
Pacific
Journal of
Mathematics

ON THE DEGREE OF CERTAIN LOCAL L-FUNCTIONS

U. K. ANANDAVARDHANAN AND AMIYA KUMAR MONDAL

Volume 276 No. 1 July 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 276, No. 1, 2015

dx.doi.org/10.2140/pjm.2015.276.1

ON THE DEGREE OF CERTAIN LOCAL L-FUNCTIONS

U. K. ANANDAVARDHANAN AND AMIYA KUMAR MONDAL

Let π be an irreducible supercuspidal representation of GLn(F), where F is
a p-adic field. By a result of Bushnell and Kutzko, the group of unramified
self-twists of π has cardinality n/e, where e is the oF-period of the principal
oF-order in Mn(F) attached to π . This is the degree of the local Rankin–
Selberg L-function L(s, π × π∨). In this paper, we compute the degree of
the Asai, symmetric square, and exterior square L-functions associated to π .
As an application, assuming p is odd, we compute the conductor of the Asai
lift of a supercuspidal representation, where we also make use of the con-
ductor formula for pairs of supercuspidal representations due to Bushnell,
Henniart, and Kutzko (1998).

1. Introduction

Let F be a p-adic field. Let oF denote its ring of integers and let pF be the unique
maximal ideal of oF . Let q denote the cardinality of the residue field oF/pF . Let
W ′F denote the Weil–Deligne group of F . For a reductive algebraic group G defined
over F , let L G be its Langlands dual. Given a Langlands parameter ρ :W ′F →

L G
and a finite-dimensional representation r : L G→ GL(V ), we have an L-function
L(s, ρ, r) defined as follows. If N is the nilpotent endomorphism of V associated
to r ◦ ρ, then

L(s, ρ, r)=
1

det
(
1− (r ◦ ρ)(Frob)|(Ker N )I q−s

)
where Frob is the geometric Frobenius and I is the inertia subgroup of the Weil
group of F . Thus, L(s, ρ, r)= P(q−s)−1 for some polynomial P(X)with P(0)=1,
and by the degree of L(s, ρ, r) we mean the degree of P(X). If π = π(ρ) denotes
the L-packet of irreducible admissible representations of G(F) corresponding to ρ
under the conjectural Langlands correspondence, then its Langlands L-function,
denoted by L(s, π, r), is expected to coincide with L(s, ρ, r). In many cases,
candidates for L(s, π, r) can also be obtained either via the Rankin–Selberg method
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of integral representations or by the Langlands–Shahidi method, and in several
instances it is known that all these approaches lead to the same L-function [Shahidi
1984; 1990; Anandavardhanan and Rajan 2005; Henniart 2010; Matringe 2011;
Kewat and Raghunathan 2012].

Let G = GL(n1)×GL(n2). If πi is an irreducible admissible representation of
GLni (F) (i = 1, 2), and if r is the tensor product representation of L G=GLn1(C)×

GLn2(C) on Cn
⊗ Cn given by r((a, b)) · (x ⊗ y) = ax ⊗ by, then the resulting

L-function is the Rankin–Selberg L-function L(s, π1× π2) [Jacquet et al. 1983;
Shahidi 1984]. If we assume that both π1 and π2 are supercuspidal representations,
then we know that L(s, π1×π2)≡ 1 unless n1 = n2 and π∨2 ∼= π1⊗χ ◦ det for an
unramified character χ of F×. Here, π∨ denotes the representation contragredient
to π . Moreover, in the latter case, the degree of L(s, π1×π2) is equal to the degree
of L(s, π1×π

∨

1 ), which in turn equals the cardinality of the group

{
η : F×→ C× | π1⊗ η ◦ det∼= π1, η unramified

}
.

The result of Bushnell and Kutzko mentioned in the abstract computes the
cardinality of the above group of unramified self-twists of π = π1 [Bushnell
and Kutzko 1993, Lemma 6.2.5]. In order to state the result, let [A,m, 0, β] be
the simple stratum defining a maximal simple type occurring in the irreducible
supercuspidal representation π . Here, A is a principal oF -order in Mn(F), m ≥ 0
is an integer called the level of π , and β ∈ Mn(F) is such that F[β] is a field with
F[β]× normalizing A. Let e= e(A|oF ) be the oF -period of A; this quantity in fact
equals the ramification index e(F[β]/F) of F[β]/F . Then e divides n, and the
cardinality of the group of unramified self-twists of π is n/e. We mention in passing
that the level m of π is related to the conductor f (π) of π by f (π)= n(1+m/e).

The aim of the present work is to analogously compute the degree of some other
local L-functions in the supercuspidal case. Investigating the supercuspidal case
would suffice as the L-function of any irreducible admissible representation can
usually be built out of L-functions associated to supercuspidal representations. The
L-functions that we study in this paper are the Asai L-function, the symmetric
square L-function, and the exterior square L-function.

For the Asai L-function, take G = ResE/F GL(n), the Weil restriction of GL(n),
where E is a quadratic extension of F . Thus, G(F) = GLn(E). In this case, the
dual group is L G = GLn(C)×GLn(C)oGal(E/F), where the nontrivial element
σ of the Galois group Gal(E/F) acts by σ · (a, b)= (b, a). The representation r is
the Asai representation, also known as the twisted tensor representation, of L G on
Cn
⊗Cn given by r((a, b)) ·(x⊗ y)= ax⊗by and r(σ ) ·(x⊗ y)= y⊗ x . The Asai

L-function can be studied both by the Rankin–Selberg method (see [Flicker 1993,
Appendix; Kable 2004]) and by the Langlands–Shahidi method [Shahidi 1990]. It
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is also known that all three definitions match [Anandavardhanan and Rajan 2005;
Henniart 2010; Matringe 2011].

For the symmetric square L-function (resp. the exterior square L-function), take
G = GL(n) and let r be the symmetric square (resp. the exterior square) of the
standard representation of L G = GLn(C). The Langlands–Shahidi theory of these
L-functions is satisfactorily understood [Shahidi 1990; 1992] and this definition is
known to match with the one via the Langlands formalism [Henniart 2010]. For
the Rankin–Selberg theory of these L-functions, we refer to [Jacquet and Shalika
1990; Bump and Ginzburg 1992; Kewat and Raghunathan 2012].

These L-functions are ubiquitous in number theory and the degree of L(s, π, r)
often has several meaningful and important interpretations. For instance, these
L-functions detect functorial lifts from classical groups. In particular, by the work of
Shahidi [1992] and Goldberg [1994], for an irreducible supercuspidal representation
π , the degree of L(s, π, r) is either the number of unramified twists or half the
number of unramified twists of π which are functorial lifts from classical groups
(see [Shahidi 1992, Theorem 7.7] and [Goldberg 1994, Theorems 5.1 and 5.2]).
We refer to Section 2 for some more details in this regard. Since reducibility
of parabolic induction is understood in terms of poles of these L-functions, the
degree of L(s, π, r) when π is self-dual if r = Sym2 or

∧2, or when π is conjugate
self-dual if r = Asai, counts the number of unramified twists or half the number
of unramified twists of π such that the parabolically induced representation to
the relevant classical group is irreducible (see [Shahidi 1992, Theorem 7.6] and
[Goldberg 1994, Theorem 6.5]).

These L-functions are also related to the theory of distinguished representa-
tions. If π is a supercuspidal representation of GLn(E), then the degree of its
Asai L-function is the number of unramified characters µ of F× for which π
is µ-distinguished with respect to GLn(F) (see [Anandavardhanan et al. 2004,
Corollary 1.5]). Similarly, if π is a supercuspidal representation of GLn(F), the
degree of its exterior square L-function is half the number of unramified characters
µ of F× such that π ⊗µ ◦ det admits a Shalika functional (see [Jiang et al. 2008,
Theorem 5.5]).

Our main theorem computes the degree of L(s, π, r), when π is a supercuspidal
representation, in terms of the simple stratum [A,m, 0, β] defining a maximal
simple type occurring in the irreducible supercuspidal representation π . Note that
π is a supercuspidal representation of GLn(E), with E/F a quadratic extension, in
the Asai case, whereas otherwise it is a supercuspidal representation of GLn(F).
As before, let e denote the o-period of A where o= oE in the Asai case and o= oF

otherwise.
Let ω = ωE/F be the quadratic character of F× associated to the extension

E/F and let κ be an extension of ω to E×. For the purposes of this paper, let
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us say that a supercuspidal representation, and more generally a discrete series
representation, π of GLn(E) is distinguished (resp. ω-distinguished) if its Asai L-
function L(s, π, r) (resp. L(s, π ⊗κ, r)) has a pole at s = 0. Strictly speaking, this
is not how distinction is usually defined, but the property above does characterize
distinction for the pair (GLn(E),GLn(F)) (see [Anandavardhanan et al. 2004,
Corollary 1.5]). It follows that a supercuspidal representation, and more generally
a discrete series representation, cannot be both distinguished and ω-distinguished
because of the identity

L(s, π ×πσ )= L(s, π, r)L(s, π ⊗ κ, r).

Here, σ is the nontrivial element of the Galois group Gal(E/F).
Recall also that a supercuspidal representation π , and more generally a discrete

series representation, of GLn(F) which is self-dual is said to be orthogonal (resp.
symplectic) if its symmetric square L-function L(s, π,Sym2) (resp. its exterior
square L-function L(s, π,

∧2
)) has a pole at s = 0. Thus, a supercuspidal rep-

resentation, and more generally a discrete series representation, cannot be both
orthogonal and symplectic, since we have the factorization

L(s, π ×π)= L(s, π,Sym2)L(s, π,
∧2
).

Thanks to the above factorizations, if π is a supercuspidal representation of
GLn(E), we can conclude that

deg L(s, π, r)+ deg L(s, π ⊗ κ, r)=
{

2n/e if E/F is unramified,
n/e if E/F is ramified.

Similarly, if π is a supercuspidal representation of GLn(F), then

deg L(s, π,Sym2)+ deg L(s, π,
∧2
)= n/e

by the result of Bushnell and Kutzko mentioned earlier. Our main results assert that
if both the degrees on the left-hand side of the above identities are nonzero, then
they are equal.

To state the result more precisely, we introduce the following notion. Let [π ]
denote the inertial equivalence class of π ; thus [π ] consists of all the unramified
twists of π . We say that [π ] is µ-distinguished (resp. orthogonal, symplectic)
if there is an unramified twist of π which is µ-distinguished (resp. orthogonal,
symplectic). Now we state the main results of this paper.

Theorem 1.1. Let π be a supercuspidal representation of GLn(E), with E/F a
quadratic extension. Let e be the oE -period of the principal oE -order in Mn(E)
attached to π . Let L(s, π, r) be the Asai L-function of π .
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(1) Suppose E/F is unramified. Then the degree of L(s, π, r) is

d(Asai)=
{

0 if [π ] is not distinguished,
n/e if [π ] is distinguished.

(2) Suppose E/F is ramified. Then the degree of L(s, π, r) is

d(Asai)=


0 if [π ] is not distinguished,
n/2e if [π ] is both distinguished and ω-distinguished,
n/e if [π ] is distinguished but not ω-distinguished.

Theorem 1.2. Let π be a supercuspidal representation of GLn(F). Let e be the
oF -period of the principal oF -order in Mn(F) attached to π . Then the degree of its
symmetric square L-function L(s, π,Sym2) is

d(Sym2)=


0 if [π ] is not orthogonal,
n/2e if [π ] is both orthogonal and symplectic,
n/e if [π ] is orthogonal but not symplectic.

Theorem 1.3. Let π be a supercuspidal representation of GLn(F). Let e be the
oF -period of the principal oF -order in Mn(F) attached to π . Then the degree of its
exterior square L-function L(s, π,

∧2
) is

d(
∧2
)=


0 if [π ] is not symplectic,
n/2e if [π ] is both symplectic and orthogonal,
n/e if [π ] is symplectic but not orthogonal.

Remark. As mentioned earlier, a consequence of Theorems 1.2 and 1.3 is that

deg L(s, π,Sym2)= deg L(s, π,
∧2
)

if both these L-functions are not identically 1. In this context, we also refer to the
remark following Theorem 2.1 in Section 2, which places the above observation in
the framework of the work of Shahidi [1992].

Finally, in Section 6, we prove the following theorem. We stress that the assump-
tion of odd residue characteristic is essential in its proof.

Theorem 1.4. Let E/F be a quadratic extension of p-adic fields. If it is ramified,
assume also that p 6= 2. Let κ be a character of E× which restricts to the quadratic
character ωE/F of F× associated to E/F. Let π be an irreducible supercuspidal
representation of GLn(E) and let r(π) be its Asai lift to GLn2(F). Then

f (r(π))+ deg L(s, π, r)= f (r(π)⊗ωE/F )+ deg L(s, π ⊗ κ, r).

Remark. The conductor formula of Bushnell, Henniart, and Kutzko [1998, Theo-
rem 6.5] gives an explicit formula for f (π ×πσ ) (see Section 5). Thus, together
with Theorem 1.1 and this explicit conductor formula for pairs of supercuspidal
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representations of general linear groups, Theorem 1.4 in fact produces an explicit
conductor formula for the Asai lift. Since the statement of such an explicit formula
involves introducing further notations, we leave the precise formula to Section 6
(see Theorem 6.1).

2. Results of Shahidi and Goldberg

We recall the results of [Shahidi 1992; Goldberg 1994] to place our Theorems 1.1,
1.2, and 1.3 in context. For the unexplained definitions in the following, we refer to
[Shahidi 1992, Definitions 7.4 and 7.5].

Theorem 2.1 [Shahidi 1992, Theorem 7.7]. Let π be an irreducible supercuspidal
representation of GLn(F).

(1) The L-function L(s, π,
∧2
) is identically 1 unless some unramified twist of π

is self-dual. Assume π is self-dual. Let S be the (possibly empty) set of all
the unramified characters η, no two of which have equal squares, for which
π ⊗ η ◦ det comes from SOn+1(F). Then

L(s, π,
∧2
)=

∏
η∈S

(
1− η2($)q−s)−1

.

(2) The L-function L(s, π,Sym2) is identically 1 unless some unramified twist of
π is self-dual. Assume π is self-dual. If π comes from Spn−1(F), then

L(s, π,Sym2)= (1− q−rs)−1,

where r is the number of unramified self-twists of π . Otherwise, let S′ be the
(possibly empty) set of all the unramified characters η, no two of which have
equal squares, for which π ⊗ η ◦ det comes from SO∗n(F). Then

L(s, π,Sym2)=
∏
η∈S′

(
1− η2($)q−s)−1

.

Remark. A consequence of Theorem 1.2 and Theorem 1.3 is that S and S′ have
the same cardinality if both these sets are nonempty.

Next we state Theorems 5.1 and 5.2 of [Goldberg 1994]. Here, E/F is a quadratic
extension of p-adic fields and σ denotes the nontrivial element of Gal(E/F). For
an irreducible admissible representation of GLn(E), let L(s, π, r) denote its Asai
L-function. In the following, q = qF is the residue cardinality of F . For the
unexplained definitions in the following two theorems, we refer to Definitions 1.11
and 1.12 of [Goldberg 1994].

Theorem 2.2. Let n be odd. Suppose that π is an irreducible supercuspidal rep-
resentation of GLn(E) such that π∨ ∼= πσ . Let S be the set of all unramified
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characters η of E×, no two of which have equal squares, such that π ⊗ η ◦ det is a
stable lift from U (n, E/F).

(1) Suppose E/F is ramified. Then

L(s, π, r)=
∏
η∈S

(
1− η($F )q

−s)−1
.

(2) Suppose E/F is unramified. Then

L(s, π, r)=
∏
η∈S

(
1− η2($F )q

−s)−1
.

Theorem 2.3. Let n be even. Suppose that π is an irreducible supercuspidal
representation of GLn(E) such that π∨ ∼= πσ . Let S be the set of all unramified
characters η of E×, no two of which have equal value at $F , such that π ⊗ η ◦ det
is an unstable lift from U (n, E/F). Then

L(s, π, r)=
∏
η∈S

(
1− η($F )q

−s)−1
.

Remark. Theorem 1.1 computes explicitly the cardinality of S in Theorems 2.2
and 2.3.

3. The Asai lift

We collect together various results on the Asai representation in this section.
Let H be a subgroup of index two in a group G. Let ρ be a finite dimensional

representation of H of dimension n. Its Asai lift, which we do not define here, is a
representation of G of dimension n2. Let r(ρ) denote the Asai lift of ρ to G. The
following proposition summarizes the key properties of the Asai lift (see [Prasad
1999; Murty and Prasad 2000]).

Proposition 3.1. The Asai lift satisfies:

(1) r(ρ1⊗ ρ2)∼= r(ρ1)⊗ r(ρ2).

(2) r(ρ)∨ ∼= r(ρ∨).

(3) r(χ) for a character χ is χ ◦ tr, where tr is the transfer map from G to the
abelianization of H.

(4) r(ρσ )∼= r(ρ), where σ is the nontrivial element of G/H.

(5) r(ρ)|H ∼= ρ⊗ ρσ .

(6) For a representation τ of G, we have r(τ |H ) ∼= Sym2 τ ⊕ ωG/H
∧2
τ , where

ωG/H is the nontrivial character of G/H.

(7) Let IndG
H ρ denote the representation of G induced from ρ. Then:
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(a) Sym2(IndG
H ρ)
∼= IndG

H Sym2 ρ⊕ r(ρ).
(b)

∧2
(IndG

H ρ)
∼= IndG

H
∧2
ρ⊕ r(ρ)⊗ωG/H .

Remark. We have assumed [G : H ] = 2 since that is the case of interest to us. The
Asai lift can be more generally defined when H is of any finite index in G.

4. Proofs of Theorems 1.1–1.3

We now prove Theorems 1.1, 1.2, and 1.3. We first prove (1) of Theorem 1.1, use
this to prove Theorems 1.2 and 1.3, and finally prove (2) of Theorem 1.1. We will
appeal to a result mentioned in Section 1, which we formally state now for ease of
reference.

Theorem 4.1 [Bushnell and Kutzko 1993, Lemma 6.2.5]. Let π be an irreducible
supercuspidal representation of GLn(E). Let [A,m, 0, β] be the simple stratum
defining a maximal simple type occurring in π , where A is a principal oE -order
in Mn(E), m ≥ 0 is the level of π , and β ∈ Mn(E) is such that E[β] is a field
with E[β]× normalizing A. Let e = e(A|oE) be the oE -period of A (which is the
same as the ramification index e(E[β]/E) of E[β]/E). Then e divides n, and the
cardinality of the group of unramified self-twists of π is n/e.

Proof of Theorem 1.1(1). Let E/F be quadratic unramified. Let π be a supercuspidal
representation of GLn(E). Let ρπ :WE→GLn(C) be its Langlands parameter. We
assume that its Asai lift r(ρπ ) :WF→GLn2(C) contains the trivial character of WF ,
which in particular implies that ρσπ ∼= ρ

∨
π . Since ω = ωE/F is unramified, clearly

the number of unramified characters in r(ρπ ) and r(ρπ )⊗ω is the same. Since

deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= deg L(s, π ×π∨)= 2n/e

by Theorem 4.1, item (1) of Theorem 1.1 is immediate. �

Proof of Theorems 1.2 and 1.3. Let π be a supercuspidal representation of GLn(F).
Let ρπ :WF→GLn(C) be its Langlands parameter. We assume that r(ρπ ) contains
the trivial character of WF , which in particular implies that ρπ ∼= ρ∨π . Here, r is
either the symmetric square representation or the exterior square representation of
GLn(C). Thus, the dimension of r(ρπ ) is either n(n+1)/2 or n(n−1)/2. We have
the identity

L(s, π ×π)= L(s, π,Sym2)L(s, π,
∧2
),

and we know that the left-hand side L-function has degree n/e by Theorem 4.1.
If n/e = 1, then the trivial character of WF is the only unramified character

appearing in ρπ ⊗ ρ∨π and hence in r(ρπ ). Therefore, in this case there is nothing
to prove. Otherwise, there is a nontrivial unramified character χ :WF → C× such
that ρπ ⊗χ ∼= ρπ . Thus,

ρπ = IndWF
WF ′

τ
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for some irreducible representation τ of WF ′ , where F ′/F is the unramified exten-
sion of degree n/e. Let σ denote a generator of Gal(F ′/F).

We know that

ρπ ⊗ ρπ = IndWF
WF ′
(τ ⊗ τ)⊕ IndWF

WF ′
(τ ⊗ τ σ )⊕ · · ·⊕ IndWF

WF ′

(
τ ⊗ τ σ

n/e−1)
.

If n/e is an odd integer, then observe that each summand other than the first one on
the right-hand side of the above identity appears twice. This is indeed the case since

IndWF
WF ′

(
τ ⊗ τ σ

a)
= IndWF

WF ′

(
τ ⊗ τ σ

n/e−a)
for every 1≤ a ≤ n/e. Since the trivial character of WF appears exactly once on
the left-hand side, it follows that

1 ∈ IndWF
WF ′
(τ ⊗ τ)

when n/e is odd. Therefore, precisely one of Sym2 τ or
∧2
τ contains the trivial

character of WF ′ , and hence precisely one of IndWF
WF ′
(Sym2 τ) or IndWF

WF ′
(
∧2
τ) con-

tains all the unramified self-twists of ρπ . Thus, Theorems 1.2 and 1.3 follow in the
case when n/e is an odd integer.

If n/e is an even integer, we proceed by induction on dim ρπ . We start by
writing ρπ = IndWF

WE
τ for an irreducible representation τ of WE , where E is the

quadratic unramified extension of F . This can always be done because an unramified
extension of even degree necessarily has the quadratic unramified subextension. By
(7) of Proposition 3.1, we have

r(ρπ )∼=

{
IndWF

WE
Sym2 τ ⊕Asai(τ ) if r = Sym2,

IndWF
WE

∧2
τ ⊕Asai(τ )⊗ωE/F if r =

∧2
.

Now either τ ∼= τ∨ or τ σ ∼= τ∨ but not both, since ρπ is an irreducible representa-
tion of WF . Here, σ is the element of order two in Gal(E/F). We claim that Asai(τ )
(resp. Asai(τ )⊗ωE/F ) contains an unramified character of WF only if Sym2 τ (resp.∧2
τ ) does not contain an unramified character of WF . Indeed, if Asai(τ ) contains

an unramified character of WF , the total number of unramified characters in

Asai(τ )⊕Asai(τ )⊗ωE/F

is n/2e+ n/2e = n/e, by applying part (1) of Theorem 1.1 to the representation
τ which has dimension n/2, and by observing that ωE/F is unramified. Note also
that e = e(ρπ )= e(τ ), since the extension E/F is unramified. Since this number
equals the number of unramified characters contained in

ρπ ⊗ ρπ = Sym2 ρπ ⊕
∧2
ρπ ,

the claim follows.
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Therefore, if Asai(τ ) contains an unramified character, the proof is complete by
appealing to part (1) of Theorem 1.1. Otherwise, since dim τ = 1

2 dim ρπ , the proof
is complete by appealing to the induction hypothesis. Note that the base case of
the induction is easily verified since there are at most two unramified characters
to consider when dim ρπ = 2, i.e., when dim τ = 1. �

Proof of Theorem 1.1(2). Now let E/F be a ramified quadratic extension, and let
π be a supercuspidal representation of GLn(E). Let ρπ : WE → GLn(C) be its
Langlands parameter. We may assume that r(ρπ ) 3 1, where r denotes the Asai
lift from WE to WF . Note that this implies that r(ρπ ) does not contain ωE/F , the
nontrivial character of WF/WE . In what follows, we use this assumption many
times to reduce the number of cases that we need to analyze.

Consider the 2n-dimensional representation IndWF
WE
ρπ of WF . We have

Sym2(IndWF
WE
ρπ )∼= IndWF

WE
Sym2 ρπ ⊕ r(ρπ ),(1) ∧2

(IndWF
WE
ρπ )∼= IndWF

WE

∧2
ρπ ⊕ r(ρπ )⊗ωE/F .(2)

We divide the proof into two cases.
First, we assume that π 6∼= πσ so that IndWF

WE
ρπ is irreducible. Let IndF

E π

denote the corresponding supercuspidal representation of GL2n(F). Note that by
our assumption that r(ρπ ) 3 1, IndF

E π is orthogonal and not symplectic by (1).
Therefore, it follows from Theorems 1.2 and 1.3 that

x = deg L(s, IndF
E π,Sym2)− deg L(s, IndF

E π,
∧2
)

is given by

(3) x =
{

deg L(s, IndF
E π,Sym2) if [IndF

E π ] is orthogonal but not symplectic,
0 if [IndF

E π ] is orthogonal and symplectic.

Since the extension E/F is ramified, the period associated to IndF
E π may be e or

2e, and thus the degree of L(s, IndF
E π,Sym2) is either 2n/e or n/e.

On the other hand, the difference

(4) y = deg L(s, π,Sym2)− deg L(s, π,
∧2
)

could be, a priori, n/e or 0 or −n/e.
Now we do a case-by-case analysis to list all the possible candidates for the pair

(x, y). To this end, note that:

(i) In (1) and (2), possible values for the degree of the first summand on the
right-hand side are 0, n/e, and n/2e (by Theorems 1.2 and 1.3).

(ii) In (1) and (2), the second summand on the right-hand side cannot have degree
more than n/e (since deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= n/e).
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(iii) In addition, in (1), the second summand on the right hand side has nonzero
degree (by the assumption that r(ρπ ) 3 1).

We have already observed, using (3), that when x 6= 0, it is either 2n/e or n/e,
and the degree of L(s, IndF

E π,
∧2
) is 0. In particular, when x 6= 0, all the terms

in (2) have degree 0. When x = 2n/e, both the summands in (1) have degree n/e
by (i) and (ii), and thus y = n/e. When x = n/e, we claim that the degree of the
first summand in (1) is 0 (and that of the second summand is n/e), and thus y = 0.
Indeed, if the first summand had nonzero degree it would have to be either n/e or
n/2e by (i). But it cannot be n/e by (iii), and it cannot be n/2e since this would
imply that the second summand in (2), which we know to be 0, would have degree
n/2e as well.

When x = 0, the degrees of the left-hand sides in both (1) and (2) are equal
by (3), and are either n/e or n/2e. When this degree is n/e, the degree of the
first summand in (1) is either 0 or n/2e by (iii). Note that the degree of the first
summand in (2) would then be either n/e or n/2e respectively, and thus y =−n/e
or 0 respectively. In the preceding argument, we have made use of the identity

(5) deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= n/e.

When the degrees of the left-hand sides in both (1) and (2) are n/2e, the degrees of
the first summands are both 0. Thus y = 0, once again by arguing with (i), (iii),
and (5).

Observe that since E/F is ramified, the number of unramified characters in
IndWF

WE
Sym2 ρπ (resp. in IndWF

WE

∧2
ρπ ) is the same as the number of unramified

characters in Sym2 ρπ (resp. in
∧2
ρπ ). It follows that

deg L(s, π, r)− deg L(s, π ⊗ κ, r)= x − y

is either n/e or 0. This proves (2) of Theorem 1.1 in this case.
Next, suppose that π ∼= πσ ∼= π∨. Since π ∼= πσ , it follows that

ρπ ∼= τ |WE

for an irreducible representation τ of WF . In this case,

IndWF
WE
ρπ ∼= τ ⊕ τ ⊗ωE/F .

Thus, we get

(6) Sym2 τ⊕Sym2 τ⊕τ⊗τ⊗ωE/F
∼=Sym2(IndWF

WE
ρπ )∼= IndWF

WE
Sym2 ρπ⊕r(ρπ )

and

(7)
∧2
τ ⊕

∧2
τ ⊕τ ⊗τ ⊗ωE/F

∼=
∧2
(IndWF

WE
ρπ )∼= IndWF

WE

∧2
ρπ ⊕r(ρπ )⊗ωE/F .
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By our assumption that r(ρπ ) 3 1, we conclude that the irreducible representation τ
is not symplectic. This is because if

∧2
τ 3 1, then the left-hand side of (7) contains

the trivial character at least twice whereas the right-hand side can contain the trivial
character at most once since r(ρπ )⊗ωE/F 63 1.

As before, we now do a case-by-case analysis to list all possible pairs (a, b)where

a = deg L(s, τ,Sym2)− deg L(s, τ,
∧2
),(8)

b = deg L(s, ρπ ,Sym2)− deg L(s, ρπ ,
∧2
),(9)

and we verify that

deg L(s, ρπ , r)− deg L(s, ρπ ⊗ κ, r)= 2a− b

is either n/e or 0.
Since we have observed that the irreducible representation τ is not symplectic,

a ≥ 0 and it is either n/e or 0 by Theorems 1.2 and 1.3. Now the possible values
for b could be, a priori, n/e or 0 or −n/e.

When a = n/e, considering the sum of (6) and (7), we can conclude that all the
terms in (7) are of degree 0. Also, note that both the terms on the right-hand side
of (6) will have degree n/e, and in particular b = n/e. When a = 0, the left-hand
sides of both (6) and (7) are each of total degree n/e. Since r(ρπ ) 3 1, the degree
of L(s, ρπ ,Sym2) is either 0 or n/2e. It follows that the value of b is either −n/e
or 0 respectively. Thus, in all cases 2a− b is n/e or 0, and the result follows. �

5. The conductor formula of Bushnell, Henniart, and Kutzko

We state the explicit conductor formula for pairs of supercuspidal representation
due to Bushnell, Henniart, and Kutzko. This section closely follows [Bushnell et al.
1998, § 6].

Let π be a supercuspidal representation of GLn(F). Following [Bushnell and
Kutzko 1993], let [A,m, 0, β] be a simple stratum of a maximal simple type
occurring in π . Here, A is a principal oF -order in Mn(F), m is the level of π ,
and β ∈ Mn(F) is such that E = F[β] is a field with E× normalizing A. If e
denotes the oF -period of A, then the number of unramified self-twists of π is n/e
by Theorem 4.1. As mentioned in the introduction, the conductor f (π) of π is
given by

f (π)= n
(

1+ m
e

)
.

Let πi be two supercuspidal representations of GLni (F) for i = 1, 2. There are
three distinct possibilities: (i) π1 and π2 are unramified twists of each other, (ii) π1

and π2 are completely distinct, and (iii) π1 and π2 admit a common approximation.
We do not get into defining these notions and refer to [Bushnell et al. 1998, § 6]



ON THE DEGREE OF CERTAIN LOCAL L -FUNCTIONS 13

instead. Suffice to say that when π1 and π2 admit a common approximation, there is
a best common approximation and this is an object of the form ([3,m, 0, γ ], l, ϑ),
where the stratum [3,m, 0, γ ] is determined by π1 and π2, 0≤ l <m is an integer,
and ϑ is a character of a compact group attached to the data coming from π1 and π2.

Another ingredient in the conductor formula is an integer c(β) associated to
β. This comes from the “generalized discriminant”, say C(β), associated to the
exact sequence

0−→ E −→ EndF (E)
aβ
−→EndF (E)

sβ
−→ E −→ 0,

where sβ is a tame corestriction relative to E/F [Bushnell and Kutzko 1993, § 1.3]
and aβ is the adjoint map x 7→ βx − xβ. The constant c(β) is defined such that

C(β)= qc(β).

Now we state the conductor formula of [Bushnell et al. 1998].

Theorem 5.1 (Bushnell, Henniart, and Kutzko). For i=1, 2, let πi be an irreducible
supercuspidal representation of GLni (F). Define quantities mi , ei , βi as above. Let
e = lcm(e1, e2) and m/e =max{m1/e1,m2/e2}.

(1) Suppose that n1 = n2 = n and π1 and π2 are unramified twists of each other.
Let β = β1 and d = [F[β] : F]. Then

f (π∨1 ×π2)= n2
(

1+
c(β)

d2

)
− deg L(s, π∨1 ×π2).

(2) Suppose that π1 and π2 are completely distinct. Then

f (π∨1 ×π2)= n1n2

(
1+ m

e

)
.

(3) Suppose that π2 is not equivalent to an unramified twist of π1, but that π1

and π2 are not completely distinct. Let ([3,m, 0, γ ], l, ϑ) be a best common
approximation to the πi , and assume that the stratum [3,m, l, γ ] is simple.
Put d = [F[γ ] : F]. Then

f (π∨1 ×π2)= n1n2

(
1+

c(γ )

d2 +
l

de

)
.

Remark. Observe that in (2) and (3), deg L(s, π∨1 ×π2)= 0.

6. Conductor of the Asai lift

Let E/F be a quadratic extension of p-adic fields. Let π be a supercuspidal
representation of GLn(E). Let ρπ : WE → GLn(C) be its Langlands parameter.
Let r(ρπ ) :WF → GLn2(C) be the Asai lift of ρπ . In this section, we compute the
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Artin conductor of r(ρπ ). Throughout this section, we assume that p is odd. For a
representation τ of the Weil–Deligne group, let f (τ ) denote its Artin conductor.

Our formula for the Asai lift is a consequence of the conductor formula for
pairs of supercuspidal representations due to Bushnell, Henniart, and Kutzko [1998,
Theorem 6.5]. Since

r(ρπ )|WE
∼= ρπ ⊗ ρ

σ
π ,

it follows that

f (ρπ ⊗ ρσπ )=
{

f (r(ρπ )) if E/F is unramified,
f (r(ρπ ))+ f (r(ρπ )⊗ωE/F )− n2 if E/F is ramified.

In the second case of the above, we have made use of the fact that E/F is tamely
ramified, which is true since p is odd by our assumption. Since the formula of
Bushnell, Henniart, and Kutzko [1998] computes the left hand side, in order to derive
a formula for the Asai lift, it suffices to compute f (r(ρπ ))− f (r(ρπ )⊗ωE/F ).

Let
r(ρπ )∼=

⊕
i
ρi

be the direct sum decomposition of r(ρπ ) into irreducible representations. Now

r(ρπ )⊗ωE/F
∼=

⊕
i
ρi ⊗ωE/F ,

and since the Artin conductor is additive, it follows that

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )=
⊕

i
[ f (ρi )− f (ρi ⊗ωE/F )].

We know that
f (ρ⊗χ)≤max{ f (ρ), dim ρ · f (χ)},

with equality in the above identity if f (ρ) 6= dim ρ · f (χ). Thus,

f (ρi ⊗ωE/F )= f (ρi )

unless ρi is a one-dimensional character with Artin conductor one, in which case
f (ρi ⊗ωE/F ) can be 0 or 1.

Observe that the contribution to

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )

from tamely ramified characters ρi in r(ρπ ) such that ρi ⊗ωE/F is unramified is

deg L(s, π ⊗ κ, r),

whereas the contribution from unramified characters ρi in r(ρπ ) such that ρi⊗ωE/F
is tamely ramified is

− deg L(s, π, r).
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Therefore, it follows that

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )= deg L(s, π ⊗ κ, r)− deg L(s, π, r).

Now making use of Theorem 5.1, we get the following conductor formula for
the Asai lift.

Theorem 6.1. Let E/F be a quadratic extension of p-adic fields, where p is odd,
with ramification index e(E/F). Let σ denote the nontrivial element of Gal(E/F).
Let π be a supercuspidal representation of GLn(E). Let e be the oE -period of the
principal oE -order in Mn(E) attached to π . Let r(π) be its Asai lift to GLn2(F)
and let L(s, π, r) be the Asai L-function attached to π .

(1) Suppose π∨ and πσ are unramified twists of each other. Then

f (r(π))= n2
(

1+
c(β)

e(E/F)d2

)
− deg L(s, π, r).

(2) Suppose π∨ and πσ are completely distinct. Then

f (r(π))= n2
(

1+
m

e(E/F)e

)
.

(3) Suppose that π∨ is not equivalent to an unramified twist of πσ and that
they are not completely distinct. Let ([3,m, 0, γ ], l, ϑ) be a best common
approximation to π∨ and πσ , and assume that the stratum [3,m, l, γ ] is
simple. Set d = [F[γ ] : F]. Then

f (r(π))= n2
(

1+
c(γ )

e(E/F)d2 +
l

e(E/F)de

)
.

Remark. Together with Theorem 1.1, Theorem 6.1 gives an explicit conductor
formula for the Asai lift. As in the case of Theorem 5.1, deg L(s, π, r)= 0 in cases
(2) and (3).
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