiation;
see, e.g., [Bialy 1993].

We interpret L(x, y) as a function on the torus 0×0. If 0 is a Gutkin curve
with contact angle α, then there exists a curve s on this torus where both angles, φ
and ψ , have the same constant value α.

We seek a reparametrization γ (t (x))= γ̃ (x) so that the values t (x) and t (y) of
the new parameter at the points X and Y differ by a constant: 2c = t (y)− t (x).
Denote d/dt by a prime.

Proposition 2.1. The parameter t is determined by the condition x ′ = a/κ(x),
where a is a constant.

Proof. Since α is constant as a function of t ,

(2-2) 0= L xt = L xx x ′+ L xy y′ and 0= L yt = L xy x ′+ L yy y′.

This implies that L xx L yy = L2
xy along our curve, and substituting from (2-1), we

have

(2-3)
sinα
κ(x)
+

sinα
κ(y)

= L .
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We compute y′/x ′ from (2-1)–(2-3),

y′

x ′
=−

L xy

L yy
=

sinα
κ(y)L − sinα

=
κ(x)
κ(y)

,

which implies the claim. �

Since the curvature is the rate of turning of the direction of the curve, Proposition
2.1 defines (up to a multiplicative coefficient) the angular parameter along the curve.
Note that 0≤ x ≤ L(γ ) and 0≤ t ≤ T , where T is the upper bound of t and L(γ )
is the length of γ . It follows that

T =
∫ T

0
dt = 1

a

∫ L(γ )

0
κ(x) dx .

Choose a = 1 to make T = 2π , which agrees with the angle. Then c = α.
In view of Proposition 2.1, we set

f1 := f (t −α)=
sinα
κ(x)

and f2 := f (t +α)=
sinα
κ(y)

.

From (2-3), we have

L =
κ(x) sinα+ κ(y) sinα

κ(x)κ(y)
= f1+ f2.

It follows that L ′ = f ′1+ f ′2. By the chain rule, we have

L x x ′+ L y y′ = cotα( f2− f1)= f ′1+ f ′2,

and therefore,

(2-4) f ′(t +α)+ f ′(t −α)= cotα( f (t +α)− f (t −α)).

Since f (t) is a function with period 2π , using the Fourier expansion, we obtain
f (t)=

∑
bkeikt , where bk ∈ C and b−k = bk . Thus,

f (t ±α)=
∑

bke±ikαeikt and f ′(t ±α)=
∑

bkike±ikαeikt .

Let LHS be the left-hand side of (2-4) and RHS the right-hand side. It follows that

LHS=
∑

bkik(eikα
+ e−ikα)eikt and RHS= cotα

∑
bk(eikα

− e−ikα)eikt .

Equating both sides, we have

bk(k cos kα− cotα sin kα)= 0.

For k = 1, this automatically holds, and if bk 6= 0 for some k ≥ 2, then

k tanα = tan kα.
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If the curve is a circle, then f (t) is constant and all bk = 0, and if the curve is
not a circle, then bk 6= 0 for some k ≥ 1. It remains to show that b1 = 0.

Recall that x is arc length and t is the angular parameter on the curve γ . Then
γx = (cos t, sin t) and dt/dx = κ . Therefore,

γt =
1
κ
(cos t, sin t) and

∫ 2π

0
γt dt = 0.

Hence, ∫ 2π

0

cos t
κ

dt =
∫ 2π

0

sin t
κ

dt = 0;

that is, the function f is L2-orthogonal to the first harmonics. Hence, f has no first
harmonics in the Fourier expansion; that is, b1 = 0.

3. Infinitesimal analogs of Gutkin’s theorem in S2 and H2

We prove Theorem 1.1 in detail for S2. The hyperbolic case being analogous, we
only indicate the necessary changes.

Let γ be a Gutkin curve, and as before, let x and y be arc length parameters.
Then φ and ψ should have constant value, namely, the contact angle α. By [Bialy
2013], we have the following formulas for the first and second partials of L (valid
along the curve s ⊂ 0×0):

(3-1)

L x =− cosα, L y = cosα,

L xy =
sin2 α

sin L
, L xx =

sin2 α

tan L
− κ(x) sinα, L yy =

sin2 α

tan L
− κ(y) sinα.

(The function κ is the geodesic curvature of the curve.) Once again, we seek a
parametrization on the curve such that the values of the parameter at points x and y
differ by a constant: t (y)= t (x)+ 2c.

Proposition 3.1. The desired parametrization γ (t) is given by the equation

x ′ =
a√

κ2(x)+ sin2 α
,

where a is a constant.

Proof. Equation (2-2) holds along our curve as before, so L xx L yy = L2
xy . Substitute

from (3-1) to obtain the equation

(3-2)
(
κ(x)−

sinα
tan L

)(
κ(y)−

sinα
tan L

)
=

sin2 α

sin2 L
.
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Then we can compute y′/x ′ from (2-2),

(3-3)
y′

x ′
=−

L xx

L xy
=

(
κ(x)−

sinα
tan L

)
sin L
sinα

=

√
κ(x)−

sinα
tan L√

κ(y)−
sinα
tan L

,

with the last equality due to (3-2). Next, we claim that

(3-4)

√
κ(x)−

sinα
tan L√

κ(y)−
sinα
tan L

=

√
κ2(x)+ sin2 α√
κ2(y)+ sin2 α

,

which, along with (3-3), implies the statement of the proposition.
It remains to prove (3-4). Rewrite (3-2) as

κ(x)κ(y)−
sinα
tan L

(κ(x)+ κ(y))− sin2 α = 0,

and multiply by κ(y)− κ(x) to obtain

κ(x)κ2(y)−
sinα
tan L

κ2(y)+ κ(x) sin2 α = κ2(x)κ(y)−
sinα
tan L

κ2(x)+ κ(y) sin2 α,

or (
κ(x)−

sinα
tan L

)
(κ2(y)+ sin2 α)=

(
κ(y)−

sinα
tan L

)
(κ2(x)+ sin2 α).

This implies (3-4). �

We choose a in such a way that

(3-5) T = 1
a

∫ L(γ )

0

√
κ2(x)+ sin2 α dx = 2π

in order to make Fourier expansion more convenient.
Define a function f on the curve by

(3-6) cot f =
κ

sinα
.

Remark 3.2. The meaning of the function f is illustrated in Figure 3. Let O be
the center of the osculating circle at point x ∈ γ , and let R be its radius. Then
cot R = κ(x). Drop the perpendicular from O to the segment xy. Then we have a
right triangle Px O with an angle π/2−α. Solving a right spherical triangle yields
cot|Px | sinα = cot R. Hence, f = |Px |.

Denote by f1 and f2 the values of this function at points y and x .
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Figure 3. Geometric interpretation of the function f .

Proposition 3.3. One has

(3-7) a cotα(sin f1− sin f2)= f ′1+ f ′2.

Proof. First, note that Proposition 3.1 and (3-6) imply that

(3-8) x ′ =
a sin f
sinα

.

Next, as before, L xx L yy = L2
xy , and substituting from (3-1), we obtain

cot L =
κ(x)κ(y)− sin2 α

κ(x) sinα+ κ(y) sinα
.

Substituting κ(x) and κ(y) from (3-6) yields

cot L =
cot f1 cot f2− 1
cot f1+ cot f2

= cot( f1+ f2).

Thus, L = f1+ f2, and hence, L ′ = f ′1+ f ′2. By the chain rule,

L ′ = L x x ′L y y′ =
a cosα
sinα

(sin f1− sin f2),

where the last equality is due to (3-1) and (3-8). This implies the statement. �

Remark 3.4. Equation (3-7) appeared in [Tabachnikov 2006] in a study of a differ-
ent rigidity problem also related to a flotation problem (Ulam’s problem on bodies
that float in equilibrium in all positions) and to a problem of bicycle kinematics.

Equation (3-7) is an analog of (2-4), but unlike the Euclidean case, it is nonlinear,
and we do not know how to solve it. Thus, we resort to linearization of the problem,
that is, start from a circle γ0 of radius R and then deform it to find infinitesimal
solutions.
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Write f1(t)= f (t + c) and f2(t)= f (t − c), where the constant c depends on
the Gutkin curve and the contact angle (in the Euclidean case, c = α). For a circle
on S2, we compute the relation between R, α and c and the value of a.

Lemma 3.5. One has

cosα =
cos c√

sin2 R cos2 c+ cos2 R
or equivalently cot c = cos R cotα,

and

a =
√

cos2 R+ sin2 α sin2 R.

Proof. The circle of radius R is parametrized as

γ0(t)= (sin R cos t, sin R sin t, cos R),

where t ∈ [0, 2π ]. We need to find the angle α made by the geodesic segment
[γ0(−c), γ0(c)] with this circle.

The great circle through points γ0(−c) and γ0(c) is the parametric curve

0(s)=
cos c√

sin2 R cos2 c+ cos2 R
(sin R cos c, 0, cos R)+ sin s(0, 1, 0),

and 0(s0) = γ0(c) for sin s0 = sin R sin c. It remains to compute the velocity
vectors d0(s)/ds and dγ0(t)/dt , evaluate them at s = s0 and t = c, respectively,
and compute the angle between these vectors. This straightforward computation
yields the first formula of the lemma. A calculation using trigonometric identities
yields the simpler, equivalent, formula.

To obtain the formula for a, note that the length and the geodesic curvature of
the circle γ0 are equal to 2π sin R and cot R, respectively. Then (3-5) yields the
result. �

Remark 3.6. A referee pointed out that this lemma can be proved, in a simpler
way, by applying formulas of spherical trigonometry to the spherical triangle X P O
in Figure 3.

Now we are ready for the proof of Theorem 1.1 in the spherical case. Let γ0 be a
circle of radius R. Then the function f is a constant satisfying cot f = cot R/ sinα
(see (3-6)), and the constants c and a are as in Lemma 3.5. Consider an infinitesimal
deformation of the curve in the class of Gutkin curves with the contact angle α.
Then f , c and a deform as

f 7→ f + εg(t), c 7→ c+ εδ, a 7→ a+ εβ,
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where g(t) is a 2π -periodic function and all the previous relations hold. Substitute
into (3-7):

(a+ εβ) cotα
(
sin( f + εg(t + c+ εδ))− sin( f + εg(t − c− εδ))

)
= ε(g′(t + c+ εδ)+ g′(t − c− εδ)).

Computing modulo ε2 yields

a cotα cos f (g(t + c)− g(t − c))= g′(t + c)+ g′(t − c).

As before, this implies that, if g(t) is not a constant (which would correspond to a
trivial deformation to a circle of possibly different radius), then

k cos kc = a cotα cos f sin kc

for each k for which the Fourier coefficient bk 6= 0. Substituting the values of the
constants f and a and eliminating α using Lemma 3.5 yields, after a straightforward,
albeit tedious, computation,

k cos kc = cot c sin kc or k tan c = tan kc.

For k = 1, this formula holds for all c, and it remains to explain the condition
k ≥ 2 in the formulation of the theorem. The next proposition shows that the first
Fourier coefficient b1 vanishes.

Proposition 3.7. The function g(t) is L2-orthogonal to the first harmonics; that is,
its Fourier expansion does not contain cos t and sin t .

Proof. Let ϕ and θ be the spherical coordinates. Recall that the spherical metric is
sin2 θ dϕ2

+ dθ2. The unperturbed curve γ0(t), the circle of latitude of radius R,
has the coordinates (t, R). Consider its infinitesimal deformation

γε(t)= (t + ε f (t), R+ εg(t)),

where f and g are 2π-periodic functions. The curvature of γ0 is cot R. Let
cot R+εk(t) be the curvature of γε. Here and below, all computations are modulo ε2.

Due to (3-6),

sinα cot( f + εg(t))= cot R+ εk(t);

hence, up to a constant multiplier, g = k. We shall compute k(t) and show that it is
free from first harmonics.

We shall use Liouville’s formula for curvature of a curve in an orthogonal
coordinate system (u, v); see, e.g., [do Carmo 1976]. Recall this formula. Let ψ
be the angle made by the curve with the curves v = const, let Ku and Kv be the
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geodesic curvatures of the coordinate curves v = const and u = const and let x be
the arc length parameter on the curve. Then the curvature of the curve is

(3-9)
dψ
dx
+ Ku cosψ + Kv sinψ.

Here u and v are the longitude and latitude, so Kv = 0 and Ku(ϕ, θ)= cot θ .
Since

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

one has

γε =
(
sin R cos t + ε(g(t) cos R cos t − f (t) sin R sin t),

sin R sin t + ε(g(t) cos R sin t + f (t) sin R cos t), cos R− εg(t) sin R
)
.

Then

γ ′ε=
(
− sin R sin t+ε(−g cos R sin t+g′ cos R cos t− f sin R cos t− f ′ sin R sin t),

sin R cos t + ε(g cos R cos t + g′ cos R sin t − f sin R sin t + f ′ sin R cos t),

−εg′ sin R
)
.

It follows that

|γ ′ε| = sin R+ ε(g cos R+ f ′ sin R).

The angle ψ between γ ′ε and the circles of latitude is infinitesimal. Therefore,
cosψ = 1 (modulo ε2). Using the formula for γ ′ε, one computes this angle:

ψ =−ε
g′(t)
sin R

.

(The minus sign is due to the fact that increasing g pushes the curve down to the
equator.) Hence,

dψ
dx
=
ψ ′

x ′
=
ψ ′

|γ ′ε|
= −ε

g′′(t)

sin2 R
.

Finally,

cot θ = cot(R+ εg(t))= cot R− ε
g(t)

sin2 R
.

Now (3-9) implies that, up to a constant factor, k(t) = g(t)+ g′′(t). Since the
differential operator d2/dx2

+ 1 “kills” the first harmonics, the result follows. �

This concludes the proof in the spherical case.
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For the case of H2, we apply a similar method, so we briefly describe the
differences. The formulas for the partials of L read [Bialy 2013]

L x =− cosα, L y = cosα,

L xy =
sin2 α

sinh L
, L xx =

sin2 α

tanh L
− κ(x) sinα, L yy =

sin2 α

tanh L
− κ(y) sinα.

The parametrization of a Gutkin curve is given by xt = a/
√
κ(x)2− sin2 α,

where the constant a is normalized so that the parameter t takes values in [0, 2π ].
One defines the function f (t) by coth f = κ/ sinα, and as before, one obtains a
difference-differential equation

a cotα(sinh f1− sinh f2)= f ′1+ f ′2.

Analogs of Lemma 3.5 hold:

cosα =
cos c√

cosh2 R− sinh2 R cos2 c
or equivalently cot c = cosh R cotα

and
a =

√
cosh2 R− sin2 α sinh2 R.

The computations in Euclidean space R3 involving the unit sphere are replaced
by similar computations in the Minkowski space R1,2 involving a hyperboloid of
two sheets, used as a model of H2.

4. Gutkin polygons

Refer to the introduction for the definition of a Gutkin (n, k)-gon. Let G(n, k)
denote the set of all Gutkin (n, k)-gons. Given P ∈ G(n, k), it will be convenient
to think of P as being embedded in the complex plane C. Let li denote the side
length, |vi+1− vi |.

Notice that if n = 2k, for every index i , one has i − k = i + k. Therefore, in
this case, each vertex is the end point of exactly one diagonal. If n 6= 2k, then
i − k 6= i + k, so each vertex is the endpoint of two diagonals. In this case, for
each vi , we call the angle between the two diagonals βi ; i.e., βi = 6 vi−kvivi+k .

The first two propositions in this section will establish basic geometric properties
of a Gutkin (n, k)-gon.

Proposition 4.1. Given n and k, the associated contact angle is equal to π(k−1)/n
for any Gutkin (n, k)-gon.

Proof. Let P ∈G(2k, k) for some k≥2. For each i , 6 vi+kvivi+1= 6 vi+kvivi−1=α.
Then all interior angles of P are equal to 2α. Since the sum of the interior angles
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Figure 4. Two Gutkin polygons with angles labeled. Left: Gutkin
(6, 3)-gon. Right: Gutkin (6, 2)-gon.

of any n-gon is equal to π(n − 2), we have α = π(n − 2)/(2n), which is equal
to π(k− 1)/n.

Now assume that n 6= 2k. First, note that the sum of the interior angles of the
Gutkin polygon equals (n− 2)π and also equals

n−1∑
i=0

βi + 2nα;

see Figure 4. Therefore,

(4-1) α =
π(n− 2)−

∑n−1
i=0 βi

2n
.

For fixed n and k, let P ∈ G(n, k). For 1≤ j ≤ gcd(n, k), define the polygon

Q j = v jv j+kv j+2k · · · v j+(nk/ gcd(n,k))−1.

Two examples of the Q j are shown in Figure 5. Note that the sides of Q j are the
diagonals of P . The vertices of all Q j form a disjoint partition of {v0, v1, . . . , vn−1}

into gcd(n, k) subsets of equal size. Thus, the sum of the interior angles of all Q j

is
∑n−1

i=0 βi .
Each Q j is a star polygon with the number of vertices N = n/ gcd(n, k) and the

turning number W = k/ gcd(n, k). The sum of the interior angles of such a polygon
equals π(N − 2W ), that is, π(n− 2k)/ gcd(n, k). One has gcd(n, k) polygons Q j ;
hence, the total sum of their exterior angles is π(n− 2k). Substituting into (4-1)
yields the result. �

Proposition 4.2. In a Gutkin (n, k)-gon, the interior angles associated to vertices vi

and vi+k−1 are equal for all i .
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Figure 5. Polygons Q0 on two Gutkin polygons. Left: Q0 for a
Gutkin (12, 4)-gon. Right: Q0 for a Gutkin (14, 6)-gon.

Proof. Consider the self-intersecting quadrilateral Bi = vivi+kvi+k+1vi+1; see
Figure 6. Let wi denote the intersection point of the two diagonals, vivi+k and
vi+1vi+k+1. Notice that Bi is comprised of two triangles meeting atwi . The opposite
angles at wi are equal, and the angle at vi and vi+k+1 is equal to α. Therefore, the
angles at vi+1 and vi+k are equal, which are also equal to α+βi+1 and α+βi+k ,
respectively. Then βi+1 = βi+k . Since the interior angle associated to any v j is
equal to 2α+β j , the desired result follows. �

Corollary 4.3. If n and k− 1 are coprime, then any P ∈ G(n, k) is equiangular.

v0 v1

v2

v3

v4

v5
v6v7

v8

v9

v10

v11

w4

Figure 6. A Gutkin (12, 4)-gon. The shaded region is B4.
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w1

v1

x1

v2

x2

v3y0v4

y1

v5

y2

v0 x0

Figure 7. A Gutkin (6, 3)-gon with side lengths labeled. The
shaded region is B1.

The case n = 2k is special in that Gutkin polygons abound (in the continuous
case, this corresponds to the contact angle π/2, that is, when Gutkin curves are
curves of constant width). Let Rn

+
be the positive orthant.

Proposition 4.4. The dimension of the space of Gutkin (2k, k)-gons, considered
modulo similarities, equals k − 2. This quotient space is the intersection of a
(k− 2)-dimensional affine subspace with an open cube in Rk .

Proof. Let P be a Gutkin (2k, k)-gon. Consider the diagonals vivi+k and vi+1vi+k+1

of G(2k, k); see Figure 7. Let wi denote the intersection of these two diagonals,
and let Bi be the bow-tie-shaped polygon vivi+1vi+k+1vi+k . Notice that 4vivi+1wi

and 4vi+k+1vi+kwi are both isosceles triangles and are similar.
Thus, viwi = vi+1wi and vi+kwi = vi+k+1wi . Hence, the diagonals vivi+k and

vi+1vi+k+1 have equal length. Since i is arbitrary and the indices are circular, all
diagonals have the same length, say, h. Since h is just a scaling factor, we set h = 1
for the remainder of the proof.

Notice that P is comprised of k polygons Bi . Let xi denote the length of vivi+1

for 0≤ i ≤ k− 1, and let yi denote the length of vi+kvi+k+1, where 0≤ i ≤ k− 1.
Note that xi and yi denote the lengths of the nonintersecting sides of Bi .

Assume that v0 is at the origin and v1 lies on the positive x axis, and recall that
the vertices are labeled in counterclockwise order. This factors out the action of the
isometry group of the plane. We shall show that x0, . . . , xk−1 uniquely determine
y0, . . . , yk−1 and study the condition that these sides form a closed polygon.

Since the diagonals have fixed length equal to 1, one has yi = 2 cosα− xi . Also,
vk is at the point (cosα, sinα). Viewing the sides of G(2k, k) as vectors, the i-th
side is xi (cos iθ, sin iθ), where θ = π − 2α = π/k, and the sum of these vectors
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must be equal to vk . Thus,

(4-2)
k−1∑
i=0

xi (cos iθ, sin iθ)= (cosα, sinα).

If the side lengths x0, . . . , xk−1, y0, . . . , yk−1 form a closed polygon, then the sides
with lengths yi must start at vk and end at v0. In other words, the side lengths satisfy

(4-3) vk +

k−1∑
i=0

yi (cos(π + iθ), sin(π + iθ))= v0.

Simplifying the left-hand side yields

(cosα, sinα)+
k−1∑
i=0

yi (− cos iθ,− sin iθ)

= (cosα, sinα)−
k−1∑
i=0

(2 cosα− xi )(cos iθ, sin iθ)

= (cosα, sinα)− 2 cosα
k−1∑
i=0

(cos iθ, sin iθ)+
k−1∑
i=0

xi (cos iθ, sin iθ)

= (cosα, sinα)− 2 cosα(1, tanα)+ (cosα, sinα)= (0, 0)= v0.

Thus, (4-2) implies (4-3).
Hence, G(2k, k) is determined by the k-tuple x0, . . . , xk−1 satisfying the two lin-

ear equations (4-2). In addition, 0< xi < 2 cosα for all i . This implies the result. �

Next we consider other equiangular cases.

Proposition 4.5. The quotient space of the space of equiangular Gutkin (n, k)-gons
by the group of similarities is identified with the intersection of an M-dimensional
affine subspace with Rn

+
, where M is equal to the number of positive integers

2≤ r ≤ n− 2 satisfying the equation

(4-4) tan krπ
n

tan π
n
= tan kπ

n
tan rπ

n
.

Proof. Let P ∈ G(n, k) be embedded in the complex plane with v0 = 0 and v1 on
the positive real axis. Let xi = |vi+1 − vi | for 0 ≤ i ≤ k − 1 be the side lengths
of P . Let ω = exp(2π/n). Notice that vi+1 − vi = xiω

i , and a diagonal can be
represented as

(4-5) vi+k − vi = aiω
i+m,
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where ai ∈ R, ai > 0 and m = (k− 1)/2. Notice that in this representation,

arg(vi+1− vi )= (2π i)/n,

arg(vi+k − vi+k−1)= 2π(i + k− 1)/n,

arg(vi+k − vi )= π(2i + k− 1)/n.

Then
6 vi+1vivi+k = 6 vi+k−1vi+kvi = π(k− 1)/n = α.

Moreover,

vi+k − vi = (vi+k − vi+k−1)+ (vi+k−1− vi+k−2)+ · · ·+ (vi+1− vi )

= ωi+k−1xi+k−1+ω
i+k−2xi+k−2+ · · ·+ω

i xi

= ωi xi +ω
i+1xi+1+ · · ·+ω

i+k−1xi+k−1.

From (4-5), vi+k − vi is also equal to aiω
i+m . Thus,

aiω
i+m
= ωi xi +ω

i+1xi+1+ · · ·+ω
i+k−1xi+k−1

ai = ω
−m xi +ω

1−m xi+1+ · · ·+ω
k−1−m xk−1.

Using ai − ai = 0, one has

(ω−m
−ωm)xi + (ω

1−m
−ωm−1)xi+1+ · · ·+ (ω

k−1−m
−ωm−k+1)xk−1 = 0.

This gives a system of n linear equations on variables xi . The coefficient matrix, A,
is a circulant matrix where the first row is equal to(
ω−m
−ωm ω1−m

−ωm−1
· · · ωk−1−m

−ωm−k+1 0 0 · · · 0
)
.

Then the eigenvalues of A are

(4-6) λr =

k−1∑
ν=0

(ων−m
−ωm−ν)ωνr

;

see [Davis 1979].
We expect one of the eigenvalues to be equal to zero because we have not

factorized by scaling yet. If no other eigenvalue equals zero, then only trivial
solutions exist. Now, we compute λr in three cases: r = 0, r = 1 or r = n− 1, and
2≤ r ≤ n− 2.

For r = 0, we have

λ0 = ω
−m

k−1∑
ν=0

ων −ωm .
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Let h be equal to |ωi
+· · ·+ωi+k

|. By rotational symmetry, h does not vary with i .
Now evaluating the above equation,

λ0 = hω−mωm
− hωmω−m

= 0.

Thus, for r = 0, A has eigenvalue λ0 equal to zero.
Assume that λr is equal to zero for some other r . Set (4-6) to zero and simplify:

(4-7)
k+1∑
ν=0

ω(r+1)ν
= ωk−1

k−1∑
ν=0

ω(r−1)ν .

For r = 1, (4-7) can be written as kωk−1
=
∑k−1

ν=0 ω
2ν . Then k =

∣∣∑k−1
ν=0 ω

2ν
∣∣.

This is true only if the ω2ν are collinear, which is clearly not the case. Thus, λ1 6= 0
and likewise for r = n− 1.

For 2≤ r ≤ n− 2, using geometric series, we can rewrite (4-7) as

(4-8)
ωk(r+1)

− 1
ωr+1− 1

= ωk−1ω
k(r−1)

− 1
ωr−1− 1

.

After expanding this equation in terms of sines and cosines and using trigonometric
identities, one rewrites it as (4-4). For any solution r , one obtains λr = 0. This
implies the claim. �

We are ready to prove Theorem 1.2.
If n and k−1 are coprime, then a Gutkin polygon is equiangular by Corollary 4.3.

Connelly and Csikós [2009] show that a solution to (4-4) for integer values 1< k
and r < n/2 must satisfy k+ r = n/2 and n | (k− 1)(r − 1). Since n and k− 1 are
coprime, there are no solutions. Note also that, if r is a solution, so is n−r . Thus, by
Proposition 4.5, the matrix A has corank 1 and the Gutkin polygon must be regular.

It remains to construct a nontrivial Gutkin polygon for noncoprime n and
k− 1. Let p = gcd(n, k − 1) and q = n/p. Choose angles θ1, . . . , θp such that
θ1+ · · ·+ θp = 2π/q. Divide a unit circle into q equal parts, and divide each of
these equal arcs into p arcs of lengths θ1, . . . , θp in this order. One obtains an
inscribed n-gon. See Figure 8 for n = 8 and k = 3.

Lemma 4.6. The constructed n-gon is a Gutkin polygon.

Proof. The angular measure of an inscribed angle is half that of the subtended arc.
It follows that

6 vi+1vivi+k = 6 vi+k−1vi+kvi =
θ1+ · · ·+ θp

2
=
π

q
. �

Since the choice of the angles θ1, . . . , θp was arbitrary, we obtain a (p − 1)-
parameter family of pairwise nonsimilar Gutkin polygons.
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Figure 8. Constructing a nontrivial Gutkin polygon.

Acknowledgments

This work was done during the Summer@ICERM 2013 program, and it is a result
of collaboration between undergraduate students and their advisors. We are grateful
to ICERM for its support and hospitality. Most of the figures in this paper were
made in Cinderella 2.0. We would like to thank Michael Bialy, Peter J. Lu and
Charles Grinstead for interesting discussions. Tabachnikov was supported by NSF
grant DMS-1105442. We are grateful to the referees for their numerous helpful
suggestions.

References

[Bialy 1993] M. Bialy, “Convex billiards and a theorem by E. Hopf”, Math. Z. 214:1 (1993), 147–154.
MR 94i:58105 Zbl 0790.58023

[Bialy 2013] M. Bialy, “Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane”,
Discrete Contin. Dyn. Syst. 33:9 (2013), 3903–3913. MR 3038045 Zbl 06224541

[do Carmo 1976] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice Hall,
Englewood Cliffs, NJ, 1976. MR 52 #15253 Zbl 0326.53001

[Connelly and Csikós 2009] R. Connelly and B. Csikós, “Classification of first-order flexible regular
bicycle polygons”, Studia Sci. Math. Hungar. 46:1 (2009), 37–46. MR 2011d:52042 Zbl 1240.11057

[Davis 1979] P. J. Davis, Circulant matrices, Wiley, New York, 1979. MR 81a:15003 Zbl 0418.15017

[Finn 2009] R. Finn, “Floating bodies subject to capillary attractions”, J. Math. Fluid Mech. 11:3
(2009), 443–458. MR 2011c:76038 Zbl 1184.76631

[Finn and Sloss 2009] R. Finn and M. Sloss, “Floating bodies in neutral equilibrium”, J. Math. Fluid
Mech. 11:3 (2009), 459–463. MR 2011c:76039 Zbl 1184.76634

[Gutkin 1993] E. Gutkin, “Billiard tables of constant width and dynamical characterization of the
circle”, in Penn State Workshop Proceedings (College Park, PA, 1993), 1993.

http://dx.doi.org/10.1007/BF02572397
http://msp.org/idx/mr/94i:58105
http://msp.org/idx/zbl/0790.58023
http://dx.doi.org/10.3934/dcds.2013.33.3903
http://msp.org/idx/mr/3038045
http://msp.org/idx/zbl/06224541
http://msp.org/idx/mr/52:15253
http://msp.org/idx/zbl/0326.53001
http://dx.doi.org/10.1556/SScMath.2008.1074
http://dx.doi.org/10.1556/SScMath.2008.1074
http://msp.org/idx/mr/2011d:52042
http://msp.org/idx/zbl/1240.11057
http://msp.org/idx/mr/81a:15003
http://msp.org/idx/zbl/0418.15017
http://dx.doi.org/10.1007/s00021-008-0268-z
http://msp.org/idx/mr/2011c:76038
http://msp.org/idx/zbl/1184.76631
http://dx.doi.org/10.1007/s00021-008-0269-y
http://msp.org/idx/mr/2011c:76039
http://msp.org/idx/zbl/1184.76634


324 TARIK AOUGAB, XIDIAN SUN, SERGE TABACHNIKOV AND YUWEN WANG

[Gutkin 2012] E. Gutkin, “Capillary floating and the billiard ball problem”, J. Math. Fluid Mech.
14:2 (2012), 363–382. MR 2925114 Zbl 1294.76075

[Leichtweiss 2005] K. Leichtweiss, “Curves of constant width in the non-Euclidean geometry”, Abh.
Math. Sem. Univ. Hamburg 75 (2005), 257–284. MR 2007a:52012 Zbl 1090.52008

[Tabachnikov 1995] S. Tabachnikov, Billiards, Panor. Synth. 1, Société Mathématique de France,
Paris, 1995. MR 96c:58134 Zbl 0833.58001

[Tabachnikov 2006] S. Tabachnikov, “Tire track geometry: variations on a theme”, Israel J. Math.
151 (2006), 1–28. MR 2007d:37091 Zbl 1124.52005

Received November 5, 2013.

TARIK AOUGAB

DEPARTMENT OF MATHEMATICS

YALE UNIVERSITY

10 HILLHOUSE AVENUE

NEW HAVEN, CT 06510
UNITED STATES

tarik.aougab@yale.edu

XIDIAN SUN

DEPARTMENT OF MATHEMATICS

WABASH COLLEGE

301 WEST WABASH AVENUE

CRAWFORDSVILLE, IN 47933
UNITED STATES

xsun15@wabash.edu

SERGE TABACHNIKOV

DEPARTMENT OF MATHEMATICS

PENN STATE UNIVERSITY

UNIVERSITY PARK, PA 16802
UNITED STATES

and

INSTITUTE FOR COMPUTATIONAL AND EXPERIMENTAL RESEARCH IN MATHEMATICS

BROWN UNIVERSITY

BOX 1995
PROVIDENCE, RI 02912
UNITED STATES

tabachni@math.psu.edu

YUWEN WANG

DEPARTMENT OF MATHEMATICS

CORNELL UNIVERSITY

310 MALOTT HALL

ITHACA, NY 14853
UNITED STATES

ywang@math.cornell.edu

http://dx.doi.org/10.1007/s00021-011-0071-0
http://msp.org/idx/mr/2925114
http://msp.org/idx/zbl/1294.76075
http://dx.doi.org/10.1007/BF02942046
http://msp.org/idx/mr/2007a:52012
http://msp.org/idx/zbl/1090.52008
http://www.math.psu.edu/tabachni/Books/billiardsbook.pdf
http://msp.org/idx/mr/96c:58134
http://msp.org/idx/zbl/0833.58001
http://dx.doi.org/10.1007/BF02777353
http://msp.org/idx/mr/2007d:37091
http://msp.org/idx/zbl/1124.52005
mailto:tarik.aougab@yale.edu
mailto:xsun15@wabash.edu
mailto:tabachni@math.psu.edu
mailto:ywang@math.cornell.edu


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 274 No. 2 April 2015

257On Demazure and local Weyl modules for affine hyperalgebras
ANGELO BIANCHI, TIAGO MACEDO and ADRIANO MOURA

305On curves and polygons with the equiangular chord property
TARIK AOUGAB, XIDIAN SUN, SERGE TABACHNIKOV and
YUWEN WANG

325The well-posedness of nonlinear Schrödinger equations in Triebel-type
spaces

SHAOLEI RU and JIECHENG CHEN

355Hypersurfaces with constant curvature quotients in warped product
manifolds

JIE WU and CHAO XIA

373The first terms in the expansion of the Bergman kernel in higher
degrees

MARTIN PUCHOL and JIALIN ZHU

405Determinant rank of C∗-algebras
GUIHUA GONG, HUAXIN LIN and YIFENG XUE

437Motion by mixed volume preserving curvature functions near spheres
DAVID HARTLEY

451Homomorphisms on infinite direct products of groups, rings and
monoids

GEORGE M. BERGMAN

497The virtual first Betti number of soluble groups
MARTIN R. BRIDSON and DESSISLAVA H. KOCHLOUKOVA

0030-8730(201504)274:2;1-1

Pacific
JournalofM

athem
atics

2015
Vol.274,N

o.2


	1. Introduction
	2. A proof of Gutkin's theorem in E2
	3. Infinitesimal analogs of Gutkin's theorem in S2 and H2
	4. Gutkin polygons
	Acknowledgments
	References
	
	

