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DAVID KALAJ

Let D and � be Jordan domains with Dini-smooth boundaries. We prove
that if f : D → � is a harmonic homeomorphism and f is quasiconfor-
mal, then f is Lipschitz. This extends some recent results, where stronger
assumptions on the boundary are imposed. Our result is optimal in that it
coincides with the best condition for Lipschitz behavior of conformal map-
pings in the plane and conformal parametrizations of minimal surfaces.

1. Introduction and statement of the main result

Quasiconformal mappings. By definition, K-quasiconformal mappings (or qc map-
pings for short) are orientation-preserving homeomorphisms f : D→� between
domains D, �⊂ C that are contained in the Sobolev class W 1,2

loc (D) and for which
the differential matrix and its determinant are coupled in the distortion inequality

(1-1) |Df (z)|2 ≤ K det Df (z) , where |Df (z)| = max
|ξ |=1
|Df (z)ξ |,

for some K ≥ 1. Here det Df (z) is the determinant of the formal derivative Df (z),
which will be denoted in the sequel by J f (z). Note that condition (1-1) can be
written in complex notation as

(1-2) (| fz| + | f z̄|)
2
≤ K (| fz|

2
− | f 2

z̄ |) a.e. on D,

or, what is the same,

| f z̄| ≤ k| fz| a.e. on D, where k = K−1
K+1

, i.e., K = 1+k
1−k

.

Harmonic mappings and the Hilbert transform. A mapping f is called harmonic
in a region D if it has the form f = u+ iv, where u and v are real-valued harmonic
functions in D. If D is simply connected, then there are two analytic functions h
and g defined on D such that f has the representation

f = h+ ḡ.
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If f is a harmonic univalent function, then by Lewy’s theorem [1936], f has a
nonvanishing Jacobian and therefore is a diffeomorphism by the inverse mapping
theorem.

Let

P(r, x −ϕ)=
1− r2

2π(1− 2r cos(x −ϕ)+ r2)

denote the Poisson kernel. If F ∈ L1(T), where T is the unit circle, we define the
Poisson integral P[F] of F by

(1-3) P[F](z)=
∫ 2π

0
P(r, x −ϕ)F(ei x) dx, |z|< 1, z = reiϕ.

The function f (z)=P[F](z) is a harmonic mapping in the unit disk U={z : |z|<1},
which belongs to the Hardy space h1(U). The mapping f is bounded in U if and
only if F ∈ L∞(T). Standard properties of the Poisson integral show that P[F]
extends by continuity to F on U, provided that F is continuous. For these facts
and standard properties of harmonic Hardy spaces, we refer to [Axler et al. 1992,
Chapter 6; Duren 1970]. With the additional assumption that F is an orientation-
preserving homeomorphism of this circle onto a convex Jordan curve γ , P[F] is
an orientation-preserving diffeomorphism of the open unit disk onto the region
bounded by γ . This is indeed the celebrated theorem of Choquet–Radó–Kneser
[Choquet 1945; Duren 2004]. This theorem is not true for nonconvex domains,
but does hold under some additional assumptions. It has been extended in various
directions (see for example [Jost 1981; Kalaj 2011b; Duren and Hengartner 1997]).

If f = u+ iv is a harmonic function defined in a Dini-smooth Jordan domain
D then a harmonic function f̃ = ũ+ i ṽ is called the harmonic conjugate of f if
u+ i ũ and v+ i ṽ are analytic functions. Notice that f̃ is uniquely determined up to
an additive constant. Let 8 : D→U be a conformal mapping, and let G ∈ L1(∂D).
Then the Poisson integral of G with respect to the domain D is defined by

PD[G](z)=
1

2π

∫
∂D

1− |8(z)|2

|8(z)−8(ζ)|2
G(ζ )|8′(ζ )| dζ.

Let χ be the boundary value of f and assume that χ̃ is the boundary value of f̃ .
Then χ̃ is called the Hilbert transform of χ and we also write it as H(χ). Assume
that χ̃ ∈ L1(∂D). In particular, the Hilbert transform of a function χ ∈ L1(T) is
defined by the formula

(1-4) χ̃(τ )= H(χ)(τ )=−
1
π

∫ π

0+

χ(τ + t)−χ(τ − t)
2 tan(t/2)

dt.

Here
∫ π

0+ 8(t) dt := limε→0+
∫ π
ε
8(t) dt . This integral is improper and converges

for a.e. τ ∈ [0, 2π ]. This and other facts concerning the operator H used in this
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paper can be found in [Zygmund 1959, Chapter VII]. Assume that χ, χ̃ are in
L1(T). Then

(1-5) P[χ̃ ] = (P[χ ])∼,

where (k)∼ is the harmonic conjugate of k (see for instance [Pavlović 2004, Theo-
rem 6.1.3]).

If f = h + ḡ : U→ � is a harmonic mapping then the radial and tangential
derivatives at z = rei t are defined by

∂r f (z)=
1
r
(h′+ ḡ′) and ∂t f (z)= i(h′− ḡ′).

So r∂r f is the harmonic conjugate of ∂t f . We generalize this definition for a
mapping f = h+ ḡ defined in a Jordan domain D. In order to do so, let 8= Rei2

be a conformal mapping of the domain D onto the unit disk. Then the radial
derivative and tangent derivative of f in a point w ∈ D are defined by

∂R f (w)=
1

|8(w)|
D f (w)

(
8(w)

8′(w)

)
and ∂2 f (w)= D f (w)

(
i
8(w)

8′(w)

)
.

Here 8(w)/8′(w) and i(8(w)/8′(w)) are treated as two vectors from R2 ∼= C.
Then it is easy to show that

R∂R f (w)=
h′(w)
8′(w)

+
g′(w)

8′(w)
and ∂2 f (w)= i

(
h′(w)
8′(w)

−
g′(w)

8′(w)

)
.

This implies that R∂R f (w) and ∂2 f (w) are harmonic functions in D and R∂R f (w)
is the harmonic conjugate of ∂2 f (w). Notice also that these derivatives are uniquely
determined up to a conformal mapping 8. Assume further that D and � have
Dini-smooth boundaries. If F : ∂D→ ∂� is the boundary function of f , and if
∂2 f (w) is a bounded harmonic function, then

lim
w→w0

∂2 f (w)= F ′(w0),

where the limit is nontangential. Here

F ′(w0) :=
∂(F ◦8−1)(ei t)

∂t
,

where 8(w0) = ei t . If F ′ ∈ L1(∂D), then the harmonic function R∂R f (w) has
nontangential limits in almost every point of ∂D and its boundary value is the
Hilbert transform of F ′, namely

H(F ′)(w0)= lim
w→w0

R∂R f (w).
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From now on the boundary value of f will be denoted by F . We will focus
on orientation-preserving harmonic quasiconformal mappings between smooth
domains and investigate their Lipschitz character up to the boundary. For future
reference, we will say that a qc mapping f :U→� of the unit disk onto the Jordan
domain � with rectifiable boundary is normalized if f (1) = w0, f (e2π i/3) = w1

and f (e4π i/3)= w2, where w0w1, w1w2 and w2w0 are arcs of γ = ∂� having the
same length |γ |/3.

Background. Let � be a Jordan domain with rectifiable boundary, and let γ be an
arc-length parametrization of ∂�. We say that ∂� is C1 if γ ∈ C1. Then arg γ ′ is
continuous and we let ω be its modulus of continuity. If ω satisfies

(1-6)
∫ δ

0

ω(t)
t

dt <∞, δ > 0,

we say that ∂� is Dini-smooth. Denote by C1,$ the class of all Dini-smooth
Jordan curves. The derivative of a conformal mapping f of the unit disk onto � is
continuous and nonvanishing in D [Pommerenke 1975, Theorem 10.2] (see also
[Warschawski 1961]). This implies that f is bi-Lipschitz continuous. For later
reference we refer to this result as Kellogg’s theorem, see [Kellogg 1912; Goluzin
1969, p. 374]. Kellogg was the first to consider this type of result for C1,α domains,
where 0 < α < 1. Warschawski [1970] proved the same result for a conformal
parametrization of a minimal surface.

If f is merely quasiconformal and maps the unit disk onto itself, then Mori’s
theorem implies that | f (z)− f (w)| ≤ M1(K )|z − w|1/K . The constant 1/K is
the best possible. If f is a conformal mapping of the unit disk onto a Jordan
domain with a C1 boundary, then the function f is not necessarily Lipschitz (see
for example [Lesley and Warschawski 1978, p. 277]). This is why we need to add
some assumption, other than quasiconformality, as well as some smoothness of the
image curve that is better than C1 in order to obtain that the resulting mapping is
Lipschitz or bi-Lipschitz.

Since every conformal mapping in the plane is harmonic and quasiconformal, it
is an interesting question to ask to what extent the smoothness of the boundary of a
Jordan domain � implies that a quasiconformal harmonic mapping of the unit disk
onto � is Lipschitz. The first study of harmonic quasiconformal mappings of the
unit disk onto itself was done by O. Martio [1968]. This paper has been generalized
in [Kalaj 2004] for qc mappings from the unit disk onto a convex Jordan domain.
Pavlović [2002] proved in a very interesting way that every qc harmonic mapping
of the unit disk onto itself is Lipschitz. Kalaj [2008] proved that every qc harmonic
mapping between two Jordan domains with C1,α boundary is Lipschitz. This result
has its counterpart for non-Euclidean metrics [Kalaj and Mateljević 2006]. For a



QUASICONFORMAL AND HARMONIC MAPPINGS 217

generalization of the last result to the several-dimensional case we refer to [Kalaj
2013]. The problem of bi-Lipschitz continuity of a quasiconformal mapping of the
unit disk onto a Jordan domain with C2 boundary has been solved in [Kalaj 2011a].
The object of this paper is to extend some of these results.

New results. The following theorem is such an extension in which the Hölder
continuity is replaced by the more general Dini condition.

Theorem 1.1. Let f = P[F](z) be a harmonic normalized K-quasiconformal
mapping between the unit disk and the Jordan domain� with γ = ∂�∈C1,$ . Then
there exists a constant C ′ = C ′(γ, K ) such that

(1-7)
∣∣∣∂F(eiϕ)

∂ϕ

∣∣∣≤ C ′ for almost every ϕ ∈ [0, 2π ],

and

(1-8) | f (z1)− f (z2)| ≤ K C ′|z1− z2| for z1, z2 ∈ U.

By using Theorem 1.1, we obtain the following improvement of [Kalaj 2008,
Theorem 3.1].

Theorem 1.2. Let D and� be Jordan domains such that ∂D and ∂� are contained
in C1,$ and let f : D 7→ � be a harmonic homeomorphism. The following
statements hold true.

(a) If f is qc, then f is Lipschitz.

(b) If � is convex and f is qc, then f is bi-Lipschitz.

(c) If � is convex, then f is qc if and only log|F ′| and H(F ′) are in L∞(∂D).

Proof of Theorem 1.2. (a) Choose a conformal mapping 8 : U→ D so that the qc
mapping f1 = f ◦8 is normalized. Then f1 is a qc harmonic mapping of the unit
disk onto � that satisfies the conditions of Theorem 1.1. This implies in particular
that f1 is Lipschitz. In view of Kellogg’s theorem, the mapping 8 is bi-Lipschitz.
Thus f = f1 ◦8

−1 is Lipschitz.
(b) If � is a convex domain, and if D = U, then by [Kalaj 2003], we have that

|D f (z)| ≥ 1
4 dist( f (0), ∂�)

for z ∈ U. If D is not the unit disk, then we make use of the conformal mapping
8 : U→ D as in the proof of (a). Then we obtain

|D f (z)| = |D f1(z)|/|8′(z)| ≥ c.

Now by using the quasiconformality of f , we have that

|D f (z)|2 ≤ K J f (z).
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Therefore

J f −1( f (z)) =
1

J f (z)
≤

K
c2 .

Since f −1 is K-quasiconformal, we have further that

|D f −1(w)|2 ≤ K J f −1(w)≤
K 2

c2 .

This implies that f −1 is Lipschitz. This finishes the proof of (b).
(c) If f is harmonic and quasiconformal, then by (b) it is bi-Lipschitz, and so its

boundary function F is bi-Lipschitz. Furthermore, R∂R f is a bounded harmonic
function and this is equivalent with the fact that log |F ′| ∈ L∞(∂D). Since H(F ′)
is its boundary function, it is bounded, i.e., it belongs to L∞(∂D).

We now prove the opposite implication. Since

∂2 f = PD[F ′] and R∂R f = PD[H(F ′)],

it follows that ∂2 f and R∂R f are bounded harmonic functions. This means that
|D f | is bounded by a constant M . In order to show that f is quasiconformal, it is
enough to show that the Jacobian of f is bigger than a positive constant in D. Let
f1 = f ◦8−1, and let δ = dist( f1(0), ∂�) and κ =min |∂t f1(ei t)|. Then by [Kalaj
2004, Corollary 2.9], we have

J f (8(w))|8
′(w)|2 = J f1(w)≥

κδ

2
.

So
J f (z)≥ c > 0, z ∈ D.

We conclude that
|D f (z)|2

J f (z)
≤

M2

c
. �

2. Preliminary results

Definition 2.1. Let ξ : [a, b] → C be a continuous function. The modulus of
continuity of ξ is

ω(t)= ωξ (t)= sup
|x−y|≤t

|ξ(x)− ξ(y)|.

The function ξ is called Dini-continuous if

(2-1)
∫ b−a

0

ωξ (t)
t

dt <∞.

Let γ be a C1 Jordan curve γ with the length l=|γ | and assume that g : [0, l]→γ is
its arc-length parametrization . We say that γ is Dini-smooth if g′ is Dini-continuous
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on [0, l]. If ω(t) is the modulus of continuity of g′ for 0≤ t ≤ l, then we extend ω
by ω(t)= ω(l) for t ≥ l.

A function F : T→ γ is called Dini-smooth if the function 8(t) = F(ei t) is
Dini-smooth, i.e.,

|8′(t)−8′(s)| ≤ ω(|t − s|),

where ω is Dini-continuous. Observe that every smooth C1,α Jordan curve is
Dini-smooth.

Let

(2-2) K(s, t)= Re [(g(t)− g(s)) · ig′(s)]

be a function defined on [0, l]× [0, l]. By K(s± l, t ± l)= K(s, t) we extend it to
R×R. Suppose now that 9 : R 7→ γ is an arbitrary 2π -periodic Lipschitz function
such that 9|[0,2π) : [0, 2π) 7→ γ is an orientation-preserving bijective function.
Then there exists an increasing continuous function ψ : [0, 2π ] 7→ [0, l] such that

(2-3) 9(τ)= g(ψ(τ)).

We have for a.e. eiτ
∈ T that

9 ′(τ )= g′(ψ(τ)) ·ψ ′(τ ),

and therefore
|9 ′(τ )| = |g′(ψ(τ))| · |ψ ′(τ )| = ψ ′(τ ).

Along with the function K we will also consider the function KF defined by

KF (t, τ )= Re [(9(t)−9(τ)) · i9 ′(τ )].

Here F(ei t)=9(t). It is easy to see that

(2-4) KF (t, τ )= ψ ′(τ )K(ψ(t), ψ(τ)).

Lemma 2.2. Let γ be a Dini-smooth Jordan curve and let g : [0, l] 7→ γ be a
natural parametrization of a Jordan curve with g′ having modulus of continuity ω.
Assume further that 9 : [0, 2π ] 7→ γ is an arbitrary parametrization of γ and let
F(ei t)=9(t). Then

(2-5) |K(s, t)| ≤
∫ min{|s−t |,l−|s−t |}

0
ω(τ) dτ

and

(2-6) |KF (ϕ, x)| ≤ |ψ ′(ϕ)|
∫ dγ (9(ϕ),9(x))

0
ω(τ) dτ.

Here dγ (9(ϕ),9(x)) := min{|s(ϕ)− s(x)|, (l − |s(ϕ)− s(x)|)} is the (shortest)
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distance between 9(ϕ) and 9(x) along γ , and it satisfies

|9(ϕ)−9(x)| ≤ dγ (9(ϕ),9(x))≤ Bγ |9(ϕ)−9(x)|.

Proof. Note that the estimate (2-5) has been proved in [Kalaj 2011b, Lemma 2.3].
Now (2-6) follows from (2-5) and (2-4). �

A closed rectifiable Jordan curve γ satisfies a B-chord-arc condition for some
constant B > 1 if for all z1, z2 ∈ γ we have

(2-7) dγ (z1, z2)≤ B|z1− z2|.

Here dγ (z1, z2) is the length of the shorter arc of γ with endpoints z1 and z2. It is
clear that if γ ∈ C1, then γ satisfies a chord-arc condition for some Bγ > 1. The
following lemma is proved in [Kalaj 2012].

Lemma 2.3. Assume that γ satisfies a chord-arc condition for some B > 1. Then
for every normalized K-qc mapping f between the unit disk U and the Jordan
domain �= int γ we have

| f (z1)− f (z2)| ≤3γ (K )|z1− z2|
α, z1, z2 ∈ T,

where

α =
2

K (1+ 2B)2
, 3γ (K )= 4 · 2α(1+ 2B)

√
2πK |�|

log 2
.

Next we recall some estimates for the Jacobian of a harmonic univalent function.

Lemma 2.4 [Kalaj 2011b, Lemma 3.1]. Suppose f =P[F] is a harmonic mapping
such that F is a Lipschitz homeomorphism from the unit circle onto a Dini-smooth
Jordan curve γ . Let g be an arc-length parametrization of γ , letψ(t)=g−1(F(ei t)),
and define 9(t)= F(ei t)= g(ψ(t)). Then for almost every τ ∈ [0, 2π ], the limit

J f (eiτ ) := lim
r→1

J f (reiτ )

exists and we have

(2-8) J f (eiτ )= ψ ′(τ )

∫ 2π

0

Re
[
(g(ψ(t))− g(ψ(τ))) · ig′(ψ(τ))

]
2 sin2((t − τ)/2)

dt
2π
.

From Lemma 2.2 and Lemma 2.4 we obtain

Lemma 2.5. Under the conditions and notation of Lemma 2.4 we have

(2-9) J f (eiϕ)≤
π

4
|9 ′(ϕ)|

∫ π

−π

1
x2

∫ dγ (F(ei(ϕ+x)),F(eiϕ))

0
ω(τ) dτ dx

for a.e. eiϕ
∈ T. Here ω is the modulus of continuity of g′.
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Lemma 2.6. Let f = P[F](z) be a harmonic mapping between the unit disk U and
the Jordan domain �, with F ∈ C1,$ (T). Then the partial derivatives of f have a
continuous extension to the boundary of the unit disk.

Proof. In the proof of this lemma we denote ∂t9(ei t) by 9 ′(t). If F is Lipschitz-
continuous, then 8=9 ′ ∈ L∞(T), and by the famous Marcel Riesz theorem (see
for example [Garnett 1981, Theorem 2.3]) there is a constant Ap such that

‖H(9 ′)‖L p(T) ≤ Ap‖9
′
‖L p(T)

for 1 < p < ∞. It follows that 8̃ = H(9 ′) ∈ L1. Since r fr is the harmonic
conjugate of fτ , we have rwr = P[H(9 ′)] according to (1-5). By again using
Fatou’s theorem, we have

(2-10) lim
r→1−

fr (reiτ )= H(9 ′)(τ ) a.e.

By (1-4), and by following the proof of Privaloff’s theorem [Zygmund 1959], we
obtain that if |9 ′(x)−9 ′(y)| ≤ ω(|x − y|) for the Dini-continuous function, then

|H(9 ′)(x + h)− H(9 ′)(x)| ≤ A
∫ 2h

0

ω(t)
t

dt + Bh
∫ 2π

h

ω(t)
t2 dt +Cω(h),

for some absolute constants A, B and C . The detailed proof of the last fact can be
found in [Garnett 1981, Theorem III 1.3.]. This implies that rwr (rei t) and ft(rei t)

have continuous extensions to the boundary and this is what we needed to prove. �

We now prove the following lemma needed in the sequel.

Lemma 2.7. Let A be a positive integrable function in [0, B] and assume that
q, Q > 0. Then there exists a continuous increasing function χ of (0,+∞) into
itself , depending on A, B, q and Q, such that the following hold: limx→∞ χ(x)=
∞, the function g(x)= xχ(x) is convex, and∫ B

0
A(x)χ(Qx−q) dx ≤ 4

∫ B

0
A(x)dx .

Proof. First define inductively a sequence x0 = B, xk > 0 for k > 0, such that
xk+1 < xk/2, and∫ xk

0
A(x) dx ≤ M2−k where M =

∫ B

0
A(x)dx .

This is possible because A is integrable.
Then define a continuous function ξ in [0, B] by ξ(xk)= k, and by extending it

linearly on each interval [xk+1, xk], that is

ξ(x)= k+
xk − x

xk − xk+1
, x ∈ [xk+1, xk].
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It is easy to see that this function is convex, decreasing and tends to +∞ as x→∞.
Moreover ∫ B

0
A(x)ξ(x) dx ≤ M

∞∑
k=0

(k+ 1)2−k
= 4M.

Now set χ(x)= ξ((Q/x)τ ) for τ = 1/q . It remains to verify that xχ(x) is convex.
This we do by differentiation:

(xχ(x))′ = ξ(Qτ x−τ )− Qτ τ x−τ ξ ′(Qτ x−τ ).

Since both summands are increasing, xχ(x) is convex. �

3. The proof of Theorem 1.1

By assumption of the theorem, the derivative of an arc-length parametrization g′

has a Dini-continuous modulus of continuity ω. We consider two cases.
(i) F(ei t)=9(t) ∈C1,$ (T). Then by Lemma 2.6 the mapping f (z)=P[F](z)

is C1 up to the boundary. First we notice that for L = sup |9 ′(t)|, it is clear that
L <∞. We will prove more. We will show that L is bounded by a constant not
depending a priori on F . According to Lemma 2.6 and to (1-1), we have

(3-1) |D f (eiϕ)|2 = (| fz(eiϕ)| + | f z̄(eiϕ)|)2

= lim
z→eiϕ

(| fz(z)| + | f z̄(z)|)2

≤ K lim
z→eiϕ

(| fz(z)|2− | f z̄(z)|2)

= K (| fz(eiϕ)|2− | f z̄(eiϕ)|2)= K J f (eiϕ).

Furthermore, we have

(3-2) |D f (reiϕ)| = sup
|ξ |=1
|D f (reiϕ)ξ | ≥ |D f (reiϕ)(ieiϕ)| = |∂ϕ f (reiϕ)|.

This implies that

(3-3) |D f (eiϕ)|2 ≥ |∂ϕ f (eiϕ)|2 = |9 ′(ϕ)|2.

From (2-9), (3-3) and (3-1), we obtain:

|9 ′(ϕ)|2 ≤ K C1|9
′(ϕ)|

∫ π

−π

1
x2

∫ ρ(x,ϕ)

0
ω(τ) dτ dx,

where

ρ(x, ϕ)= dγ
(
F(ei(ϕ+x)), F(eiϕ)

)
,
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which is the same as

|9 ′(ϕ)| ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2

∫ 1

0
ω(τρ(ϕ, x)) dτ dx .

Thus

|9 ′(ϕ)| ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2 ω(ρ(ϕ, x)) dx .

Let

(3-4) L := max
x∈[0,2π ]

|9 ′(x)| = max
x∈[0,2π ]

ψ ′(x)= ψ ′(ϕ).

Then

L ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2 ω(ρ(ϕ, x)) dx .

Furthermore, we have

M :=
L

2πK C1
≤

∫ π

−π

M(x, ϕ)
dx
2π
,

where

M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x)).

The idea is to make use of Lemma 2.7 with a convex function depending only on
K to be found below.

Assume that χ : R+→ R+ is a continuous increasing function to be determined
in the sequel such that the function 8(t) = tχ(t) is convex. By using Jensen’s
inequality to the previous integral with respect to the convex function 8, we obtain

8(M)≤
∫ π

−π

8(M(x, ϕ))
dx
2π
,

or equivalently,

(3-5) Mχ(M)≤
∫ π

−π

M(x, ϕ)χ(M(x, ϕ))
dx
2π
.

From (2-7) and (3-4) we deduce that

(3-6) ρ(ϕ, x)≤ Bγ L|x |.

On the other hand, since f is a normalized qc mapping, we have by Lemma 2.3
that

(3-7) ρ(ϕ, x)≤ Bγ3γ (K )|x |α.
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Notice that this time we used the boundary normalization. This implies that

(3-8) M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x))≤
Bγ L

x
ω(Bγ3γ (K )|x |α),

and

(3-9) M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x))≤
Bγ3γ (K )

x2−α ω(Bγ3γ (K )|x |α).

So, in view of Definition 2.1 we have

(3-10) M(x, ϕ)≤
Bγ3γ (K )

x2−α ω(|γ |).

From (3-5) and (3-8), we obtain

(3-11) χ
(

L
2πK C1

)
≤

∫ π

−π

K C1 Bγ
x

ω(Bγ3γ (K )|x |α)χ
(

Bγ3γ (K )ω(|γ |)
|x |2−α

)
dx

= 2
∫ π

0

K C1 Bγ
x

ω(Bγ3γ (K )|x |α)χ
(

Bγ3γ (K )ω(|γ |)
|x |2−α

)
dx

=
2K C1 Bγ

Bγ3γ (K )α

∫ B

0

ω(y)
y
χ(Qy1−2/α) dy,

where
B = Bγ3γ (K )πα and Q = ω(|γ |)(Bγ3γ (K ))2−2/α.

In view of the last term of (3-11), now is the time to determine the function χ .
Lemma 2.7 with q = 2/α− 1 and A(y)= ω(y)/y, provides us with a function χ
such that 8 is convex and such that the estimate∫ B

0

ω(y)
y
χ(Qy1−2/α)dy ≤ 4

∫ B

0

ω(y)
y

dy

holds. From (3-11), we have

χ
( L

2πK C1

)
≤

8K C1 Bγ
Bγ3γ (K )α

∫ B

0

ω(y)
y

dy =: ϒ(K , �).

Since χ is increasing, we infer finally that

(3-12) L ≤ 2πK C1 ·χ
−1(ϒ(K , �))=

π2

2
K ·χ−1(ϒ(K , �)).

By the maximum principle, for z = reiϕ , we further have

|∂ϕ f (z)| ≤ L .

Since f is K-quasiconformal, we have

|Dw(z)| ≤ K |∂ϕ f (z)|.
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This and the mean value inequality imply that

(3-13) | f (z)− f (z′)| ≤ K L|z− z′|, |z|< 1, |z′|< 1.

(ii) F /∈ C1,$ (T). In order to deal with nonsmooth F , we make use of an
approximation argument. We begin by this definition.

Definition 3.1. Let G be a domain in C and let a ∈ ∂G. We will say that Ga ⊂ G
is a neighborhood of a if there exists a disk D(a, r) := {z : |z− a|< r} such that
(D(a, r)∩G)⊂ Ga .

Let t = ei x
∈T. Then F(t)=9(x)∈ ∂�. Let g be an arc-length parametrization

of ∂� with g(ψ(x))= F(ei x), where ψ : [0, 2π ]→ [0, |γ |] is as in the first part of
the proof. Put s =ψ(x). Since the modulus of continuity of g′ is a Dini-continuous
function ω, there exists a neighborhood �t of 9(t) such that the derivative of its
arc-length parametrization g′t has modulus of continuity Ct ·ω. Moreover, there
exist positive numbers rt and Rt such that

�τt :=�t + ig′(s) · τ ⊂�, τ ∈ (0, Rt),(3-14)

∂�τt ⊂�, τ ∈ (0, Rt),(3-15)

g[s− rt , s+ rt ] ⊂ ∂�t .(3-16)

An example of a family �τt such that ∂�τt ∈C1,α for 0<α< 1 with property (3-14)
has been given in [Kalaj 2008]. The same construction yields the family ∂�τt with
the above mentioned properties.

Take Uτ = f −1(�τt ). Let ητt be a conformal mapping of the unit disk onto Uτ

with normalized boundary condition: ητt (e
i2kπ/3)= f −1(ζk) for k = 0, 1, 2, where

ζ0, ζ1, ζ2 are three points of ∂�τt of equal distance. Then the mapping

f τt (z) := f (ητt (z))− ig′(s) · τ

is a harmonic K-quasiconformal mapping of the unit disk onto �t satisfying the
boundary normalization. Moreover,

f τt = P[Fτt ] ∈ C1(U)

for some function Fτt ∈ C1(T).
Since [0, l] is compact, there exists a finite family of Jordan arcs

γ j = g(s j − rs j /2, s j + rs j /2), j = 1, . . . , n,

covering γ . Assume that F(t j )= s j . Let

F j,τ := Fτt j
, a j,τ := η

τ
t j

and f j,τ := f τt j
.



226 DAVID KALAJ

Using the case F ∈ C1,$ , it follows that there exists a constant C ′j = C ′(K , γ j )

such that
|∂ϕF ′j,τ (e

iϕ)| ≤ C ′j
and

(3-17) | f j,τ (z1)− f j,τ (z2)| ≤ K C ′j |z1− z2|.

Since a j,τ (z) converges uniformly on compact subsets of U to the function a j,0(z)
when τ → 0, and since f j,τ = f ◦ a j,τ , inequality (3-17) implies

(3-18) | f j (z1)− f j (z2)| ≤ K C ′j |z1− z2| for z1, z2 ∈ U,

where f j = f ◦ a j,0 = P[F j ]. For z1 = ei t and z2 = eiϕ for t→ ϕ, we obtain that
|∂ϕF j (eiϕ)| ≤ K C ′j a.e. Since the mapping b j = a−1

0, j can be extended conformally
across the arc S j = f −1(λ j ), where λ j = g(s j− ts j , s j+ ts j ), there exists a constant
L j such that |b j (z)|≤ L j on S′j =T∩ f −1(γ j ) for j=1, . . . , n. Hence |∂ϕF(eiϕ)|≤

K C ′j · L j on S′j . Let C ′ = max{K C ′j · L j : j = 1, . . . , n}. Inequalities (1-7) and
(1-8) easily follow from T =

⋃n
j=1 S′j .

Notice that we can now repeat the first part of the proof for a Lipschitz f =P[F]
in order to obtain a more concrete Lipschitz constant, i.e., the constant L satisfying
(3-12). The proof is complete.
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