Vol. 275, No. 1, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Surfaces in $\mathbb{R}^3_{+}$ with the same Gaussian curvature induced by the Euclidean and hyperbolic metrics

Nilton Barroso and Pedro Roitman

Vol. 275 (2015), No. 1, 19–37
Abstract

We show how to construct infinitely many immersions into the upper half-space such that the Gaussian curvatures induced from the ambient Euclidean and hyperbolic metrics coincide. We show how these immersions are related geometrically to classical minimal surfaces in Euclidean space and timelike minimal surfaces in Minkowski space.

Keywords
minimal surfaces, Euclidean geometry, hyperbolic geometry, Gaussian curvature, Monge–Ampère equations
Mathematical Subject Classification 2010
Primary: 53A10, 53A35
Secondary: 35L70, 35J96
Milestones
Received: 16 May 2013
Revised: 28 July 2014
Accepted: 13 November 2014
Published: 12 April 2015
Authors
Nilton Barroso
Departamento de Matemática
Universidade de Brasília
70910-900 Brasilia, DF
Brazil
Pedro Roitman
Departamento de Matemática
Universidade de Brasília
70910-900 Brasilia, DF
Brazil