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The analytic properties of the complete Asai L-functions attached to cusp-
idal automorphic representations of the general linear group over a qua-
dratic extension of a number field are obtained. The proof is based on
the comparison of the Langlands–Shahidi method and Mok’s endoscopic
classification of automorphic representations of quasisplit unitary groups.
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Introduction

In this paper we study the analytic properties of the complete Asai L-function
attached to a cuspidal automorphic representation of the general linear group over
a quadratic extension of a number field. The approach is based on the Langlands–
Shahidi method, combined with the knowledge of the poles of Eisenstein series
coming from a recent endoscopic classification of automorphic representations of
the quasisplit unitary groups by Mok [2015].

In order to state the main result more precisely, we introduce some notation. Let
E/F be a quadratic extension of number fields, and let θ be the unique nontrivial
element in the Galois group Gal(E/F). Let AE and AF be the rings of adèles of E
and F , respectively. Let δ̂ be any extension to A×E /E

× of the quadratic character of
A×F /F

× attached to E/F by class field theory.
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For a cuspidal automorphic representation σ of GLn(AE), we denote by σ θ its
Galois conjugate and by σ̃ its contragredient representation. We say that σ is Galois
self-dual if σ ∼= σ̃ θ , that is, σ is isomorphic to its Galois conjugate contragredient.

Let L(s, σ, rA) denote the complete Asai L-function attached to σ and the Asai
representation rA via the Langlands–Shahidi method. See Section 2.A for a definition.
Our main result on the holomorphy and nonvanishing of the Asai L-function
L(s, σ, rA) is the following theorem.

Theorem 4.3. Let σ be a cuspidal automorphic representation of GLn(AE). Let
L(s, σ, rA) (respectively, L(s, σ ⊗ δ̂, rA)) be the Asai (respectively, twisted Asai)
L-function attached to σ , where δ̂ is any extension to A×E /E

× of the quadratic
character of A×F /F

× attached to the extension E/F by class field theory.

(1) If σ is not Galois self-dual, i.e., if σ 6∼= σ̃ θ , then L(s, σ, rA) is entire. It is
nonzero for Re(s)≥ 1 and Re(s)≤ 0.

(2) If σ is Galois self-dual, i.e., if σ ∼= σ̃ θ , then

(a) L(s, σ, rA) is entire, except for possible simple poles at s = 0 and s = 1,
and nonzero for Re(s)≥ 1 and Re(s)≤ 0;

(b) exactly one of the L-functions L(s, σ, rA) and L(s, σ ⊗ δ̂, rA) has simple
poles at s = 0 and s = 1, while the other is holomorphic at those points.

The idea of the proof is to consider the Eisenstein series attached to σ on the
quasisplit unitary group U2n(AF ) defined by the quadratic extension E/F , where
σ is viewed as a representation of the Levi factor of the Siegel maximal parabolic
subgroup of U2n in 2n variables. We look at the contribution of this Eisenstein series
to the residual spectrum from two different points of view. On the one hand, by the
Langlands–Shahidi method [2010], the poles of the Eisenstein series for the complex
argument in the positive Weyl chamber are determined by certain ratio of the Asai
L-functions. The residues at such a pole span a residual representation of U2n(AF ).
On the other hand, this residual representation should have an Arthur parameter,
according to Mok’s endoscopic classification [2015] of automorphic representations
of quasisplit unitary groups (see also [Arthur 2005; 2013]). Comparing the possible
Arthur parameters and poles of Asai L-functions, we are able to deduce the analytic
properties of these L-functions.

Mok’s work, as well as Arthur’s, still depends on the stabilization of the twisted
trace formula for the general linear group. Hence, our result is also conditional
on this stabilization. This issue is considered by Waldspurger [2014a; 2014b;
2014c]. In our paper, we always make a remark when a partial result could have
been obtained without using Mok’s work. In fact, the crucial insight coming from
endoscopic classification is holomorphy of the Asai L-function L(s, σ, rA) inside
the critical strip 0< Re(s) < 1.
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This method was applied in [Grbac 2011] to the complete exterior and symmetric
square L-functions attached to a cuspidal automorphic representation of GLn(AF ).
It relies on Arthur’s endoscopic classification of automorphic representations for
split classical groups [Arthur 2013; 2005]. The result and the approach are of the
same nature as the above theorem for Asai L-functions. The approach has also
already been used as a part of a long term project to study endoscopy via descent
by Jiang, Liu and Zhang [Jiang et al. 2013].

A different approach to describing the analytic properties of L-functions is that
of integral representations. However, this approach usually gives holomorphy of
partial L-functions, which is weaker than our result due to ramification or problems
at archimedean places. For the exterior square L-function this was pursued in [Bump
and Friedberg 1990; Kewat and Raghunathan 2012; Belt 2012], for the symmetric
square L-function in [Bump and Ginzburg 1992] and more generally for twisted
symmetric square in a series of papers [Takeda 2014b; 2014a; 2013], and for the
Asai L-functions in [Flicker 1988; Flicker and Zinoviev 1995; Anandavardhanan
and Rajan 2005].

The paper is organized as follows. In Section 1 we introduce the unitary group
structure and fix the notation. In Section 2 the relation between poles of Eisenstein
series on quasisplit unitary groups and the Asai L-functions is investigated. Section 3
provides a definition of Arthur parameters and packets for quasisplit unitary groups
in terms of results of Mok. Finally, in Section 4 we prove the main result on the
analytic properties of Asai L-functions.

1. The quasisplit unitary groups

1.A. Definition and basic structure. Let E/F be a quadratic extension of number
fields. The nontrivial Galois automorphism in the Galois group Gal(E/F) is denoted
by θ . Let NE/F denote the norm map from E to F . Let AF and AE be the rings
of adèles of F and E , respectively, and A×F and A×E the corresponding groups of
idèles.

The quadratic character of A×F /F
× attached to E/F by class field theory is

denoted by δE/F . We always identify δE/F with the corresponding character of the
Weil group WF of F under class field theory. Let δ̂ be any extension of δE/F to a
character of A×E /E

×. Such extension is not unique.
We denote by Fv the completion of F at the place v. If a place v of F does not

split in E , we always denote by w the unique place of E lying over v. Then Ew/Fv
is a quadratic extension of local fields. If v splits in E , we denote by w1 and w2

the two places of E lying over v. Then we have Ew1
∼= Ew2

∼= Fv. We use F∞ to
denote the product of Fv over archimedean places.

For an integer N ≥ 2, we consider in this paper the F-quasisplit unitary group
UN in N variables defined by the extension E/F , viewed as an algebraic group
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over F . More precisely, UN is a group scheme over F , whose functor of points is
defined as follows. Consider θ as an element of the Galois group Gal(F/F) trivial
on F/E , where F is a fixed algebraic closure of F . Let V be an N -dimensional
vector space over E . We fix a form on V as in [Kim and Krishnamurthy 2004;
2005], that is, let

Jn =

 1
. ..

1

 and J ′N =



(
0 Jn
−Jn 0

)
for N = 2n, 0 0 Jn

0 1 0
−Jn 0 0

 for N = 2n+ 1.

Then the functor of points of UN is given by

UN (R)= {g ∈ GLE⊗F R(V ⊗F R) : ∗g J ′N g = J ′N }

for any F-algebra R, where ∗g = tgθ is the conjugate transpose of g. In particular,
the F-points of UN are given as

UN (F)= {g ∈ GLN (E) : ∗g J ′N g = J ′N }.

Writing N = 2n if N is even, and N = 2n+1 if N is odd, the F-rank of UN in both
cases equals n ≥ 1. For N = 1, the unitary group U1 in one variable is obtained by
inserting N = 1 in the definition of UN . Its F-points are nothing else than

U1(F)= {x ∈ E× : θ(x)x = 1},

which is the norm-one subgroup E1 of E×.
For m ≥ 1, let Gm = ResE/F GLm be the algebraic group over F obtained from

the general linear group GLm over E by restriction of scalars from E to F . If m ≤ n,
it appears in the Levi factors of parabolic subgroups of UN .

We fix the Borel subgroup P0 of UN consisting of upper-triangular matrices.
Let P0 = M0 N0, where M0 is a maximally split maximal torus of UN (i.e., one
containing a maximal split torus of UN ; see [Shahidi 2010, Chapter I]), and N0 the
unipotent radical of P0. Then

M0 ∼=

{
G1× · · ·×G1 for N = 2n,
G1× · · ·×G1×U1 for N = 2n+ 1,

with n copies of G1, so that the F-points of M0 are given by

M0(F)

=

{
{diag(t1, . . . , tn, θ(tn)−1, . . . , θ(t1)−1) : ti ∈ E×} for N = 2n,
{diag(t1, . . . , tn, t, θ(tn)−1, . . . , θ(t1)−1) : ti ∈ E×, t ∈ E1

} for N = 2n+1.
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Let A0 be a maximal F-split torus of UN , which is a subtorus of M0. Then

A0(F)=
{
{diag(t1, . . . , tn, t−1

n , . . . , t−1
1 ) : ti ∈ F×} for N = 2n,

{diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 ) : ti ∈ F×} for N = 2n+ 1.

The absolute root system8=8(UN ,M0) of UN with respect to M0 is of type AN−1.
The root system 8red = 8(UN , A0) of UN with respect to A0 is a reduced root
system. It is of type Cn for N = 2n and of type BCn for N = 2n+ 1. We make the
choice of positive roots according to the fixed Borel subgroup P0, and let 1 be the
set of simple roots. We order the simple roots as in Bourbaki [1968].

Let P be the Siegel maximal proper standard parabolic F-subgroup of UN . That
is, it is defined, in a standard fashion, by a subset of simple roots obtained by
removing the last simple root in the Bourbaki ordering (cf. [Bourbaki 1968] and
[Shahidi 2010, Section 1.2]). Let P = MP NP be the Levi decomposition of P ,
where

MP ∼=

{
Gn for N = 2n,
Gn ×U1 for N = 2n+ 1,

is the Levi factor, and NP the unipotent radical.

1.B. L-groups. The L-group of UN is a semidirect product

LUN = GLN (C)o WF ,

where WF is the Weil group of F . It is acting on the connected component LU ◦N =
GLN (C) through the quotient WF/WE ∼= Gal(E/F). The action of the nontrivial
Galois automorphism θ ∈ Gal(E/F) is given by

θ(g)= J ′−1
N

tg−1 J ′N
for all g ∈ GLN (C).

The L-group of the Levi factor MP is a semidirect product

LMP =

{
GLn(C)×GLn(C)o WF for N = 2n,
GLn(C)×GL1(C)×GLn(C)o WF for N = 2n+ 1,

where the Weil group WF acts through the quotient WF/WE ∼= Gal(E/F) on the
connected component of the L-group, and θ ∈ Gal(E/F) acts by interchanging the
two GLn(C) factors.

2. Eisenstein series and Asai L-functions

In this section we relate the analytic behavior of the Eisenstein series on the unitary
group supported in the Siegel parabolic subgroup to a ratio of the Asai L-functions
appearing in its constant term. For the study of analytic properties of the Asai L-
functions, it is sufficient to consider the even quasisplit unitary group U2n . However,
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for completeness and future reference, we also study the Eisenstein series in the
odd case.

We retain all the notation of Section 1. So, P is the Siegel maximal proper
standard parabolic F-subgroup of UN , with the Levi factor MP ∼= Gn if N = 2n
is even, and MP ∼= Gn ×U1 if N = 2n+ 1 is odd, and the unipotent radical NP .
Recall that Gn = ResE/F GLn .

2.A. Asai L-functions. Let σ denote a cuspidal automorphic representation of
Gn(AF )∼=GLn(AE) and ν a character of U1(AF )∼=A1

E trivial on U1(F)∼= E1. To
make a convenient normalization in the case of odd unitary groups, as in [Rogawski
1990] and [Goldberg 1994, Section 6], we denote by ν̂ a unitary character of
GLn(AE) given by

ν̂(g)= ν(det(g ∗g−1))

for all g ∈ GLn(AE). Observe that det(g ∗g−1) is of norm one. Then we define a
cuspidal automorphic representation 6 of the Levi factor MP(AF ) as

6 =

{
σ for N = 2n,
(σ ν̂)⊗ ν for N = 2n+ 1.

More precisely, in the case of odd unitary groups the action of 6 is given by

6(g, t)= σ(g)ν(det(g ∗g−1))ν(t)

for g ∈ GLn(AE) and t ∈ A1
E . We always assume that 6 is irreducible unitary and

trivial on AP(F∞)◦, the identity connected component of AP(F∞), where AP is
a maximal F-split torus in the center of MP . The last condition is not restrictive.
It is just a convenient normalization, obtained by twisting by a unitary character,
which makes the poles of Eisenstein series real.

We define first the local L-functions. Let v be a place of F . By extension of
scalars from F to Fv, we may view the unitary group UN as an algebraic group
over Fv. This algebraic group is denoted by UN . Then we have the parabolic
subgroup Pv of UN defined over Fv with Levi decomposition MP,v NP,v, where
MP,v is the Levi factor and NP,v the unipotent radical.

In the case of the even unitary group, say N = 2n, the adjoint representation rv of
the L-group LMP,v on the Lie algebra LnP,v of the L-group of NP,v is irreducible
for all places v of F . If v does not split in E , then rv is called the Asai representation,
as it generalizes the case considered by Asai in [1977]. We denote it by rA,v. This
situation is labeled 2A2n−1− 2 in the list of [Shahidi 1988, Section 4] and [2010,
Appendix C]. Explicit action of rA,v is given in [Goldberg 1994, Section 3].

In the case of the odd unitary group, say N = 2n + 1, the analogous adjoint
representation is a direct sum r1,v⊕ r2,v of two irreducible representations for all
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places v of F , ordered as in [Shahidi 1990]. If v does not split in E , then r2,v is the
twisted Asai representation rA,v⊗ δEw/Fv , where w is the unique place of E lying
over v. This situation is labeled 2A2n − 3 in the list of [1988, Section 4] and [2010,
Appendix C].

For a cuspidal automorphic representation 6 of MP(AF ), let 6 ∼= ⊗′v6v be a
decomposition into a restricted tensor product over all places. Let Rv be one of
the adjoint representations defined above. Then the local L-functions L(s, 6v, Rv)
attached to 6v and Rv are defined as follows.

• At archimedean places, they are the Artin L-functions attached to the Langlands
parameter of 6v as in [Shahidi 1985] (see also [2010, Section 8.2], and
[Langlands 1989] where the Langlands parametrization over reals was first
introduced).

• At unramified nonarchimedean places, they are given in terms of Satake
parameters of 6v (see [Shahidi 1988; 2010, Definition 2.3.5], and also [Harder
et al. 1986] where Asai’s name came up first).

• At the remaining nonarchimedean places, they are defined using the Langlands–
Shahidi method [Shahidi 1990, Section 7] (see also [Shahidi 2010, Sec-
tion 8.4]).

The corresponding global L-functions are defined as the analytic continuation
from the domain of convergence of the product over all places of local L-functions
L(s, 6v, Rv). According to [Langlands 1971] (see also [Shahidi 2010, Section 2.5]),
the product over all places defining the global L-functions converges absolutely in
some right half-plane Re(s) > C , where C is sufficiently large.

The global L-function obtained in this way from 6 = σ ∼=⊗′vσv and Rv = r1,v
is denoted by L(s, σ, rA) and called the Asai L-function attached to σ . Its analytic
properties are the main concern of this paper.

The global L-function obtained from 6 ∼= ⊗′v6v and Rv = r2,v is denoted by
L(s, 6, rA⊗ δE/F ) and called the twisted Asai L-function attached to 6. In fact, it
is the same as the Asai L-function L(s, σ ⊗ δ̂, rA) attached to σ ⊗ δ̂ (see [Goldberg
1994]). Hence, the analytic properties of the twisted Asai L-function follow from
the analytic properties of the Asai L-function attached to a twisted representation.
Recall that δ̂ is any extension of the quadratic character δE/F to A×E .

Finally, as shown in [Goldberg 1994], the choice of the normalization of 6 in
the case of odd unitary groups implies that the global L-function obtained from
6 ∼=⊗′v6v and Rv = r1,v is the same as the principal L-function L(s, σ ) attached
to σ by [Godement and Jacquet 1972]. Its analytic properties are well known. It is
entire, unless n = 1 and σ is the trivial character 1A×E

of A×E . In that case L(s, 1A×E
)

is holomorphic except for simple poles at s = 0 and s = 1.
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2.B. Eisenstein series. For s ∈ C and 6 a cuspidal automorphic representation of
MP(AF ) as above, let

I (s, 6)=

{
IndUN (AF )

P(AF )
(σ | det |sE) for N = 2n,

IndUN (AF )
P(AF )

(σ ν̂| det |sE ⊗ ν) for N = 2n+ 1,

be the induced representation, where the induction is normalized. As in [Shahidi
2010, page 108], we realize I (s, 6) for all s ∈ C on the same space W6 of smooth
functions

f : NP(AF )MP(F)AP(F∞)◦\UN (AF )→ C,

K -finite with respect to a fixed maximal compact subgroup K of UN (AF ) compatible
to P (as in [Mœglin and Waldspurger 1995, Section I.1.4]), and such that the function
on MP(AF ) given by the assignment m 7→ f (mg) for m ∈ MP(AF ) belongs to the
space of 6 for all g ∈UN (AF ). The dependence on s ∈C is hidden in the action of
UN (AF ).

Given f ∈W6 and s ∈ C, set

fs(g)= f (g) exp〈s+ ρP, HP(g)〉

for all g ∈UN (AF ). Here ρP is the half-sum of positive roots not being the roots of
MP , and HP is a map

HP :UN (AF )→ Hom(X (MP)F ,R),

where X (MP)F denotes the group of F-rational characters of MP , defined on
m = (mv)v ∈ MP(AF ) by the condition

exp〈χ, HP(m)〉 =
∏
v

|χ(mv)|v

for every χ ∈ X (MP)F , and extended via Iwasawa decomposition to UN (AF ) triv-
ially on the unipotent radical NP(AF ) and the fixed maximal compact subgroup K
(cf. [Shahidi 2010, Section 1.3]). Then the Eisenstein series is defined as the analytic
continuation from the domain of convergence Re(s) > ρP of the series

E( f, s)(g)=
∑

γ∈P(F)\UN (F)

f (γ g) exp〈s+ ρP, HP(γ g)〉 =
∑

γ∈P(F)\UN (F)

fs(γ g)

for g ∈UN (AF ). The Eisenstein series E( f, s) has a finite number of simple poles
in the real interval 0< s ≤ ρP, and all other poles have Re(s) < 0 (cf. [Mœglin and
Waldspurger 1995, Section IV.1.11 and IV.3.12]). The residue of the Eisenstein
series E( f, s) at s > 0 is a square-integrable automorphic form on UN (AF ), but
not cuspidal, thus belonging to the residual spectrum of UN (AF ). In fact, such
residues for all f ∈ W6 span the summand of the residual spectrum of UN (AF )

with cuspidal support in 6 (see [Mœglin and Waldspurger 1995, Section III.2.6]
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or [Franke and Schwermer 1998, Section 1] for the decomposition of the space of
automorphic forms with respect to their cuspidal support).

2.C. Asai L-functions in the constant term. Now we prove that the poles of Eisen-
stein series E( f, s)(g) for Re(s) > 0 coincide with the poles for Re(s) > 0 of the
ratio of L-functions appearing in its constant term.

Theorem 2.1. Let σ be a cuspidal automorphic representation of Gn(AF ) ∼=

GLn(AE) and ν a unitary character of U1(AF ) ∼= A1
E trivial on U1(F) ∼= E1.

As in Section 2.B, form a cuspidal automorphic representation 6 of the Levi factor
MP(AF ) in UN . Then the poles with Re(s) > 0 of the Eisenstein series E( f, s) for
some f ∈W6 coincide with the poles satisfying Re(s) > 0 of

L(2s, σ, rA)

L(1+ 2s, σ, rA)
if N = 2n,

L(s, σ )
L(1+ s, σ )

·
L(2s, σ ⊗ δ̂, rA)

L(1+ 2s, σ ⊗ δ̂, rA)
if N = 2n+ 1,

where δ̂ is any extension to A×E /E
× of the quadratic character δE/F of A×F /F

×

attached to E/F by class field theory.

Remark 2.2. Observe the factor 2 appearing in the argument 2s of the Asai L-
function in the case of even unitary groups. The reason is that we have chosen, as
in [Shahidi 1992], the determinant character to normalize the identification with
C of the complex parameter s in the Eisenstein series, instead of the character α̃
given in terms of the half-sum of positive roots and the coroot of the unique simple
root α not being a root of MP , as in [Shahidi 1990].

Proof of Theorem 2.1. This is an application of the Langlands spectral theory, using
the Langlands–Shahidi method to normalize the intertwining operator.

The poles of the Eisenstein series E( f, s) coincide with the poles of its constant
term E( f, s)P along P . The constant term is defined as

E( f, s)P(g)=
∫

NP (F)\NP (AF )

E( f, s)(ng) dn,

where dn is a fixed Haar measure on NP(AF ). On the other hand, the constant term
can be written as

E( f, s)P(g)= fs(g)+
(
M(s, 6,w0) f

)
−s(g),

where M(s, 6,w0) is the standard intertwining operator. Here w0 is the unique
nontrivial Weyl group element such that w0(α) is a simple root for all simple roots α
except the last one in the ordering of [Bourbaki 1968].
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As in [Shahidi 2010, page 109], the standard intertwining operator is defined as
the analytic continuation from the domain of convergence of the integral

M(s, 6,w0) f (g)=
(∫

NP (AF )

fs(ẇ
−1
0 ng) dn

)
exp〈s− ρP, HP(g)〉,

where ẇ0 is a fixed representative for w0 in UN (F). For s ∈C away from poles, the
assignment f 7→ M(s, 6,w0) f defines a linear map on W6 , which depends on s.
It intertwines the actions of I (s, 6) and I (−s, 6w0). Let σ θ denote σ conjugated
by the nontrivial Galois automorphism θ ∈ Gal(E/F), that is, σ θ (m)= σ(mθ ) for
all m ∈ GLn(AE). Note that in our case the conjugation by w0 amounts to taking
σ̃ θ , where σ̃ is the contragredient of σ . In the case of odd unitary groups this means
that 6w0 ∼= σ̃ θ ν̂⊗ ν (see [Goldberg 1994]).

It is clear from the expression for the constant term that the poles of the Eisenstein
series are the same as those of the standard intertwining operator. We apply the
Langlands–Shahidi method to normalize this operator. The normalizing factor in
this situation, labeled 2A2n−1− 2 for the even unitary group and 2A2n − 3 for the
odd unitary group in the list of [Shahidi 1988, Section 4] and [2010, Appendix C],
is given in terms of L-functions and corresponding ε-factors as

r(s, 6,w0)

=


L(2s, σ, rA)

L(1+ 2s, σ, rA)ε(2s, σ, rA)
for N = 2n,

L(s, σ )
L(1+ s, σ )ε(s, σ )

·
L(2s, σ ⊗ δ̂, rA)

L(1+ 2s, σ ⊗ δ̂, rA)ε(2s, σ ⊗ δ̂, rA)
for N = 2n+1.

The normalized intertwining operator

r(s, 6,w0)
−1 M(s, 6,w0)

is holomorphic and not identically vanishing on I (s, 6) for Re(s) > 0. This is
essentially a local fact proved in Lemma 2.3 below.

Assuming this fact, we now finish the proof. The holomorphy and nonvanishing
of the normalized operator implies that the poles of M(s, 6,w0) for Re(s) > 0
coincide with those of r(s, 6,w0). Since the ε-factors are entire and nonvanishing
for all s ∈ C, these are the same as the poles of the ratios of L-functions given in
the theorem. �

2.D. Holomorphy and nonvanishing of normalized intertwining operators. It re-
mains to show the fact that r(s, 6,w0)

−1 M(s, 6,w0) is holomorphic and nonvan-
ishing for Re(s) > 0. The notation is as in the proof of the previous theorem. This
is essentially a local problem, because one can decompose over the places of F
the action of the standard intertwining operator acting on a decomposable function
using the fact that all ingredients are unramified at all but finitely many places.
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Hence, the problem reduces to a finite number of ramified and archimedean places,
which is solved for each place separately.

We introduce some local notation first. Let 6 ∼= ⊗′v6v be the decomposition
of 6 into a restricted tensor product, where in the case of odd unitary groups
6v=σv ν̂v⊗νv . We denote the local standard intertwining operator by M(s, 6v, w0).
It is defined as the analytic continuation of the local analogue of the integral defining
the global operator M(s, 6,w0) (see the proof of Theorem 2.1). Let r(s, 6v, w0)

be the local factor at v of r(s, 6,w0). We show in the lemma below that the
normalized local intertwining operator

N (s, 6v, w0)= r(s, 6v, w0)
−1 M(s, 6v, w0)

is holomorphic and not identically vanishing on the local induced representation
I (s, 6v) for Re(s) > 0.

Lemma 2.3. Let6v be a local component of a cuspidal automorphic representation
6 of the Levi factor MP(AF ) in the unitary group UN . Then, for Re(s) > 0,
the normalized local intertwining operator N (s, 6v, w0) is holomorphic and not
identically vanishing on the induced representation I (s, 6v).

Proof. Consider first the case in which the place v of F splits in E . Then UN (Fv)
is isomorphic to GLN (Fv), and the Levi factor

MP(Fv)∼=
{

GLn(Fv)×GLn(Fv) for N = 2n,
GLn(Fv)×GL1(Fv)×GLn(Fv) for N = 2n+ 1.

Hence, the normalized operator considered in the lemma is attached to a unitary
representation of a Levi factor MP(Fv) in GLN (Fv). The holomorphy and nonvan-
ishing for Re(s) > 0 follow from [Mœglin and Waldspurger 1989, Proposition I.10].

We consider now the case in which the place v of F does not split in E , and
denote by w the unique place of E lying over v. Then Ew/Fv is a quadratic
extension of local fields, and UN (Fv) is the quasisplit unitary group in N variables
given by the extension Ew/Fv. The Levi factor MP(Fv) is isomorphic to

MP(Fv)∼=
{

Gn(Fv)∼= GLn(Ew) for N = 2n,
Gn(Fv)×U1(Fv)∼= GLn(Ew)× E1

w for N = 2n+ 1,

so that

6v ∼=

{
σw for N = 2n,
(σwν̂w)⊗ νw for N = 2n+ 1,

where σw is the local component of a cuspidal automorphic representation σ of
GLn(AE) at the place w of E , and νw the local component of a unitary character ν
of A1

E trivial on E1.
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In particular, σw is unitary and generic, since it is a local component of a cuspidal
automorphic representation of GLn(AE). Hence, by [Tadić 1986] and [Vogan 1986],
in the nonarchimedean and archimedean cases, respectively, there is

• a standard parabolic subgroup Q of GLn such that the Levi factor MQ of Q is
isomorphic to GLd1 × · · ·×GLd` , where d1+ · · ·+ d` = n,

• unitary square-integrable representations δi of GLdi (Ew), for i = 1, . . . , `, and
• real numbers αi with 0≤ |αi |<

1
2 , for i = 1, . . . , `,

such that σw is isomorphic to the fully induced representation

σw ∼= IndGLn(Ew)
Q(Ew) (δ1| det |α1 ⊗ · · ·⊗ δ`| det |α`).

Let R be the standard parabolic F-subgroup of UN with the Levi factor

MR ∼=

{
Gd1 × · · ·×Gd` for N = 2n,
Gd1 × · · ·×Gd` ×U1 for N = 2n+ 1,

so that R ⊂ P and MR(Fv)= MQ(Ew) for N = 2n and MR(Fv)= MQ(Ew)× E1
w

for N = 2n+ 1. Let

δ =

{
δ1⊗ · · ·⊗ δ` for N = 2n,
δ1ν̂1⊗ · · ·⊗ δ`ν̂`⊗ ν for N = 2n+ 1,

be a unitary square-integrable representation of MR(Fv), where ν̂i is the character
of GLdi (Ew) given by ν̂i (hi )= ν(det(hi

∗h−1
i )) for hi ∈ GLdi (Ew).

By induction in stages, the intertwining operator N (s, 6v, w0) coincides with
the intertwining operator

N ((s+α1, . . . , s+α`), δ, w0)

acting on the induced representation{
IndUN (Fv)

R(Fv) (δ1| det |s+α1 ⊗ · · ·⊗ δ`| det |s+α`) for N = 2n,

IndUN (Fv)
R(Fv) (δ1ν̂1| det |s+α1 ⊗ · · ·⊗ δ`ν̂`| det |s+α` ⊗ ν) for N = 2n+ 1.

By Zhang’s lemma [1997] (see also [Kim 2000, Lemma 1.7]), the holomorphy
of this last operator at s implies nonvanishing. Hence, to show the lemma, it is
sufficient to prove the holomorphy for Re(s) > 0.

To prove the holomorphy for Re(s) > 0, we decompose the intertwining operator
into a product of intertwining operators as in [Shahidi 1981, Section 2.1]. If we show
that each factor is holomorphic for Re(s) > 0, then the product is holomorphic for
Re(s)> 0 as well, and the lemma is proved. The factors are normalized intertwining
operators that can be viewed as intertwining operators on representations induced
from appropriate maximal proper parabolic subgroups in certain reductive groups.
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In our case these rank-one factors are normalized operators

N (2s+αi +α j , δi ⊗ δ̃
θ
j ),

for 1≤ i < j ≤ `, acting on the induced representations

Ind
GLdi+d j (Ew)
Qi, j (Ew)

(
δi | det |s+αi ⊗ δ̃ θj | det |−s−α j

)
,

where Qi, j is the maximal standard proper parabolic subgroup of GLdi+d j with the
Levi factor GLdi ×GLd j , and normalized operators{

N (s+αk, δk) for N = 2n,
N (s+αk, (δk ν̂k)⊗ ν) for N = 2n+ 1,

for 1≤ k ≤ `, acting on the induced representation{
Ind

U2dk (Fv)
Qk(Fv) (δk | det |s+αk ) for N = 2n,

Ind
U2dk+1(Fv)
Qk(Fv) (δk ν̂k | det |s+αk ⊗ ν) for N = 2n+ 1,

where Qk is the maximal standard proper parabolic subgroup of U2dk with the Levi
factor Gdk if N = 2n, and of U2dk+1 with the Levi factor Gdk×U1 if N = 2n+1. We
suppress the Weyl group element from the notation for these intertwining operators,
because they are always determined by the maximal parabolic subgroup in question.

According to [Zhang 1997, Section 2], the rank-one normalized intertwining
operator is holomorphic when the real part of its complex parameter is greater than
the first negative point of reducibility of the induced representation on which it acts.
For Re(s) > 0, using the bound on αi , we have

Re(s+αi +α j ) >−1 and Re(s+αk) >−
1
2 .

But these two bounds are precisely the first negative points of reducibility in the
cases Qi, j ⊂ GLdi+d j and Qk ⊂ U2dk or U2dk+1. This essentially follows from
the standard module conjecture, proved in [Vogan 1978] for any quasisplit real
group, and thus for complex groups as well, and in [Muić 2001] for quasisplit
classical groups over a p-adic field. In [Casselman and Shahidi 1998, Section 5]
the reducibility points are determined in terms of local coefficients over any local
field. A convenient reference making explicit the first reducibility points of such
complementary series using local coefficients for any quasisplit classical group over
a local field of characteristic zero is [Lapid et al. 2004, Lemma 2.6 and 2.7]. For the
general linear group the reducibility is obtained in [Zelevinsky 1980] over a p-adic
field, in [Speh 1981] over reals, and in [Wallach 1979] over complex numbers
(see also [Kim 2000, Lemma 2.10]). For the unitary group over a nonarchimedean
field, it is obtained in [Goldberg 1994, Section 3 and 6] by applying the general
reducibility result of [Shahidi 1990], while at an archimedean place, the L-functions
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in the local coefficient that control reducibility are the L-functions of the restriction
to R× of a character of C× (see [Lapid et al. 2004, Lemma 2.6]). Thus, the rank-one
factors are all holomorphic and the lemma is proved. �

Remark 2.4. Kim and Krishnamurthy [2004; 2005] have proved the holomorphy
and nonvanishing of normalized intertwining operators for a representation of the
Levi factor of any maximal proper parabolic subgroup of UN , which is a local
component of a generic cuspidal automorphic representation. Since in our case all
cuspidal automorphic representations of the Levi factor are generic, Lemma 2.3
follows from their work. Their proof uses their stable base change lift and bounds
towards the Ramanujan conjecture obtained by Luo, Rudnick and Sarnak [1999] to
bound the exponents on the unitary group. In our case these bounds are not required
because our unitary factor in the Levi is either trivial or rank zero. This simplifies
the proof.

3. Arthur parameters for unitary groups

Our next task is to introduce the notion of Arthur parameters and the endoscopic
classification of automorphic representations for the quasisplit unitary group UN in
N variables. We consider both the even and odd case for completeness, although
for the application to the analytic properties of the Asai L-functions only the even
case is required.

In [Mok 2015], the results of [Arthur 2013] (see also [Arthur 2005]) are extended
to the case of quasisplit unitary groups. As in [Arthur 2004], we avoid the conjectural
Langlands group by describing the parameters in terms of irreducible constituents
of the discrete spectrum of general linear groups. For quasisplit classical groups
this approach was taken in [Mœglin 2008].

3.A. Arthur parameters. Let µ be a Galois self-dual cuspidal automorphic repre-
sentation of GLm(AE). One of the crucial results in Mok’s proof of endoscopic
classification of representations in the discrete spectrum for quasisplit unitary groups
is the uniqueness (up to equivalence) of the twisted endoscopic datum associated to
µ. This is the content of [Mok 2015, Theorem 2.4.2]. In fact, this unique endoscopic
datum is simple, thus, determining a unique sign κ ∈ {±1} attached to µ. The
parity of the endoscopic datum associated to µ is then defined as κ(−1)m−1 (as in
Section 2.4 of the same reference). Using parity we make the following definition
as in [ibid., Theorem 2.5.4] (see also [Gan et al. 2012]).

Definition 3.1. Let µ be a Galois self-dual cuspidal automorphic representation
of GLm(AE). We say that µ is Galois orthogonal (resp. Galois symplectic), if the
parity of the unique twisted endoscopic datum associated to µ is +1 (resp. −1).



ENDOSCOPIC TRANSFER AND HOLOMORPHY OF ASAI L -FUNCTIONS 199

It turns out, as also proved by Mok, that this definition can be rephrased in terms
of poles at s = 1 of the Asai L-function L(s, µ, rA) attached to µ.

Theorem 3.2 [Mok 2015, Theorem 2.5.4(a)]. Let µ be a Galois self-dual cuspidal
automorphic representation of GLm(AE). Thenµ is Galois orthogonal (resp. Galois
symplectic) if and only if the Asai L-function L(s, µ, rA) (resp. the twisted Asai
L-function L(s, µ⊗ δ̂, rA)) has a pole at s = 1, where δ̂ is any extension to A×E /E

×

of the quadratic character δE/F of A×F /F
× attached to E/F by class field theory.

We are now ready to define global Arthur parameters for the quasisplit unitary
group UN in N variables. We in fact define the square-integrable Arthur parameters,
which, according to [ibid., Theorem 2.5.2], parameterize global Arthur packets
contributing to the discrete automorphic spectrum of UN (AF ). These parameters
depend on the choice of certain character of A×E , trivial on E×, that defines an
L-embedding of the L-group of UN into the L-group of G N (cf. [ibid., Section 2.1]).
Roughly speaking, this character determines whether we view parameters as the
stable or twisted base change of a representation in the discrete spectrum. Of course,
the decomposition of the discrete spectrum is independent of that choice, and we
take it in this paper to be the trivial character of A×E , and suppress it from notation
(see [ibid., Theorem 2.5.2]). The reason why Mok considers all possible characters
is that they are all required for the induction argument in the proof of endoscopic
classification.

Definition 3.3 (Arthur parameters). As before, let UN be the quasisplit unitary
group in N variables given by a quadratic extension E/F of number fields. The set
92(UN ) of square-integrable global Arthur parameters for UN is defined as the set
of all unordered formal sums of formal tensor products of the form

ψ = (µ1 � ν(n1))� · · ·� (µ`� ν(n`)),

such that

(i) µi is a Galois self-dual cuspidal automorphic representation of GLmi (AE),
that is, µi ∼= µ̃

θ
i ;

(ii) ni is a positive integer, and ν(ni ) is the unique ni -dimensional irreducible
algebraic representation of SL2(C);

(iii) m1n1+ · · ·+m`n` = N ;

(iv) for i 6= j , we have µi 6∼=µ j or ni 6= n j , that is, the formal sum ψ is multiplicity
free;

(v) representation µi is Galois orthogonal (resp. Galois symplectic) if and only if
integers ni and N are of the same parity (resp. different parity).

According to Theorem 3.2, condition (v) is equivalent to the condition
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(v′) representationµi is such that the Asai L-function L(s, µi , rA) (resp. the twisted
Asai L-function L(s, µi ⊗ δ̂, rA)) has a pole at s = 1 if and only if integers ni

and N are of the same parity (resp. different parity).

3.B. Arthur packets. We proceed, following [Mok 2015], to define the local and
global Arthur packet associated to a global Arthur parameter ψ ∈92(UN ). Every
global Arthur parameter ψ ∈92(UN ) gives rise, as in [ibid., Section 2.3], to a local
Arthur parameter ψv for every place v of F . The local Arthur packet 5ψv is a
finite multiset of unitary irreducible representations of UN (Fv) associated to ψv in
[ibid., Theorem 2.5.1] and the discussion following it. There is a canonical mapping
from 5ψv to the character group of a certain finite group Sψv attached to ψv (for
a definition see [ibid., Section 2.2]). For πv ∈5ψv , we denote the corresponding
character by ηπv . If UN (Fv) and πv are unramified, then ηπv is the trivial character.
We are skipping here the details, because our main interest is only in unramified
places.

The global Arthur packet 5ψ associated to ψ ∈92(UN ) is defined as

5ψ = {⊗
′

vπv : πv ∈5ψv and ηπv is trivial for almost all v}.

The global packets 5ψ for all ψ ∈ 92(UN ) contain all representations that can
possibly appear in the decomposition of the discrete spectrum on UN (AF ). There
is a subtle further condition identifying elements of 5ψ that indeed appear in the
discrete spectrum (for a precise formulation see [Mok 2015, Theorem 2.5.2]). We
do not recall this condition, because for our purposes it is sufficient to work with
the full packets 5ψ .

We now compare a representation in the discrete spectrum on UN (AF ) and
its Arthur parameter at unramified places. Through the application to residual
representations supported in the Siegel maximal parabolic subgroup, this turns out
to be crucial for the proof of holomorphy of the Asai L-function inside the critical
strip. Given

ψ = (µ1 � ν(n1))� · · ·� (µ`� ν(n`)) ∈92(UN ),

with notation as in Definition 3.3, let S be a finite set of places of F , containing all
archimedean places and all nonarchimedean places ramified in E , and such that for
all places w of E lying above some v 6∈ S all µi,w are unramified. Then, for v 6∈ S,
we attach to ψ a Frobenius–Hecke conjugacy class

cv(ψ)=


⊕`

i=1
(
c(µi,w)⊗ cw(ν(ni ))

)
if v is inert and v|w,(⊕`

i=1
(
c(µi,w1)⊗ cw1(ν(ni ))

)
,
⊕`

i=1
(
c(µi,w2)⊗ cw2(ν(ni ))

))
if v splits into w1, w2,
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viewed as a semisimple conjugacy class in the L-group of G N over Fv, where
c(µi,w) ∈ GLmi (C) is the Satake parameter, and

cw(ν(ni ))= diag
(
q(ni−1)/2
w , q(ni−3)/2

w , . . . , q−(ni−1)/2
w

)
,

with qw the cardinality of the residue field of Ew. Observe that qw = q2
v if v is inert

in E , and qw1 = qw2 = qv if v splits in E . The conjugacy classes cv(ψ) for v 6∈ S
may be viewed as the Satake parameters of the unramified constituents at places w
of E lying above v of the induced representation

IndGLN (AE )
R(AE )

(
µ1| det |(n1−1)/2

⊗µ1| det |(n1−3)/2
⊗ · · ·⊗µ1| det |−(n1−1)/2

⊗µ2| det |(n2−1)/2
⊗µ2| det |(n2−3)/2

⊗ · · ·⊗µ2| det |−(n2−1)/2
⊗ · · ·

⊗µ`| det |(n`−1)/2
⊗µ`| det |(n`−3)/2

⊗ · · ·⊗µ`| det |−(n`−1)/2
)
,

where R is the standard parabolic subgroup of GLN with the Levi factor GLm1 ×

· · · ×GLm1 ×GLm2 × · · · ×GLm2 × · · · ×GLm`
× · · · ×GLm`

with ni copies of
GLmi in the product, and µi are unramified at v.

On the other hand, let π ∼=⊗′vπv be an irreducible automorphic representation
appearing in the discrete spectrum on UN (AF ). Let S′ be a finite set of places
of F , containing all archimedean places, and such that for v 6∈ S′, we have that
UN (Fv) and πv are unramified. Then, for v 6∈ S′, the Satake isomorphism gives
a Frobenius–Hecke conjugacy class c(πv) in the local L-group of UN over Fv.
However, we may view c(πv) as a conjugacy class in the local L-group of G N

through the stable base change map of L-groups. This is consistent with our choice
of the trivial character in the definition of Arthur parameters.

According to the preliminary comparison of spectral sides of the trace formulas
for UN and the twisted trace formula for GLN , carried out in [Mok 2015, Sec-
tion 4.3] (see also [Arthur 2013, Section 3.4]), for every irreducible automorphic
representation π of UN (AF ) appearing in the discrete spectrum, there is a unique
corresponding parameter ψ ∈92(UN ) such that the Frobenius–Hecke conjugacy
classes cv(ψ) attached to ψ coincide at almost all places with the classes c(πv)
attached to π . This observation is the key to the following proposition.

Remark 3.4. Strictly speaking the preliminary comparison of trace formulas gives
unique ψ in a larger set of parameters 9(UN ) (see [Mok 2015] for a definition), but
the full proof of endoscopic classification shows that such ψ belongs to 92(UN ).

Proposition 3.5. Let P be the Siegel maximal proper parabolic F-subgroup of U2n .
Let σ be a cuspidal automorphic representation of its Levi factor

MP(AF )∼= GLn(AE).
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If the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |sAE

)
has a constituent in the discrete spectrum of U2n(AF ) for some s> 0, then its Arthur
parameter is

ψ = σ � ν(2),

and in particular s = 1
2 and σ is Galois self-dual.

Proof. Since an automorphic representation is unramified at almost all places, the
local component of an irreducible constituent π of the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |sAE

)
belonging to the discrete spectrum is the unramified representation with the Satake
parameter, viewed as a conjugacy class in the L-group of G2n as above,

c(πv)

=

{
c(σw)⊗ diag(qs

w, q−s
w ) if v is inert and v|w,(

c(σw1)⊗ diag(qs
w1
, q−s
w1
), c(σw2)⊗ diag(qs

w2
, q−s
w2
)
)

if v splits into w1, w2,

for almost all places v of F . Recall that qw = q2
v if v is inert, and qw1 = qw2 = qv

if v splits. We may also view c(πv) as the Satake parameter of the unramified
constituent of the local components at places w of E lying over v of the induced
representation

IndGL2n(AE )
Q(AE )

(
σ | det |sAE

⊗ σ | det |−s
AE

)
,

where Q is the standard parabolic subgroup of GL2n with the Levi factor GLn×GLn .
By the observation made just before the statement of the proposition, these

Frobenius–Hecke conjugacy classes c(πv), viewed as conjugacy classes in the L-
group of G2n , should match at almost all places the conjugacy classes cv(ψ) attached
to the Arthur parameter ψ ∈ 92(UN ) parameterizing π . As mentioned above,
these cv(ψ) may be viewed as Satake parameters of the unramified constituent at v
of certain induced representation of GL2n(AE). However, by the strong multiplicity
one for general linear groups [Jacquet and Shalika 1981, Theorem 4.4], matching
of Satake parameters at almost all places for induced representations of GLN (AE)

implies that the inducing data for these representations are associate. Since Q is
self associate, this means that the parabolic subgroup R determined by ψ as above
must be Q, and thus that ψ is of the form

ψ = σ � ν(k),

where k = 2s+ 1. Since k = 2 by condition (iii) in Definition 3.3, it follows that
s = 1

2 . As σ appears in ψ it is necessarily Galois self-dual. �
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4. Holomorphy and nonvanishing of Asai L-functions

In this section we prove the analytic properties of the Asai L-functions as a conse-
quence of Mok’s endoscopic classification [2015] of automorphic representations
of a quasisplit unitary group.

4.A. Analytic properties of Eisenstein series. The first task is to determine the
poles of Eisenstein series E( f, s) for Re(s) > 0. We now consider only the case of
even quasisplit unitary group U2n .

Recall that for a cuspidal automorphic representation σ of GLn(AE), we let σ θ

denote σ conjugated by the nontrivial Galois automorphism θ ∈Gal(E/F). We say
that σ is Galois self-dual if it is isomorphic to σ̃ θ , where σ̃ is the contragredient of σ .

Theorem 4.1. Let σ be a cuspidal automorphic representation of the Levi factor
MP(AF ) ∼= GLn(AE) in U2n . Then the Eisenstein series E( f, s) on U2n(AF ),
constructed as in Section 2.B from functions f in the representation space Wσ on
which induced representations I (s, σ ) are realized for all s, is

(1) holomorphic for Re(s)≥ 0, if σ is not Galois self-dual,

(2) holomorphic for Re(s)≥ 0, except for a possible simple pole at s = 1
2 , if σ is

Galois self-dual.

Proof. The Eisenstein series is holomorphic on the imaginary axis Re(s) = 0
(see [Mœglin and Waldspurger 1995, Section IV.1.11]). Hence, we may assume
Re(s) > 0. Suppose that the Eisenstein series E( f, s) on U2n(AF ) has a pole
at s = s0 > 0 for some f ∈ Wσ in the notation of Section 2. Since s0 > 0,
the residues at s = s0 of E( f, s) when f ∈ Wσ span a residual automorphic
representation of U2n(AF ). But this residual representation is a constituent of
the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |s0

E

)
.

By Proposition 3.5, its Arthur parameter is

ψ = σ � ν(2),

where σ is Galois self-dual and s0 =
1
2 . Therefore, the Eisenstein series E( f, s) is

holomorphic for Re(s) > 0, except for a possible pole at s = 1
2 if σ is Galois self-

dual, as claimed. The possible pole is simple, by the general theory of Eisenstein
series [Mœglin and Waldspurger 1995, Section IV.1.11] �

Remark 4.2. A significant part of Theorem 4.1 can be proved in a different way,
without using Mok’s work on the Arthur classification for unitary groups [Mok
2015], which is based on the trace formula, and still depends on the stabilization of
the twisted trace formula for GLn .
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For instance, if σ is not Galois self-dual, the following general argument provides
holomorphy of the Eisenstein series for Re(s) > 0. By [Harish-Chandra 1968], see
also [Mœglin and Waldspurger 1995, Section IV.3.12], a necessary condition for
the Eisenstein series E( f, s) to have a pole for Re(s) > 0 and some f ∈Wσ is that
σw0 ∼= σ . But in our case, σw0 = σ̃ θ , so that E( f, s) is holomorphic for Re(s) > 0
and all f ∈Wσ if σ is not Galois self-dual.

If σ is Galois self-dual, there is a unitarity argument, which gives the analytic
behavior of the Eisenstein series for Re(s) ≥ 1

2 . However, the critical strip 0 <
Re(s) < 1

2 remains out of reach. For completeness, we include this argument in
Section 4.C below.

4.B. Analytic properties of Asai L-functions. The following theorem describes
completely the analytic properties of the Asai L-functions attached to a cuspidal
automorphic representation σ of GLn(AE). It is the main result of the paper.

Theorem 4.3. Let σ be a cuspidal automorphic representation of GLn(AE). Let
L(s, σ, rA) (respectively, L(s, σ ⊗ δ̂, rA)) be the Asai (respectively, twisted Asai)
L-function attached to σ , where δ̂ is any extension to A×E /E

× of the quadratic
character of A×F /F

× attached to the extension E/F by class field theory.

(1) If σ is not Galois self-dual, that is, σ 6∼= σ̃ θ , then L(s, σ, rA) is entire. It is
nonzero for Re(s)≥ 1 and Re(s)≤ 0.

(2) If σ is Galois self-dual, that is, σ ∼= σ̃ θ , then
(a) L(s, σ, rA) is entire, except for possible simple poles at s = 0 and s = 1,

and nonzero for Re(s)≥ 1 and Re(s)≤ 0;
(b) exactly one of the L-functions L(s, σ, rA) and L(s, σ ⊗ δ̂, rA) has simple

poles at s = 0 and s = 1, while the other is holomorphic at those points.

Proof. The idea of the proof goes back to [Shahidi 1981; 1988]. The proof of
holomorphy is based on Theorem 2.1, which relates the poles of Eisenstein series
to the Asai L-functions, and Theorem 4.1 providing the analytic behavior of the
Eisenstein series. The nonvanishing, on the other hand, follows from considering
the nonconstant term of the Eisenstein series as in [Shahidi 1981] (see also [Shahidi
2010, Section 7]), and using Theorem 4.1 again. It is sufficient to prove the claims
for Re(s)≥ 1

2 , due to the functional equation for Asai L-functions.
We begin with the proof of holomorphy. Consider first the case of σ not Galois

self-dual. According to Theorem 4.1, the Eisenstein series attached to σ is holo-
morphic for Re(s) > 0. Assume that L(s, σ, rA) has a pole for s = s0 > 0. Since
the poles of E( f, s) for Re(s) > 0 coincide, according to Theorem 2.1, with the
poles of the ratio

(∗)
L(2s, σ, rA)

L(1+ 2s, σ, rA)
,
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the pole of the numerator at 2s = s0 > 0 should be canceled by a pole in the
denominator. Thus, L(z, σ, rA) should have a pole at z = s0 + 1. Repeating this
argument, we obtain a sequence of poles of the Asai L-function of the form s0+M ,
where M is any nonnegative integer. This is a contradiction, because L(s, σ, rA) is
holomorphic in the right half-plane of absolute convergence of the defining product.
Thus, we proved that L(s, σ, rA) is entire.

Consider now the case of σ Galois self-dual. By Theorem 4.1, the Eisenstein
series E( f, s) attached to σ is holomorphic for Re(s) > 0, except for a possible
simple pole at s = 1

2 . The same argument as in the previous case implies that
L(z, σ, rA) is holomorphic for Re(z) > 0, except for z = 1 if the Eisenstein series
has a pole at s = 1

2 .
To prove that a possible pole of L(z, σ, rA) at z = 1 is at most simple, we again

apply a similar argument. Suppose E( f, s) has a pole at s = 1
2 . It is simple by

Theorem 4.1. If L(z, σ, rA) had a higher order pole at z = 2s = 1, then Theorem 2.1
would imply that there is a pole in the denominator of the ratio of Asai L-functions
in (∗). But this would mean that the Asai L-function has a pole at z+ 1= 2. The
Eisenstein series is holomorphic at s = 1, so that the same argument as before gives
a sequence of poles at all positive integers, which is a contradiction.

For nonvanishing, consider the nonconstant term E( f, s)ψ of the Eisenstein
series E( f, s) with respect to a fixed nontrivial additive character ψ of F\AF .
According to [Shahidi 2010, Theorem 7.1.2], we have

E( f, s)ψ(e)=
1

L S(1+ 2s, σ, rA)
·

∏
v∈S

Wv(ev),

where e and ev are the identity matrices, Wv is the ψv-Whittaker function attached
to f via a Jacquet integral, S is a finite set of places, containing all archimedean
places, outside which U2n(Fv), σv and ψv are all unramified, and L S(z, σ, rA) is
the partial Asai L-function attached to σ . As in [Shahidi 2010, Section 7.2], there
is a choice of f ∈ Wσ such that Wv(ev) 6= 0 for all v ∈ S. Thus, every zero of
L S(1+ 2s, σ, rA) for Re(s)≥ 0, equivalently Re(1+ 2s)≥ 1, would give a pole of
the nonconstant term E( f, s)ψ . However, by Theorem 4.1, the Eisenstein series
E( f, s), and thus E( f, s)ψ as well, is holomorphic for Re(s) ≥ 0, except for a
possible pole at s = 1

2 , which may occur only if σ is Galois self-dual. Hence,
L S(z, σ, rA) has no zeroes for Re(z)≥ 1, except possibly for z = 1. Since the local
L-functions are nonvanishing, the same holds for the complete Asai L-function
L(z, σ, rA).

For σ Galois self-dual, the nonvanishing of L(z, σ, rA) at the remaining point
z = 1 follows from the identity

(∗∗) L(s, σ × σ θ )= L(s, σ, rA)L(s, σ, rA⊗ δE/F ),
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where L(s, σ × σ θ ) is the Rankin–Selberg L-function, and recall that the twisted
Asai L-function equals

L(s, σ, rA⊗ δE/F )= L(s, σ ⊗ δ̂, rA).

See [Goldberg 1994] for these identities. The poles of the Rankin–Selberg L-
function L(s, σ × σ θ ) are known from [Jacquet and Shalika 1981]. For σ Galois
self-dual it has a simple pole at s = 1. Since σ ⊗ δ̂ is Galois self-dual as well, we
already proved that both Asai L-functions on the right-hand side of (∗∗) have at
most a simple pole at s = 1. Hence, they are both nonzero at s = 1, and exactly
one of them has a simple pole at s = 1, as claimed. �

Remark 4.4. Once the holomorphy of the Asai and twisted Asai L-function is
known at some s0 with Re(s0) > 0, the argument using the Rankin–Selberg L-
function at the end of this proof can be applied directly to obtain nonvanishing.
However, the result of Jacquet and Shalika [1981] providing analytic properties of
the Rankin–Selberg L-functions is very deep, and we preferred to give an argument
using nonconstant term of the Eisenstein series whenever possible.

4.C. Holomorphy of Eisenstein series using a unitarity argument. We now give
a different proof that the Eisenstein E( f, s), attached to a Galois self-dual cuspidal
automorphic representation σ of GLn(AF ) as above, is holomorphic for Re ≥ 1

2 ,
except for a possible simple pole at s = 1

2 .
It is sufficient to prove that E( f, s) is holomorphic for Re(s) > 1

2 . Indeed, since
we always normalize σ to be trivial on AP(F∞)◦, the poles of the Eisenstein series
are real. Hence, the only possible pole for Re(s)= 1

2 is at s = 1
2 . It is at most simple

pole, because all poles of Eisenstein series inside the closure of the positive Weyl
chamber are without multiplicity [Mœglin and Waldspurger 1995, Section IV.1.11].

Suppose that there is a simple pole of E( f, s) at s = s0 >
1
2 . We follow an idea

of Kim [2000] based on the fact that residual representations are unitary. The space
of residues of E( f, s) at s = s0 is a residual representation of U2n(AF ), which is a
constituent of the induced representation

I (s0, σ )= IndU2n(AF )
P(AF )

(
σ |det|s0

E

)
.

In particular, this residual representation is unitary, so that the induced representation
should have a unitary constituent. But then the local induced representation at every
place v should have a unitary subquotient. Let v be a split nonarchimedean place
of F such that σv is unramified. The local induced representation at v is isomorphic
to

I (s0, σv)∼= IndGL2n(Fv)
P(Fv)

(
σw1 |det|s0

Fv ⊗ σ̃w2 |det|−s0
Fv

)
,
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where w1 and w2 are the two places of E lying above v. Since σw1 and σw2 are
unramified unitary generic representations of GLn(Fv), according to [Tadić 1986],
they are fully induced representations of the form

σw1
∼=

IndGLn(Fv)
Bn(Fv)

(
µ1| |

α1 ⊗ · · ·⊗µk | |
αk ⊗χ1⊗ · · ·⊗χl ⊗µk | |

−αk ⊗ · · ·⊗µ1| |
−α1
)

and

σ̃w2
∼=

IndGLn(Fv)
Bn(Fv)

(
µ′1| |

β1 ⊗ · · ·⊗µ′k′ | |
βk′ ⊗χ ′1⊗ · · ·⊗χ

′

l ′ ⊗µ
′

k′ | |
−βk′ ⊗ · · ·⊗µ′1| |

−β1
)
,

where Bn is a Borel subgroup of GLn , the exponents satisfy 0< αk < · · ·< α1 <
1
2

and 0< βk′ < · · ·< β1 <
1
2 , and µi , µ′i , χ j , χ ′j are unramified unitary characters of

F×v . Hence,

I (s0, σv)∼= IndGL2n(Fv)
B2n(Fv)

(
µ1| |

s0+α1 ⊗ · · ·⊗µk | |
s0+αk ⊗χ1| |

s0 ⊗ · · ·⊗χl | |
s0

⊗µk | |
s0−αk ⊗ · · ·⊗µ1| |

s0−α1

⊗µ′1| |
−s0+β1 ⊗ · · ·⊗µ′k′ | |

−s0+βk′ ⊗χ ′1| |
−s0 ⊗ · · ·

⊗χ ′l ′ | |
−s0 ⊗µ′k′ | |

−s0−βk′ ⊗ · · ·⊗µ′1| |
−s0−β1

)
.

According to the description of the unitary dual of GL2n(Fv) [Tadić 1986], this
representation would have a unitary subquotient, only if all the exponents whose
absolute value is not smaller than 1

2 , induced with another character to a representa-
tion of GL2(Fv), give a reducible representation with a unitary quotient of Speh
type. However, this is possible only if for every such exponent that is not less than
1
2 in absolute value, there is another exponent such that their difference is exactly 1.

Having this in mind, consider the largest exponent in the above induced represen-
tation. We write this exponent as s0+α1, and allow the possibility α1 = 0, which
happens in the case k = 0 as there are no αi ’s. There should be another exponent of
the form −s0±β, where β = β j for some j or β = 0, such that

(s0+α1)− (−s0±β)= 1.

But this implies
2s0+α1∓β = 1,

which is possible for s0 >
1
2 only if the sign of β is minus and α1 < β. As β is

certainly not greater than the largest of β j ’s, it follows that necessarily α1 < β1.
However, considering the smallest exponent in the induced representation, that is,
−s0−β1, where again β1 is set to zero if l = 0, we obtain the opposite inequality,
β1<α1. This is a contradiction, proving that I (s0, σv) has not a unitary subquotient
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for s0 >
1
2 , and therefore, the Eisenstein series E( f, s) has no pole for Re(s) > 1

2 ,
as claimed.
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