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FREE EVOLUTION ON ALGEBRAS WITH TWO STATES, II

MICHAEL ANSHELEVICH

Denote by J the operator of coefficient stripping. We show that for any
free convolution semigroup f�t W t � 0g with finite variance, applying a
single stripping produces semicircular evolution with nonzero initial condi-
tion, J Œ�t� D �� ��t

ˇ;

, where �ˇ;
 is the semicircular distribution with

mean ˇ and variance 
 . For more general freely infinitely divisible distri-
butions �, expressions of the form Q�� ��t arise from stripping Q�t , where
f. Q�t; �t/ W t � 0g forms a semigroup under the operation of two-state free
convolution. The converse to this statement holds in the algebraic setting.
Numerous examples illustrating these constructions are computed. Addi-
tional results include the formula for generators of such semigroups.

1. Introduction

A probability measure � on R with finite moments can be described by two se-
quences of Jacobi parameters

J.�/D

�
ˇ0; ˇ1; ˇ2; ˇ3; : : :


0; 
1; 
2; 
3; : : :

�
:

For example, its Cauchy transform

G�.z/D

Z
R

1

z�x
d�.x/

(which determines the measure) has the continued fraction expansion

G�.z/D
1

z�ˇ0�

0

z�ˇ1�

1

z�ˇ2�

2

z�ˇ3�

3

z� � � �
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Define new measuresˆŒ�� and J Œ�� by the right and left shifts on Jacobi parameters

J.ˆŒ��/D

�
0; ˇ0; ˇ1; ˇ2; : : :

1; 
0; 
1; 
2; : : :

�
and

J.J Œ��/D
�
ˇ1; ˇ2; ˇ3; ˇ4; : : :


1; 
2; 
3; 
4; : : :

�
:

J is sometimes called coefficient stripping. Actually, both ˆ and J can be defined
more generally: ˆ for any probability measure, and J for any probability measure
with finite variance. See Definition 2.

Denote by

d�ˇ;
 .x/D
1

2�


q
4
 � .x�ˇ/2 dx

the semicircular distribution with mean ˇ and variance 
 , � D �0;1 the standard
semicircular distribution, and� the operation of free convolution. The semicircular
family f�ˇt;
 t D �

�t
ˇ;

W t � 0g forms a free convolution semigroup. General free

convolution semigroups
f�t W t � 0g

with mean 0 and variance t are indexed by probability measures �. In Proposition 9
of [Anshelevich 2013], we showed that for any such free convolution semigroup,

J Œ�t �D �� ��t ;

so that the “once-stripped” free convolution semigroup is always a “free heat
evolution” started at �. Needless to say, this statement has no analog for semigroups
with respect to usual convolution. In the first result of the paper, we extend this
formula to the case of general finite variance: for a free convolution semigroup
f�tg with mean ˇt and nonzero variance 
 t ,

(1) J Œ�t �D �� ��t
ˇ;
 :

Since any free convolution semigroup, when stripped, always gives a semicircular
evolution, it is natural to ask for which families of measures f Q�t W t � 0g is

(2) J Œ Q�t �D Q�� ��t

for other measures � . The main result of the article is that if this is the case, there
exists a free convolution semigroup f�t W t � 0g such that the family of pairs of
measures f. Q�t ; �t / W t � 0g forms a semigroup under the operation �c of two-state
free convolution. Note that formula (2) can sometimes be assigned a meaning even
if � is not freely infinitely divisible. For example, if Q�D �� � for some �, then for
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general probability measures �; �, there exists a family of measures forming the
first component of the two-state free convolution semigroup such that

J Œ Q�t �D �� ��.1Ct/

(recall that in free probability, ��.1Ct/ is well-defined for any � as long as t � 0).
The most general case covered by the main theorem of the article (Theorem 11) is
that for some semigroups,

J Œ Q�t �D Q��!�.t=p/;

where �D!�.1=p/ need not even be a positive measure, but where the subordination
distribution ! i Q� is freely infinitely divisible. It is unclear at this point whether
every two-state free convolution semigroup (with finite variance) is of this form.
Nevertheless, a large group of examples fit into this framework: free convolution
semigroups, Boolean convolution semigroups, two-state free Brownian motions,
and two-state free Meixner distributions. Moreover, in the last section of the
paper we show that in the algebraic setting, when . Q�t ; �t / are linear functionals
on polynomials but do not necessarily come from positive measures, formula (2)
always holds for some (not necessarily positive) � . In that section we also prove a
basic formula for the moment-generating function of the multivariate subordination
distribution (see below), which really belongs on the long list of properties of that
distribution proven in [Nica 2009].

The other aspects of two-state free convolution semigroups are investigated at
the end of Section 3. We compute the two-state version of Voiculescu’s evolution
equation for the Cauchy transform. Then we combine it with the preceding results
to find the formula for the generators of two-state free convolution semigroups with
finite variance.

Finally, we would like to explain the connection between this article and part I
of the same title [Anshelevich 2010]. Belinschi and Nica [2008; 2009] proved that
the eponymous family of transformations fBt W t � 0g, is related to the free heat
evolution via

(3) Bt ŒˆŒ���DˆŒ�� ��t �:

Equation (1) follows from this observation after only a small amount of work. In
part I, we constructed a two-variable map ˆŒ � ; � � and proved that

(4) Bt ŒˆŒ�; Q���DˆŒ�; Q�� ��t �:

Moreover, the transformation ˆŒ � ; � �, as defined in [Anshelevich 2010], also comes
from two-state free probability theory. Nica [2009] observed that ˆŒ�; Q�� is closely
related to the subordination distribution � i Q�, which is a more important object in
free probability, and so will be used in computations in this paper.
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At this point the evolution formula (4) is only proven for measures with finite
moments, while we are interested in a more general class of measures with finite
variance. Moreover, the derivation of (1) from (3) does not generalize to a derivation
of (2) from (4); the proof of (2) is quite different. Nevertheless, both this article and
part I involve two-state free probability theory and generalization of semicircular
evolution to more general free convolution semigroups.

2. Background

Notation 1. Denote by mŒ�� and VarŒ�� the mean and variance of �,

P D fprobability measures on Rg;

P2 D f� 2 P W VarŒ�� <1g;

P0;1 D f� 2 P2 WmŒ��D 0;VarŒ��D 1g;

ID� D f� 2 P W � is �-infinitely divisibleg:

For a probability measure � on R, its Cauchy transform is

G�.z/D

Z
R

1

z�x
d�.x/;

and its F -transform is
F�.z/D

1

G�.z/

(for a function f , f �1 will denote its compositional rather than a multiplicative
inverse).

2.1. Convolutions. For � 2 P , define its Voiculescu transform �� by

.�� ıF�/.z/CF�.z/D z:

See [Bercovici and Voiculescu 1993; Voiculescu et al. 1992]. The free convolution
of two measures �� � is determined by the equality

���� D ��C��

on a domain. A free convolution semigroup is a weakly continuous family f�t W

t � 0g � P satisfying
�t ��s D �tCs:

In this case, we denote �t D �
�t . A measure � is �-infinitely divisible if �D �1

for some free convolution semigroup. A fundamental result in [Nica and Speicher
1996], extended to measures with unbounded support in [Belinschi and Bercovici
2004], is that for any � 2 P , ��t is defined for t � 1.



FREE EVOLUTION ON ALGEBRAS WITH TWO STATES, II 261

We will refer to the set

f.ˇ; 
; �/ W ˇ 2 R; 
 > 0; � 2 Pg[ f.ˇ; 0; � / W ˇ 2 Rg

as the set of canonical triples. By a result of Maassen [1992], �-convolution
semigroups with finite variance

f�t W t � 0;VarŒ�1� <1g

are in bijection with canonical triples, with the bijection given by

(5) ��t
.z/D ˇt C 
 tG�.z/:

Here ˇ D mŒ�1� and 
 D VarŒ�1�. The �-convolution semigroups with zero
variance are of the form �t D ıˇt , and so correspond to .ˇ; 0; � / with 
 D 0 and �
undefined.

Similarly, for Q�;� 2 P , define the two-state Voiculescu transform � Q�;� by

(6) .� Q�;� ıF�/.z/CF Q�.z/D z:

See [Krystek 2007; Wang 2011]. The two-state free convolution of two pairs of
measures

.�; �� �/D . Q�;�/�c . Q�; �/

is determined by the equality

��;��� D � Q�;�C�Q�;�

on a domain. A two-state free convolution semigroup is a componentwise weakly
continuous family f. Q�t ; �t / W t � 0g satisfying

. Q�t ; �t /�c . Q�s; �s/D . Q�tCs; �tCs/:

In this case, we denote . Q�t ; �t / D . Q�;�/�c t . The pair . Q�;�/ is �c-infinitely
divisible if . Q�;�/D . Q�1; �1/ for some two-state free convolution semigroup.

For a fixed free convolution semigroup f�t W t � 0g, the �c-convolution semi-
groups f. Q�t ; �t /g such that Q�1 has finite variance are in bijection with (relative)
canonical triples . Q̌; Q
 ; Q�/, with the bijection given by

(7) � Q�t ;�t
.z/D Q̌t C Q
 tG Q�.z/:

Here Q̌ D mŒ Q�1� and Q
 D VarŒ Q�1�. This does not appear to be stated explicitly,
but follows from the description of general two-state freely infinitely divisible
distributions in Theorem 4.1 of [Wang 2011]. Again, the case VarŒ Q�1�D 0 can be
included by setting Q
 D 0 and leaving Q� undefined.

The Boolean convolution �] � is defined by

.�; ı0/�c .�; ı0/D .�] �; ı0/:
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More explicitly, ��;ı0
.z/D z�F�.z/, so

z�F�]�.z/D .z�F�.z//C .z�F�.z//:

Any distribution is ]-infinitely divisible, so �]t is always defined for any t � 0.
Finally, a few arguments in the article simplify with the use of the monotone

convolution �B �, defined by

F�B� D F� B F� :

Definition 2. For measures with finite moments, the transformations ˆ and J were
defined in the introduction. Here are the more general definitions. ˆ is the bijection

ˆ W P! P0;1

defined by
FˆŒ��.z/D z�G�.z/:

See [Belinschi and Nica 2008]. For � 2 P2 with mŒ�� D ˇ and VarŒ�� D 
 > 0,
define J Œ�� by

F�.z/D z�ˇ� 
GJ Œ��.z/:

Then
J W P2! P;

and J ıˆ is the identity map, while ˆ ıJ is the identity on P0;1.

Definition 3. Recall that all probability measures are infinitely divisible in the
Boolean sense. The Boolean-to-free bijection of Bercovici and Pata [1999, Sec-
tion 6]

B W P! ID�

is defined by
�BŒ��.z/D z�F�.z/:

More generally, define the Belinschi–Nica transformations [2008] fBt W t � 0g on
P by

Bt Œ��D
�
��.1Ct/

�].1=1Ct/
:

These transformations form a semigroup under composition, and B1 D B.

Remark 4. Note that

�BŒˆŒ���.z/D z�FˆŒ��.z/DG�.z/:

So for a free convolution semigroup f�t W t � 0g, equation (5) is equivalent to

(8) �t D ıˇt �BŒˆŒ����
 t :



FREE EVOLUTION ON ALGEBRAS WITH TWO STATES, II 263

Definition 5. For �; � 2 P , the subordination distribution [Lenczewski 2007; Nica
2009] � i � is the unique probability measure such that

G���.z/DG�.F�i�.z//:

Here F�i� is the corresponding subordination function of �� � with respect to �.
If � i � 2 ID�, we may define (cf. [Anshelevich 2010])

ˆŒ�; ��D B�1Œ� i ��:

Lemma 6. On a common domain,

��i�.z/D .�� ıF�/.z/:

Also, whenever ˆŒ�; �� is defined,

z�FˆŒ�;��.z/D .�� ıF�/.z/

and
�� D �ˆŒ�;��;� :

Proof. We compute

��i�.z/D F�1
�i�.z/� z D .F�1

��� ıF�/.z/� z

D
�
����.F�.z//CF�.z/

�
�
�
��.F�.z//CF�.z/

�
D .�� ıF�/.z/:

The second property follows by combining this with the definition of B. Finally,

.�� ıF�/.z/CFˆŒ�;��.z/D z;

which implies the third property after comparison with (6). �

The following result is the analog of Corollary 4.13 in [Nica 2009] for single-
variable, unbounded distributions.

Lemma 7. If � 2 ID�, or if � D �� �0, then � i � 2 ID�.

Proof. If � 2 ID�, then for any t � 0,

���t i�.z/D ���t .F�.z//D t��.F�.z//D �.�i�/�t .z/;

and so .� i �/�t D ��t i � is well-defined.
If � D �� �0, then

��i�.z/D ��i.���0/.z/D ��.F���0.z//

D ����0.F���0.z//���0.F���0.z//D z�F���0.z/���0.F���0.z//

D z�F�1
�0 .F���0.z//D z�F�i�0.z/D �BŒ�i�0�.z/;

and so � i � D BŒ� i �0� 2 ID�. �
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Lemma 8. For a canonical triple .ˇ; 
; �/ and t � 0,

Bt Œıˇ ]ˆŒ��
]
 �D ıˇ ]ˆŒ�� ıˇt � ��
 t �]
 :

Proof. For 
 D 0, the identity reduces to Bt Œıˇ � D ıˇ. The argument for 
 > 0

is a slight modification of Remark 4.4 (proof of Theorem 1.6) from [Belinschi
and Nica 2008]. Following that paper, denote by � the subordination function
of � � ıˇt � ��
 t with respect to �, and by ! the subordination function of
.ıˇ ]ˆŒ��

]
 /�.tC1/ with respect to .ıˇ ]ˆŒ��]
 /. On the one hand,

G��ıˇt���
 t .z/DG�.�.z//

and
z�Fıˇ]ˆŒ��]
 .z/D ˇC 
G�.z/:

Therefore

(9) �.z/�Fıˇ]ˆŒ��]
 .�.z//D ˇC 
G��ıˇt���
 t .z/:

On the other hand, denoting by Q� the subordination function of �� ��
 t with
respect to �, by equation (4.8) in [Belinschi and Nica 2008],

Q�.z/D z� 
 tG����
 t .z/:

But

G��ıˇt���
 t .z/DG����
 t .z�ˇt/DG�. Q�.z�ˇt//DG�.�.z//:

Thus

�.z/D Q�.z�ˇt/D z�ˇt �
 tG����
 t .z�ˇt/D z�ˇt �
 tG��ıˇt���
 t .z/:

Combining this with (9), we see that

t�.z/� tFıˇ]ˆŒ��]
 .�.z//D z� �.z/

and

�.z/D
1

tC1
zC

�
1�

1

tC1

�
Fıˇ]ˆŒ��]
 .�.z//:

Then (see [Belinschi and Nica 2008]) it follows that � D !, and so the argument
concludes as in that paper:

z�FBt Œıˇ]ˆŒ��]
 �.z/D z�

��
1�

1

t

�
zC

1

t
!.z/

�
D

1

t
.z�!.z//D

1

t
.z� �.z//

D ˇC 
G��ıˇt��
 t .z/

D z�Fıˇ]ˆŒ��ıˇt���
 t �]
 .z/: �
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3. Single-variable, complex-analytic results

Proposition 9. For any a canonical triple .ˇ; 
; �/, the corresponding free convo-
lution semigroup is

�t D ıˇt ]ˆŒ�� ��t
ˇ;
 �
]
 t :

In particular, for any free convolution semigroup with nonzero, finite variance,

J Œ�t �D �� ��t
ˇ;
 :

Proof. A free convolution semigroup with finite variance f�tg can be rewritten as

�t D ıˇt �BŒˆŒ����
 t (by the Maassen representation (8))

D Bt�1Œıˇ�BŒˆŒ���
 �]t (by definition of Bt�1)

D Bt Œıˇ ]ˆŒ��
]
 �]t (by definition of BD B1)

D ıˇt ]ˆŒ�� ıˇt � ��
 t �]
 t (by Lemma 8)

D ıˇt ]ˆŒ�� ��t
ˇ;
 �
]
 t (by definition of �ˇ;
 ):

For 
 D 0, we have �t D ıˇt D �ˇt;0, so the equation still holds. �

Lemma 10. A family f. Q�t ; �t / W t � 0g is the two-state free convolution semigroup
with the relative canonical triple . Q̌; Q
 ; Q�/ if and only if f�t W t � 0g forms a free
convolution semigroup and

Q�t D ı Q̌t ]ˆŒ Q�B �t �
]Q
 t :

In particular, whenever Q
 > 0, such a family satisfies

J Œ Q�t �D Q�B �t :

Proof. Using the properties of Boolean and monotone convolutions and the definition
of ˆ,

z�Fı Q̌t
]ˆŒ Q�B�t �] Q
 t .z/D Q̌t C Q
 tG Q�B�t

.z/D Q̌t C Q
 tG Q�.F�t
.z//:

On the other hand, by formulas (6) and (7), for the two-state free convolution
semigroup with the relative canonical triple . Q̌; Q
 ; Q�/,

z�F Q�t
.z/D .� Q�t ;�t

ıF�t
/.z/D Q̌t C Q
 tG Q�.F�t

.z//:

Comparing these, we obtain the result. �

Theorem 11. Fix Q̌ 2 R, Q
 > 0, and p > 0. Let !; Q� 2 P be measures such that

! i Q� 2 ID�:
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(a) For any t � 0,
� Q�C .t=p/�!

is a Voiculescu transform of a probability measure, and so

Q��!�.t=p/

is well-defined.

(b) Define
�D .! i Q�/�.1=p/;

�t D �
�t , and

Q�t D ı Q̌t ]ˆŒ Q��!
�.t=p/�]Q
 t :

Then Q�1 has finite, nonzero variance, the family f. Q�t ; �t / W t � 0g forms a
two-state free convolution semigroup, and

J Œ Q�t �D Q��!�.t=p/:

Proof. For part (a), using Lemma 6,

(10)

� Q�.z/C .t=p/�!.z/D � Q�.z/C .t=p/�!i Q�.F
�1
Q� .z//

D F�1
Q� .z/� zC�.!i Q�/�.t=p/.F

�1
Q� .z//

D F�1
.!i Q�/�.t=p/.F

�1
Q� .z//� z

D F�1
Q�B.!i Q�/�.t=p/.z/� z

D �
Q�B.!i Q�/�.t=p/.z/:

Since the monotone convolution is known to preserve positivity, this implies part (a).
Next, it is clear that in part (b), f�t W t � 0g forms a free convolution semigroup.
From (10), it follows that

Q��!�.t=p/ D Q�B �t :

Part (b) now follows from Lemma 10. �

See Proposition 33 for a partial converse to the theorem.
The following corollary is an immediate consequence of Lemma 7.

Corollary 12. The assumptions of Theorem 11 are satisfied in the following cases:

(a) Q� 2 P is arbitrary and ! D � 2 ID�. In this case one can, without loss of
generality, take p D 1.

(b) ! 2 P is arbitrary, and Q�D ��! for some � 2 P .
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In particular, for any Q� 2 P and � 2 ID�, there exists a two-state free convolution
semigroup f. Q�t ; �t / W t � 0g such that

J Œ Q�t �D Q�� ��t :

I am grateful to Serban Belinschi for a discussion leading to the following
example.

Example 13. Recall that the analytic R-transform is defined by R�.z/D ��.1=z/.
Let

�" D
1
2
.ı�"C ı"/:

Then

R�".z/D
2"2zp

1C 4"2z2C 1

is analytic for jzj<.2"/�1 and grows as jR�".z/j�"
2jzj. It follows from Theorem 2

of [Bercovici and Voiculescu 1995] that for sufficiently small ",

zC tR�".z/

is an R-transform of a positive measure for all t 2 Œ0; 1�. On the other hand,
��t
" is well-defined and positive for all t � 1. It follows that � � ��t

" is well-
defined and positive for all t � 0. However, �" 62 ID�, and � ¤ � � ��p

" for
any p > 0, so this family is not covered by the preceding corollary. Nevertheless,
F� .C

C/D CC n fz W jzj � 2g, and

��".z/D

p
z2C 4"2� z

2

is analytic on this image for " < 1. It follows that

��"i� D ��" ıF�

analytically extends to CC, and so �" i � 2 ID�. So this family is still covered by
the preceding theorem.

Question. Can the hypothesis of Theorem 11 be weakened to the assumption in
the following proposition? In other words, does this assumption imply that the
(equivalent) statements in the following proposition necessarily hold?

Proposition 14. Let Q� 2P , � 2P , and suppose that Q����t is defined for all t � 0.
The following are equivalent:

(a) � i Q� 2 ID�.

(b) F
Q����t is subordinate to F Q� for all t � 0, in the sense that there exist analytic

transformations �t W C
C! CC such that F

Q����t .z/D F Q�.�t .z//.
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(c) fˆŒ Q�� ��t � W t � 0g is the first component of a two-state free convolution
semigroup.

Proof. Calculations in the proof of Theorem 11 show that if �t exists, then
�t D F.�i Q�/�t . This shows that (a) and (b) are equivalent. The same calculations
also imply that if f. Q�t DˆŒ Q�� ��t �; �t / W t � 0g is a two-state free convolution
semigroup, then �t D .� i Q�/�t . Thus (a) and (c) are equivalent. �

Lemma 15. Subordination distributions have the following properties:

.�� �/ i �D .� i �/� .� i �/;

� i �D BŒˆŒ���;

� i ı0 D �;

� i �D BŒ��;

ıa i �D ıa:

There is a corresponding list of properties for ˆŒ � ; � �.

Proof. All of these properties follow immediately from

��i�.z/D .�� ıF�/.z/: �

In a number of the following examples, free convolution semigroups f�t W t � 0g

will have finite variance, and so will be associated with canonical triples .ˇ; 
; �/;
in all cases, the relative canonical triple is . Q̌; Q
 ; Q�/.

Example 16. Let Q� D � 2 P . Then the first component of the corresponding
two-state free convolution semigroup satisfies

J Œ Q�t �D Q�� ��t
ˇ;
 ;

so that in Corollary 12, � D �ˇ;
 2 ID� is a semicircular distribution. Indeed,

�ˇ;
 i Q�D .ıˇ� ��
 / i Q�D ıˇ�BŒˆŒ Q����
 D �:

In the particular case when Q̌ D ˇ and Q
 D 
 , it follows that Q�t D �t form a free
convolution semigroup, and we are in the Belinschi–Nica setting of Proposition 9.

Example 17. Let Q�D ı0 and � 2P . Then the first component of the corresponding
two-state free convolution semigroup satisfies

J Œ Q�t �D �t ;

so that in Corollary 12, � D � 2 ID� is arbitrary. Indeed,

� i ı0 D �:
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These are the (distributions of) two-state free Brownian motions (in [Anshelevich
2011], they were called algebraic two-state free Brownian motions).

Example 18. Let Q� 2 P and 
 D 0, so that �t D ıˇt . Then the first component of
the corresponding two-state free convolution semigroup satisfies

J Œ Q�t �D Q�� ıˇt ;

so that in Corollary 12, � D ıˇ 2 ID�. Indeed,

ıˇ i Q�D ıˇ D �:

For general ˇ and measures with finite moments,

Q�t D ı Q̌t ]ˆŒ Q�� ıˇt �
]Q
 t

are precisely the families constructed in [Anshelevich and Młotkowski 2012, Propo-
sition 7]. For ˇ D 0, this is a Boolean convolution semigroup, and an arbitrary
Boolean convolution semigroup (with finite variance) arises in this way.

On the other hand, if Q�t D ı Q̌t , for any free convolution semigroup f�t W t � 0g,
the measures .ı Q̌t ; �t / form a two-state free convolution semigroup.

Example 19. Let Q�; � 2 P such that J Œ Q��D �. That is, for some Qb and Qc > 0,

Q�D ı Qb ]ˆŒ��
]Qc :

Let
p D Qc=
; uD Qb�ˇ Qc=
:

Then the first component of the corresponding two-state free convolution semigroup
satisfies

J Œ Q�t �D Q��!�pt ;

where in Corollary 12, ! D ı�u� Q� 2 P but, in general, is not freely infinitely
divisible. Indeed,

..ı�u� Q�/ i Q�/�.1=p/ D ı�.u=p/�BŒ Q���.1=p/ D BŒı�.u=p/] Q�
].1=p/�

D B
�
ı�.u=p/].ı Qb]ˆŒ��

]Qc/].1=p/
�
D BŒıˇ]ˆŒ��

]
 �D �:

If � D !�.
=Qc/ 2 P , then
J Œ Q�t �D Q�� ��t :

Remark 20. A free Meixner distribution �b;c;ˇ;
 with parameters b; ˇ 2 R,
cC 
; 
 � 0 is the probability measure with Jacobi parameters

J.�b;c;ˇ;
 /D

�
ˇ; bCˇ; bCˇ; bCˇ; : : :


; cC 
; cC 
; cC 
; : : :

�
:
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For other values of c; 
 , these Jacobi parameters determine a unital, linear, but not
positive definite functional. Normalized free Meixner distributions �b;c D �b;c;0;1

have mean 0 and variance 1, and are positive for c � �1.
Free Meixner distributions form a two-parameter semigroup with respect to �:

�b;c;ˇ;
 ��b;c;ˇ0;
 0 D �b;c;ˇCˇ0;
C
 0 :

See Definition 2 of [Anshelevich and Młotkowski 2012]. In particular,

��t
b;c;ˇ;
 D �b;c;ˇt;
 t :

Also,
Bt Œ�b;c;ˇ;
 �D �bCˇt;cC
 t;ˇ;
 :

Lemma 21. The subordination distribution of two Meixner distributions with spe-
cial parameters

�b;c;ˇ0;
 0 i �b;c;ˇ;
 D �bCˇ;cC
;ˇ0;
 0

is again a free Meixner distribution.

Proof. Using Lemma 15 and the properties from the preceding remark, we compute

�b;c;ˇ0;
 0 i �b;c;ˇ;
 D

�
ıˇ0�ˇ
 0=
 ���.


0=
/

b;c;ˇ;


�
i �b;c;ˇ;


D ıˇ0�ˇ
 0=
 ��b;c;ˇ;
 i �
�.
 0=
/

b;c;ˇ;


D ıˇ0�ˇ
 0=
 �BŒ�b;c;ˇ;
 �
�.
 0=
/

D ıˇ0�ˇ
 0=
 ���.

0=
/

bCˇ;cC
;ˇ;


D ıˇ0�ˇ
 0=
 ��bCˇ;cC
;ˇ
 0=
;
 0

D �bCˇ;cC
;ˇ0;
 0 : �

Remark 22. Since �B .�i �/D���, the preceding lemma implies a monotone
convolution identity

�b;c;ˇ;
 B �bCˇ;cC
;ˇ0;
 0 D �b;c;ˇCˇ0;
C
 0 :

This result can also be proved directly using the F -transforms, but the computation
is rather surprising. Since �0;0;ˇ;
 are semicircular, �b;0;ˇ;
 are free Poisson,
�b;�
;ˇ;
 are Bernoulli, and �0;�
;0;2
 are arcsine distributions, we get various
identities between them involving the monotone convolution. For example,

�b;c B �b;cC1 D �
�2
b;c ;

which for b D 0, c D�1 gives Bernoulli B semicircle D arcsine. See [Młotkowski
2010] for related results.
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Example 23. For a particular case of Example 19, let Qc>0 and c�0. The two-state
free Meixner semigroups from [Anshelevich and Młotkowski 2012] satisfy

J. Q�t /D

�
Q̌t; QbCˇt; bCˇt; bCˇt; : : :

Q
 t; QcC 
 t; cC 
 t; cC 
 t; : : :

�
and

J.�t /D

�
ˇt; bCˇt; bCˇt; : : :


 t; cC 
 t; cC 
 t; : : :

�
:

Thus

J.J Œ Q�t �/D

�
QbCˇt; bCˇt; bCˇt; : : :

QcC 
 t; cC 
 t; cC 
 t; : : :

�
;

so J Œ Q�t �D Q��!�.
=Qc/t , where

J. Q�/D

�
Qb; b; b; b; : : :

Qc; c; c; c; : : :

�
and

J.!/D

�
ˇ Qc=
; ˇ Qc=
 C b� Qb; ˇ Qc=
 C b� Qb; ˇ Qc=
 C b� Qb; : : :

Qc; c; c; c; : : :

�
:

In particular, Q�D ı Qb�ˇ Qc=
�!. Note that both Q� and ! are free Meixner distributions.
Also,

J.�/D

�
b; b; b; b; : : :

c; c; c; c; : : :

�
;

so �D �b;c D ıb� ��c and J Œ Q��D �. Finally, for � D !�.
=Qc/,

J.�/D

�
ˇ; ˇC b� Qb; ˇC b� Qb; ˇC b� Qb; : : :


; 
 C c � Qc; 
 C c � Qc; 
 C c � Qc; : : :

�
:

So � 2 ID� for c � Qc, � 2 P for 
 C c � Qc, and for 
 C c < Qc, � is not a positive
functional.

Proposition 24. Let . Q�t ; �t / be a general two-state free convolution semigroup.
Then we have two evolution equations,

(11) @tF Q�t
D ��.F�t

/�� Q�;�.F�t
/���.F�t

/@zF Q�t

and
@tF�t

D���.F�t
/@zF�t

:

Proof. The second equation is standard; see equation (3.18) in [Voiculescu et al.
1992]. Using (6),

@tF Q�t
C� Q�;�.F�t

/C t�0
Q�;�.F�t

/@tF�t

D @tF Q�t
C� Q�;�.F�t

/� t�0
Q�;�.F�t

/��.F�t
/@zF�t

D 0
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and
@zF Q�t

C t�0
Q�;�.F�t

/@zF�t
D 1:

Plugging in, we get

@tF Q�t
D�� Q�;�.F�t

/C
1� @zF Q�t

�0
Q�;�
.F�t

/@zF�t

�0
Q�;�.F�t

/��.F�t
/@zF�t

D ��.F�t
/�� Q�;�.F�t

/���.F�t
/@zF Q�t

: �

Definition 25. The functional Lt is the generator of the family f�t W t � 0g of
functionals at time t , with domain D, if for any f 2 D,

hLt ; f i D
d

dt
h�t ; f i:

Proposition 26. Let . Q�t ; �t / be a general two-state free convolution semigroup
with finite variance, with canonical triples f. Q̌; Q
 ; Q�/; .ˇ; 
; �/g. Let J Œ Q�t � D Q�t

and J Œ�t �D �t . Note that
�t D �� ��t

ˇ;
 ;

and for measures covered in Theorem 11, Q�t D Q�� ��t .
Then the generators of the families f Q�tg and f�tg with domain

DD Span
��

1

z�x
W z 2 C nR

��
are, respectively,

QLt D Q
 . Q�t ˝ Q�t ˝ Q�t /@
2
� 
 . Q�t ˝ Q�t ˝ �t /@

2

C . Q̌ �ˇ/. Q�t ˝ Q�t /@C 
 . Q�t ˝ �t /.@x˝ 1/@Cˇ Q�t@x

and
Lt D 
 .�t ˝ �t /.@x˝ 1/@Cˇ�t@x :

Here @ W D! D˝D is the difference quotient operation

.@f /.x;y/D
f .x/�f .y/

x�y
:

Proof. Note first that

.� Q�;� ıF�t
/.z/D

1

t
.� Q�t ;�t

ıF�t
/.z/D

1

t
.z�F Q�t

.z//D Q̌ C Q
GQ�t
.z/;

and similarly �� ıF�t
D ˇC 
G�t

. Therefore in this case, (11) gives

@tF Q�t
D ˇC 
G�t

� Q̌ C Q
GQ�t
� .ˇC 
G�t

/@zF Q�t
:
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Equivalently,

@tG Q�t
D�.ˇC 
G�t

� Q̌ C Q
GQ�t
/G2
Q�t
� .ˇC 
G�t

/@zG Q�t
:

In other words,

@t

�
Q�t ;

1

z�x

�
D�


�
Q�t ˝ Q�t ˝ �t ; @

2 1

z�x

�
�ˇ

�
Q�t ˝ Q�t ; @

1

z�x

�
C Q


�
Q�t ˝ Q�t ˝ Q�t ; @

2 1

z�x

�
C Q̌

�
Q�t ˝ Q�t ; @

1

z�x

�
C 


�
Q�t ˝ �t ; .@x˝ 1/@

1

z�x

�
Cˇ

�
Q�t ; @x

1

z�x

�
:

The formula for the generator zLt of f Q�tg on the span of such functions follows.
The formula for Lt follows by setting Q�t D �t . �
Remark 27. Setting t D 0 in the preceding proposition, �0 D Q�0 D ı0, Q�0 D Q�,
and �0 D �. Thus

L0f D 
 hı0˝ �; .@x˝ 1/@f iCˇhı0; @xf i

D 


Z
R

f .y/�f .0/�yf 0.0/

y2
d�.y/C f̌ 0.0/;

and

zL0f D Q
 hı0˝ ı0˝ Q�; @
2f i � 
 hı0˝ ı0˝ �; @

2f iC . Q̌ �ˇ/hı0˝ ı0; @f i

C 
 hı0˝ �; .@x˝ 1/@f iCˇhı0; @xf i

D

Z
R

f .y/�f .0/�yf 0.0/

y2
d. Q
 Q�� 
�/.y/C . Q̌ �ˇ/f 0.0/

C

Z
R

f .y/�f .0/�yf 0.0/

y2
d.
�/.y/C f̌ 0.0/

D Q


Z
R

f .y/�f .0/�yf 0.0/

y2
d Q�.y/C Q̌f 0.0/

has exactly the same form as in Proposition 3 of [Anshelevich 2013]; see also
Remark 11 of that paper.

Remark 28. Boolean evolution corresponds to ˇ D 
 D 0, �t D ı0. Then

@tF Q�t
.z/D�� Q�;ı0

.z/:

In fact, since � Q�;ı0
.z/D z �F Q�.z/, this is easy to see directly. It follows that in

this case,
zLt D Q
 . Q�t ˝ Q�t ˝ Q�t /@

2
C Q̌. Q�t ˝ Q�t /@:

For t D 0, we again get the formula from the preceding remark.
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Similarly, distributions of analytic two-state free Brownian motions correspond
to Q
 D 
 D 1, Q̌ D 0, Q�DˆŒ�� and �D ıˇ� � , so that Q�t D �t D �t . Then the
generator formula reduces to

zLt D�ˇ. Q�t ˝ Q�t /@C . Q�t ˝�t /.@x˝ 1/@Cˇ Q�t@x

D Q�t

�
�ˇ.1˝ Q�t /@C @x.1˝�t /@Cˇ@x

�
;

consistent with the result of Proposition 24 in [Anshelevich 2013].

4. Background, II

4.1. Multivariate polynomials. The number d 2 N will be fixed throughout the
remainder of the article. Denote by

x D .x1;x2; : : : ;xd /

a d -tuple of variables, and define z, etc., similarly. Let

Chxi D Chx1;x2; : : : ;xd i

be the algebra of polynomials in d noncommuting variables. For k � 1 and

EuD .u.1/;u.2/; : : : ;u.k// 2 f1; : : : ; dgk

a multi-index, let
x
Eu
D xu.1/xu.2/ : : :xu.k/:

Let

Dalg.d/D f� W Chx1;x2; : : : ;xd i ! C unital, linear functionalsg:

For ˇ 2 Rd , the element ıˇ 2 Dalg.d/ is

ıˇ ŒxEu�D ˇEu:

4.2. Free, Boolean, and two-state free convolutions. Let � 2Dalg.d/. Denote its
moment-generating function by

M�.z/D
X
Eu

�Œx
Eu
�z
Eu
:

The (combinatorial) R-transform R� of � is determined by

(12) R�
�
z1.1CM�.z//; : : : ; zd .1CM�.z//

�
DM�.z/:

See Lecture 16 of [Nica and Speicher 2006]. The free convolution of two functionals
�� � is determined by the equality

R���
DR�

CR� :
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In the algebraic setting, any functional is �-infinitely divisible.
Similarly, the �-transform �� is

��.z/D .1CM�.z//�1M�.z/

(for a multivariate power series F , F�1 will denote its multiplicative inverse). The
Boolean convolution of two functionals �] � is determined by the equality

��]� D ��C �� :

Finally, for Q�;� 2 Dalg.d/, the two-state R-transform R Q�;� is determined by

� Q�.z/DR Q�;�
�
z1.1CM�.z//; : : : ; zd .1CM�.z//

�
.1CM�.z//�1;

and the two-state free convolution of two pairs of functionals

.�; �� �/D . Q�;�/�c . Q�; �/

is determined by the equality

R�;���
DR Q�;�CRQ�;� :

See Section 2.5 of [Anshelevich 2010].
If d D 1 and � is a compactly supported probability measure on R, it can be

identified with an element of Dalg.1/. In this case, the complex function transforms
from Section 2 have power series expansions related to the power series from this
section by

1CM�.z/D
1

z
G�

�
1

z

�
; R�.z/D zR�.z/D z��

�
1

z

�
;

��.z/D
1

z
�F�

�
1

z

�
; R Q�;�.z/D z� Q�;�

�
1

z

�
:

4.3. Transformations. For � 2 Dalg.d/, the functional ˆŒ�� is determined by

�ˆŒ��.z/D

dX
iD1

zi.1CM �.z//zi :

See [Belinschi and Nica 2009; Anshelevich 2009].
In the algebraic setting, B is a bijection from Dalg.d/ to itself determined by

RBŒ��
D ��:

Finally, for �; � 2 Dalg.d/, the multivariate subordination distribution � i � 2

Dalg.d/ is defined via

(13) R�i�.z/DR�
�
z1.1CM �.z//; : : : ; zd .1CM �.z//

�
.1CM �.z//�1:

See Definition 1.1 in [Nica 2009].
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5. Multivariate, algebraic results

The following proposition is the analog of the single-variable relation G���.z/D

G�.F�i�.z//.

Proposition 29. The subordination distribution � i � satisfies

1CM���.z/

D .1CM�i�.z//
�
1CM �

�
z1.1CM�i�.z//; : : : ; zd .1CM�i�.z//

��
:

Consequently, for a fixed �, the map � 7! � i � is a bijection on Dalg.d/.

Proof. Note first that the equation

1CM���.z/D .1CM �.z//
�
1CM �

�
z1.1CM �.z//; : : : ; zd .1CM �.z//

��
has a unique solution �. Indeed,

.�� �/Œx
Eu
�D �Œx

Eu
�C �Œx

Eu
�CP

Eu
.�Œx

Ev
�; �Œx

Ev
� W jEvj< jEuj/

for some polynomial PEu.
Let wi D zi.1CM �.z//. Then

M���.z/DR���
�
z1.1CM���.z//; : : : ; zd .1CM���.z//

�
DR���

�
w1.1CM �.w//; : : : ; wd .1CM �.w//

�
DR�

�
w1.1CM �.w//; : : : ; wd .1CM �.w//

�
CM �.w/:

On the other hand,

M���.z/D .1CM �.z//.1CM �.w//� 1

DM �.z/.1CM �.w//CM �.w/

DR�.w/.1CM �.w//CM �.w/:

Combining these two equations,

R�
�
w1.1CM �.w//; : : : ; wd .1CM �.w//

�
DR�.w/.1CM �.w//:

Comparing with (13), we see that �D � i �.
The equation in the proposition shows that given � and �, �� �, and conse-

quently �, is uniquely determined. Conversely, the uniqueness statement above
shows that given � and �, � i � is uniquely determined. �

In the multivariate, algebraic setting, all the results in Lemma 15 were proved
in [Nica 2009]; see Remark 1.2, Theorem 1.8, equation (5.7), and Proposition 5.3.
We will use them without proof.
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Proposition 30. Let Q̌ 2 Rd , Q
 > 0, Q� 2 Dalg.d/, and f�t W t � 0g � Dalg.d/

be a free convolution semigroup. Define a two-state free convolution semigroup
f. Q�t ; �t / W t � 0g by

R Q�t ;�t .z/D t Q̌ � zC t Q


dX
iD1

zi.1CM Q�.z//zi :

Define � 2 Dalg.d/ via
�D �1 D � i Q�:

Then
Q�t D ıt Q̌

]ˆŒ Q�� ��t �]Q
 t :

Proof. By the preceding proposition, for � D ��t ,

1CM �� Q�.z/D.1CM �i Q�.z//
�
1CM Q�

�
z1.1CM �i Q�.z//; : : : ;zd .1CM �i Q�.z//

��
:

Since
�t D �

�t i Q�D � i Q�;

we have

1CM Q����t

.z/D .1CM�t .z//
�
1CM Q�

�
z1.1CM�t .z//; : : : ; zd .1CM�t .z//

��
:

On the other hand,

� Q�t .z/DR Q�t ;�t
�
z1.1CM�t .z//; : : : ; zd .1CM�t .z//

�
.1CM�t .z//�1

D t Q̌ � zC t Q


dX
iD1

zi.1CM�t .z//

�
1CM Q�

�
z1.1CM�t .z//; : : : ; zd .1CM�t .z//

��
zi :

Combining these two equations, it follows that

� Q�t .z/D t Q̌ � zC t Q


dX
iD1

zi.1CM Q����t

.z//zi

and
Q�t D ıt Q̌

]ˆŒ Q�� ��t �]Q
 t : �

I am grateful to Hari Bercovici for a discussion leading to the following observa-
tions.

Corollary 31. Let f. Q�t ; �t / W t � 0g be a two-state free convolution semigroup of
compactly supported probability measures such that Q�1 has nonzero variance. Then

�D � i Q�
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and
J Œ Q�t �D Q�� ��t

for some Q� a compactly supported probability measure, and � a unital, not neces-
sarily positive linear functional with nonnegative variance such that j�Œxn�j � C n

for some C .

Proof. The result follows by applying the preceding proposition in the case d D 1,
when every compactly supported two-state free convolution semigroup is of the
form specified in that proposition. Since for each t ,

VarŒ Q��C t VarŒ� �D VarŒJ Œ Q�t ��� 0;

it follows that VarŒ� �� 0. The positivity of Q� follows from the positivity of . Q�t ; �t /,
and the compact support of Q� and the growth conditions on � follow from the
compact support of . Q�t ; �t /. �

Lemma 32. Let � be a unital linear functional with positive variance such that
j�Œxn�j � C n for some C . Then ��t is positive definite, and so can be identified
with a compactly supported measure, for sufficiently large t .

Proof. Without loss of generality, we may assume that � has mean 0 and variance 1.
By assumption, the moments of � , and so also its free cumulants, grow no faster
than exponentially. Therefore the R-transform of � can be identified with an
analytic function whose power series expansion at zero starts with z. It follows that
for sufficiently large t , the R-transform of D1=

p
t �
�t satisfies the conditions of

Theorem 2 of [Bercovici and Voiculescu 1995]. Applying that theorem, we conclude
that D1=

p
t �
�t , and so also ��t , can be identified with a positive measure. �

Proposition 33. Let f. Q�t ; �t / W t � 0g be a two-state free convolution semigroup
of compactly supported measures such that Q�1 has nonzero variance. Then there
exist Q̌ 2 R, Q
 > 0, p > 0 and !; Q� 2 P such that ! i Q� 2 ID�, Q��!�.t=p/ is
well-defined (in the sense of part (a) of Theorem 11) for all t � 0, and

�t D .! i Q�/�.t=p/

and
Q�t D ı Q̌t ]ˆŒ Q��!

�.t=p/�]Q
 t ;

so that in particular,
J Œ Q�t �D Q��!�.t=p/:

Proof. First suppose that �t D ıˇt has zero variance. Then all the relations hold if
we set p D 1, ! D ıˇ, and Q� to be the measure in the relative canonical triple of
f. Q�t ; �t / W t � 0g.
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In the remainder of the argument, we assume that �1 has nonzero variance. Let Q�
be the measure in the relative canonical triple of f. Q�t ; �t / W t � 0g. By Corollary 31,
there exists a linear, unital, not necessarily positive functional � such that

(14) � i Q�D �

is �-infinitely divisible, and

Q�� ��p
D J Œ Q�t �

can be identified with a positive measure. Moreover, it follows from (14) that
VarŒ� �DVarŒ�� > 0. So by Lemma 32, for sufficiently large p, ! D ��p can itself
be identified with a positive measure. The result follows. �

Acknowledgments

The author is grateful to Dan Voiculescu for asking the question which led to
Proposition 24, to Hari Bercovici, Serban Belinschi, and Wojtek Młotkowski for
discussions leading to Lemma 32 and Example 13, and to the referee for numerous
helpful comments.

References

[Anshelevich 2009] M. Anshelevich, “Appell polynomials and their relatives, III: Conditionally free
theory”, Illinois J. Math. 53:1 (2009), 39–66. MR 2011m:46117 Zbl 1185.46044

[Anshelevich 2010] M. Anshelevich, “Free evolution on algebras with two states”, J. Reine Angew.
Math. 638 (2010), 75–101. MR 2012d:46155 Zbl 1195.46069

[Anshelevich 2011] M. Anshelevich, “Two-state free Brownian motions”, J. Funct. Anal. 260:2
(2011), 541–565. MR 2012c:46147 Zbl 1221.46066

[Anshelevich 2013] M. Anshelevich, “Generators of some non-commutative stochastic processes”,
Probab. Theory Related Fields 157:3-4 (2013), 777–815. MR 3129803 Zbl 1290.46057

[Anshelevich and Młotkowski 2012] M. Anshelevich and W. Młotkowski, “Semigroups of distribu-
tions with linear Jacobi parameters”, J. Theoret. Probab. 25:4 (2012), 1173–1206. MR 2993018
Zbl 1276.46053

[Belinschi and Bercovici 2004] S. T. Belinschi and H. Bercovici, “Atoms and regularity for measures
in a partially defined free convolution semigroup”, Math. Z. 248:4 (2004), 665–674. MR 2006i:46095
Zbl 1065.46045

[Belinschi and Nica 2008] S. T. Belinschi and A. Nica, “On a remarkable semigroup of homo-
morphisms with respect to free multiplicative convolution”, Indiana Univ. Math. J. 57:4 (2008),
1679–1713. MR 2009f:46087 Zbl 1165.46033

[Belinschi and Nica 2009] S. T. Belinschi and A. Nica, “Free Brownian motion and evolution towards
�-infinite divisibility for k-tuples”, Internat. J. Math. 20:3 (2009), 309–338. MR 2010g:46108
Zbl 1173.46306

[Bercovici and Pata 1999] H. Bercovici and V. Pata, “Stable laws and domains of attraction in free
probability theory”, Ann. of Math. .2/ 149:3 (1999), 1023–1060. MR 2000i:46061 Zbl 0945.46046

http://projecteuclid.org/euclid.ijm/1264170838
http://projecteuclid.org/euclid.ijm/1264170838
http://msp.org/idx/mr/2011m:46117
http://msp.org/idx/zbl/1185.46044
http://dx.doi.org/10.1515/CRELLE.2010.003
http://msp.org/idx/mr/2012d:46155
http://msp.org/idx/zbl/1195.46069
http://dx.doi.org/10.1016/j.jfa.2010.09.004
http://msp.org/idx/mr/2012c:46147
http://msp.org/idx/zbl/1221.46066
http://dx.doi.org/10.1007/s00440-012-0470-z
http://msp.org/idx/mr/3129803
http://msp.org/idx/zbl/1290.46057
http://dx.doi.org/10.1007/s10959-012-0403-x
http://dx.doi.org/10.1007/s10959-012-0403-x
http://msp.org/idx/mr/2993018
http://msp.org/idx/zbl/1276.46053
http://dx.doi.org/10.1007/s00209-004-0671-y
http://dx.doi.org/10.1007/s00209-004-0671-y
http://msp.org/idx/mr/2006i:46095
http://msp.org/idx/zbl/1065.46045
http://dx.doi.org/10.1512/iumj.2008.57.3285
http://dx.doi.org/10.1512/iumj.2008.57.3285
http://msp.org/idx/mr/2009f:46087
http://msp.org/idx/zbl/1165.46033
http://dx.doi.org/10.1142/S0129167X09005303
http://dx.doi.org/10.1142/S0129167X09005303
http://msp.org/idx/mr/2010g:46108
http://msp.org/idx/zbl/1173.46306
https://eudml.org/doc/120522
https://eudml.org/doc/120522
http://msp.org/idx/mr/2000i:46061
http://msp.org/idx/zbl/0945.46046


280 MICHAEL ANSHELEVICH

[Bercovici and Voiculescu 1993] H. Bercovici and D. V. Voiculescu, “Free convolution of mea-
sures with unbounded support”, Indiana Univ. Math. J. 42:3 (1993), 733–773. MR 95c:46109
Zbl 0806.46070

[Bercovici and Voiculescu 1995] H. Bercovici and D. V. Voiculescu, “Superconvergence to the central
limit and failure of the Cramér theorem for free random variables”, Probab. Theory Related Fields
103:2 (1995), 215–222. MR 96k:46115 Zbl 0831.60036

[Krystek 2007] A. D. Krystek, “Infinite divisibility for the conditionally free convolution”, Infin. Di-
mens. Anal. Quantum Probab. Relat. Top. 10:4 (2007), 499–522. MR 2009d:46118 Zbl 1147.46041

[Lenczewski 2007] R. Lenczewski, “Decompositions of the free additive convolution”, J. Funct. Anal.
246:2 (2007), 330–365. MR 2008d:28009 Zbl 1129.46055

[Maassen 1992] H. Maassen, “Addition of freely independent random variables”, J. Funct. Anal.
106:2 (1992), 409–438. MR 94g:46069 Zbl 0784.46047

[Młotkowski 2010] W. Młotkowski, “Fuss–Catalan numbers in noncommutative probability”, Doc.
Math. 15 (2010), 939–955. MR 2012c:46170 Zbl 1213.44004

[Nica 2009] A. Nica, “Multi-variable subordination distributions for free additive convolution”, J.
Funct. Anal. 257:2 (2009), 428–463. MR 2010j:46121 Zbl 1186.46068

[Nica and Speicher 1996] A. Nica and R. Speicher, “On the multiplication of free n-tuples of noncom-
mutative random variables”, Amer. J. Math. 118:4 (1996), 799–837. MR 98i:46069 Zbl 0856.46035

[Nica and Speicher 2006] A. Nica and R. Speicher, Lectures on the combinatorics of free proba-
bility, London Mathematical Society Lecture Note Series 335, Cambridge University Press, 2006.
MR 2008k:46198 Zbl 1133.60003

[Voiculescu et al. 1992] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables:
a noncommutative probability approach to free products with applications to random matrices,
operator algebras, and harmonic analysis on free groups, CRM Monograph Series 1, American
Mathematical Society, Providence, RI, 1992. MR 94c:46133 Zbl 0795.46049

[Wang 2011] J.-C. Wang, “Limit theorems for additive conditionally free convolution”, Canad. J.
Math. 63:1 (2011), 222–240. MR 2012b:46145 Zbl 1218.46041

Received April 1, 2012. Revised June 24, 2014.

MICHAEL ANSHELEVICH

DEPARTMENT OF MATHEMATICS

TEXAS A&M UNIVERSITY

MAILSTOP 3368
COLLEGE STATION, TX 77843-3368
UNITED STATES

manshel@math.tamu.edu

http://dx.doi.org/10.1512/iumj.1993.42.42033
http://dx.doi.org/10.1512/iumj.1993.42.42033
http://msp.org/idx/mr/95c:46109
http://msp.org/idx/zbl/0806.46070
http://dx.doi.org/10.1007/BF01204215
http://dx.doi.org/10.1007/BF01204215
http://msp.org/idx/mr/96k:46115
http://msp.org/idx/zbl/0831.60036
http://dx.doi.org/10.1142/S0219025707002919
http://msp.org/idx/mr/2009d:46118
http://msp.org/idx/zbl/1147.46041
http://dx.doi.org/10.1016/j.jfa.2007.01.010
http://msp.org/idx/mr/2008d:28009
http://msp.org/idx/zbl/1129.46055
http://dx.doi.org/10.1016/0022-1236(92)90055-N
http://msp.org/idx/mr/94g:46069
http://msp.org/idx/zbl/0784.46047
https://eudml.org/doc/222801
http://msp.org/idx/mr/2012c:46170
http://msp.org/idx/zbl/1213.44004
http://dx.doi.org/10.1016/j.jfa.2008.12.022
http://msp.org/idx/mr/2010j:46121
http://msp.org/idx/zbl/1186.46068
http://muse.jhu.edu/journals/american_journal_of_mathematics/toc/ajm118.4.html#118.4nica
http://muse.jhu.edu/journals/american_journal_of_mathematics/toc/ajm118.4.html#118.4nica
http://msp.org/idx/mr/98i:46069
http://msp.org/idx/zbl/0856.46035
http://dx.doi.org/10.1017/CBO9780511735127
http://dx.doi.org/10.1017/CBO9780511735127
http://msp.org/idx/mr/2008k:46198
http://msp.org/idx/zbl/1133.60003
http://books.google.com/books?id=hzjd1KxaRroC
http://books.google.com/books?id=hzjd1KxaRroC
http://books.google.com/books?id=hzjd1KxaRroC
http://msp.org/idx/mr/94c:46133
http://msp.org/idx/zbl/0795.46049
http://dx.doi.org/10.4153/CJM-2010-075-4
http://msp.org/idx/mr/2012b:46145
http://msp.org/idx/zbl/1218.46041
mailto:manshel@math.tamu.edu


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 276 No. 2 August 2015

257Free evolution on algebras with two states, II
MICHAEL ANSHELEVICH

281Systems of parameters and holonomicity of A-hypergeometric systems
CHRISTINE BERKESCH ZAMAERE, STEPHEN GRIFFETH and EZRA MILLER

287Complex interpolation and twisted twisted Hilbert spaces
FÉLIX CABELLO SÁNCHEZ, JESÚS M. F. CASTILLO and NIGEL J. KALTON

309The ramification group filtrations of certain function field extensions
JEFFREY A. CASTAÑEDA and QINGQUAN WU

321A mean field type flow, II: Existence and convergence
JEAN-BAPTISTE CASTÉRAS

347Isometric embedding of negatively curved complete surfaces in Lorentz–Minkowski
space

BING-LONG CHEN and LE YIN

369The complex Monge–Ampère equation on some compact Hermitian manifolds
JIANCHUN CHU

387Topological and physical link theory are distinct
ALEXANDER COWARD and JOEL HASS

401The measures of asymmetry for coproducts of convex bodies
QI GUO, JINFENG GUO and XUNLI SU

419Regularity and analyticity of solutions in a direction for elliptic equations
YONGYANG JIN, DONGSHENG LI and XU-JIA WANG

437On the density theorem for the subdifferential of convex functions on Hadamard
spaces

MINA MOVAHEDI, DARYOUSH BEHMARDI and SEYEDEHSOMAYEH

HOSSEINI

449L p regularity of weighted Szegő projections on the unit disc
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