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Real-analytic Levi-flat codimension-two CR singular submanifolds are a
natural generalization to Cm, m > 2, of Bishop surfaces in C2. Such sub-
manifolds, for example, arise as zero sets of mixed-holomorphic equations
with one variable antiholomorphic. We classify the codimension-two Levi-
flat CR singular quadrics, and we notice that new types of submanifolds
arise in dimension three or higher. In fact, the nondegenerate submanifolds,
i.e., higher order perturbations of zm D Nz

1
z

2
C Nz2

1
, have no analogue in

dimension two. We prove that the Levi foliation extends through the singu-
larity in the real-analytic nondegenerate case. Furthermore, we prove that
the quadric is a (convergent) normal form for a natural large class of such
submanifolds, and we compute its automorphism group. In general, we find
a formal normal form in C3 in the nondegenerate case that shows infinitely
many formal invariants.
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1. Introduction

Let M � CnC1 be a real submanifold. A fundamental question in CR geometry is
to classify M at a point up to local biholomorphic transformations. One approach
is to find a normal form for M .

A real-analytic hypersurface M � CnC1 is Levi-flat if the Levi form vanishes
identically. Roughly speaking, a Levi-flat submanifold is a family of complex sub-
manifolds. Intuitively, a Levi-flat submanifold is as close to a complex submanifold
as possible. In the real-analytic smooth hypersurface case, it is well known that M
can locally be transformed into the real hyperplane given by

(1) Im z1 D 0:

We therefore focus on higher codimension case, in particular on codimension two.
A codimension-two submanifold is again given by a single equation, but in this case
a complex valued equation. A new phenomenon that appears in codimension two
is that M may no longer be a CR submanifold. Let T cpM � TpM be the largest
subspace with JT cpM D T

c
pM , where J is the complex structure on CnC1. A

submanifold is CR if dimT cpM is constant.
Real submanifolds of dimension nC 1 in CnC1 with a nondegenerate complex

tangent point has been studied extensively after the fundamental work of E. Bishop
[1965]. In C2, he studied the submanifolds

(2) w D z NzC .z2C Nz2/CO.3/;

where  2 Œ0;1� is called the Bishop invariant, with  D1 interpreted as w D
z2CNz2CO.3/. One of Bishop’s motivations was to study the hull of holomorphy of
the real submanifolds by attaching analytic discs. His work on the family of attached
analytic discs has been refined by Kenig and Webster [1982; 1984], Huang and
Krantz [1995], and Huang [1998]. The normal form theory for real submanifolds
for Bishop surfaces or submanifolds was established by Moser and Webster [1983];
see also Moser [1985], Gong [1994a; 1994b; 2004], Huang and Yin [2009a], and
Coffman [2010]. We mention that the Moser–Webster normal form does not deal
with the case of vanishing Bishop invariant.

The formal normal form and its application to holomorphic classification for
surfaces with vanishing Bishop invariant were achieved by Huang and Yin [2009a]
by a completely different method. Real submanifolds with complex tangents have
been studied in other situations. See, for example, [Lebl et al. 2014], where CR
singular submanifolds that are images of CR manifolds were studied. Normal forms
for the quadratic part of general codimension-two CR singular submanifolds in
C3 was completely solved by Coffman [2009]. Huang and Yin [2009b] studied
the normal form for codimension-two CR singular submanifolds of the form w D
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jzj2CO.3/. Dolbeault, Tomassini and Zaitsev [2005; 2011] and Huang and Yin
[2012] studied CR singular submanifolds of codimension-two that are boundaries
of Levi-flat hypersurfaces. Burcea [2013] constructed the formal normal form for
codimension-two CR singular submanifolds approximating a sphere. Coffman
[2006] found an algebraic normal form for nondegenerate CR singular manifolds
in high codimension and one-dimensional complex tangent.

To motivate our work, we observe that in Bishop’s work, the real submanifolds
are Levi-flat away from their CR singular sets. Our purpose is to understand such
submanifolds in higher dimensional case with codimension being exactly two.
Notice that the latter is the smallest codimension for CR singularity to be present
in (smooth) submanifolds. Regarding CR singular Levi-flat real codimension-two
submanifolds on CnC1 as a natural generalization of Bishop surfaces to CnC1, we
wish to find their normal forms. For singular Levi-flat hypersurfaces and related
work on foliations with singularity, see [Bedford 1977; Burns and Gong 1999;
Brunella 2007; Cerveau and Lins Neto 2011; Lebl 2013; Fernández-Pérez 2013].

Our techniques revolve around the study of the Levi map (the generalization of the
Levi form to higher codimension submanifolds) of codimension-two submanifolds.
Extending the CR structure through the singular point via Nash blowup and then
extending the Levi map to this blowup has been studied previously by Garrity
[2000].

A CR submanifold is Levi-flat if the Levi map vanishes identically. Locally,
all CR real-analytic Levi-flat submanifolds of real codimension two can be, after
holomorphic change of coordinates, written as

(3) Im z1 D 0; Im z2 D 0:

If a submanifold M is CR singular, denote by MCR the set of points where M is
CR. We say M is Levi-flat if MCR is Levi-flat in the usual sense. A Levi-flat CR
singular submanifold has no local biholomorphic invariants at the CR points, just
as in the case of Bishop surfaces.

A real, real-analytic codimension-two submanifold that is CR singular at the
origin can be written in coordinates .z; w/ 2 Cn �CD CnC1 as

(4) w D �.z; Nz/

for � that is O.2/. We will be concerned with submanifolds where the quadratic
part in � is nonzero in any holomorphic coordinates. We say that such submanifolds
have a nondegenerate complex tangent. For example, the Bishop surfaces in C2 are
precisely the CR singular submanifolds with nondegenerate complex tangent.

First, let us classify the quadratic parts of CR singular Levi-flats, and in the
process completely classify the CR singular Levi-flat quadrics, that is, those where
� is a quadratic.
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Theorem 1.1. Suppose that M � CnC1, n � 2, is a germ of a real-analytic real
codimension-two submanifold, CR singular at the origin, written in coordinates
.z; w/ 2 Cn �C as

(5) w D A.z; Nz/CB. Nz; Nz/CO.3/;

for quadraticA andB , whereACB 6�0 (nondegenerate complex tangent). Suppose
that M is Levi-flat (that is, MCR is Levi-flat).

(i) If M is a quadric, then M is locally biholomorphically equivalent to one and
exactly one of the following:

w D Nz21 ;(A.1)

w D Nz21 C Nz
2
2 ;(A.2)

:::

w D Nz21 C Nz
2
2 C � � �C Nz

2
n;(A.n)

w D jz1j
2
C  Nz21 ;  � 0;(B. )

w D Nz1z2;(C.0)

w D Nz1z2C Nz
2
1 :(C.1)

(ii) If M is real-analytic, then the quadric

(6) w D A.z; Nz/CB.z; Nz/

is Levi-flat, and can be put via a biholomorphic transformation into exactly
one of the forms above.

By part (ii), the quadratic part in (5) is an invariant of M at a point. We say the
type of M at the origin is A.x, B. , or C.x depending on the type of the quadratic
form. Following Bishop, we call types B. and A.1 Bishop-like, and we could
think of  D1 as A.1.

By type being stable we mean that the type does not change at all complex
tangents in a neighborhood of the origin under any small (or higher order) per-
turbations that stay within the class of Levi-flat CR singular submanifolds. As a
consequence of Theorem 1.1 and because the rank is lower semicontinuous, we
get that the only types that are stable are A.n and C.1, although A.n are degenerate
because the form A.z; Nz/ is identically zero. See also Proposition 15.1.

The quadrics A.k for k � 2 do not possess a nonsingular foliation extending
the Levi foliation of MCR through the origin. In fact, there is a singular complex
subvariety of dimension one through the origin contained in M . See Section 6.

In the sequel, when we wish to refer to the quadric of certain type we will use
the notation MC:1 to denote the quadric of type C.1.
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The quadratic form A.z; Nz/ carries the “Levi map” of the submanifold. Type C.1
is the unique quadric that is stable and has nonzero A. Having nonzero A is also
stable in a neighborhood of the origin under any small (or higher order) perturbations.
Therefore, we say a type is nondegenerate if it is C.1 and we focus mostly on such
submanifolds. First, we show that submanifolds of type C.x possess a nonsingular
real-analytic foliation that extends the Levi foliation, due to the form A.z; Nz/:

Theorem 1.2. Suppose that M � CnC1, n � 2, is a real-analytic Levi-flat CR
singular submanifold of type C.1 or C.0, that is, M is given by

(7) w D Nz1z2C Nz
2
1 CO.3/ or w D Nz1z2CO.3/:

Then there exists a nonsingular real-analytic foliation defined onM that extends the
Levi foliation on MCR; and consequently, there exists a CR real-analytic mapping
F WU �R2�Cn�1!CnC1 such that F is a diffeomorphism onto F.U /DM \U 0,
for some neighborhood U 0 of zero.

Here the CR structure on R2�Cn�1 is induced from C2�Cn�1. As a corollary
of this theorem we obtain in Section 8 using the results of [Lebl et al. 2014] that the
CR singular set of any type C.1 submanifold is a Levi-flat submanifold of dimension
2n� 2 and CR dimension n� 2.

The Levi foliation on a type C.x submanifold cannot extend to a whole neigh-
borhood of M as a nonsingular holomorphic foliation. If it did, we could flatten
the foliation and M would be a Cartesian product, in particular Bishop-like. Thus,
the study of normal form theory for the special case when the foliation extends to a
neighborhood is reduced to the case of Bishop surfaces, which have been studied
extensively.

A codimension-two submanifold in Cm can arise from

(8) f . Nz0; z00/D 0

for a suitable holomorphic function f in m variables. The zero set admits two
holomorphic foliations. We are interested in the case where one of foliations has
leaves of maximum dimension m � 2, while the other has leaves of minimum
dimension zero. Therefore, we will assume that z0 D z1 and z00 D .z2; : : : ; zm/.
Functions holomorphic in some variables and anti-holomorphic in other variables,
such as (8), are often called mixed-holomorphic or mixed-analytic, and come up
often in complex geometry, the simplest example being the standard inner product.
An interesting feature of the mixed-holomorphic setting is that the equation can be
complexified into Cm, so the sets share some of the properties of complex varieties.
However, they have a different automorphism group if we wish to classify them
under biholomorphic transformations. Such mixed-analytic sets are automatically
real codimension two, are Levi-flat or complex, and may have CR singularities. We
study their normal form in Section 9. See also Theorem 1.3 below.
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When a type C.1 CR singular submanifold has a defining equation that does not
depend on Nz2; : : : ; Nzn we prove that it is automatically Levi-flat, and it is equivalent
to MC:1.

Theorem 1.3. Let M � CnC1, n� 2, be a real-analytic submanifold given by

(9) w D Nz1z2C Nz
2
1 C r.z1; Nz1; z2; z3; : : : ; zn/;

where r is O.3/. Then M is Levi-flat and at the origin and M is locally biholomor-
phically equivalent to the quadric MC:1 submanifold

(10) w D Nz1z2C Nz
2
1 :

The theorem is also true formally; given a formal submanifold of the form (9), it
is formally equivalent to MC:1.

A key idea in the proof of the convergence of the normalizing transformation
is that the form B. Nz; Nz/D Nz21 induces a natural mixed-holomorphic involution on
quadricMC:1. This involution also plays a key role in computing the automorphism
group of the quadric in Theorem 12.4.

Finally, we also compute the automorphism group for the quadric MC:1; see
Theorem 12.4. In particular we show that the automorphism group is infinite-
dimensional.

Not every type C.1 Levi-flat submanifold is biholomorphically equivalent to the
C.1 quadric. We will find a formal normal form for type C.1 Levi-flat submanifolds
in C3 that shows infinitely many formal invariants. Let us give a simplified statement.
For details, see Theorem 14.3.

Theorem 1.4. LetM be a real-analytic Levi-flat type C.1 submanifold in C3. There
exists a formal biholomorphic map transforming M into the image of

(11) y'.z; Nz; �/D .zCA.z; �; w/w�; �; w/

with �D NzC 1
2
� and w D Nz�C Nz2. Here AD 0, or A satisfies certain normalizing

conditions.
When A 6D 0, the formal automorphism group preserving the normal form is finite

or one-dimensional.

We do not know if the formal normal form above can be achieved by convergent
transformations, even if AD 0.

2. Invariants of codimension-two CR singular submanifolds

Before we impose the Levi-flat condition, let us find some invariants of codimension-
two CR singular submanifolds in CnC1 with CR singularity at zero. Such a
submanifold, locally near the origin, can be put into the form

(12) w D A.z; Nz/CB. Nz; Nz/CO.3/;
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where .z; w/ 2 Cn �C and A and B are quadratic forms. We think of A and B as
matrices and z a column vector and write the forms as z�Az and z�B Nz respectively.
The matrix B is not unique. Hence we make B symmetric to make the choice of
the matrix B canonical. The following proposition is not difficult and well known.
Since the details are important and will be used later, let us prove:

Proposition 2.1. A biholomorphic transformation of (12) taking the origin to itself
and preserving the form of (12) takes the matrices .A;B/ to

(13) .�T �AT; �T �BT /;

for T 2 GLn.C/ and � 2 C�. If .F1; : : : ; Fn; G/ D .F;G/ is the transformation,
then the linear part of G is ��1w and the linear part of F restricted to z is Tz.

Let us emphasize that A is an arbitrary complex matrix and B is symmetric, but
not necessarily Hermitian.

Proof. Let .F1; : : : ; Fn; G/D .F;G/ be a change of coordinates taking

(14) w D zA.z; Nz/C zB. Nz; Nz/CO.3/D �.z; Nz/

to

(15) w D A.z; Nz/CB. Nz; Nz/CO.3/:

Then

(16) G.z; �.z; Nz//

DA.F.z; �.z; Nz//; F . Nz; N�. Nz; z///CB.F . Nz; N�. Nz; z//; F . Nz; N�. Nz; z///CO.3/

is true for all z. The right hand side has no linear terms, so the linear terms in G
do not depend on z. That is, G D ��1wCO.2/, where � is a nonzero scalar and
the negative power is for convenience.

Let T D ŒT1; T2� denote the matrix representing the linear terms of F . Here T1
is an n� n matrix and T2 is n� 1. Since the linear terms in G do not depend on
any zj , T1 is nonsingular. Then the quadratic terms in (16) are

(17) ��1. zA.z; Nz/C zB. Nz; Nz//D z�T �1AT1zC z
�T �1BT1 Nz:

In other words as matrices,

(18) zAD �T �1AT1 and zB D �T �1BT 1: �

We will need to at times reduce to the three-dimensional case, and so we need:

Lemma 2.2. Let M � CnC1, n � 3, be a real-analytic Levi-flat CR singular
submanifold of the form

(19) w D A.z; Nz/CB. Nz; Nz/CO.3/;
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where A and B are quadratic. Let L be a nonsingular .n� 2/�n matrix. If ACB
is not zero on the set fLz D 0g, then the submanifold

(20) ML DM \fLz D 0g

is a Levi-flat CR singular submanifold.

Proof. Clearly, if ML is not contained in the CR singularity of M , then ML is a
Levi-flat CR singular submanifold. ML0 is not contained in the CR singularity of
M for a dense open subset of .n� 2/�n matrices L0. If ML is a subset of the CR
singularity of M , pick a CR point p of ML then pick a sequence Ln approaching
L such that MLn

are not contained in the CR singularity of M . As ACB is not
zero on the set fLz D 0g, then ML is not a complex submanifold, and therefore a
CR singular submanifold. As the Levi form of MLn

vanishes at all CR points of
MLn

, the Levi form of ML vanishes at p, so ML is Levi-flat. �

3. Levi-flat quadrics

Let us first focus on Levi-flat quadrics. We will prove later that the quadratic part
of a Levi-flat submanifold is Levi-flat. Let M be defined in .z; w/ 2 Cn �C by

(21) w D A.z; Nz/CB. Nz; Nz/:

Being Levi-flat has several equivalent formulations. The main idea is that the
T .1;0/M � T .0;1/M vector fields are completely integrable at CR points and we
obtain a foliation ofM at CR points by complex submanifolds of complex dimension
n� 1. An equivalent notion is that the Levi map is identically zero; see [Baouendi
et al. 1999]. The Levi map for a CR submanifold defined by two real equations
�1 D �2 D 0 (for �1 and �2 with linearly independent differentials) is the pair of
Hermitian forms

(22) i@N@�1 and i@N@�2;

applied to T .1;0/M vectors. The full quadratic forms i@N@�1 and i@N@�2 of course
depend on the defining equations themselves and are therefore extrinsic information.
It is important to note that for the Levi map we restrict it to T .1;0/M vectors. We
can define these two forms i@N@�1 and i@N@�2 even at a CR singular point p 2M .

These forms are the complex Hessian matrices of the defining equations. For our
quadric M , they are the real and imaginary parts of the .nC 1/� .nC 1/ complex
matrix

(23) zAD

�
A 0

0 0

�
;

where the variables are ordered as .z1; : : : ; zn; w/.
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For M to be Levi-flat, the quadratic form defined by zA has to be zero when
restricted to the (n�1)-dimensional space spanned by T .1;0/p M for every p 2MCR.
In other words, for every p 2MCR,

(24) v� zAv D 0 for all v 2 T .1;0/p M:

The space T .1;0/p M is of dimension n� 1, and furthermore, the vector @=@w is not
in T .1;0/p M . Therefore, z�Az D 0 for z 2 Cn in a subspace of dimension n� 1.

Before we proceed, let us note the following general fact about CR singular
Levi-flat submanifolds:

Lemma 3.1. Suppose that M � CnC1, n� 2, is a Levi-flat connected real-analytic
real codimension-two submanifold, CR singular at the origin. Then there exists a
germ of a complex analytic variety of complex dimension n� 1 through the origin,
contained in M .

Proof. Through each point of MCR there exists a germ of a complex variety of
complex dimension n�1 contained inM . The set of CR points is dense inM . Take
a sequence pk of CR points converging to the origin and take complex varieties of
dimension n� 1, Wk �M with pk 2Wk . A theorem of Fornæss (see [Kohn 1979,
Theorem 6.23] for a proof using the methods of Diederich and Fornæss [1978])
implies that there exists a variety through W �M with 0 2 W and of complex
dimension at least n� 1. �

Let us first concentrate on nD 2, in which case T .1;0/M is one-dimensional at
CR points. Write

(25) AD

�
a11 a12
a21 a22

�
; B D

�
b11 b12
b12 b22

�
:

Note that B is symmetric. A short computation shows that the vector field can be
written as

(26) ˛
@

@w
Cˇ1

@

@z1
Cˇ2

@

@z2
D ˛

@

@w
Cˇ

@

@z
;

where

(27)

ˇ1 D Na21 Nz1C Na22 Nz2C 2 Nb12z1C 2 Nb22z2;

ˇ2 D�Na11 Nz1� Na12 Nz2� 2 Nb11z1� 2 Nb12z2;

˛ D a11 Nz1ˇ1C a21 Nz2ˇ1C a12 Nz1ˇ2C a22 Nz2ˇ2:

MCR is dense in M , since the CR singular set is defined by ˇ1 D ˇ2 D 0. Thus for
M to be Levi-flat we need to check that the following product is identically zero:

(28)
�
ˇ� ˛

� �A 0

0 0

� �
ˇ

˛

�
D ˇ�Aˇ:
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If A is the zero matrix, then M is automatically Levi-flat. We diagonalize B via
T into a diagonal matrix with ones and zeros on the diagonal. We obtain (recall
nD 2) the submanifolds

(29) w D Nz21 or w D Nz21 C Nz
2
2 :

The first submanifold is of the form M �C, where M � C2 is a Bishop surface.
Let us from now on suppose that A 6D 0.
As M is Levi-flat, then through each CR point p D .zp; wp/ 2MCR we have a

complex submanifold of dimension one inM . It is well known that this submanifold
is contained in the Segre variety (see also Section 4)

(30) w D A.z; Nzp/CB. Nzp; Nzp/; wp D A. Nzp; z/CB.z; z/:

By Lemma 3.1 we obtain a complex variety V �M of dimension one through the ori-
gin. Suppose without loss of generality that V is irreducible. V has to be contained
in the Segre variety at the origin, in particular w D 0 on V . Therefore, to simplify
notation, let us consider V to be subvariety of fw D 0g. Denote by V the complex
conjugate of V . Then as V is irreducible, V � V is also irreducible (the smooth
part of V is connected and so is the smooth part of V �V ; see [Whitney 1972]).
Hence, by complexifying, we have A.z; N�/CB. N�; N�/D 0 for all z 2 V and � 2 V .

IfB 6D0, then setting zD0, we haveB. N�; N�/D0 on V . AsB is homogeneous and
V is irreducible, V is a one-dimensional complex line. If B D 0, then A.z; N�/D 0
for z; � 2 V as mentioned above. We consider two cases. Suppose first that everyP2
jD1 aij

N�j is identically zero for all � 2 V and i D 1; 2. Then V is contained in
some complex line

P2
jD1 Naij �j D 0. Suppose now that A.z; N��/ is not identically

zero for some �� 2 V . Then V is contained in the complex line A.z; N��/D 0. This
shows that V is a complex line.

Thus as A.z; Nz/CB. Nz; Nz/ is zero on a one-dimensional linear subspace, we make
this subspace fz1 D 0g and so each monomial in A.z; Nz/CB. Nz; Nz/ is divisible by
either z1 or Nz1. Therefore, A and B are matrices of the form

(31)
�
� �

� 0

�
;

that is, a22 D 0 and b22 D 0.
To normalize the pair .A;B/, we apply arbitrary invertible transformations

.T; �/ 2 GLn.C/�C� as

(32) .A;B/ 7! .�T �AT; �T �BT /:
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Recall that we are assuming that A 6D 0. If a21 D 0 or a12 D 0, then A has rank
one, and via a transformation T of the form

(33) z01 D z1; z02 D z2C cz1 or z02 D z1; z01 D z2C cz1

and rescaling by nonzero �, the matrix A can be put in the form

(34)
�
0 1

0 0

�
or

�
1 0

0 0

�
:

The transformation T and � must also be applied to B and this could possibly make
b22 6D 0. However, we will show that we actually have b22 D 0. Thus B D 0 on
z1 D 0 still holds true.

Let us first focus on

(35) AD

�
1 0

0 0

�
:

We apply the T .1;0/ vector field computed above. Only a11 is nonzero in A.
Therefore ˇ�Aˇ, which must be identically zero, is

(36) 0D ˇ�Aˇ D Ň1ˇ1 D .2 Nb12z1C 2 Nb22z2/.2 Nb12z1C 2 Nb22z2/

D 4.jb12j
2z1 Nz1Cjb22j

2z2 Nz2C b12 Nb22 Nz1z2C Nb12b22z1 Nz2/:

This polynomial must be identically zero and hence all coefficients must be identi-
cally zero. So b12 D 0 and b22 D 0. In other words, only b11 in B can be nonzero,
in which case we make it nonnegative via a diagonal T to obtain the quadric

(37) w D jz1j
2
C  Nz21 ;  � 0:

Next let us focus on

(38) AD

�
0 1

0 0

�
:

As above, we compute ˇ�Aˇ:

(39) 0D ˇ�Aˇ D Ň1ˇ2 D .2 Nb12z1C 2 Nb22z2/.�Nz2� 2 Nb11z1� 2 Nb12z2/

D�2b12 Nz1 Nz2� 2b22 Nb11z1 Nz2� 4 Nb11b12z1 Nz1� 4b12 Nb12 Nz1z2
� 2b22 Nz

2
2 � 4b22

Nb12z2 Nz2:

Again, as this polynomial must be identically zero, all coefficients must be zero.
Hence b12 D 0 and b22 D 0. Again only b11 is left possibly nonzero.

Suppose that b11 6D 0. Then let s be such that b11 Ns2 D 1, and let Nt D 1=Ns. The
matrix T D

�
s
0
0
t

�
is such that T �AT DA and T �BT D

�
1
0
0
0

�
. If b11 D 0, we have
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B D 0. Therefore we have obtained two distinct possibilities for B , and thus the
two submanifolds

(40) w D Nz1z2 or w D Nz1z2C Nz
2
1 :

We emphasize that after A is normalized by a transformation of the form (33),
only one coordinate change is needed to normalize b11 and this coordinate change
preserves A. Both are required in a reduction proof for higher dimensions.

We have handled the rank-one case. Next we focus on the rank-two case, that is,
a21 6D 0 and a12 6D 0 (recall a22 D 0). We normalize (rescale) A to have a12 D 1
and take

(41) AD

�
a11 1

a21 0

�
:

Again, let us compute ˇ�Aˇ. In the computation for the rank-two case, recall that
we have not done any normalization other than rescaling, so we can safely still
assume that b22 D 0,

(42) 0D ˇ�Aˇ D a11 Ň1ˇ1C Ň1ˇ2C a21ˇ1 Ň2

D a11. Na21 Nz1C 2 Nb12z1/. Na21 Nz1C 2 Nb12z1/

C . Na21 Nz1C 2 Nb12z1/.�Na11 Nz1� Nz2� 2 Nb11z1� 2 Nb12z2/

C a21.�Na11 Nz1� Nz2� 2 Nb11z1� 2 Nb12z2/. Na21 Nz1C 2 Nb12z1/

D .�4jb12j
2
� ja21j

2/ Nz1z2C (other terms):

All coefficients must be zero. So a21 D 0, and A would not be rank two.
Let us now focus on n > 2. First suppose that AD 0. Then as before, M is auto-

matically Levi-flat and by diagonalizing B we obtain the n distinct submanifolds

(43)

w D Nz21 ;

w D Nz21 C Nz
2
2 ;

:::

w D Nz21 C Nz
2
2 C � � �C Nz

2
n:

Thus suppose from now on that A 6D 0. As before, we have an irreducible
(n � 1)-dimensional variety V � M through the origin, such that w D 0 and
A.z; Nz/CB. Nz; Nz/D 0 on V .

We wish to show that A.z; Nz/CB. Nz; Nz/D 0 on an (n� 1)-dimensional linear
subspace. For any � 2 V , we obtain A.z; N�/CB. N�; N�/D 0 for all z 2 V . If V is
contained in the kernel of the matrix A�, then V is a linear subspace of dimension
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n� 1. So suppose that N� is not in the kernel of the matrix At . Then for a fixed N�,
we obtain a linear equation A.z; N�/CB. N�; N�/D 0 for z 2 V .

Therefore, as A.z; Nz/C B. Nz; Nz/ needs to be zero on an (n � 1)-dimensional
subspace, we can just make this fz1 D 0g and so each monomial is divisible by
either z1 or Nz1. Therefore, A and B is of the form

(44)

26664
� � � � � �

� 0 � � � 0
:::
:::
: : :

:::

� 0 � � � 0

37775 ;
that is, only first column and first row are nonzero. We normalize A via

(45) .A;B/ 7! .�T �AT; �T �BT /;

as before. We use column operations on all but the first column to make all but the
first two columns have nonzero elements. Similarly we can do row operations on all
but the first two rows to make all but first three rows nonzero. That is,A has the form

(46)

266666664

� � 0 � � � 0

� 0 0 � � � 0

� 0 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

377777775
:

By Lemma 2.2, setting z3 D � � � D zn D 0, we obtain a Levi-flat submanifold
where the matrix corresponding to A is the principal 2� 2 submatrix of A. This
submatrix cannot be of rank two and hence either a12 D 0 or a21 D 0. If a21 D 0
and a12 6D 0, then setting z2 D z3 and z4 D � � � D zn D 0, we again must have a
rank-one matrix and therefore a31 D 0.

Therefore, if a12 6D 0 then all but a11 and a12 are zero. If a12 D 0, then via a
further linear map not involving z1 we can ensure that a31 D 0. In particular, A is
of rank one and can only be nonzero in the principal 2� 2 submatrix. At this point
B is still of the form (44).

Via a linear change of coordinates in the first two variables, the principal 2� 2
submatrix of A can be normalized into one of the two possible forms

(47)
�
1 0

0 0

�
and

�
0 1

0 0

�
:

Recall that AD 0 was already handled.
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Via the two-dimensional computation we obtain that b22 D b12 D b21 D 0. We
use a linear map in z1 and z2 to normalize the principal 2� 2 matrix of B , so that
the submanifold restricted to .z1; z2; w/ is in (B. ), (C.0) or (C.1).

Finally we need to show that all entries of B other than b11 are zero. As we
have done a linear change of coordinates in z1 and z2, B may not be in the form
(44), but we know bjk D 0 as long as j > 2 and k > 2.

Now fix k D 3; : : : ; n. Restrict to the submanifold given by z1 D �z2 for �D 1
or � D �1, and zj D 0 for all j D 3; : : : ; n except for j D k. In the variables
.z2; zk; w/, we obtain a Levi-flat submanifold where the matrix corresponding to
A is

�
�
0
0
0

�
. The matrix corresponding to B is

(48)
�

b11 b1kC�b2k
b1kC�b2k 0

�
:

Via the two-dimensional calculation we have b1kC�b2k D 0. As this is true for
�D 1 and �D�1, we get that b1k D b2k D 0.

We have proved the following classification result. It is not difficult to see that
the submanifolds in the list are biholomorphically inequivalent by Proposition 2.1.
The ranks of A and B are invariants. It is obvious that the A matrix of B. and C.x
submanifolds are inequivalent. Therefore, it is only necessary to directly check that
B. are inequivalent for different  � 0, which is easy.

Lemma 3.2. If M defined in .z; w/ 2 Cn �C, n� 1, by

(49) w D A.z; Nz/CB. Nz; Nz/

is Levi-flat, then M is biholomorphic to one and exactly one of the expressions
(A.1)–(C.1) of Theorem 1.1.

The normalizing transformation used above is linear.

Lemma 3.3. If M , defined by

(50) w D A.z; Nz/CB. Nz; Nz/CO.3/;

is Levi-flat at all points where M is CR, then the quadric

(51) w D A.z; Nz/CB. Nz; Nz/

is also Levi-flat.

Proof. Write M as

(52) w D A.z; Nz/CB. Nz; Nz/C r.z; Nz/;

where r is O.3/.
Let A be the matrix giving the quadratic form A.z; Nz/ as before. The Levi map

is given by taking the n�n matrix
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(53) LD L.p/D AC

�
@2r

@zj @ Nzk

�
j;k

and applying it to vectors in �.T .1;0/M/, where � is the projection onto the fwD0g
plane. That is, we parametrize M by the fw D 0g plane, and work there as before.

Let

(54)

aj D�Azj
�Bzj

� Nrzj
;

b D Az1
CBz1

C Nrz1
;

c D aj .Az1
CBz1

C rz1
/C b.Azj

CBzj
C rzj

/:

Then for j D 2; : : : ; n, we write the T .1;0/ vector fields as

(55) Xj D aj
@

@z1
C b

@

@zj
C c

@

@w
:

Hence

(56) aj
@

@z1
C b

@

@zj

are the vector fields in �.T .1;0/M/.
Notice that aj , b, and c vanish at the origin. Furthermore, if we take the linear

terms of aj , b, and the quadratic terms in c, that is,

(57)

Qaj D�Azj
�Bzj

;

Qb D Az1
CBz1

;

Qc D Qaj .Az1
CBz1

/C Qb.Azj
CBzj

/;

then away from the CR singular set of the quadric,

(58) zXj D Qaj
@

@z1
C Qb

@

@zj
C Qc

@

@w

span the T .1;0/ vector fields on the quadric w D A.z; Nz/CB. Nz; Nz/.
Since M is Levi-flat, then we have that

(59) ��.Xj /
�L��.Xj /D 0:

The terms linear in z and Nz respectively in the expression ��.Xj /�L��.Xj / are

(60) ��. zXj /
�A��. zXj /:

As this is identically zero, the quadric w D A.z; Nz/CB. Nz; Nz/ is Levi-flat. �
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4. Quadratic Levi-flat submanifolds and their Segre varieties

A very useful invariant in CR geometry is the Segre variety. Suppose that a real-
analytic variety X � CN is defined by

(61) �.z; Nz/D 0;

where � is a real-analytic real vector-valued with p 2X . Suppose that � converges
on some polydisc � centered at p. We complexify and treat z and Nz as independent
variables, and the power series of � at .p; Np/ converges on���. The Segre variety
at p is then defined as the variety

(62) Qp D fz 2� W �.z; Np/D 0g:

Of course the variety depends on the defining equation itself and the polydisc �.
For �, it is useful to take the defining equation or equations that generate the ideal
of the complexified X in CN �CN at p. If � is polynomial we take �D CN .

It is well known that any irreducible complex variety that lies in X and goes
through the point p also lies in Qp. In the case of Levi-flat submanifolds, we
generally get equality as germs. For example, for the CR Levi-flat submanifold M
given by

(63) Im z1 D 0; Im z2 D 0;

the Segre variety Q0 through the origin is precisely fz1 D z2 D 0g, which happens
to be the unique complex variety in M through the origin.

Let us take the Levi-flat quadric

(64) w D A.z; Nz/CB. Nz; Nz/:

As we want to take the generating equations in the complexified space we also need
the conjugate

(65) w D A. Nz; z/CB.z; z/:

The Segre variety is then given by

(66) w D 0; NB.z; z/D 0:

Through any CR singular point of a real-analytic Levi-flat M , there is a complex
variety of dimension n� 1 that is the limit of the leaves of the Levi foliation of
MCR, via Lemma 3.1. Let us take all possible such limits, and call their union Q0p .
Notice that there could be other complex varieties in M through p of dimension
n� 1. Note that Q0p �Qp.

Let us write down and classify the Segre varieties for all the quadric Levi-flat
submanifolds in CnC1:
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Type Segre variety Q0 Q0 singular? dimCQ0 Q0 �M ? Q00

A.1 w D 0, z21 D 0 no n� 1 yes Q0

A.k w D 0 yes n� 1 yes Q0z21 C � � �C z
2
k
D 0

B.0 w D 0 no n no w D 0
z1 D 0

B. ,  > 0 w D 0, z21 D 0 no n� 1 yes Q0

C.0 w D 0 no n no w D 0
z1 D 0

C.1 w D 0, z21 D 0 no n� 1 yes Q0

The submanifold C.0 also contains the complex variety fwD 0; z2D 0g, but this
variety is transversal to the leaves of the foliation, and so cannot be in Q00

Notice that in the cases A.k for all k, B. for  > 0, and C.1, the variety Q0
actually gives the complex variety Q00 contained in M through the origin. In these
cases, the variety is nonsingular only in the set theoretic sense. Scheme-theoretically
the variety is always at least a double line or double hyperplane in general.

5. The CR singularity of Levi-flat quadrics

Proposition 5.1. Let M � CnC1 be given by

(67) w D �.z; Nz/;

where � is O.2/, and M is not a complex submanifold. Then the set S of CR
singularities of M is given by

(68) S D f.z; w/ W N@�D 0;w D �.z; Nz/g:

Proof. This is well-known; we give a proof for convenience. In codimension two,
a real submanifold is either CR singular, complex, or generic. A submanifold is
generic if N@ of all the defining equations are pointwise linearly independent (see
[Baouendi et al. 1999]). As M is not complex, to find the set of CR singularities,
we find the set of points where M is not generic. We need both defining equations
for M ,

(69) w D �.z; Nz/ and w D �.z; Nz/:

As the second equation always produces a dw while the first does not, the only
way that the two can be linearly dependent is for the N@ of the first equation to be
zero. In other words, N@�D 0. �

Let us compute and classify the CR singular sets for the CR singular Levi-flat
quadrics:
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Type CR singularity S dimR S CR structure of S

A.k z1 D � � � D zk D 0, w D 0 2n� 2k complex
B.0 z1 D 0, w D 0 2n� 2 complex
B.1
2

z1C Nz1 D 0, w D 0 2n� 1 Levi-flat
B. ,  > 0,  6D 1

2
z1 D 0, w D 0 2n� 2 complex

C.0 z2 D 0, w D 0 2n� 2 complex
C.1 z2C 2 Nz1 D 0, w D�1

4
z22 2n� 2 Levi-flat

By Levi-flat we mean that S is a Levi-flat CR submanifold in fw D 0g. There is
a conjecture that a real subvariety that is Levi-flat at CR points has a stratification
by Levi-flat CR submanifolds. This computation gives further evidence of this
conjecture.

6. Levi foliations and images of generic Levi-flats

A CR Levi-flat submanifold M � Cn of codimension two has a certain canonical
foliation defined on it with complex analytic leaves of real codimension two in M .
The submanifold M is locally equivalent to R2 �Cn�2, defined by

(70) Im z1 D 0; Im z2 D 0:

The leaves of the foliation are the submanifolds given by fixing z1 and z2 at a real
constant. By foliation we always mean the standard nonsingular foliation as locally
comes up in the implicit function theorem. This foliation on M is called the Levi
foliation. It is obvious that the Levi foliation on M extends to a neighborhood of
M as a nonsingular holomorphic foliation. The same is not true in general for CR
singular submanifolds. We say that a smooth holomorphic foliation L defined in a
neighborhood of M is an extension of the Levi foliation of MCR, if L and the Levi
foliation have the same germs of leaves at each CR point of M . We also say that
a smooth real-analytic foliation zL on M is an extension of the Levi foliation on
MCR if zL and the Levi foliation have the same germs of leaves at each CR point of
M . In our situation (real-analytic), MCR is a dense and open subset of M . This
implies that the leaves of L and zL through a CR singular point are complex analytic
submanifolds contained in M . The latter could lead to an obvious obstruction to
extension. First let us see what happens if the foliation of MCR is the restriction of
a nonsingular holomorphic foliation of a whole neighborhood of M .

The Bishop-like quadrics, that is, A.1 and B. in CnC1, have a Levi foliation
that extends as a holomorphic foliation to all of CnC1. That is because these
submanifolds are of the form

(71) N �Cn�1:
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For submanifolds of the form (71) we can find normal forms using the well-
developed theory of Bishop surfaces in C2.

Proposition 6.1. Suppose M � CnC1 is a real-analytic Levi-flat CR singular
submanifold where the Levi foliation on MCR extends near p 2M to a nonsingular
holomorphic foliation of a neighborhood of p in CnC1. Then at p, M is locally
biholomorphically equivalent to a submanifold of the form

(72) N �Cn�1;

where N � C2 is a CR singular submanifold of real dimension two. Therefore if M
has a nondegenerate complex tangent, then it is Bishop-like, i.e., of type A.1 or B. .

Furthermore, two submanifolds of the form (72) are locally biholomorphically
(resp. formally) equivalent if and only if the corresponding N s are locally biholo-
morphically (resp. formally) equivalent in C2.

Proof. We flatten the holomorphic foliation near p so that in some polydisc �, the
leaves of the foliation are given by fqg�Cn�1\� for q 2 C2. Let us suppose that
M is closed in �. At any CR point of M , the leaf of the Levi foliation agrees with
that of the holomorphic foliation and therefore the leaf that lies in M agrees with a
leaf of the form fqg�Cn�1 as a germ and so fqg�Cn�1\��M . AsMCR is dense
inM , thenM is a union of sets of the form fqg�Cn�1\� and the first part follows.

It is classical that every Bishop surface (two-dimensional real submanifold of
C2 with a nondegenerate complex tangent) is equivalent to a submanifold whose
quadratic part is of the form A.1 or B. .

Finally, the proof that two submanifolds of the form (72) are equivalent if and
only if the N s are equivalent is straightforward. �

Not every Bishop-like submanifold is a cross product as above. In fact the Bishop
invariant may well change from point to point. See Section 15. In such cases the
foliation does not extend to a nonsingular holomorphic foliation of a neighborhood.

Let us now focus on extending the Levi foliation toM , and not to a neighborhood
of M . Let us prove a useful proposition about recognizing certain CR singular
Levi-flats from the form of the defining equation. That is, if the r in the equation
does not depend on Nz2 through Nzn.

Proposition 6.2. Suppose that near the origin M � CnC1 is given by

(73) w D r.z1; Nz1; z2; z3; : : : ; zn/;

where r is O.2/ and @r=@ Nz1 6� 0. Then M is a CR singular Levi-flat submanifold
and the Levi foliation of MCR extends through the origin to a real-analytic foliation
onM . Furthermore, there exists a real-analytic CR mapping F WU �R2�Cn�1!

CnC1, F.0/D 0, which is a diffeomorphism onto its image F.U /�M .



134 XIANGHONG GONG AND JIŘÍ LEBL

Near zero, M is the image of a CR mapping that is a diffeomorphism onto its
image of the standard CR Levi-flat. The proposition also holds in two dimensions
(nD 1), although in this case it is somewhat trivial.

Proof. As in [Lebl et al. 2014], let us define the mapping F by

(74) .x; y; �/ 7! .xC iy; �; r.xC iy; x� iy; �//;

where � D .�2; : : : ; �n/ 2 Cn�1. Near points where M is CR, this mapping is a CR
diffeomorphism and hence M must be Levi-flat. Furthermore, since F is a diffeo-
morphism, it takes the Levi foliation on R2�Cn�1 to a foliation onM near zero. �

Lemma 6.3. Let M � CnC1 be a CR singular real-analytic Levi-flat submanifold
of codimension two through the origin.

Then M is a CR singular Levi-flat submanifold whose Levi foliation of MCR

extends through the origin to a nonsingular real-analytic foliation on M if and only
if there exists a real-analytic CR mapping F WU � R2 �Cn�1! CnC1, F.0/D 0,
which is a diffeomorphism onto its image F.U /�M .

Proof. One direction is easy and was used above. For the other direction, suppose
that we have a foliation extending the Levi foliation through the origin. Let us
consider MCR an abstract CR manifold. That is a manifold MCR together with the
bundle T .0;1/MCR�C˝TMCR. The extended foliation on M gives a real-analytic
subbundle W � TM . Since we are extending the Levi foliation, when p 2MCR,
then Wp D T

c
pM , where T cpM D J.T

c
pM/ is the complex tangent space and J is

the complex structure on CnC1. Since MCR is dense in M , then JW DW on M .
Define the real-analytic subbundle V � C˝TM as

(75) Vp D fX C iJ.X/ WX 2Wpg:

At CR points Vp D T
.0;1/
p M (see, for example, [Baouendi et al. 1999, p. 8]). Then

we can find vector fields X1; : : : ; Xn�1 in W such that

(76) X1; J.X1/; X2; J.X2/; : : : ; Xn�1; J.Xn�1/

is a basis of W near the origin. Then the basis for V is given by

(77) X1C iJ.X1/; X2C iJ.X2/; : : : ; Xn�1C iJ.Xn�1/:

As the subbundle is integrable, we obtain that .M;V/ gives an abstract CR manifold,
which at CR points agrees withMCR. This manifold is Levi-flat as it is Levi-flat on a
dense open set. As it is real-analytic, it is embeddable; and hence there exists a real-
analytic CR diffeomorphism from a neighborhood of R2�Cn�1 to a neighborhood
of zero in M (as an abstract CR manifold). This is our mapping F . �
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The quadrics A.k, k � 2, defined by

(78) w D Nz21 C � � �C Nz
2
k;

contain the singular variety defined by w D 0, z21 C � � � C z
2
k
D 0, and hence the

Levi foliation cannot extend to a nonsingular foliation of the submanifold. The
quadric A.1 does admit a holomorphic foliation, but other type A.1 submanifolds
do not in general. For example, the submanifold

(79) w D Nz21 C Nz
3
2

is of type A.1 and the unique complex variety through the origin is 0D z21 C z
3
2 ,

which is singular. Therefore the foliation cannot extend to M .

7. Extending the Levi foliation of type C.x submanifolds

Let us prove Theorem 1.2, that is, let us start with a type C.0 or C.1 submanifold
and show that the Levi foliation must extend real-analytically to all of M . Equiva-
lently, we show that the real-analytic bundle T .1;0/MCR extends to a real-analytic
subbundle of C˝TM . Taking real parts we obtain an involutive subbundle of TM
extending T cMCR D Re.T .1;0/MCR/.

Proof of Theorem 1.2. Let M be the submanifold given by

(80) w D Nz1z2C � Nz
2
1 C r.z; Nz/;

where � D 0; 1. Let us treat the z variables as the parameters on M . Let � be
the projection onto the fw D 0g plane, which is tangent to M at zero as a real 2n-
dimensional hyperplane. We will look at all the vector fields on this plane fw D 0g.
All vectors in �.T .1;0/M/ can be written in terms of @=@zj for j D 1; : : : ; n.

The Levi map is given by taking the n�n matrix

(81) LD L.p/D

2666664
0 1 0 � � � 0

0 0 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

3777775C
�
@2r

@zj @ Nzk

�
j;k

.p/

to vectors v 2 �.T .1;0/M/ (� is the projection) as v�Lv. The excessive term in L
vanishes at zero.

Notice that for p 2MCR, �.T .1;0/p M/ is (n�1)-dimensional. As M is Levi-flat,
then v�Lv vanishes for v 2 �.T .1;0/p M/. Write the vector v D .v1; : : : ; vn/t . The
zero set of the function

(82) .z; v/ 2 Cn �Cn
'
7! v�L.z; Nz/v
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is a variety V of real codimension two at the origin of Cn�Cn because of the form
of L. That is, at z D 0, the only vectors v such that v�Lv D 0 are those where
v1 D 0 or v2 D 0. So the codimension is at least two. And we know that v�Lv
vanishes for vectors in �.T .1;0/p M/ for p 2M near zero, which is real codimension
two at each z corresponding to a CR point. Therefore, V \ .�.MCR/�Cn/ has a
connected component that is equal to a connected component of the real-analytic
subbundle �.T .1;0/MCR/. We will verify that the latter is connected.

We show below that this subbundle extends past the CR singularity. The key point
is to show that the restriction of �.T .1;0/.MCR// extends to a smooth real-analytic
submanifold of T .1;0/Cn. Write

(83) '.z; v/D v1 Nv2C
X

ajk.z/vj Nvk;

where ajk.0/D 0.
By Proposition 5.1, �.M nMCR/ is contained in

(84) z2C 2� Nz1C r Nz1
D 0:

Thus MCR is connected. Assume that v � .@=@z/ 2 T .1;0/p M at a CR point p. Then

(85) .z2C 2� Nz1C r Nz1
/ Nv1C

X
j>1

r Nzj
Nvj D 0:

When p is in the open set Uı � �.MCR/ defined by jz2 C 2� Nz1j > 1
2
jzj and

0 < jzj< ı, v is contained in

(86) VC W jv1j � jvj=C:

When ı is sufficiently small, '.z; v/D 0 admits a unique solution

(87) v1 D f .z; v3; : : : ; vn/; v2 D 1

by imposing v 2 VC . Note that f is given by convergent power series. For jzj< ı,
define

(88) wj D .wj1.z/; : : : ; wjn.z// 2 VC ; j D 2; : : : ; n

such that '.z; wj .z//D 0 and

(89) wj2 D 1; wjk D ıjk; j � 2; k > 2:

To see why we can do so, fix p 2 Uı . First we can find a vector w2 in Ep D
�.T

.1;0/
p MCR/ such that v2D 1. Otherwise, Ep � VC cannot have dimension n�1.

Let E 0p be the vector subspace of Ep with v2 D 0. Then E 0p has rank n� 2 and
remains in the cone VC . Then E 0p has an element w2 with v2 component being one.
Repeating this, we find w2; : : : ; wn in Ep such that the vj component of wi is zero
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for 2 < j < i . Using linear combinations, we find a unique basis fw2; : : : ; wng of
Ep that satisfies condition (89).

Assume that C is sufficiently large. By the above uniqueness assertion on
'.z; v/ D 0, we conclude that when p 2 Uı , fw2.p/; : : : ; wn.p/g is a basis of
�.T

.1;0/
p MCR/. Also it is real analytic at p D 0. Define

(90) !j .z/D wj .z/ �
@

@z
; jzj< ı:

We lift the functions !j via � to a subbundle of C˝ TM ; let us call them z!j .
Then consider the vector fields w�j D 2Re z!j D z!j C z!j and w�nCj D Im z!j for
j D 2; : : : ; n. Above CR points over Uı , zwj is in TMCR˝C and so tangent to M .
We thus obtain a (2n� 2)-dimensional real-analytic subbundle of TM that agrees
with the real-analytic real subbundle of TMCR induced by the Levi foliation above
Uı . Since MCR and the subbundles are real analytic and MCR is connected, they
agree over MCR.

The real-analytic distribution spanned by f!�i g has constant rank 2n� 2 every-
where and is involutive on an open subset of MCR and hence everywhere. �

8. CR singular set of type C.x submanifolds

Let M � CnC1 be a codimension-two Levi-flat CR singular submanifold that is an
image of R2�Cn�1 via a real-analytic CR map, and let S �M be the CR singular
set of M . In [Lebl et al. 2014] it was proved that near a generic point of S , exactly
one of the following is true:

(i) S is a Levi-flat submanifold of dimension 2n� 2 and CR dimension n� 2.

(ii) S is a complex submanifold of complex dimension n � 1 (real dimension
2n� 2).

(iii) S is a Levi-flat submanifold of dimension 2n� 1 and CR dimension n� 1.

We only have the above classification for a generic point of S , and S need not be a
CR submanifold everywhere. See [Lebl et al. 2014] for examples.

If M is a Levi-flat CR singular submanifold and the Levi foliation of MCR

extends to M , then by Lemma 6.3 at a generic point S has to be of one of the above
types. A corollary of Theorem 1.2 is:

Corollary 8.1. Suppose that M � CnC1, n � 2, is a real-analytic Levi-flat CR
singular type C.1 or type C.0 submanifold. Let S �M denote the CR singular set.
Then near the origin S is a submanifold of dimension 2n�2, and at a generic point,
S is either CR Levi-flat of dimension 2n� 2 (CR dimension n� 2) or a complex
submanifold of complex dimension n� 1.

Furthermore, if M is of type C.1, then at the origin S is a CR Levi-flat submani-
fold of dimension 2n� 2 (CR dimension n� 2).



138 XIANGHONG GONG AND JIŘÍ LEBL

Proof. Let M be given by

(91) w D Nz1z2C � Nz
2
1 C r.z; Nz/;

where r is O.3/ and � D 0 or � D 1.
By Proposition 5.1 the CR singular set is exactly where

(92) z2C�2 Nz1C r Nz1
.z; Nz/D 0 and r Nzj

.z; Nz/D 0 for all j D 2; : : : ; n:

By considering the real and imaginary parts of the first equation and applying the
implicit function theorem, the set zS D fz W z2 C �2 Nz1 C r Nz1

.z; Nz/ D 0g is a real
submanifold of real dimension 2n� 2 (real codimension two in M ). Now S � zS ,
but as we saw above that S is of dimension at least 2n�2. Therefore S D zS near the
origin. The conclusion of the first part then follows from the classification above.

The stronger conclusion for type C.1 submanifolds follows by noticing that when
� D 1, the submanifold

(93) z2C 2 Nz1C r Nz1
.z; Nz/D 0

is CR and not complex at the origin. �

9. Mixed-holomorphic submanifolds

Let us study sets in Cm defined by

(94) f . Nz1; z2; : : : ; zm/D 0;

for a single holomorphic function f of m variables.
Such sets have much in common with complex varieties, since they are in fact

complex varieties when Nz1 is treated as a complex variable. The distinction is that
the automorphism group is different since we are interested in automorphisms that
are holomorphic, not mixed-holomorphic.

Proposition 9.1. If M � Cm is a submanifold with a defining equation of the form
(94), where f is a holomorphic function that is not identically zero, then M is a
real codimension-two set and M is either a complex submanifold or a Levi-flat
submanifold, possibly CR singular. Furthermore, ifM is CR singular at p 2M , and
has a nondegenerate complex tangent at p, then M has type A.k, C.0, or C.1 at p.

Proof. Since the zero set of f is a complex variety in the . Nz1; z2; : : : ; zm/ space,
we get automatically that it is real codimension two. We also have that as it is a
submanifold, then it can be written as a graph of one variable over the rest.

Let mD nC 1 for convenience and suppose that M � CnC1 is a submanifold
through the origin. By factorization for germs of holomorphic functions and by the
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smoothness assumption on M we may assume that df .0/¤ 0. Call the variables
.z1; : : : ; zn; w/ and write M as a graph. One possibility is that we write M as

(95) w D �.z1; : : : ; zn/;

where �.0/D 0 and � has no linear terms. M is complex if �� 0. Otherwise M is
CR singular and we rewrite it as

(96) w D N�. Nz1; : : : ; Nzn/:

We notice that the matrix representing the Levi-map must be identically zero, so
we must get Levi-flat. If there are any quadratic terms, we obtain a type A.k
submanifold.

Alternatively, M can be written as

(97) w D �. Nz1; z2; : : : ; zn/;

with �.0/ D 0. If � does not depend on Nz1 then M is complex. Assume that �
depends on Nz1. If � has linear terms in Nz1, then M is CR. Otherwise it is a CR
singular submanifold, and near a nonCR singular point it is a generic codimension-
two submanifold. The CR singular set of M is defined by @�=@ Nz1 D 0.

Suppose thatM is CR singular. ThatM is Levi-flat follows from Proposition 6.2.
We can therefore normalize the quadratic term, after linear terms in z2; : : : ; zn are
absorbed into w.

If not all quadratic terms are zero, we must have an A.k, C.0, or C.1 type
submanifold. �

Let us now study normal forms for such sets in C2 and Cm, m� 3. First in two
variables we can completely answer the question. This result is surely well known
and classical.

Proposition 9.2. If M � C2 is a submanifold with a defining equation of the form
(94), then it is locally biholomorphically equivalent to a submanifold in coordinates
.z; w/ 2 C2 of the form

(98) w D Nzd

for d D 0; 1; 2; 3; : : : , where d is a local biholomorphic invariant of M . If d D 0,
M is complex; if d D 1, it is a CR totally-real submanifold; and if d � 2, then M is
CR singular.

Proof. Write the submanifold as a graph of one variable over the other. Without
loss of generality and after possibly taking a conjugate of the equation, we have

(99) w D f . Nz/
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for some holomorphic function f . Assume f .0/D 0. If f is identically zero, then
d D 0 and we are finished. If f is not identically zero, we apply a holomorphic
change of coordinates in z, and the rest follows easily. �

In three or more variables, if M � CnC1, n � 2, is a submanifold through the
origin, then when the quadratic part is nonzero we have seen above that it can be a
type A.k, C.0, or C.1 submanifold. If the submanifold is the nondegenerate type C.1
submanifold, then we will show in the next section that M is biholomorphically
equivalent to the quadric MC:1.

Before we move to type C.1, let us quickly consider the mixed-holomorphic
submanifolds of type A.n. The submanifolds of type A.n in CnC1 can in some sense
be considered nondegenerate when talking about mixed-holomorphic submanifolds.

Proposition 9.3. IfM �CnC1 is a submanifold of type A.n at the origin of the form

(100) w D Nz21 C � � �C Nz
2
nC r. Nz/;

where r 2O.3/. Then M is locally near the origin biholomorphically equivalent
to the A.n quadric

(101) w D Nz21 C � � �C Nz
2
n:

Proof. The complex Morse lemma (see, e.g., [Ebeling 2007, Proposition 3.15])
states that there is a local change of coordinates near the origin in just the z variables
such that

(102) z21 C � � �C z
2
nC Nr.z/

is equivalent to z21 C � � �C z
2
n. �

It is not difficult to see that the normal form for mixed-holomorphic submanifolds
in CnC1 of type A.k, k < n, is equivalent to a local normal form for a holomorphic
function in n variables. Therefore, for example, the submanifold w D Nz21C Nz

3
2 is of

type A.1 and is not equivalent to any quadric.

10. Formal normal form for certain type C.1 submanifolds I

In this section we prove the formal normal form in Theorem 1.3. That is, we prove
that if M � CnC1 is defined by

(103) w D Nz1z2C Nz
2
1 C r.z1; Nz1; z2; z3; : : : ; zn/;

where r is O.3/, then M is Levi-flat and formally equivalent to

(104) w D Nz1z2C Nz
2
1 :

That M is Levi-flat follows from Proposition 6.2.
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Lemma 10.1. If M � CnC1, n� 2, is given by

(105) w D Nz1z2C Nz
2
1 C r.z1; Nz1; z2; z3; : : : ; zn/;

where r is an O.3/ formal power series, then M is formally equivalent to MC:1

given by

(106) w D Nz1z2C Nz
2
1 :

In fact, the normalizing transformation can be of the form

(107) .z; w/D .z1; : : : ; zn; w/ 7! .z1; f .z; w/; z3; : : : ; zn; g.z; w//;

where f and g are formal power series.

Proof. Suppose that the normalization was done to degree d � 1, then suppose that

(108) w D Nz1z2C Nz
2
1 C r1.z1; Nz1; z2; : : : ; zn/C r2.z1; Nz1; z2; : : : ; zn/;

where r1 is degree-d homogeneous and r2 is O.d C 1/. Write

(109) r1.z1; Nz1; z2; : : : ; zn/D

kX
jD0

X
j˛jCjDd

cj;˛ Nz
j
1 z
˛;

where k is the highest power of Nz1 in r1, and ˛ is a multiindex.
If k is even, then we use the transformation that replaces w with

(110) wC
X

j˛jCkDd

cj;˛w
k=2z˛:

Let us look at the degree-d terms in

(111) . Nz1z2C Nz
2
1/C

X
j˛jCkDd

cj;˛. Nz1z2C Nz
2
1/
k=2
z˛

D Nz1z2C Nz
2
1 C r1.z1; Nz1; z2; : : : ; zn/:

We need not include r2 as the terms have degree d C 1 or higher. After canceling
out the new terms on the left, we notice that the formal transformation removed all
the terms in r1 with a power Nzk1 and replaced them with terms that have a smaller
power of Nz1.

Next suppose that k is odd. We use the transformation that replaces z2 with

(112) z2�
X

j˛jCkDd

cj;˛w
.k�1/=2z˛:
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Let us look at the degree-d terms in

(113) Nz1z2C Nz
2
1

D Nz1

�
z2�

X
j˛jCkDd

cj;˛w
.k�1/=2z˛

�
C Nz21 C r1.z1; Nz1; z2; : : : ; zn/:

Again we need not include r2 as the terms have degree dC1 or higher, and we need
not add the new terms to z2 in the argument list for r1 since all those terms would
be of higher degree. Again we notice that the formal transformation removed all
the terms in r1 with a power Nzk1 and replaced them with terms that have a smaller
power of Nz1.

The procedure above does not change the form of the submanifold, but it lowers
the degree of Nz1 by one. Since we can assume that all terms in r1 depend on Nz1,
we are finished with degree-d terms after k iterations of the above procedure. �

11. Convergence of normalization for certain type C.1 submanifolds

A key point in the computation below is the following natural involution for the
quadric MC:1. Notice that the map

(114) .z1; z2; : : : ; zn; w/ 7! .�Nz2� z1; z2; : : : ; zn; w/

takes MC:1 to itself. The involution simply replaces the Nz1 in the equation with
�z2 � Nz1. The way this involution is defined is by noticing that the equation
w D Nz1z2C Nz

2
1 has generically two solutions for Nz1 keeping z2 and w fixed. In the

same way we could define an involution on all type C.1 submanifolds of the form
w D Nz1z2C Nz

2
1 C r. Nz1; z2; : : : ; zn/, although we will not require this construction.

We prove convergence via:

Lemma 11.1. Let m1; : : : ; mN be positive integers. Suppose T .z/ is a formal
power series in z 2 CN . Suppose T .tm1v1; : : : ; t

mN vN / is a convergent power
series in t 2 C for all v 2 CN . Then T is convergent.

The proof is a standard application of the Baire category theorem and the Cauchy
inequality. See [Baouendi et al. 1999, p. 153, Theorem 5.5.30], where all mj are
one. For mj > 1 we first change variables by setting vj D w

mj

j and apply the
lemma with mj D 1.

The following lemma finishes the proof of Theorem 1.3. By absorbing any
holomorphic terms into w, we assume that r.z1; 0; z2; : : : ; zn/� 0. In Lemma 10.1
we have also constructed a formal transformation that only changes the z2 and w
coordinates, so it is enough to prove convergence in this case. Key points of this
proof are that the right hand side of the defining equation for MC:1 is homogeneous,
and that we have a natural involution on MC:1.
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Lemma 11.2. If M � CnC1, n� 2, is given by

(115) w D Nz1z2C Nz
2
1 C r.z1; Nz1; z2; z3; : : : ; zn/;

where r is O.3/ and convergent, and r.z1; 0; z2; : : : ; zn/ � 0. Suppose that two
formal power series f .z; w/ and g.z; w/ satisfy

(116) g.z; Nz1z2C Nz
2
1/

D Nz1f .z; Nz1z2C Nz
2
1/C Nz

2
1 C r.z1; Nz1; f .z; Nz1z2C Nz

2
1/; z3; : : : ; zn/:

Then f and g are convergent.

Proof. Equation (116) is true formally, treating z1 and Nz1 as independent variables.
Notice that (116) has one equation for two unknown functions.

We now use the involution onMC:1 to create a system that we can solve uniquely.
We replace Nz1 with �z2� Nz1. We leave z1 untouched (treating as an independent
variable). We obtain an identity in formal power series:

(117) g.z; Nz1z2C Nz
2
1/D .�z2� Nz1/f .z; Nz1z2C Nz

2
1/C .�z2� Nz1/

2

C r.z1; .�z2� Nz1/; f .z; Nz1z2C Nz
2
1/; z3; : : : ; zn/:

The formal series � D f .z; Nz1z2C Nz21/ and ! D g.z; Nz1z2C Nz21/ are solutions of
the system

! D Nz1�C Nz
2
1 C r.z1; Nz1; �; z3; : : : ; zn/;(118)

! D .�z2� Nz1/�C .�z2� Nz1/
2
C r.z1; .�z2� Nz1/; �; z3; : : : ; zn/:(119)

We next replace zj with tzj and Nz1 with t Nz1 for t 2 C. Because Nz1z2C Nz21 is
homogeneous of degree two, we obtain that the formal series in t , given by �.t/D
f .tz; t2. Nz1z2C Nz

2
1//, !.t/D g.tz; t

2. Nz1z2C Nz
2
1// for every .z1; Nz1; z2; : : : ; zn/ 2

CnC1, are solutions of the system

! D t Nz1�C t
2
Nz21 C r.tz1; t Nz1; �; tz3; : : : ; tzn/;(120)

! D t .�z2� Nz1/�C t
2.�z2� Nz1/

2
C r.tz1; t .�z2� Nz1/; �; tz3; : : : ; tzn/:(121)

We eliminate ! to obtain an equation for � ,

(122) t .2 Nz1C z2/.� � tz2/

D r.tz1; t .�z2� Nz1/; �; tz3; : : : ; tzn/� r.tz1; t Nz1; �; tz3; : : : ; tzn/:

We now treat � as a variable and we have a holomorphic (convergent) equation.
The right hand side must be divisible by t .2 Nz1C z2/: It is divisible by t since r
is divisible by Nz1. It is also divisible by 2 Nz1C z2 as setting z2 D�2 Nz1 makes the
right hand side vanish. Therefore,

(123) ��tz2D
r.tz1; t .�z2� Nz1/; �; tz3; : : : ; tzn/� r.tz1; t Nz1; �; tz3; : : : ; tzn/

t.2 Nz1C z2/
;
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where the right hand side is a holomorphic function (that is, a convergent power
series) in z1, Nz1, z2; : : : ; zn, t , � . For any fixed z1, Nz1, z2; : : : ; zn, we solve for � in
terms of t via the implicit function theorem, and we obtain that � is a holomorphic
function of t . The power series of � is given by �.t/D f .tz; t2. Nz1z2C Nz

2
1//.

Let v 2 CnC1 be any nonzero vector. Via a proper choice of z1, Nz1, z2; : : : ; zn
(still treating Nz1 and z1 as independent variables) we write v D .z; Nz1z2C Nz

2
1/. We

apply the above argument to �.t/D f .tv1; : : : ; tvn; t2vnC1/, and �.t/ converges
as a series in t . As we get convergence for every v 2 CnC1, we obtain that f
converges by Lemma 11.1. Then via (120) we obtain that g.tv1; : : : ; tvn; t2vnC1/
converges as a series in t for all v, and hence g converges. �

12. Automorphism group of the C.1 quadric

With the normal form achieved in previous sections, let us study the automorphism
group of the C.1 quadric in this section. We will again use the mixed-holomorphic
involution that is obtained from the quadric.

We study the local automorphism group at the origin. That is the set of germs at
the origin of biholomorphic transformations taking M to M and fixing the origin.

First we look at the linear parts of automorphisms. We already know that the
linear term of the last component only depends on w. For MC:1 we can say more
about the first two components.

Proposition 12.1. Let .F;G/D .F1; : : : ; Fn; G/ be a formal invertible or biholo-
morphic automorphism of MC:1 � CnC1, that is the submanifold of the form

(124) w D Nz1z2C Nz
2
1 :

Then F1.z; w/D az1C˛wCO.2/, F2.z; w/D Naz2CˇwCO.2/, and G.z;w/D
Na2wCO.2/, where a 6D 0.

Proof. Let aD .a1; : : : ; an/ and b D .b1; : : : ; bn/ be such that

F1.z; w/D a � zC˛wCO.2/ and F2.z; w/D b � zCˇwCO.2/:

Then from Proposition 2.1 we have

(125)

26664
0 1 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

37775D � �a� b� � � � �
26664
0 1 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

37775
2664
a

b
:::

3775 :
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Therefore � Na1b2 D 1, and Naj bk D 0 for all .j; k/ 6D .1; 2/. Similarly,

(126)

26664
1 0 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

37775D � �a� b� � � � �
26664
1 0 0 � � � 0

0 0 0 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 0

37775
2664
Na
Nb
:::

3775 :
Therefore � Na21 D 1, and Naj Nak D 0 for all .j; k/ 6D .1; 1/. Putting these two together
we obtain that aj D 0 for all j 6D 1, and as a1 6D 0 we get bj D 0 for all j 6D 2. As
� is the reciprocal of the coefficient of w in G, we are finished. �

Lemma 12.2. Let MC:1 � C3 be given by

(127) w D Nz1z2C Nz
2
1 :

Suppose that a local biholomorphism (resp. formal automorphism) .F1; F2; G/
transforms MC:1 into MC:1. Then F1 depends only on z1, and F2 and G depend
only on z2 and w.

Proof. Let us define a .1; 0/ tangent vector field on M by

(128) Z D
@

@z2
C Nz1

@

@w
:

Write F D .F1; F2; G/. F must take Z into a multiple of itself when restricted to
MC:1. That is, on MC:1 we have

@F1

@z2
C Nz1

@F1

@w
D 0;(129)

@F2

@z2
C Nz1

@F2

@w
D �;(130)

@G

@z2
C Nz1

@G

@w
D �F1. Nz; w/;(131)

for some function �. Let us take the first equation and plug in the defining equation
for M1,

(132)
@F1

@z2
.z1; z2; Nz1z2C Nz

2
1/C Nz1

@F1

@w
.z1; z2; Nz1z2C Nz

2
1/D 0:

This is true for all z 2 C2, and so we may treat z1 and Nz1 as independent variables.
We have an involution onMC:1 that takes Nz1 to�z2�Nz1. Therefore we also have

(133)
@F1

@z2
.z1; z2; Nz1z2C Nz

2
1/C .�z2� Nz1/

@F1

@w
.z1; z2; Nz1z2C Nz

2
1/D 0:

This means that @F1=@w and therefore @F1=@z2 must be identically zero. That is,
F1 only depends on z1.
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We have that the following must hold for all z:

(134) G.z1; z2; Nz1z2C Nz
2
1/D F1. Nz1/F2.z1; z2; Nz1z2C Nz

2
1/C .F1. Nz1//

2:

Again we treat z1 and Nz1 as independent variables. Differentiate with respect to z1:

(135)
@G

@z1
.z1; z2; Nz1z2C Nz

2
1/D F1. Nz1/

@F2

@z1
.z1; z2; Nz1z2C Nz

2
1/:

We plug in the involution again to obtain

(136)
@G

@z1
.z1; z2; Nz1z2C Nz

2
1/D F1.�z2� Nz1/

@F2

@z1
.z1; z2; Nz1z2C Nz

2
1/:

Therefore as F1 is not identically zero, then as before both @F2=@z1 and @G=@z1
must be identically zero. �
Lemma 12.3. Take MC:1 � C3 given by

(137) w D Nz1z2C Nz
2
1 ;

and let .F1; F2; G/ be a local automorphism at the origin. Then F1 uniquely
determines F2 and G. Furthermore, given any invertible function of one variable
F1 with F1.0/D 0, there exist unique F2 and G that complete an automorphism
and they are determined by

(138)
F2.z2; Nz1z2C Nz

2
1/D F1. Nz1/CF1.�Nz1� z2/;

G.z2; Nz1z2C Nz
2
1/D�F1. Nz1/F1.�Nz1� z2/:

We should note that the lemma also works formally. Given any formal F1, there
exist unique formal F2 and G satisfying the above property.

Proof. By Lemma 12.2, F1 depends only on z1 and F2 and G depend only on
z2 and w. We write the automorphism as a composition of the two mappings
.F1.z1/; z2; w/ and .z1; F2.z2; w/;G.z2; w//.

We plug the transformation into the defining equation for MC:1 and obtain

(139) G.z2; Nz1z2C Nz
2
1/D F1. Nz1/F2.z2; Nz1z2C Nz

2
1/C .F1. Nz1//

2
:

We use the involution .z1; z2/ 7! .�Nz1� z2; z2/ which preserves MC:1 and obtain
a second equation

(140) G.z2; Nz1z2C Nz
2
1/D F1.�Nz1� z2/F2.z2; Nz1z2C Nz

2
1/C .F1.�Nz1� z2//

2
:

We eliminate G and solve for F2:

(141) F2.z2; Nz1z2C Nz
2
1/D

.F1.�Nz1� z2//
2
� .F1. Nz1//

2

F1. Nz1/�F1.�Nz1� z2/

D F1. Nz1/CF1.�Nz1� z2/:
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Next we note that trivially, F2 is unique if it exists: its difference vanishes on MC:1.
If we suppose that F1 is convergent, then just as before, substituting z2 with

tz2 and Nz1 with t Nz1, we are restricting to curves .tz2; t2w/ for all .z2; w/. The
series is convergent in t for every fixed z2 and w. Therefore if F2 exists and F1 is
convergent, then F2 is convergent by Lemma 11.1.

Now we need to show the existence of the formal solution F2. Notice that the
right hand side of (141) is invariant under the involution. It suffices to show that
any power series in Nz1; z2 that is invariant under the involution is a formal power
series in z2 and Nz1z2C Nz

2
1 . Let us treat � D Nz1 as an independent variable. The

original involution becomes a holomorphic involution in � , z2:

(142) � W �!�� � z2; z2! z2:

By a theorem of Noether we obtain a set of generators for the ring of invariants
by applying the averaging operation R.f /D 1

2
.f Cf ı �/ to all monomials in �

and z2 of degree two or lower. By direct calculation it is not difficult to see that � ,
�z2C �

2 generate the ring of invariants. Therefore any invariant power series in z2,
� is a power series in �, �z2C �2. This shows the existence of F2. The existence
of G follows in the same way.

The equation for G.z2; Nz1z2 C Nz
2
1/ D �F1. Nz1/F1.�Nz1 � z2/ is obtained by

plugging in the equation for F2. Its existence, uniqueness, and convergence in the
case where F1 converges, follow exactly the same as for F2. �

Theorem 12.4. If M � CnC1, n� 2 is given by

(143) w D Nz1z2C Nz
2
1 ;

and .F1; F2; : : : ; Fn; G/ is a local automorphism at the origin, then F1 depends
only on z1, F2 and G depend only on z2 and w, and F1 completely determines F2
and G via (138). The mapping .z1; z2; F3; : : : ; Fn/ has rank n at the origin.

Furthermore, given any invertible function F1 of one variable with F1.0/ D
0, and arbitrary holomorphic functions F3; : : : ; Fn such that Fj .0/ D 0, and
.z1; z2; F3; : : : ; Fn/ has rank n at the origin, then there exist unique F2 and G
so that .F1; : : : ; Fn; G/ is an automorphism.

Proof. Let .F1; : : : ; Fn; G/ be an automorphism. Then we have

(144) G.z1; : : : ; zn; w/

D F1. Nz1; : : : ; Nzn; w/F2.z1; : : : ; zn; w/C .F1. Nz1; : : : ; Nzn; w//
2:

Proposition 12.1 says that the linear terms in G only depend on w, the linear terms
of F1 depend only on z1 and w, and the linear terms of F2 only depend on z2 and w.
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Let us embed MC:1 � C3 into M via setting z3 D ˛3z2; : : : ; zn D ˛nz2, for
arbitrary ˛3; : : : ; ˛n. Then we obtain

(145) G.z1; z2; ˛3z2; : : : ; ˛nz2; w/

D F1. Nz1; Nz2; ˛3 Nz2; : : : ; ˛n Nz2; w/F2.z1; z2; ˛3z2; : : : ; ˛nz2; w/

C .F1. Nz1; Nz2; ˛3 Nz2; : : : ; ˛n Nz2; w//
2:

By noting what the linear terms are, we notice that the above is the equation for
an automorphism of MC:1. Therefore by Lemma 12.2 we have

(146)
@F1

@w
D 0;

@F2

@z1
D 0; and

@G

@z1
D 0;

as that is true for all ˛3; : : : ; ˛n. Plugging in the defining equation for MC:1, we
obtain an equation that holds for all z and we can treat z and Nz independently. We
plug in z D 0 to obtain

(147) 0D F1. Nz1; Nz2; ˛3 Nz2; : : : ; ˛n Nz2; 0/F2.0; : : : ; 0; Nz
2
1/

C .F1. Nz1; Nz2; ˛3 Nz2; : : : ; ˛n Nz2; 0//
2:

Differentiating with respect to ˛j we obtain @F1=@zj D 0, for j D 3; : : : ; n. We set
˛j D 0 in the equation, differentiate with respect to Nz2 and obtain that @F1=@z2D 0.
In other words, F1 is a function of z1 only. We rewrite (145) by writing F1 as a
function of z1 only and F2 and G as functions of z2; : : : ; zn; w, and we plug in
w D Nz1z2C Nz

2
1 to obtain

(148) G.z2; ˛3z2; : : : ; ˛nz2; Nz1z2C Nz
2
1/

D F1. Nz1/F2.z2; ˛3z2; : : : ; ˛nz2; Nz1z2C Nz
2
1/C .F1. Nz1//

2:

By Lemma 12.3, we know that F1 uniquely determines F2.z2; ˛3z2; : : : ; ˛nz2; w/
and G.z2; ˛3z2; : : : ; ˛nz2; w/. These two functions therefore do not depend on
˛3; : : : ; ˛n, and in turn F2 and G do not depend on z3; : : : ; zn as claimed. Further-
more F1 does uniquely determine F2 and G.

Finally since the mapping is a biholomorphism, and from what we know about
the linear parts of F1, F2, and G, it is clear that .z1; z2; F3; : : : ; Fn/ has rank n.

The other direction follows by applying Lemma 12.3. We start withF1, determine
F2 and G as in three dimensions. Then add F3; : : : ; Fn and the rank condition
guarantees an automorphism. �

13. Normal form for certain type C.1 submanifolds II

The goal of this section is to find the normal form for Levi-flat submanifolds
M � CnC1 given by

(149) w D Nz1z2C Nz
2
1 CRef .z/;
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for a holomorphic f .z/ of order O.3/.
Since f .z/ can be absorbed into w via a holomorphic transformation, the goal

is really to prove:

Theorem 13.1. Let M � CnC1 be a real-analytic Levi-flat given by

(150) w D Nz1z2C Nz
2
1 C r. Nz/;

where r is O.3/. Then M can be put into the MC:1 normal form

(151) w D Nz1z2C Nz
2
1 ;

by a convergent normalizing transformation.
Furthermore, if r is a polynomial and the coefficient of Nz31 in r is zero, then there

exists an invertible polynomial mapping taking MC:1 to M .

In Theorem 1.3, we have already shown that a submanifold of the form

(152) w D Nz1z2C Nz
2
1 C r. Nz1/

is necessarily Levi-flat and has the normal formMC:1. The first part of Theorem 13.1
will follow once we prove:

Lemma 13.2. If M � CnC1 is given by

(153) w D Nz1z2C Nz
2
1 C r. Nz/;

where r is O.3/ and M is Levi-flat, then r depends only on Nz1.

Proof. First let us assume that nD 2. For p 2MCR, T .1;0/p M is one dimensional.
The Levi map is the matrix

(154) LD

240 1 00 0 0

0 0 0

35
applied to the T .1;0/M vectors. As M is Levi-flat, then the Levi map has to vanish.
The only vectors v for which v�Lv D 0, are the ones without @=@z1 component or
@=@z2 component, that is, vectors of the form

(155) a
@

@z1
C b

@

@w
or a

@

@z2
C b

@

@w
:

We apply these vectors to the defining equation and its conjugate and we obtain in
the first case the equations

(156) b D 0; a

�
Nz2C 2z1C

@ Nr

@z1

�
D 0:
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This cannot be satisfied identically on M since this is supposed to be true for all z,
but a cannot be identically zero and the second factor in the second equation has
only one nonholomorphic term, which is Nz2.

Let us try the second form and we obtain the equations

(157) b D a Nz1; a

�
@ Nr

@z2

�
D 0:

Again a cannot be identically zero, and hence the second factor of the second
equation @ Nr=@z2 must be identically zero, which is possible only if r depends only
on Nz1.

Finally, it is possible to pick b D Nz1 and aD 1, to obtain a T .1;0/ vector field

(158)
@

@z2
C Nz1

@

@w
;

and therefore these submanifolds are necessarily Levi-flat.
Next suppose that n > 2. Notice that replacing zk with �k� for k � 2 and then

fixing �k for k � 2, we get

(159) w D Nz1�2�C Nz
2
1 C r. Nz1;

N�2
N�; : : : ; N�n

N�/:

By Lemma 2.2, we obtain a Levi-flat submanifold in .z1; �; w/ 2 C3, and hence
can apply the above reasoning to obtain that r. Nz1; N�2 N�; : : : ; N�n N�/ does not depend
on N� . As this was true for any �k , we have that r can only depend on Nz1. �

It is left to prove the claim about the polynomial normalizing transformation:

Lemma 13.3. Suppose that M � CnC1 is given by

(160) w D Nz1z2C Nz
2
1 C r. Nz1/;

where r is a polynomial that vanishes to the fourth order. Then there exists an
invertible polynomial mapping taking MC:1 to M .

Proof. We will take a transformation of the form

(161) .z1; z2; w/ 7! .z1; z2Cf .z2; w/; wCg.z2; w//:

We are therefore trying to find polynomials f and g that satisfy

(162) Nz1z2C Nz
2
1 Cg.z2; Nz1z2C Nz

2
1/D Nz1.z2Cf .z2; Nz1z2C Nz

2
1//C Nz

2
1 C r. Nz1/:

If we simplify, we obtain

(163) g.z2; Nz1z2C Nz
2
1/� Nz1f .z2; Nz1z2C Nz

2
1/D r. Nz1/:

Consider the involution S W . Nz1; z2/! .�Nz1 � z2; z2/. Its invariant polynomials
u. Nz1; z2/ are precisely the polynomials in z2; z2 Nz1C Nz

2
1 . The polynomial r. Nz1/ can
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be uniquely written as

(164) rC.z2; Nz1z2C Nz
2
1/C

�
Nz1C

1
2
z2
�
r�.z2; Nz1z2C Nz

2
1/

in two polynomials r˙. Taking f D�r� and gD rCC 1
2
z2r
�, we find the desired

solutions. �

14. Normal form for general type C.1 submanifolds

In this section we show that generically a Levi-flat type C.1 submanifold is not
formally equivalent to the quadric MC:1 submanifold. In fact, we find a formal
normal form that shows infinitely many invariants. There are obviously infinitely
many invariants if we do not impose the Levi-flat condition. The trick therefore is,
how to impose the Levi-flat condition and still obtain a formal normal form.

Let M � C3 be a real-analytic Levi-flat type C.1 submanifold through the
origin. We know that M is an image of R2 �C under a real-analytic CR map that
is a diffeomorphism onto its target; see Theorem 1.2. After a linear change of
coordinates we assume that the mapping is

(165) .x; y; �/ 2 R2 �C 7!
�
xC iyC a.x; y; �/; �C b.x; y; �/;

.x� iy/�C .x� iy/2C r.x; y; �/
�
;

where a, b are O.2/ and r is O.3/. As the mapping is a CR mapping and a local
diffeomorphism, then given any such a, b, and r , the image is necessarily Levi-flat
at CR points. Therefore the set of all these mappings gives us all type C.1 Levi-flat
submanifolds.

We precompose with an automorphism of R2 �C to make b D 0. We cannot
similarly remove a as any automorphism must have real-valued first two components
(the new x and the new y), and hence those components can only depend on x and
y but not on �. So if a depends on � , we cannot remove it by precomposing.

Next we notice that we can treat M as an abstract CR manifold. Suppose we
have two equivalent submanifolds M1 and M2, with F being the biholomorphic
map taking M1 to M2. If Mj is the image of a map 'j , then note that '�12 is CR
on .M2/CR. Therefore, G D '�12 ıF ı '1 is CR on .F ı '1/

�1..M2/CR/, which
is dense in a neighborhood of the origin of R2 �C (the CR singularity of M2 is a
thin set, and we pull it back by two real-analytic diffeomorphisms). A real-analytic
diffeomorphism that is CR on a dense set is a CR mapping. The same argument
works for the inverse of G, and therefore we have a CR diffeomorphism of R2 �C.
We conclude:
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Proposition 14.1. If Mj � C3, j D 1; 2 are given by the maps 'j

(166) .x; y; �/ 2 R2 �C
'j

7! .xC iyC aj .x; y; �/; �C bj .x; y; �/;

.x� iy/�C .x� iy/2C rj .x; y; �//;

and M1 and M2 are locally biholomorphically (resp. formally) equivalent at zero,
then there exist local biholomorphisms (resp. formal equivalences) F and G at zero,
with F.M1/DM2, G.R2 �C/D R2 �C as germs (resp. formally) and

(167) '2 D F ı'1 ıG:

In other words, the proposition states that if we find a normal form for the
mapping, we find a normal form for the submanifolds. Let us prove that the
proposition also works formally.

Proof. We have to prove that G restricted to R2 �C is CR, that is, @G=@ N� D 0. Let
us consider

(168) '2 ıG D F ı'1:

The right hand side does not depend on N� and thus the left hand side does not either.
Write G D .G1; G2; G3/. Let us write b D b2 and r D r2 for simplicity. Taking
derivative of '2 ıG with respect to N� we get

(169)

G1N�
C iG2N�

C ax.G/G
1
N�
C ay.G/G

2
N�
C a�.G/G

3
N�
D 0;

G3N�
C bx.G/G

1
N�
C by.G/G

2
N�
C b�.G/G

3
N�
D 0;

.G1N�
� iG2N�

/G3C .G1� iG2/G3N�
C 2.G1� iG2/.G1N�

� iG2N�
/

C rx.G/G
1
N�
C ry.G/G

2
N�
C r�.G/G

3
N�
D 0:

Suppose that the homogeneous parts of Gj
N�

are zero for all degrees up to d � 1. If
we look at the degree-d homogeneous parts of the first two equations above we
immediately note that it must be that G1

N�
C iG2

N�
D 0 and G3

N�
D 0 in degree d . We

then look at the degree-(d C 1) part of the third equation. Recall that Œ � �d is the
degree-d part of an expression. We get

(170)
�
G1N�
� iG2N�

�
d
ŒG3C 2G1� i2G2�1 D 0:

As G is an automorphism we cannot have the linear terms be linearly dependent
and hence G1

N�
DG2

N�
D 0 in degree d . We finish by induction on d . �

Using the proposition we can restate the result of Theorem 1.3 by parametrization:

Corollary 14.2. A real-analytic Levi-flat type C.1 submanifold M � C3 is biholo-
morphically equivalent to the quadric MC:1 if and only if the mapping giving M is
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equivalent to a mapping of the form

(171) .x; y; �/ 2 R2 �C 7!
�
xC iy; �; .x� iy/�C .x� iy/2C r.x; y; �/

�
:

That is, M is equivalent to MC:1 if and only if we can get rid of the a.x; y; �/
via pre and post composing with automorphisms. The proof of the corollary
follows as a submanifold that is realized by this map must be of the form w D

Nz1z2C Nz
2
1 C �.z1; Nz1; z2/ and we apply Theorem 1.3.

We have seen that the involution � on M , in particular when M is the quadric, is
useful to compute the automorphism group and to construct Levi-flat submanifolds
of type C:1. We will also need to deal with power series in z; Nz; � . Thus we extend
� , which is originally defined on C2, as follows:

(172) �.z; Nz; �/D .z;�Nz� �; �/:

Here z; Nz; � are treated as independent variables. Note that z; �; w D Nz�C Nz2 are
invariant by � , while �D NzC 1

2
� is skew invariant by � . A power series in z; Nz; �

that is invariant by � is precisely a power series in z; �; w. In general, a power
series u in z; Nz; � admits a unique decomposition

(173) u.z; Nz; �/D uC.z; �; w/C �u�.z; �; w/:

First we introduce degree for power series u.z; Nz; �/ and weights for power series
v.z; �; w/. As usual we assign degree i C j C k to the monomial zi Nzj �k . We
assign weight i C j C 2k to the monomial zi�jwk . For simplicity, we will call
them weight in both situations. Let us also set

(174)

Œu�d .z; Nz; �/D
X

iCjCkDd

uijkz
i
Nzj �k;

Œv�d .z; �; w/D
X

iCjC2kDd

vijkz
i�jwk :

Set Œu�ji D Œu�i C � � �C Œu�j and Œv�ji D Œv�i C � � �C Œv�j for i � j .

Theorem 14.3. Let M be a real-analytic Levi-flat type C.1 submanifold in C3.
There exists a formal biholomorphic map transforming M into the image of

(175) y'.z; Nz; �/D .zCA.z; �; w/w�; �; w/

with �D NzC 1
2
� and w D Nz�C Nz2. Suppose further that A 6� 0. Fix i�; j�; k� such

that j� is the largest integer satisfying Ai�j�k� ¤ 0 and i�C j�C 2k� D s. Then
we can achieve

(176) Ai�.j�Cn/k� D 0; nD 1; 2; : : : :
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Furthermore, the power series A is uniquely determined up to the transformation

(177) A.z; �; w/! Nc3A.cz; Nc�; Nc2w/; c 2 C n f0g:

In the above normal form with A 6� 0, the group of formal biholomorphisms that
preserve the normal form consists of dilations

(178) .z; �; w/! .�z; N��; N�2w/;

satisfying N�3A.�z; N��; N�2w/D A.z; �; w/.

Proof. It will be convenient to write the CR diffeomorphism G of R2 � C as
.G1; G2/ where G1 is complex-valued and depends on z; Nz, while G2 depends on
z; Nz; �. Let M be the image of a mapping ' defined by

(179) .z; Nz; �/
'
7!
�
zC a.z; Nz; �/; �; Nz�C Nz2C r.z; Nz; �/

�
with aDO.2/; r DO.3/. We want to find a formal biholomorphic map F of C3

and a formal CR diffeomorphism G of R2 �C such that

(180) F y'G�1 D '

with y' in the normal form.
To simplify the computation, we will first achieve a preliminary normal form

where r D 0 and the function a is skew-invariant by � . For the preliminary normal
form we will only apply F and G that are tangent to the identity. We will then use
the general F and G to obtain the final normal form.

Let us assume that F and G are tangent to the identity. Let M D F.y'.R2�C//

where y' is determined by ya, yr . We write

(181) F D I C .f1; f2; f3/; G D I C .g1; g2/:

The � components in 'G D F y' give us

(182) g2.z; Nz; �/D f2
�
zC ya.z; Nz; �/; �; Nz�C Nz2Cyr.z; Nz; �/

�
:

Thus, we are allowed to define g2 by the above identity for any choice of f2DO.2/.
Eliminating g2 in other components of 'G D F y', we obtain

f1 ı y' �g1 D a ıG � ya;(183)

f3 ı y' � Nzf2 ı y' D r ıG �yr C 2� Qg1C Qg1f2 ı y'C Qg
2
1;(184)

where Qg1.z; Nz/D Ng1. Nz; z/ and

(185) .a ıG/.z; Nz; �/ WD a.G1.z; Nz/; G1. Nz; z/; G2.z; Nz; �//:
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Each power series r.z; Nz; �/ admits a unique decomposition

(186) r.z; Nz; �/D rC.z; �; w/C �r�.z; �; w/;

where both r˙ are invariant by � . Note that r.z; Nz; �/ is a power series in z, � , and
w, if and only if it is invariant by � , i.e., if r� D 0. We write

(187) rC D wt.k/ or wt.rC/� k;

if rC
abc
D 0 for aC bC 2c < k. Define r� D wt.k/ analogously and write �r� D

wt.k/ if r� D wt .k� 1/. We write r D wt.k/ if .rC; �r�/D wt.k/. Note that

(188) r DO.k/) r D wt.k/; wt.rs/� wt.r/Cwt.s/:

The power series in z and Nz play a special role in describing normal forms. Let
us define T˙ via

(189) u.z; Nz/D .TCu/.z; �; w/C .T �u/.z; �; w/�:

Let SC
k

(resp. S�
k

) be spanned by monomials in z; Nz; � which have weight k and
are invariant (resp. skew-invariant) by � . Then the range of �T � in S�

k
is a linear

subspace Rk . We decompose

(190) S�k DRk˚ .S
�
k 	Rk/:

The decomposition is of course not unique. We will take

(191) S�k 	Rk D
M

aCbC2cDk�1
c>0

Cza�bwc�:

Here we have used �D NzC 1
2
�, �2 D wC 1

4
�2, and

(192) TCu.z; �; w/D
X
i;j�0

X
0�˛�j=2

uij

 
j

2˛

!
zi
�
wC 1

4
�2
�˛�
�
1
2
�
�j�2˛

;

(193) T �u.z; �; w/

D

X
i�0
j>0

X
0�˛<j=2

uij

 
j

2˛C 1

!
zi
�
wC 1

4
�2
�˛�
�
1
2
�
�j�2˛�1

:

In particular, we have

(194) T �u.z; �; 0/D
X
i�0
j>0

.�1/j�1uij z
i�j�1:
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This shows that

(195) T �u.z; �; 0/D
1

��
.u.z;��/�u.z; 0//:

We are ready to show that under the condition that g1.z; Nz/ has no pure holomorphic
terms, there exists a unique .F;G/ which is tangent to the identity such that yr D 0,

(196) ya 2N WD
M

Nk; Nk WD S�k 	Rk :

We start with terms of weight two in (183) and (184) to get

Œf1�2� Œg1�2 D Œa�2� �Œya
��1;(197)

Œf3�2 D 0:(198)

Note that f �j D 0. The first identity implies that

(199) Œf1�2� ŒT
Cg1�2 D Œa

C�2; ŒT �g1�1 D Œya
��1� Œa

��1:

The first equation is solvable with kernel defined by

(200) Œf1�k � ŒT
Cg1�k D 0;

for k D 2. This shows that Œg1�2 is still arbitrary and we use it to achieve

(201) �Œya��1 2 S
�
2 	R2 D f0g:

Then the kernel space is defined by (200) and

(202) Œg1.z; Nz/�g1.z; 0/�k D 0

with k D 2. In particular, under the restriction

(203) Œg1.z; 0/�k D 0;

for kD 2, we have achieved ya� 2N2 by unique Œf1�2, Œg1�2, Œf2�1, Œf3�2. By induc-
tion, we verify that if (203) holds for all k, we determine uniquely Œf1�k and Œg1�k by
normalizing Œya�k 2Nk . We then determine Œf2�k and Œf3�kC1 uniquely to normalize
Œyr�kC1 D 0. For details, let us find formulae for the solutions. We rewrite (183) as

T �g1 D�.a ıG � ya�f1 ı y'/
�;(204)

.f1 ı y'/
C
D .a ıG � ya/CCTCg1:(205)

Using (194), we can solve

(206) .�1/j�1g1;ij D�..a ıG/
�/i.j�1/0; j � 1; i C j D k:
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Then we have

.ya�/ij0 D 0; i C j D k� 1I(207)

.ya�/ijm D ..a ıG �f1 ı y'Cg1/
�/ijm; m� 1; i C j CmD k� 1:(208)

Note that �Œg1�k.z;�Nz/D NzŒ.a ıG � ya/��k�1.z; Nz; 0/. We obtain

(209) Œg1�k.z; Nz/D NzŒ.a ıG � ya/
��k�1.z;�Nz; 0/:

Having determined Œg1�k , we take

(210) Œf1�k D Œ.a ıG � yaCg1/
C�k :

We then solve (184) by taking

Œf2�k D ŒE
��k; Œf3�kC1 D

�
.E � 1

2
�f2/

C
�
kC1

;(211)

E WD r ıG �yr C 2� Qg1C Qg1f2 ı y'C Qg
2
1:(212)

We have achieved the preliminary normalization.
Assume now that

'.z; Nz; �/D .zC a�.z; �; w/�; �; w/;(213)

y'.z; Nz; �/D .zC ya�.z; �; w/�; �; w/(214)

are in the preliminary normal form, i.e.,

(215) w j a�.z; �; w/; w j ya�.z; �; w/:

Let us assume that

(216) a�.z; �; w/D wt.s/; Œa��s 6� 0; ya�.z; �; w/D wt.s/:

We assume that 'G D F y' with

F.z; �; w/D I C .f1; f2; f3/;(217)

G.z; Nz; �/D .zCg1.z; Nz/; �Cg2.z; Nz; �//:(218)

Here fi ; gj start with terms of weight and order at least two. In particular, we have

fi D wt.N /; gi D wt.N /; i D 1; 2I(219)

f3 D wt.N
0/; N 0 �N � 2:(220)

Set .P;Q;R/ WD 'G. Using N � 2, s � 2, and Taylor’s theorem, we obtain
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.221/ P D zCg1.z; Nz/C a
�.z; �; w/�C a�.z; �; w/

�
Ng1. Nz; z/C

1
2
g2.z; Nz; �/

�
C �ra�.z; �; w/

�
g1.z; Nz/; g2.z; Nz; �/; .�C 2 Nz/ Ng1. Nz; z/C Nzg2.z; Nz; �/

�
Cwt.sCN C 1/;

.222/ QD �Cg2.z; Nz; �/;

.223/ RD wC .2 NzC �/ Ng1. Nz; z/C Nzg2.z; Nz; �/Cwt.2N /:

We also have .P;Q;R/D F y'. Thus

.224/ P D zC ya�.z; �; w/�Cf1.z; �; w/C @zf1.z; �; w/ya
�.z; �; w/�

Cwt.N C sC 1/;

.225/ QD �Cf2.z; �; w/C @zf2.z; �; w/ya
�.z; �; w/�Cwt.N C sC 1/;

.226/ RD wCf3.z; �; w/C @zf3.z; �; w/ya
�.z; �; w/�Cwt.N 0C sC 1/:

We will use the above six identities for P , Q, R in two ways. First we use their
lower order terms to get

f1.z; �; w/D g1.z; Nz/C .a
�.z; �; w/� ya�.z; �; w//�Cwt.N C s/;(227)

f2.z; �; w/D g2.z; Nz; �/Cwt.N C s/;(228)

f3.z; �; w/D .2 NzC �/ Ng1. Nz; z/C Nzg2.z; Nz; �/Cwt.2N /Cwt.N
0
C s/:(229)

Hence, we can take N 0 DN C 1. By (227) and the preliminary normalization, we
first know that

yaD aCwt.N C s� 1/;(230)

f1.z; �; w/D b.z/Cwt.N C s/; g1.z; Nz/D b.z/Cwt.N C s/:(231)

We compose (229) by � and then take the difference of the two equations to get

f2.z; �; w/D�Nb. Nz/� Nb.�Nz� �/Cwt.2N � 1/Cwt.N C s/;(232)

f3.z; �; w/D�Nz Nb.�Nz� �/C . NzC �/ Nb. Nz/Cwt.2N /Cwt.N C sC 1/:(233)

Here we have usedN 0DNC1. Let b.z/DbN zNCwt.NC1/. Therefore, we have

g2.z; Nz; �/D�NbN
�
NzN C .�Nz� �/N

�
Cwt.N C 1/;(234)

Ng1. Nz; z/C
1
2
g2.z; Nz; �/D � NbN

X
Nzi .�Nz� �/N�1�i Cwt.N C 1/;(235)

(236) .2 NzC�/ Ng1. Nz; z/CNzg2.z; Nz; �/D NbN . Nz
N�1
C.�Nz��/N�1/wCwt.NC2/:

Next, we use the two formulae forP and (231) to get the identity in higher weight,

(237) ya� D a�Cg�1 CLbN Cwt.N C s/; f1�g
C
1 D wt.N C sC 1/:
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Here we have used f �1 D 0 and

(238) LbN .z; �; w/ WD

�NbN z
N�1Œa��s.z; �; w/� Œa

��s.z; �; w/ NbN
X
i

Nzi .�Nz� �/N�1�i

CrŒa��s �
�
bN z

N ;�NbN . Nz
N
C.�Nz��/N /; NbNw. Nz

N�1
C.�Nz��/N�1/

�
:

Recall that w j a� and w j ya�. We also have that w j LbN .z; �; w/ and LbN
is homogenous in weighted variables and of weight N C s � 1. This shows that
Œg�1 .z; �; 0/�NCs�1 D 0. By (194), we get

(239) Œg1.z; Nz/�NCs D Œg1.z; 0/�NCs; Œya��sCN�1 D Œa
��sCN�1CLbN :

Let us make some observations. First, LbN depends only on bN and it does not
depend on coefficients of b.z/ of degree larger than N . We observe that the first
identity says that all coefficients of Œg1�NCs must be zero, except that the coefficient
g1;.NCs/0 is arbitrary. On the other handLbN , which has weightNCs�1, depends
only on g1;N0, while N C s� 1 > N . Let us assume for the moment that we have
LbN ¤ 0 for all bN ¤ 0. We will then choose a suitable complement subspace
N �NCs�1 in the space of weighted homogenous polynomials in z, �, w of weight
NCs�1 for LbN . Then ya� 2w

P
N>1N

�
NCs�1 will be the required normal form.

The normal form will be obtained by the following procedures: Assume that ' is
not formally equivalent to the quadratic mapping in the preliminary normalization.
We first achieve the preliminary normal form by a mapping F 0D IC.f 01 ; f

0
2 ; f

0
3 /

and G0 D I C .g01; g
0
2/ which are tangent to the identity. We can make F 0 and G0

to be unique by requiring f 11 .z; 0/D 0. Then a is normalized such that yaD ya��
with Œya��s being nonzero homogenous part of the lowest weight. We may assume
that Œa�sC1 D Œya�sC1. Inductively, we choose f 11;N00 (N D 2; 3; : : : ) to achieve
Œya��NCs�1 2 wN �NCs�1. In this step for a given N , we determine mappings
F 1 D I C .f 11 ; f

1
2 ; f

1
3 / and G1 D I C .g11; g

1
2/ by requiring that f 11 .z; �; w/

contains only one term �N , while f 11 , f 12 , g11 , g12 have weight at most N and f 13
has weight at most N C 1. In the process, we also show that Œf 11 .z; �; w/�

NCs
2

depends only on z, if we do not want to impose the restriction on f 11 . Moreover,
the coefficient of �NCs�1 of f 11 can still be arbitrarily chosen without changing
the normalization achieved for Œya��NCs�1 via Œf 11 �N . However, by achieving
Œya��NCs�1 2 wN �NCs�1 via F 1 and G1, we may destroy the preliminary normal-
ization achieved via F0 and G0. We will then restore the preliminary normalization
via F 2 D I C .f 21 ; f

2
2 ; f

2
3 /; G

2 D I C .g21; g
2
2/ satisfying g21.z; 0/ D 0. This

amounts to determining g21 D g1 and f 21 D f1 via (204) and (205) for which the
terms of weight at most N C s have been determined by (237), and then f 22 D f2,
f 23 D f3, g22 D g2 are determined by (211), (212), and (182), respectively. This
allows us to repeat the procedure to achieve the normalization in any higher weight.
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We will then remove the restriction that the normalizing mappings must be tangent
to the identity. This will alter the normal form only by suitable linear dilations.

Suppose that bN ¤ 0. Let us verify that

(240) LbN ¤ 0:

We will also identify one of nonzero coefficients to describe the normalizing con-
dition on ya. We write the two invariant polynomials

NzN C .�Nz� �/N D �N �
N
C

X
j<N

pijkz
i�jwk;(241)

X
i

Nzi .�Nz� �/N�1�i D �0N�1�
N�1
C

X
j<N�1

qijkz
i�jwk :(242)

If we plug in w D Nz2C Nz�, we obtain two polynomial identities in the variables
z, Nz, and �:

NzN C .�Nz� �/N D �N �
N
C

X
j<N

pijkz
i�j . Nz2C Nz�/

k
;(243)

X
i

Nzi .�Nz� �/N�1�i D �0N�1�
N�1
C

X
j<N�1

qijkz
i�j . Nz2C Nz�/

k
:(244)

If we set Nz D z D 0, we obtain that

(245) �N D �
0
N D .�1/

N :

Recall that j� is the largest integer such that .a�/i�j�k�¤0 and i�Cj�C2k�D s.
Since w j Œa��s , then k� > 0. We obtain

(246) .LbN /i�.j�CN�1/k� D .a
�/i�j�k�

NbN .��
0
N�1� j��N�1C k��N /¤ 0:

Therefore, we can achieve

(247) .ya�/i�.j�Cn/k� D 0; nD 1; 2; : : : :

This determines uniquely all b2; b3; : : : .
We now remove the restriction that F and G are tangent to the identity. Suppose

that both ' and y' are in the normal form. Suppose that F' D y'G. Then looking
at the quadratic terms, we know that the linear parts of F and G must be dilations.
In fact, the linear part of F must be the linear automorphism of the quadric. Thus
the linear parts of F and G have the forms

(248) G0W .z; �/D .�z; N��/; F 0.z; �; w/D .�z; N��; N�2w/:

Then .F 0/�1 y'G0 is still in the normal form. Since .F 0/�1F is holomorphic and
.G0/�1G is CR, by the uniqueness of the normalization, we know that F 0 D F and
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G0 DG. Therefore, F and G change the normal form a� as follows,

(249) a�.z; �; w/D N�ya�.�z; N��; N�2w/; � 2 C n f0g:

When Œya��s D Œa��s ¤ 0, we see that j�j D 1. Therefore, the formal automorphism
group is discrete or one-dimensional. �

Coffman [2006] used an analogous method of even/odd function decomposition
to obtain a quadratic normal form for non Levi-flat real-analytic m-submanifolds
in Cn with a CR singularity satisfying certain nondegeneracy conditions, provided
2
3
.nC 1/ � m < n. He was able to achieve the convergent normalization by a

rapid iteration method. Using the above decomposition of invariant and skew-
invariant functions of the involution � , one might achieve a convergent solution for
approximate equations when M is formally equivalent to the quadric. However,
when the iteration is employed, each new CR mapping y' might only be defined on
a domain that is proportional to that of the previous ' by a constant factor. This is
significantly different from the situations of [Moser 1985; Coffman 2006; 2010],
where rapid iteration methods are applicable. Therefore, even if M is formally
equivalent to the quadric, we do not know if they are holomorphically equivalent.

15. Instability of Bishop-like submanifolds

Let us now discuss stability of Levi-flat submanifolds under small perturbations that
keep the submanifolds Levi-flat, in particular, we discuss which quadratic invariants
are stable when moving from point to point on the submanifold. The only stable sub-
manifolds are A.n and C.1. The Bishop-like submanifolds (or even just the Bishop in-
variant) are not stable under perturbation, which we show by constructing examples.

Proposition 15.1. Suppose that M � CnC1, n � 2, is a connected real-analytic
real codimension-two submanifold that has a nondegenerate CR singular at the
origin. M can be written in coordinates .z; w/ 2 Cn �C as

(250) w D A.z; Nz/CB. Nz; Nz/CO.3/;

for quadratic A and B . In a neighborhood of the origin all complex tangents of M
are nondegenerate, while ranks of A and B are upper semicontinuous. Suppose
that M is Levi-flat (that is, MCR is Levi-flat). The CR singular set of M that is not
of type B. 1

2
at the origin is a real-analytic subset of M of codimension at least two,

while the CR singular set of M that is of type B. 1
2

at the origin has codimension at
least one. A.n has an isolated CR singular point at the origin and so does C.1 in
C3. Let S0 �M be the set of CR singular points. There is a neighborhood U of the
origin such that for S D S0\U we have:

(i) If M is of type A.k for k � 2 at the origin, then it is of type A.j at each point
of S for some j � k.
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(ii) If M is of type C.1 at the origin, then it is of type C.1 on S . If M is of type C.0
at the origin, then it is of type C.0 or C.1 on S .

(iii) There exists an M that is of type B. at one point and of C.1 at CR singular
points arbitrarily near. Similarly there exists an M of type A.1 at p 2M that
is either of type C.1, or B. , at points arbitrarily near p. There also exists an
M of type B. at every point but where  varies from point to point.

Proof. First we show that the rank of A and the rank of B are lower semicontinuous
on S0, without imposing the Levi-flatness condition. Similarly the real dimension
of the range of A.z; Nz/ is lower semicontinuous on S0. Write M as

(251) w D �.z; Nz/;

where � vanishes to second order at zero. If we move to a different point of S0 via
an affine map .z; w/ 7! .ZC z0; W Cw0/. Then we have

(252) W Cw0 D �.ZC z0; ZC Nz0/:

We compute the Taylor coefficients

(253) W D
@�

@z
.z0; Nz0/ �ZC

@�

@ Nz
.z0; Nz0/ �ZCZ

�

�
@2�

@z@ Nz
.z0; Nz0/

�
Z

C
1
2
Zt
�
@2�

@z@z
.z0; Nz0/

�
ZC 1

2
Z�
�
@2�

@ Nz@ Nz
.z0; Nz0/

�
ZCO.3/:

The holomorphic terms can be absorbed into W . If .@�=@ Nz/.z0; Nz0/ �Z is nonzero,
then this complex defining function has a linear term in W and a linear term in Z
and the submanifold is CR at this point. Therefore the set of complex tangents of
M is defined by

(254)
@�

@ Nz
D 0;

and each complex tangent point is nondegenerate. At a complex tangent point at the
origin, A is given by Œ.@2�=@z@ Nz/.z0; Nz0/� andB is given by 1

2
Œ.@2�=@ Nz@ Nz/.z0; Nz0/�.

These matrices change continuously as we move along S . We first conclude that all
CR singular points ofM in a neighborhood of the origin are nondegenerate. Further
holomorphic transformations act on A and B using Proposition 2.1. Thus the ranks
of A and B and the real dimension of the range of A.z; Nz/ are lower semicontinuous
on S0 as claimed. Furthermore as M is real-analytic, the points where the rank
drops lie on a real-analytic subvariety of S0, or in other words a thin set. Let U
be a small enough neighborhood of the origin so that S D S0\U is connected.

Imposing the condition that M is Levi-flat, we apply Theorem 1.1. By a simple
computation, unless M is of type B. 1

2
, the set of complex tangents of M has

codimension at least two; and A.n has an isolated CR singular point and so does
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C.1 in C3. Item (i) follows as A.k are the only types where the rank of B is greater
than one, and the theorem says M must be one of these types. For (ii), note that
since A is of rank one when M is C.x at a point, M cannot be of type A.k nearby.
If M is of type C.1 at a point then the range of A must be of real dimension two
in a neighborhood, and hence on this neighborhood M cannot be of type B. .

Examples proving (iii) are given below. �

Example 15.2. Define M via

(255) w D jz1j
2
C  Nz21 C Nz1z2z3:

It is Levi-flat by Proposition 6.2. At the origin M is of type B. , but at a point
where z1D z2D 0 and z3 6D 0, the submanifold is CR singular and it is of type C.1.

Example 15.3. Similarly we obtain a CR singular Levi-flat M via

(256) w D Nz21 C Nz1z2z3I

this M is A.1 at the origin, but C.1 at nearby CR singular points.

Example 15.4. If we define M via

(257) w D  Nz21 Cjz1j
2z2;

then M is a CR singular Levi-flat type A.1 submanifold at the origin, but type B.
at points where z1 D 0 but z2 6D 0.

Example 15.5. The Bishop invariant can vary from point to point. Define M via

(258) w D jz1j
2
C Nz21.1.1� z2/C 2z2/;

where 1; 2 � 0. It is not hard to see that M is Levi-flat. Again it is an image of
C2 �R2 in a similar way as above.

At the origin, the submanifold is Bishop-like with Bishop invariant 1. When
z1 D 0 and z2 D 1, the Bishop invariant is 2. In fact when z1 D 0, the Bishop
invariant at that point is j1.1� z2/C 2z2j.

Proposition 6.2 says that this submanifold possesses a real-analytic foliation
extending the Levi foliation through the singular points. Proposition 6.1 says that
if a foliation on M extends to a (nonsingular) holomorphic foliation, then the
submanifold would be a simple product of a Bishop submanifold and C. Therefore,
if 1 6D 2 then the Levi foliation on M cannot extend to a holomorphic foliation
of a neighborhood of M .
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