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GLOBAL REPRESENTATIONS OF THE CONFORMAL GROUP
AND EIGENSPACES OF THE YAMABE OPERATOR ON S1× Sn

MARK R. SEPANSKI AND JOSE A. FRANCO

Using parabolic induction, a global representation of a double cover of the
conformal group SO(2, n+ 1)0 is constructed. Its space of finite vectors is
realized as a direct sum of eigenspaces of the Yamabe operator on S1 × Sn.
The explicit form of the corresponding eigenvalues is obtained. An explicit
basis of K-finite eigenvectors is used to study its structure as a representa-
tion of the Lie algebra of the conformal group.

1. Introduction

M. Hunziker, M. Sepanski, and R. Stanke [Hunziker et al. 2012] used parabolic
induction to construct a representation Im,r of a twofold cover G̃ of the conformal
group G :=SO(2, n+1)0 of R2,n+1 and studied the kernel of a distinguished central
element � in the universal enveloping algebra of the Lie algebra g of G̃. It was
shown that this kernel carries the minimal representation of G̃ as a positive energy
representation and that elements in this kernel correspond to solutions of the wave
equation. In this article, we study the structure of Im,r and its compact picture
I ′′m,r as (gC, K̃ )-modules, where K̃ denotes the maximal compact subgroup of G̃.
We generalize the results of [loc. cit.] by considering the space of K̃-finite vectors
ker(�−µ)K̃ of ker(�−µ) where µ ∈ R. We explicitly determine the conditions
on µ such that ker(�−µ)K̃ is nonzero. We show that � can be realized as the
Yamabe operator 1̃S1×Sn acting on S1

× Sn embedded in the Minkowski space
R2,n+1. Using this realization, we show that the space of K̃-finite vectors (I ′′m,r )K̃ of
I ′′m,r is isomorphic to a direct sum of eigenspaces of the Yamabe operator 1̃S1×Sn .
An explicit basis of eigenvectors vectors for (I ′′m,r )K̃ in terms of harmonic and
Gegenbauer polynomials is constructed. We show that each of these eigenspaces is
invariant under the action of K̃ , but not invariant under the action of all of g with
the exception of the null eigenspace. While g does not preserve each individual
eigenspace, it preserves the direct sum of them, (I ′′m,r )K̃ . The zero eigenspace is
left invariant under the action of g and (I ′′m,r )K̃ /(ker�)K̃ decomposes as the direct
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sum of two irreducible representations explicitly identified in Theorem 1. The
elements in the zero eigenspace correspond to solutions to the wave equation in the
noncompact picture.

1.1. Related work. This article is motivated by [Hunziker et al. 2012], where the
case µ= 0 was studied. This work is similar in spirit to [Franco and Sepanski 2013],
which provides a generalization of [Sepanski and Stanke 2010]. Since the minimal
representation of conformal groups, the wave equation, and the Yamabe operator are
heavily studied topics in mathematics there exists substantial overlap with existing
literature. See [Hunziker et al. 2012] for a more extensive set of references. Of
particular note, for n = 3, some of the results and formulas in this article appear in
[Segal et al. 1981] and the references therein. In terms of the minimal representation
of the conformal group G, B. Binegar and R. Zierau [1991] realized the minimal
representation of SO(p, q)0 with p, q of the same parity. A very detailed study of
the minimal representation of O(p, q) is given by T. Kobayashi and B. Ørsted in
[2003a; 2003b; 2003c].

1.2. Organization of the work. We introduce most of the objects that will be
fundamental to the study of our problem in Section 2. In particular, the induced,
noncompact, and compact pictures are introduced in this section. Since there is
a considerable overlap with existing literature, most of the proofs are omitted. In
Section 3 we realize the Yamabe operator on S1

× Sn as a central element of the
universal enveloping algebra of the Lie algebra of G̃ and study the invariance of
the eigenspaces of this operator. In Section 4 we introduce the space of K̃-finite
vectors in the compact picture and give an explicit basis consisting of eigenvectors
of the Yamabe operator. In Section 5 we study the structure of the space of K̃-finite
vectors and close with Theorem 1, where the main results are summarized.

2. Preliminary constructions

This section contains a substantial overlap with [Hunziker et al. 2012] due to the
similarity of the problems studied. Therefore, most of this section will be dedicated
to a quick survey of the results that will be useful for the study of our problem.

2.1. Group and subgroups. Let G=SO(2, n+1)0 and let g := so(2, n+1) denote
its Lie algebra. The group G acts naturally on the space R2,n+1. Since G is a group
of linear transformations that preserve the signed quadratic form on R2,n+1, the
action of G descends to an action on the subspace

C2,n+1
:= {(a, b) ∈ R2,n+1

| ‖a‖ = ‖b‖ 6= 0}.

C2,n+1 is a cone in the sense that it is invariant under the action of R×. More-
over, since the actions of G and R× commute, G acts on the projectivized cone
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P(C2,n+1) ∼= C2,n+1/R×. For [0, 1,±1, 0, . . . , 0] ∈ P(C2,n+1), their stabilizers
Q± := StabG([0, 1,±1, 0, . . . , 0]) are isomorphic to the minimal parabolic sub-
groups with Langlands decompositions Q±=M A N±. The corresponding parabolic
subalgebras q± have Langlands decomposition q±=m⊕ a⊕ n±. We describe these
subalgebras and subgroups in more detail. The nilpotent subalgebras are

n± = {N±t,x | (t, x) ∈ R1,n
}, where N±t,x :=


0 t ∓t 0
− t 0 0 x
∓ t 0 0 ±x

0 xT
∓xT 0n

,
and the maximal abelian subalgebra is

a= {Hs | s ∈ R}, where Hs :=


0 0 0 0
0 0 s 0
0 s 0 0
0 0 0 0n

,
and if we denote the +1 eigenspace of the Cartan involution on g by k, then the
centralizer of a in k∼= so(2)× so(n+ 1) is

m= {L A,b | A ∈ so(n) and b ∈ Rn
}, where L A,b :=


0 0 0 b
0 0 0 0
0 0 0 0

bT 0 0 A

.
The corresponding groups in G are

N±={n±t,x | (t, x)∈R1,n
}, where n±t,x :=


1 t ∓t 0

− t 1+ 1
2q(t, x) ∓ 1

2q(t, x) x

∓ t ± 1
2q(t, x) 1− 1

2q(t, x) ±x

0 xT
∓xT In

,
and

A = {hs | s ∈ R}, where hs :=


1 0 0 0
0 cosh(s) sinh(s) 0
0 sinh(s) cosh(s) 0
0 0 0 In

,
with q(t, x)=−t2

+‖x‖2. If SO(1, n)0 denotes the identity component of SO(1, n)
and SO(1, n)1 denotes the remaining component, then

M = {mε,Y | ε =±1}
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where

mε,Y =


a 0 0 b
0 ε 0 0
0 0 ε 0
c 0 0 d

 with Y =
(

a b
c d

)
∈

{
SO(1, n)0 if ε =+1,
SO(1, n)1 if ε =−1.

As in [Hunziker et al. 2012], we will look at the representations induced from a
character on Q−. To construct this character, let M0 denote the connected component
of M where ε =+1 and let M1 denote the component where ε =−1. For g j ∈ M j

define µM : M → C by µM(g j ) := (−1) j. Define νA : A→ C by νA(hs) = es.
Then, the family of characters from which we will induce our representations is
defined by

χm,r (q−)= νA(q
−

A )
rµM(q

−

M)
m

with q− = q−M q−A q−N ∈ Q−, r ∈ C, and m ∈ Z2.

2.2. Double cover and induced representations. For technical reasons it is nec-
essary to work in a double cover of G that we will denote by G̃. The maximal
compact group of G is K ∼= SO(2)×SO(n+ 1). The double cover K̃ of K is such
that the cover map π : K̃ → K is given by

(2-1) π

(
Rϕ/2

un+1

)
=

(
Rϕ

un+1

)
.

Up to isomorphism, K̃ extends uniquely to a group G̃ that is a double cover of G.
Letting Q̃± denote the parabolic subgroups of G̃ that cover Q±, we have that they
have Langlands decomposition Q̃± = M̃ Ã Ñ± and

M̃ ∩ K̃ = {z j,k | k ∈ O(n), det k = (−1) j
} where z j,k =

 R j
π/2 0 0
0 (−1) j 0
0 0 k

.
In particular, M̃ has four connected components. To define a character on Q̃−, we
define γM̃ : M̃→ C by

γM̃
∣∣

M̃ j
:= i j

and ν Ã : Ã→ C by
ν Ã (̃hs)= es.

In [Hunziker et al. 2012], it is shown that the character defined by

χ̃m,r (̃q−) := ν Ã (̃q
−

Ã
)r γM̃(q̃

−

M̃
)m

with q̃− = q̃−
M̃

q̃−
Ã

q̃−
Ñ
∈ Q̃−, r ∈ C, and m ∈ Z4, satisfies χ̃m,r = χm,r ◦π .
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The representation χ̃m,r of Q̃− is used to induce a representation IndG̃
Q−(χ̃m,r )

of G̃. This representation is defined by

(2-2) IndG̃
Q−(χ̃m,r )

= {φ ∈ C∞(G̃) | ϕ(g̃q̃−)= χ̃−1
m,r (̃q

−)φ(g̃) for g̃ ∈ G̃, q̃−∈ Q̃−}.

2.3. Noncompact picture. For r ∈ C and m ∈ Z4, define

I ′m,r := { f ∈ C∞(R1,n) | f (t, x)= φ(̃nt,x)

for some φ ∈ IndG̃
Q−(χ̃m,r ) and all (t, x) ∈ R1,n

}.

It follows from [Hunziker et al. 2012, Proposition 3.13] that the restriction map
is a linear isomorphism and with the appropriate G̃-action, I ′m,r ∼= IndG̃

Q−(χ̃m,r ) as
G̃-representations.

The action of the group G̃ and of the corresponding Lie algebra g on I ′m,r are
calculated in [Hunziker et al. 2012, Section 4]. We will record the actions of the
Lie algebra for future use.

Proposition 1. The elements of the Lie algebra g act on I ′m,r by

Hs = s(r − t∂t − x∂T
x ),(2-3a)

L A,b =−bxT ∂t + (x A− tb)∂T
x ,(2-3b)

N+s,y =−s∂t − y∂T
x , and(2-3c)

N−s,y = 2(st − yxT )(r − t∂t − x∂T
x )− q(t, x)(s∂t + y∂T

x ).(2-3d)

Proof. See [Hunziker et al. 2012]. �

A distinguished copy of so(2, 1) ∼= sl2(R) can be embedded in the upper left
corner of g. A standard sl2-basis for this Lie algebra is

H := H2 E := N+1,0 F := N−1,0.(2-4)

The difference of the Casimir element �SL(2) corresponding to this copy of sl2(R)
with the Casimir element �SO(n) corresponding to so(n) (embedded in the lower
right corner) will play a special role in this article. The following corollary follows
from Proposition 1.

Corollary 1. The operator �SL(2)−�SO(n) acts by

�SL(2)−�SO(n) = ‖x‖2�+ (1− n− 2r)E+ r(r + 1)

on I ′m,r , where � is the wave operator on R1,n and E :=
∑n

i=1 xi∂xi is the Euler
operator on Rn .
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2.4. Compact picture. In [Hunziker et al. 2012] it is shown that the space I ′′m,r of
functions F ∈ C∞(R×R× Sn−1) that satisfy

F(ϕ, θ +π,−x̂)= F(ϕ, θ, x̂)

F(ϕ+π, θ +π, x̂)= i−m F(ϕ, θ, x̂)

F(ϕ, 0, x̂)= F(ϕ, 0, x̂ ′)

for all ϕ, θ ∈ R and x̂, x̂ ′∈ Sn−1, is a K̃-representation. Moreover, this representation
is isomorphic to IndG̃

Q−(χ̃m,r ), hence to I ′m,r . If f ∈ I ′m,r and F ∈ I ′′m,r correspond
under the canonical isomorphism between I ′m,r and I ′′m,r , then they are related by

(2-5) F(ϕ, θ, x̂)= imj
∣∣∣cosϕ+cos θ

2

∣∣∣r f
( sinϕ

cosϕ+cos θ
,

x̂ sin θ
cosϕ+cos θ

)
,

where j is given by

j =


0 if cosϕ− cos θ > 0 and ϕ

2 ∈ (−
π
2 ,

π
2 ) (mod 2π),

1 if cosϕ− cos θ < 0 and ϕ
2 ∈ (0, π) (mod 2π),

2 if cosϕ− cos θ > 0 and ϕ
2 ∈ (−

π
2 ,

3π
2 ) (mod 2π),

3 if cosϕ− cos θ < 0 and ϕ
2 ∈ (π, 2π) (mod 2π),

and

(2-6) f (t, x)= λ(t, x)r F
(

sgn t cos−1 1+ q(t, x)
λ(t, x)

, cos−1 1− q(t, x)
λ(t, x)

,
x
‖x‖

)

where λ(t, x)= (4t2
+ (1+ q(t, x))2)1/2 and q(t, x)=−t2

+‖x‖2.
Define a function F̃ ∈ C∞(R×R× (Rn

\ {0})) by

F̃(ϕ, θ, x̂) := F
(
ϕ, θ,

x
‖x‖

)
,

associated to F ∈ C∞(R×R× Sn−1), and also the derivative

∂x̂i F(ϕ, θ, x̂)= ∂xi F(ϕ, θ, x)
∣∣
x=x̂ .

With this convention, the actions of the Lie algebra are given by the formulas in the
following proposition.
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Proposition 2. The Lie algebra action of g on I ′′m,r is given by:

Hs = s(r cos θ cosϕ− cos θ sinϕ∂ϕ − sin θ cosϕ∂θ ),(2-7a)

L A,b =−bxT (r sinϕ sin θ + cosϕ sin θ∂ϕ + sinϕ cos θ∂θ )(2-7b)

+ (x̂ A− sinϕ
sin θ

b)∂T
x̂ ,

N+s,y =−r(yx̂T sin θ cosϕ+ s cos θ sinϕ)(2-7c)

+ (yx̂T sin θ sinϕ− s(cos θ cosϕ+ 1))∂ϕ

− (yx̂T (cos θ cosϕ+ 1)− s sin θ sinϕ)∂θ −
cosϕ+cos θ

sin θ
y∂T

x̂ ,

N−s,y =−r(yx̂T sin θ cosϕ− s cos θ sinϕ)(2-7d)

+ (yx̂T sin θ sinϕ+ s(cos θ cosϕ− 1))∂ϕ

− (yx̂T (cos θ cosϕ− 1)+ s sin θ sinϕ)∂θ −
cosϕ−cos θ

sin θ
y∂T

x̂

Proof. See [Hunziker et al. 2012]. �

Now that we have introduced the spaces, mappings, and groups that we will use
in the rest of the article, we can start studying the problem that concerns us.

3. Yamabe operator

Recall that the maximal compact group K̃ is isomorphic to SO(2)× SO(n + 1)
with SO(2) embedded in the upper left corner and SO(n + 1) embedded in the
lower right corner. It will prove profitable to investigate the action of the Casimir
operators associated to these groups.

Proposition 3. When r = (1− n)/2, the element

� :=�SO(2)−�SO(n+1)− r2

of g acts on I ′′m,r as the Yamabe operator 1̃S1×Sn on the manifold S1
× Sn as a

subset of R2,n+1. In particular, when r = (1−n)/2, ker(�−µ)= ker(1̃S1×Sn −µ)

as subsets of I ′′m,r , for any constant µ ∈ R.

Proof. The explicit form of the Yamabe operator on S1
× Sn embedded in the

Minkowski space R2,n+1 is calculated in [Kobayashi and Ørsted 2003a] and is equal
to

1̃S1×Sn =1S1 −1Sn −
(n−1)2

4
.

The Casimir elements in the universal enveloping algebras of SO(2) and SO(n+1)
act on I ′′m,r by

�SO(2) =−
1
4(N

+

1,0+ N−1,0)
2
=−∂2

ϕ
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and

�SO(n+1) =−
1
4

n∑
i=1

(N+0,ei
− N−0,ei

)2−
∑

1≤i< j≤n

(L Ei, j−E j,i ,0)
2

=−

n∑
i=1

(x̂i∂θ + cot θ∂x̂i )
2
−

∑
1≤i< j≤n

(x̂i∂x̂ j − x̂ j∂x̂i )
2
=−1Sn

by Equations (2-7) and the recursion formula

1Sn = ∂2
θ + (n− 1) cot θ∂θ − csc2 θ1Sn−1 .

Then, � acts on I ′′m,r by the Yamabe operator 1̃S1×Sn . Therefore, the solution space
of the equation

1̃S1×Sn F(ϕ, θ, x̂)= µF(ϕ, θ, x̂)

is equal to ker(�−µ) in I ′′m,r . �

For the rest of the article, unless otherwise specified, let

r = 1−n
2
.

We will now determine the maximal subgroup of G̃ that leaves ker(�−µ)⊂ I ′′m,r
invariant. To do that, we will use the fact that, on I ′′m,r ,

�SL(2)−�SO(n)− r(r + 1)= sin2 θ(�SO(2)−�SO(n+1)− r2)

(see [Hunziker et al. 2012]). From this, it follows that

ker(�SL(2)−�SO(n)− r(r + 1)−µ sin2 θ)= ker(�−µ)

when viewed as subspaces of I ′′m,r . Using the canonical isomorphism between I ′′m,r
and I ′m,r , more specifically (2-6), we obtain that

ker(�−µ)= ker
(
�SL(2)−�SO(n)− r(r + 1)− 4µ‖x‖2

λ(t, x)2

)
= ker(λ(t, x)2�− 4µ)

as subspaces of I ′m,r , where � is the wave operator on R1,n. We will use this fact to
show the invariance of ker(�−µ).

Proposition 4. If µ 6=0, then the stabilizer of ker(�−µ)⊂ I ′′m,r in G̃ is the maximal
compact subgroup K̃ .

Proof. Since G̃ is connected, it suffices to find the maximal subalgebra of g that
leaves ker(�−µ)⊂ I ′′m,r invariant. Since I ′m,r and I ′′m,r are isomorphic, it suffices to
determine the maximal subalgebra that leaves ker(λ(t, x)2�−4µ)⊂ I ′m,r invariant.
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A necessary and sufficient condition for ker(λ(t, x)2�− 4µ) to be invariant under
the action of an element X ∈ g is that

(3-1) [X, λ(t, x)2�− 4µ] = β(t, x)(λ(t, x)2�− 4µ)

for some function β(t, x). Straightforward calculations using the formulas in
Proposition 1 give the following equations:

[H1, λ(t, x)2�− 4µ] = 2(1− q(t, x)2)�,

[L Ei j−E j i ,0, λ(t, x)2�− 4µ] = 0,

[L0,ei , λ(t, x)2�− 4µ] = −8xi t�,

[N+1,0, λ(t, x)2�− 4µ] = 4t (q(t, x)− 1)�,

[N+0,ei
, λ(t, x)2�− 4µ] = −4xi (q(t, x)+ 1)�,

[N−1,0, λ(t, x)2�− 4µ] = 4t (q(t, x)− 1)�,

[N−0,ei
, λ(t, x)2�− 4µ] = −4xi (q(t, x)+ 1)�.

From these equations, it can be seen that the condition (3-1) is only satisfied when
β(t, x)= 0. Therefore, the maximal invariance subalgebra of ker(�−µ) is spanned
by the set {L Ei j−E j i | 1 ≤ i < j ≤ n} ∪ {N+1,0+ N−0,1} ∪ {N

+

0,ei
− N−0,ei

| 1 ≤ i ≤ n}
which is isomorphic to the maximal compact subalgebra k. This yields the desired
result. �

It is worth remarking that in the noncompact picture,

ker(�−µ)= ker
(
�− 4µ

λ(t, x)2
)

Therefore, ker(�−µ) corresponds to the space of solutions of

−ut t +1nu = 4µ
λ(t, x)2

u

in I ′m,r . In particular, ker� corresponds to the space of solutions of the wave
equation in I ′m,r .

4. K̃-finite vectors

In this section we will determine the space K̃-finite vectors of the representation
ker(�−µ)⊂ I ′′m,r . In order to do this, we will first determine the K̃-finite vectors
in I ′′m,r explicitly by using the following realization of I ′′m,r :

I ′′m,r ∼= {φ ∈ C∞(S1
× Sn) | φ(c ·w)= i−mφ(c) for every c ∈ S1

× Sn
},
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where

w =

(
Rπ/2

−In+1

)
.

Let the space of K̃-finite vectors in C∞(S1
× Sn) be denoted by C∞(S1

× Sn)K̃ .
Then it is well known that

C∞(S1
× Sn)K̃

∼=

⊕
p,k∈Z
k≥0

Cei pϕ/2
⊗Hk(Sn).

Where Hk(Sn) denotes the space of homogeneous harmonic polynomials of degree k
on Rn+1 restricted to Sn . Then,

Hk(Sn)= {h ∈ C∞(Sn) |�SO(n+1)h = k(k+ n− 1)h}.

Since φ ∈ I ′′m,r must satisfy φ(c ·w) = i−mφ(c), the space of K̃ finite vectors in
I ′′m,r is given by

(4-1) (I ′′m,r )K̃
∼=

⊕
(p,k)∈Z×Z≥0

p+2k≡−m (mod 4)

Cei pϕ/2
⊗Hk(Sn).

Proposition 5. With r = (1− n)/2, let ker(�−µ)K̃ denote the space of K̃-finite
vectors in ker(�−µ)⊂ I ′′m,r . Then,

ker(�−µ)K̃
∼=

⊕
(p,k)∈Z×Z≥0

p+2k≡−m (mod 4)
µ=(p/2)2−(k−r)2

Cei p ϕ2 ⊗Hk(Sn).

Proof. From the decomposition (4-1) and the well-known fact that �SO(n) acts
on Hk(Sn) by k(k − 1 + n), it is easy to see that the operator � − µ acts on
Cei pϕ/2

⊗Hk(Sn) by( p
2

)2
− k(k− 2r)− r2

=

( p
2

)2
− (k− r)2.

The proposition follows from this and (4-1). �

The following lemma is proved in [Hunziker et al. 2012] and will be used to
write a basis for (I ′′m,r )K̃ explicitly.

Lemma 1. Let SO(n)⊂ SO(n+ 1) be the stabilizer of (±1, 0, . . . , 0) ∈ Sn . Then,
as an SO(n)-module,

Hk(Sn)∼=

k⊕
l=0

Hl(Sn−1),
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where the isomorphism is given by

(h0(x̂), . . . , hk(x̂)) 7→
k∑

l=0

C̃ (l−r)
k−l (cos θ) sinl θ hl(x̂),

where r = (1− n)/2 and C̃ (λ)
d is the degree d normalized Gegenbauer polynomial

with parameter λ.

Let {hl, j } be a basis for the homogeneous harmonic polynomials on Rn of degree l
such that when restricted to Sn−1 they form an orthonormal basis for L2(Sn−1).
Then, Lemma 1 implies that the functions of the form

(4-2) Fp,d,l, j (ϕ, θ, x̂) := ei p/2ϕC (l−r)
d (cos θ) sinl θ hl, j (x̂)

with p, d, l, j ∈ Z, and d, l, j ≥ 0 such that p+ 2(d + l) ≡ −m (mod 4), form a
basis of (I ′′m,r )K̃ , where r = (1− n)/2. For later use, we note that if we define

k := d + l,

then the function C (l−r)
d (cos θ) sinl θ hl, j (x̂) ∈Hk(Sn).

By Proposition 5 we know that Fp,d,l, j is an eigenvector for � with eigenvalue

µp,d,l :=

( p
2

)2
−

(2d+2l−n+1
2

)2
.

Definition. We will say that µ ∈ R is an admissible eigenvalue of � if and only if
µ=µp,d,l for some p, d, l ∈Z such that d≥0, l≥0, and p+2(d+l)≡−m (mod 4).
Let S be the set of admissible eigenvalues of �.

Then, it is clear that

(I ′′m,r )K̃
∼=

⊕
µ∈S

ker(�−µ)K̃ .

Since (I ′′m,r )K̃ has the structure of a (g, K̃ )-module, the direct sum of all eigenspaces
of � with admissible eigenvalues does too, and as such it can be completed to a
representation of G̃.

One last note to close this section is to contrast the functions Fp,l, j constructed in
[Hunziker et al. 2012] and the functions Fp,l, j,d that we just defined. Even though
they are very similar, the main difference is that here we are allowing the parameter
d ≥ 0 to vary, in contrast with Fp,l, j where the parameter d = |p|/2+ r − l was
fixed for each choice of l. In a sense, the introduction of the parameter d is counting
for the fact that different eigenvalues µp,d,l 6= 0 of the Yamabe operator are being
admitted. In [loc. cit.], the only eigenvalue that was considered admissible was
µ= 0, in this sense we are generalizing their result.
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5. Structure theorems

In this section, we will study the structure of ⊕µ∈S ker(�−µ)K̃ as a representation
of g. To do this, we will introduce a new basis {κ, e+, e−} for the complexification
of the distinguished Lie algebra sl(2,R) introduced in Section 2.3. This basis is
defined by

κ := i(E − F), e+ := 1
2(H − i(E + F)), e− := 1

2(H + i(E + F)).(5-1)

Using (2-4) and (2-7) it can be shown that this sl(2,C)-triple acts on I ′′m,r by

κ =−2i∂ϕ e± = e±iϕ(r cos θ ± i cos θ ∂ϕ − sin θ ∂θ ).(5-2)

Lemma 2. The differential operators e+ and e− on I ′′m,r can be written as linear
combinations of the form e± = A±+ B± such that A±Fp,d,l, j and B±Fp,d,l, j are
all eigenvectors of �.

Proof. Notice that �SO(2) and e± commute. Since Fp,d,l, j is an eigenvector for
�SO(2), so are e±Fp,d,l, j . Moreover, if A± and B± are a linear combinations of
{r cos θ, cos θ∂ϕ, sin θ∂θ }, then A±Fp,d,l, j and B±Fp,d,l, j are all eigenvectors of
�SO(2). So, by the definition of �, it suffices to determine A± and B± so that
A±Fp,d,l, j and B±Fp,d,l, j are eigenvectors of �SO(n+1).

Now, A±Fp,d,l, j and B±Fp,d,l, j are eigenvectors of �SO(n+1) if and only if
Fp,d,l, j is an eigenvector of [�SO(n+1), A±] and of [�SO(n+1), B±]. Writing these
conditions out explicitly gives the following form for the operators A± and B±:

(5-3) A± = e±iϕ
(r

2
cos θ − 4r2

+2(d+l)(2(d+l)∓ p−4r)
4p(d+l−r)

i cos θ ∂ϕ

−
2(d+l)∓ p−2r

4((d+l)−r)
sin θ ∂θ

)
and

(5-4) B± = e±iϕ
(r

2
cos θ + 4r(r∓ p)+2(d+l)(2(d+l)± p−4r)

4p(d+l−r)
i cos θ ∂ϕ

−
2(d+l)± p−2r

4(d+l−r)
sin θ ∂θ

)
.

These operators satisfy the required conditions. �

By making the change of variables s = cos θ and considering the fact that
∂ϕFp,d,l, j = i p/2, when restricted to the basis elements

Fp,d,l, j (ϕ, s, x̂)= ei pϕ/2(1− s2)l/2 C (l−r)
d (s)hl, j (x̂),
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the operators in (5-3) and (5-4) act by

(5-5) A± = ∓p+2(d+l−r)
4(d+l−r)

e±iϕ((d + l)s+ (1− s2)∂s)

and

(5-6) B± = ±p−2(d+l−r)
4(d+l−r)

e±iϕ((2r − d − l)s+ (1− s2)∂s),

respectively. We are now in a position to calculate the actions of e± on the functions
Fp,d,l, j (ϕ, s, x̂). We start with the following proposition.

Proposition 6. Let Fp,d,l, j be defined as in (4-2) and let A± and B± be defined by
(5-3) and (5-4) respectively. Then,

(5-7) A±Fp,d,l, j =
∓p+2(d+l−r)

4(d+l−r)
(d + 2(l − r)− 1)Fp±2,d−1,l, j

and

(5-8) B±Fp,d,l, j =
∓p−2(d+l−r)

4(d+l−r)
(d + 1)Fp±2,d+1,l, j .

Proof. Firstly, we will need to state two well-known identities for the Gegenbauer
polynomials:

(5-9) (1− s2)
d
ds

C (λ)
d (s)=−dsC (λ)

d (s)+ (d + 2λ− 1)C (λ)
d−1(s)

and

(5-10) (1− s2)
d
ds

C (λ)
d (s)= (d + 2λ)sC (λ)

d (s)− (d + 1)C (λ)
d+1(s)

(see [Abramowitz and Stegun 1964, Formulas 22.8.2 and 22.7.3]). Now, (5-7)
follows from (5-5) and (5-9), and analogously (5-8) is obtained by combining (5-6)
and (5-10). �

Corollary 2. Let Fp,d,l, j be defined as in (4-2). Then,

(5-11) e+Fp,d,l, j =
−p+2(d+l−r)

4(d+l−r)
(d + 2(l − r)− 1)Fp+2,d−1,l, j

+
−p−2(d+l−r)

4(d+l−r)
(d + 1)Fp+2,d+1,l, j

and

(5-12) e−Fp,d,l, j =
p+2(d+l−r)

4(d+l−r)
(d + 2(l − r)− 1)Fp−2,d−1,l, j

+
p−2(d+l−r)

4(d+l−r)
(d + 1)Fp−2,d+1,l, j ,

with the convention that Fp,−1,l, j ≡ 0.

Proof. The corollary follows at once from Proposition 6. �
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Now we can read much information from the coefficients in (5-11) and (5-12).
Firstly, by definition d, l ≥ 0 and r < 0, so d + l − r > 0. Therefore, these
equations are well defined for every Fp,d,l, j as in (4-2). Secondly, we can look for
highest/lowest weight vectors for the action of sl(2,C). In order for Fp,d,l, j to be a
highest or lowest weight vector, we would need either e+ or e− to annihilate Fp,d,l, j

respectively. By inspecting the coefficients we conclude that this can only occur
whenever p = 2(d + l − r) or p =−2(d + l − r). However, this can occur only if
µ= 0. In this case, the actions of e± would have only one term depending on the
sign of p. This corresponds with the action calculated in [Hunziker et al. 2012].
Moreover, the highest and lowest weight vectors are precisely the ones calculated
therein.

In more detail, if p =−2(d + l − r), then

e+F−2(d+l−r),d,l, j =
−p+2(d+l−r)

4(d+l−r)
(d + 2(l − r)− 1)F−2(d+l−r−1),d−1,l, j .

In particular,

e+F−2(l−r),0,l, j = 0.

Similarly,

e−F2(l−r),0,l, j = 0

for l, j ∈ Z≥0. So, for each combination of parameters l, j ∈ Z≥0 there exists a
highest weight sl(2,C)-module in (I ′′m,r )K̃ with highest weight vector F−2(l−r),0,l, j .
There also exists a lowest weight module with lowest weight vector F2(l−r),0,l, j .

In Figure 1 we show the projection to the plane l = 0 of the representation
(I ′′m,r )K̃ pictorially. However, the pictorial representation of all of (I ′′m,r )K̃ would
require a third axis for the l parameter. In this picture, the span of highest weight
vector F2r,0,0,0 of (H−)K̃ corresponds to the point (0, 2r). For a fixed l ∈ Z≥0,
the span of the highest weight vectors F−2(l−r),0,l, j corresponds to the dot in the
position (0,−2(l − r)) in that particular plane. To illustrate, Figure 2 shows the
projection onto the plane l = 1. The highest weight vectors there are F2r−2,0,1, j

and represented by the point (0, 2r − 2).
In Figure 1 we also describe the actions of sl(2,C). In this figure, a dot at

the (d, p) coordinate represents the span of {Fp,d,l, j | l, j ∈ Z≥0
}. As shown in

Corollary 2, the action of e+ sends a multiple of Fp,d,l, j into the span of Fp+2,d±1,l, j ,
thus the northeast and northwest arrows. Similarly, the action of e− sends a multiple
of Fp,d,l, j into the span of Fp−2,d±1,l, j , hence the arrows pointing in the southeast
and southwest directions. Lastly, the semisimple element κ acts by the scalar p on
Fp,d,l, j , thus leaving each point fixed.

To finish this analysis we introduce two spaces that correspond to the positive
and negative energy representations for the zero eigenspace. These representations
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p

d

p = 2(d − r)

p =−2(d − r)

e−

e+

κ

Figure 1. Summary of the action of sl(2,C) on (I ′′m,r )K̃ and l = 0.

p

d

−2r + 2

2r − 2

p = 2(d − r + 1)

p =−2(d − r + 1)

Figure 2. Pictorial representation of the plane l = 1 of (I ′′m,r )K̃ .

are related to positive and negative energy solutions of the wave equation. For more
information in this direction, see [Hunziker et al. 2012]. Let

(H−)K̃ :=
⊕

p∈Z,k∈Z≥0

p=−2(k−r)
p+2k≡−m (mod 4)

Cei pϕ/2
⊗Hk(Sn)

and
(H+)K̃ :=

⊕
p∈Z,k∈Z≥0

p=2(k−r)
p+2k≡−m (mod 4)

Cei pϕ/2
⊗Hk(Sn).
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In the pictorial representation, (H−)K̃ would live in the p=−2(d+l−r) plane and
(H+)K̃ would live in the plane p= 2(d+l−r). Each projection onto a fixed l would
look essentially the same as Figure 1, with the intercepts at±2(l−r)=±(2l−n+1).

So far we have studied the structure of (I ′′m,r )K̃ as an sl(2,C)-module. To analyze
the structure of (I ′′m,r )K̃ as a (gC, K̃ )-module, we start by fixing a Cartan subalgebra
hC of kC = so(2)× so(n+ 1) given by

hC := {Hh1,...,h` | h1, . . . , h` ∈ C},

where

Hh1,...,h` =



0 ih0

−ih0 0
. . .

0 ih2

−ih2 0
0 ih1

−ih1 0


where `= [(n+1)/2]. Let ε j : hC→C be the functional such that ε j (H)= h j . As
it turns out, the roots ε0+ ε1 and ε0− ε1 are the noncompact simple root and the
highest root respectively. The corresponding root vectors Xε0±ε1 are given by

Xε0±ε1 := L0,en−1∓ien +
1
2(N

+

0,−ien−1∓en
+ N0,−ien−1∓en ) ∈ p

+

and the complex conjugates X ε0±ε1 are the root vectors for the respective negative
roots. The proof of [Hunziker et al. 2012, Proposition 9.6] implies that for k ≥ 0

(Xε0±ε1)
k
· F−2r,0,0,0 ∈ span{F−2r+2k,0,k, j | j ∈ Z≥0

}

and
(X ε0±ε1)

k
· F2r,0,0,0 ∈ span{F2r−2k,0,k, j | j ∈ Z≥0

}.

Moreover, they show that the functions (Xε0+ε1)
k F−2r,0,0,0 are kC-lowest weight

vectors and (X ε0−ε1)
k F2r,0,0,0 are kC-lowest weight vectors. Since these vectors

are also annihilated by e+ and e− respectively, the vectors F−2r,0,0,0 and F2r,0,0,0

are gC-lowest and highest weight vectors respectively. Intuitively, in the pictorial
representation of (I ′′m,r )K̃ these root vectors Xε0±ε1 and X ε0±ε1 allow us to move
from one l plane to the preceding l − 1 and superseding l + 1 planes.

Putting all this information together, we obtain our main result.

Theorem 1. Let r = (1− n)/2. Let (I ′′m,r )K̃ denote the space of K̃-finite vectors of
I ′′m,r and let

(I ′′m,r )
±

K̃
:=

⊕
±p∈Z>0

k∈Z≥0

p+2k≡−m (mod 4)

Cei pϕ/2
⊗Hk(Sn).
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Then, as (gC, K̃ )-modules:

(1) The submodules (H±)K̃ are irreducible lowest/highest weight modules with
weight vectors F±2r,0,0,0 respectively.

(2) The quotient modules (I ′′m,r )
+

K̃
/(H+)K̃ and (I ′′m,r )

−

K̃
/(H−)K̃ are irreducible

lowest/highest weight modules with the weight vectors being the cosets corre-
sponding to F−2r+2,0,0,0 and F2r−2,0,0,0.

(3) The following is a composition series of (I ′′m,r )K̃ :

{0} ⊂ (H±)K̃ ⊂ (H
−)K̃ ⊕ (H

+)K̃ ⊂ (I
′′

m,r )K̃ .

Proof. The only statement left to be shown is (2), as this implies the composition
series in (3). This statement follows from the fact that for k > 0 the nonzero vectors

(Xε0±ε1)
k
· F−2r+2,0,0,0 ∈ span{F−2(r−k−1),0,k, j | j ∈ Z≥0

}

and
(X ε0±ε1)

k
· F2r−2,0,0,0 ∈ span{F2(r−k−1),0,k, j | j ∈ Z≥0

},

which is proved using the explicit actions of Xε0±ε1 and X ε0±ε1 and induction. �
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