ON A CONJECTURE OF ERDŐS AND CERTAIN DIRICHLET SERIES

TAPAS CHATTERJEE AND M. RAM MURTY
ON A CONJECTURE OF ERDŐS AND CERTAIN DIRICHLET SERIES

TAPAS CHATTERJEE AND M. RAM MURTY

Let \(f : \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z} \) be such that \(f(a) = \pm 1 \) for \(1 \leq a < q \), and \(f(q) = 0 \). Then Erdős conjectured that \(\sum_{n \geq 1} f(n)/n \neq 0 \). For \(q \) even, it is easy to show that the conjecture is true. The case \(q \equiv 3 \pmod{4} \) was solved by Murty and Saradha. In this paper, we show that this conjecture is true for 82% of the remaining integers \(q \equiv 1 \pmod{4} \).

1. Introduction

In a written communication with Livingston, Erdős made the following conjecture (see [Livingston 1965]): if \(f \) is a periodic arithmetic function with period \(q \) and

\[
f(n) = \begin{cases}
\pm 1 & \text{if } q \nmid n, \\
0 & \text{otherwise},
\end{cases}
\]

then

\[L(1, f) = \sum_{n=1}^{\infty} \frac{f(n)}{n} \neq 0 \]

where the \(L \)-function \(L(s, f) \) associated with \(f \) is defined by the series

(1)

\[
L(s, f) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.
\]

In 1973, Baker, Birch and Wirsing, using Baker’s theory of linear forms in logarithms, proved the conjecture for \(q \) prime [Baker et al. 1973, Theorem 1]. In 1982, Okada [1982] established the conjecture if \(2\varphi(q) + 1 > q \). Hence, if \(q \) is a prime power or a product of two distinct odd primes, the conjecture is true. In 2002, R. Tijdeman [2002] proved the conjecture is true for periodic completely multiplicative functions \(f \). Saradha and Tijdeman [2003] showed that if \(f \) is

\[\text{Research of the first author was supported by a postdoctoral fellowship at Queen’s University, and that of the second by an NSERC Discovery grant and a Simons fellowship.} \]

\[\text{MSC2010: primary 11M06, 11M41; secondary 11M20.} \]

\[\text{Keywords: Erdős conjecture, Okada’s criterion, nonvanishing of Dirichlet series.} \]
periodic and multiplicative with $|f(p^k)| < p - 1$ for every prime divisor p of q and every positive integer k, then the conjecture is true.

It is easy to see that

$$L(1, f) = \sum_{n=1}^{\infty} \frac{f(n)}{n}$$

exists if and only if $\sum_{n=1}^{q} f(n) = 0$. If q is even and f takes values ± 1 with $f(q) = 0$, then $\sum_{n=1}^{q} f(n) \neq 0$. Hence the conjecture holds for even q.

In 2007, Murty and Saradha [2007] proved that if q is odd and f is an odd integer-valued odd periodic function then the conclusion of the conjecture holds. In 2010, they proved that the Erdős conjecture is true if $q \equiv 3 \pmod{4}$ [Murty and Saradha 2010, Theorem 7]. Thus the conjecture is open only in cases where $q \equiv 1 \pmod{4}$. However, it seems that a novel idea will be needed to deal with these cases. In this paper, we adopt a new density-theoretic approach which is orthogonal to earlier methods. Here is the main consequence of our method:

Theorem 1.1. Let $S(X) = |\{q \equiv 1 \pmod{4}, q \leq X | \text{Erdős conjecture is true for } q\}|$. Then

$$\liminf_{X \rightarrow \infty} \frac{S(X)}{X/4} \geq 0.82.$$

In other words, the Erdős conjecture is true for at least 82% of the integers $q \equiv 1 \pmod{4}$. Our method does not extend to show that the Erdős conjecture is true for 100% of the moduli $q \equiv 1 \pmod{4}$. We examine this question briefly at the end of the paper. It seems to us that more ideas are needed to resolve the conjecture fully.

These questions have a long history beginning with Baker, Birch and Wirsing [Baker et al. 1973]. Their work was generalized by Gun, Murty and Rath [Gun et al. 2012] to the setting of algebraic number fields. The paper [Chatterjee and Murty 2014] gives new proofs of some of the background results of this area. We also refer the reader to [Tijdeman 2002] for an expanded survey of the early history.

2. Notations and preliminaries

From now onwards, we denote the field of rationals by \mathbb{Q}, the field of algebraic numbers by $\overline{\mathbb{Q}}$, Euler’s totient function by φ and Euler’s constant by γ. We say a function f is Erdősian modulo q if f is a periodic function with period q and

$$f(n) = \begin{cases}
\pm 1 & \text{if } q \nmid n, \\
0 & \text{otherwise.}
\end{cases}$$
Also we will write $f(X) \lessapprox g(X)$ to mean
\[
\limsup_{X \to \infty} \frac{f(X)}{g(X)} \leq 1.
\]
Similarly, we write $f(x) \gtrapprox g(x)$ to mean
\[
\liminf_{X \to \infty} \frac{f(X)}{g(X)} \geq 1.
\]

2A. **Okada's criterion.**

Proposition 2.1. Let the q-th cyclotomic polynomial Φ_q be irreducible over the field $\mathbb{Q}(f(1), \ldots, f(q))$. Let $M(q)$ be the set of positive integers which are composed of prime factors of q. For any integer r and prime p, let $v_p(r)$ be the exponent of p dividing r.

Then $L(1, f) = 0$ if and only if the following conditions are satisfied:
\[
\sum_{m \in M(q)} \frac{f(am)}{m} = 0 \quad \text{for every } a \text{ with } 1 \leq a < q \text{ and } (a, q) = 1, \text{ and}
\]
\[
\sum_{r=1 \atop (r,q)>1}^{q} f(r) \epsilon(r, p) = 0 \quad \text{for every prime divisor } p \text{ of } q,
\]
where
\[
\epsilon(r, p) = \begin{cases}
 v_p(r) & \text{if } v_p(r) < v_p(q), \\
 v_p(q) + \frac{1}{p-1} & \text{otherwise}.
\end{cases}
\]

This proposition is a modification, due to Saradha and Tijdeman [2003], of a result of Okada [1986]. Note that Okada deduced the sufficient condition $2\varphi(q) + 1 > q$ stated in the introduction from his original version of this criterion.

2B. **Wirsing’s theorem.** The following proposition is due to Wirsing [1961].

Proposition 2.2. Let f be a nonnegative multiplicative arithmetic function, satisfying
\[
|f(p)| \leq G \text{ for all primes } p,
\]
\[
\sum_{p \leq X} p^{-1} f(p) \log p \sim \tau \log X,
\]
with some constants $G > 0$, $\tau > 0$ and
\[
\sum_{p} \sum_{k \geq 2} p^{-k} |f(p^k)| < \infty;
\]
if $0 < \tau \leq 1$, then, in addition, the condition

$$\sum_{p} \sum_{k \geq 2} |f(p^k)| = O(X/\log X)$$

is assumed to hold. Then

$$\sum_{n \leq X} f(n) = (1 + o(1)) \frac{X}{\log X} e^{-\gamma \tau} \prod_{p \leq X} \left(1 + \frac{f(p)}{p} + \frac{f(p^2)}{p^2} + \cdots \right).$$

2C. Mertens’ theorem

We also need a classical theorem of Mertens in a later section. We record the theorem here (see, for example, [Murty 2008, page 130]):

Proposition 2.3. \[
\lim_{X \to \infty} \frac{\log X}{\prod_{p \leq X} \left(1 - \frac{1}{p}\right)} = e^{-\gamma}.
\]

3. Exceptions to the conjecture of Erdős

We say that the Erdős conjecture is false modulo q, if there is an Erdősian function f for which $L(1, f) = 0$. The following proposition plays a fundamental role in our approach.

Proposition 3.1. If the Erdős conjecture is false modulo q with q odd, then

$$1 \leq \sum_{d \mid q, d \geq 3} \frac{1}{\varphi(d)}.$$

Proof. By the hypothesis, there is an Erdősian function $f \pmod{q}$ for which, we have $L(1, f) = 0$. Applying Okada’s criterion, we get

$$\sum_{b \in M(q)} \frac{f(b)}{b} = 0.$$

Let $d = (b, q)$, so that $b = db_1$ with $(b_1, q/d) = 1$. Then (2) can be written as

$$-f(1) = \sum_{d \mid q, d \geq 3} \frac{1}{d} \sum_{b_1 \in M(q)} \frac{f(db_1)}{b_1}.$$

Taking absolute value of both sides, we get

$$1 \leq \sum_{d \mid q, d \geq 3} \frac{1}{d} \sum_{b_1 \in M(d)} \frac{1}{b_1}.$$
Notice that the inner sum can be written as
\[
\sum_{b_1 \in \mathcal{M}(d)} \frac{1}{b_1} = \prod_{p | d} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right) = \prod_{p | d} \left(1 - \frac{1}{p}\right)^{-1} = \frac{d}{\varphi(d)}.
\]

Hence from (3), we get
\[
1 \leq \sum_{\substack{d | q \geq 3}} \frac{1}{\varphi(d)}.
\]

Corollary 3.2. If q is a prime power or a product of two distinct odd primes, then the Erdős conjecture is true modulo q.

Proof. This is a pleasant elementary exercise. \hfill \Box

Hence we have recovered the two basic cases of the conjecture which were given in the introduction, of course, also as a consequence of Okada’s criterion.

Let $d(n)$ be the divisor function, that is, $d(n)$ is the number of divisors of n.

Corollary 3.3. If the smallest prime factor of q is at least $d(q)$, then the Erdős conjecture is true for q.

Proof. Let l be the smallest prime factor of q. From the above proposition, if the Erdős conjecture is false modulo q, then we have
\[
1 \leq \sum_{\substack{d | q \geq 3}} \frac{1}{\varphi(d)} < \frac{1}{\varphi(l)} \sum_{\substack{d | q \geq 3}} 1 = \frac{d(q) - 2}{l - 1},
\]
the strict inequality in the penultimate step coming from the fact that q has at least two prime divisors. Thus, $l < d(q)$. Hence if $l \geq d(q)$, then the Erdős conjecture is true modulo q. \hfill \Box

Note that, Corollary 3.3 was not known previously. It implies that the conjecture is true for any squarefree number q with k prime factors, provided the smallest prime factor of q is greater than 2^k. Proposition 3.1 opens the door for a new approach to the study of Erdős’s conjecture. Let us consider the following:

\[
S_1(X) = |\{q \equiv 1 \pmod{4}, q \leq X \mid \text{Erdős conjecture is false modulo } q\}|.
\]
Then, we have
\[S_1(X) \leq \sum_{q \leq X \ (\text{mod} \ 4)} \sum_{d | q, d \geq 3} \frac{1}{\varphi(d)} \leq \sum_{3 \leq d \leq X \ (\text{odd})} \frac{1}{\varphi(d)} \sum_{q \leq X \ (\text{mod} \ 4)} \frac{1}{d | q} \leq \sum_{3 \leq d \leq X \ (\text{odd})} \frac{1}{\varphi(d)} \left(\frac{X}{4d} + O(1) \right) \leq \sum_{3 \leq d \leq X \ (\text{odd})} \frac{1}{\varphi(d)} \left(\frac{X}{4d} + O\left(\sum_{3 \leq d \leq X} \frac{1}{\varphi(d)} \right) \right) \]
\[\leq \sum_{d \leq X \ (\text{odd})} \frac{1}{\varphi(d)} \frac{X}{4d} + O(\log X), \]
where we have used the well-known fact that (see, for example, [Murty 2008, page 67])
\[\sum_{d \leq X} \frac{1}{\varphi(d)} = O(\log X). \]

Hence, we get
\[S_1(X) \leq \frac{X}{4} \sum_{d \leq X \ (\text{odd})} \frac{1}{d \varphi(d)} \leq \frac{X}{4} \left(\prod_{p \text{ odd}} \left(1 + \frac{1}{p \varphi(p)} + \frac{1}{p^2 \varphi(p^2)} + \cdots \right) - 1 \right) \]
\[\leq \frac{X}{4} \left(\prod_{p \text{ odd}} \left(1 + \frac{1}{p(p-1)} + \frac{1}{p^3(p-1)} + \cdots \right) - 1 \right) \]
\[\leq \frac{X}{4} \left(\prod_{p \text{ odd}} \left(1 + \frac{1}{p(p-1)} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \cdots \right) \right) - 1 \right) \]
\[\leq \frac{X}{4} \left(\prod_{p \text{ odd}} \left(1 + \frac{p}{(p-1)(p^2-1)} \right) - 1 \right). \]

The product is easily computed numerically and we have \(S_1(X) \lesssim 0.33(X/4) \). The following is an immediate corollary.

Corollary 3.4. \(|\{q \equiv 1 \ (\text{mod} \ 4), q \leq X\ | \text{Erdős conjecture is true for } q\}| \gtrsim 0.67 \frac{X}{4} \).

3A. Refinement using the second moment. By considering higher moments, we can improve the lower bound in the above corollary. We begin with the second moment. We include these estimates since they are of independent interest and self contained.

Proposition 3.5. \(|\{q \equiv 1 \ (\text{mod} \ 4), q \leq X\ | \text{Erdős conjecture is true for } q\}| \gtrsim 0.78 \frac{X}{4} \).
Proof. Let us first consider the following inequality:

$$S_1(X) \leq \sum_{q \leq X \atop q \equiv 1 \pmod{4}} \left(\sum_{d | q \atop d \geq 3} \frac{1}{\varphi(d)} \right)^2$$

$$\leq \sum_{q \leq X \atop q \equiv 1 \pmod{4}} \sum_{3 \leq d_1, d_2 < q \atop d_1 | q, d_2 | q} \frac{1}{\varphi(d_1)\varphi(d_2)}$$

$$\leq \sum_{3 \leq d_1, d_2 \leq X \atop d_1, d_2 \text{ odd}} \frac{1}{\varphi(d_1)\varphi(d_2)} \sum_{q \leq X \atop q \equiv 1 \pmod{4}} \frac{1}{d_1 | q, d_2 | q}$$

$$\leq \sum_{3 \leq d_1, d_2 \leq X \atop d_1, d_2 \text{ odd}} \frac{1}{\varphi(d_1)\varphi(d_2)} \left(\frac{X}{4[d_1, d_2]} + O(1) \right).$$

Hence, we have

$$S_1(X) \leq \frac{X}{4} \sum_{3 \leq d_1, d_2 \leq X \atop d_1, d_2 \text{ odd}} \frac{1}{\varphi(d_1)\varphi(d_2)[d_1, d_2]} + O(\log^2 X).$$

By a simple numerical calculation, we deduce that

$$S_1(X) \lesssim 0.22 \frac{X}{4}.$$

Hence the conjecture holds for at least 78% of the positive integers congruent to 1 (mod 4).

Similarly one can compute higher fractional moments to get an optimal result. For any $r > 1$, we have

$$S_1(X) \leq \sum_{q \leq X \atop q \equiv 1 \pmod{4}} \left(\sum_{d | q \atop d \geq 3} \frac{1}{\varphi(d)} \right)^r.$$

We study this as a function of r. Using Maple we computed that the minimal value occurs at $r \sim 3.85^1$ and we get

$$S_1(X) \lesssim 0.18 \frac{X}{4}.$$

Thus, we get $|\{q \equiv 1 \pmod{4}, q \leq X| \text{Erdős conjecture is true for } q\}| \gtrsim 0.82 \frac{X}{4}$, that is,

$$\liminf_{X \to \infty} \frac{S(X)}{X/4} \geq 0.82.$$

Hence, we have shown Theorem 1.1: the conjecture holds for at least 82% of the numbers congruent to 1 (mod 4).

3B. An alternative approach. In this subsection, we discuss an alternative approach to this problem. It leads to a slightly weaker result. However this method is of independent interest, so we record it here. We begin with a further refinement of Proposition 3.1 by considering fractional moments there. From Proposition 3.1, if the Erdős conjecture is false for odd q, then

$$1 \leq \sum_{d \mid q \atop d \geq 3} \frac{1}{\varphi(d)}.$$

Adding 1 to both sides of the above inequality, we get

$$2 \leq \sum_{d \mid q} \frac{1}{\varphi(d)},$$

which can be rewritten as

$$1 \leq \frac{1}{2} \sum_{d \mid q} \frac{1}{\varphi(d)}.$$

Hence for any $\alpha > 0$, Proposition 3.1 can be rewritten as follows.

Proposition 3.6. If Erdős conjecture is false for odd q, then

$$1 \leq \frac{1}{2^\alpha} \left(\sum_{d \mid q} \frac{1}{\varphi(d)} \right)^\alpha.$$

As before, $S_1(X) = |\{q \equiv 1 \pmod{4}, q \leq X| \text{Erdős conjecture is false for } q\}|$. Then from the above proposition, we get

$$S_1(X) \leq \frac{1}{2^\alpha} \sum_{q \leq X \atop q \equiv 1 \pmod{4}} \left(\sum_{d \mid q} \frac{1}{\varphi(d)} \right)^\alpha.$$

Let $f_\alpha(q) = \left(\sum_{d \mid q} 1/\varphi(d) \right)^\alpha$ and χ be the nontrivial Dirichlet character mod 4. Then the above inequality becomes

$$(4) \quad S_1(X) \leq \frac{1}{2^\alpha+1} \left(\sum_{q \leq X \atop q \text{ odd}} f_\alpha(q) + \sum_{q \leq X \atop q \text{ odd}} \chi(q) f_\alpha(q) \right).$$
Again, note that $f_{\alpha}(q)$ is a multiplicative arithmetic function. One can check that it also satisfies all the other hypotheses of Wirsing’s theorem (Proposition 2.2) with $G = 2^\alpha$ and $\tau = 1$. So in light of Wirsing’s theorem, we get

$$\sum_{q \leq X \atop q \text{ odd}} f_{\alpha}(q) \sim X \frac{e^{-\gamma}}{\log X} \prod_{p \leq X \atop p \neq 2} \left(1 + \frac{f_{\alpha}(p)}{p} + \frac{f_{\alpha}(p^2)}{p^2} + \ldots\right)$$

and

$$\sum_{q \leq X \atop q \text{ odd}} \chi(q)f_{\alpha}(q) \sim X \frac{e^{-\gamma}}{\log X} \prod_{p \leq X \atop p \neq 2} \left(1 + \frac{\chi(p)f_{\alpha}(p)}{p} + \frac{\chi(p^2)f_{\alpha}(p^2)}{p^2} + \ldots\right).$$

Again, from Mertens theorem we know that

$$\prod_{p \leq X} \left(1 - \frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\log X}.$$

Hence we have

$$\sum_{q \leq X \atop q \text{ odd}} f_{\alpha}(q) \sim \frac{X}{2} \prod_{p \leq X \atop p \neq 2} \left(1 - \frac{1}{p}\right) \left(1 + \frac{f_{\alpha}(p)}{p} + \frac{f_{\alpha}(p^2)}{p^2} + \ldots\right)$$

$$\sim \frac{X}{2} p_1 \text{ (say)}$$

and

$$\sum_{q \leq X \atop q \text{ odd}} \chi(q)f_{\alpha}(q) \sim \frac{X}{2} \prod_{p \leq X \atop p \neq 2} \left(1 - \frac{1}{p}\right) \left(1 + \frac{\chi(p)f_{\alpha}(p)}{p} + \frac{\chi(p^2)f_{\alpha}(p^2)}{p^2} + \ldots\right)$$

$$\sim \frac{X}{2} p_2 \text{ (say)}.$$

Now using the above two inequalities, (4) becomes

$$S_1(X) \lesssim \frac{X}{2^{\alpha+2}} (p_1 + p_2).$$

Finally, using Maple\footnote{Code available at www.mast.queensu.ca/~murty/maplecode.pdf.} we find that the quantity on the right hand side is minimized at $\alpha \sim 8.11$ and we get

$$S_1(X) \lesssim 0.20 \frac{X}{4}.$$
Hence, we get
\[\liminf_{X \to \infty} \frac{S(X)}{X/4} \geq 0.80. \]

Remarks. One cannot hope to obtain 100% by these methods. In fact, one can show that there is a positive density (albeit small) of \(q \) for which the inequality of Proposition 3.1 holds. Indeed, since
\[
\sum_{d|q} \frac{1}{\varphi(d)} \geq \prod_{p|q} \left(1 + \frac{1}{p-1}\right)
\]
we can make the product (and hence the sum) arbitrarily large by ensuring that \(q \) is divisible by all the primes in an initial segment. We can even ensure that these primes are congruent to 1 (mod 4). We then take numbers which are divisible by this \(q \) and congruent to 1 (mod 4) and deduce that for all these numbers, the inequality in the proposition holds. Since the product on the right diverges slowly to infinity as we go through such numbers \(q \), we obtain in this way a small density of numbers for which the inequality holds.

Acknowledgements

We thank Michael Roth for his help on using the Maple language as well as Sanoli Gun, Purusottam Rath and Ekata Saha for their comments on an earlier version of this paper. We also thank the referee for helpful comments that improved the quality of the paper.

References

Received February 20, 2014. Revised November 5, 2014.

TAPAS CHATTERJEE
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROPAR
NANGAL ROAD
PUNJAB 140001
INDIA

tapasc@iitrpr.ac.in

M. RAM MURTY
DEPARTMENT OF MATHEMATICS & STATISTICS
QUEEN’S UNIVERSITY
KINGSTON ON K7L3N6
CANADA

murty@mast.queensu.ca
Constant-speed ramps

OSCAR M. PERDOMO

Surfaces in \mathbb{R}^3_+ with the same Gaussian curvature induced by the Euclidean and hyperbolic metrics

NILTON BARROSO and PEDRO ROITMAN

Cohomology of local systems on the moduli of principally polarized abelian surfaces

DAN PETERSEN

On certain dual q-integral equations

OLA A. ASHOUR, MOURAD E. H. ISMAIL and ZEINAB S. MANSOUR

On a conjecture of Erdős and certain Dirichlet series

TAPAS CHATTERJEE and M. RAM MURTY

Normal forms for CR singular codimension-two Levi-flat submanifolds

XIANGHONG GONG and JIRI LEBL

Measurements of Riemannian two-disks and two-spheres

FLORENT BALACHEFF

Harmonic maps from \mathbb{C}^n to Kähler manifolds

JIANMING WAN

Eigenvarieties and invariant norms

CLAUS M. SORENSEN

The Heegaard distances cover all nonnegative integers

RUIFENG QIU, YANQING ZOU and QILONG GUO