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This paper is the continuation of (Castéras 2015), in which we investigated
a gradient flow related to the mean field type equation. First, we show that
this flow exists for all time. Next, using the compactness result of Castéras
(2015), we prove, under a suitable hypothesis on its energy, the convergence
of the flow to a solution of the mean field type equation. We also get a
divergence result if the energy of the initial data is largely negative.

Introduction

Let (M, g) be a compact Riemannian surface without boundary. We will study an
evolution problem associated to a mean field type equation

(0-1) −1v+ Q = ρ ev∫
M ev dV

,

where ρ is a real number, Q ∈ C∞(M) is a given function such that
∫

M Q dV = ρ
and 1 is the Laplacian with respect to the metric g. Equation (0-1) is equivalent to
the mean field equation

(0-2) −1u+ ρ
(
− f eu∫

M f eu dV
+

1
|M |

)
= 0,

where |M | stands for the volume of M with respect to the metric g and f ∈C∞(M)
is a positive function. Indeed, if v is a solution of (0-1), by setting v = u+ log f ,
we recover that u is a solution of (0-2) with Q = ρ/|M | +1 log f .

The mean field equation appears in conformal geometry but also in statistical
mechanics from Onsager’s vortex model for turbulent Euler flows. More precisely,
in this setting the solution u of the mean field equation is the stream function in
the infinite vortex limit (see [Caglioti et al. 1992]). It also arises in the abelian
Chern–Simons–Higgs model (see for example [Caffarelli and Yang 1995; Han 2003;
Tarantello 1996; Yang 2001]).
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Equation (0-2) has a variational structure and its solutions can be found as the
critical points of the functional

(0-3) Iρ(u)=
1
2

∫
M
|∇u|2 dV + ρ

|M |

∫
M

u dV −ρ log
(∫

M
f eu dV

)
, u ∈ H 1(M).

When ρ < 8π , from the Moser–Trudinger inequality one can easily prove that the
functional Iρ is bounded from below and coercive; thus one can find a solution
of (0-2) by minimizing Iρ . The existence of solutions becomes more delicate if
ρ ≥ 8π . When ρ = 8π , Iρ admits a lower bound but is no longer coercive, while
for ρ > 8π , Iρ is unbounded from below and above. The existence of solutions
of (0-1) has been widely studied in recent decades. Many partial existence results
have been obtained for ρ 6= 8kπ, k ∈ N∗, and according to the Euler characteristic
of M (see for example [Brezis and Merle 1991; Chen and Lin 2003; Ding et al.
1999; Li 1999; Li and Shafrir 1994; Malchiodi 2008; Struwe and Tarantello 1998]).
Finally, when ρ 6= 8kπ , k ∈ N∗, Djadli [2008] has generalized the previous results,
establishing the existence of solutions for all surfaces M by studying the topology
of sublevels {Iρ ≤−C} to achieve a min-max scheme (already introduced in [Djadli
and Malchiodi 2008]).

In this paper, we consider the evolution problem associated to (0-1), namely
the equation

(0-4)


∂

∂t
ev =1v− Q+ ρ ev∫

M ev dV
,

v(x, 0)= v0(x),

with initial data v0 ∈ C2+α(M), α ∈ (0, 1) and a function Q ∈ C∞(M) such that∫
M QdV = ρ. It is a gradient flow with respect to the following functional, which

will be called energy:

(0-5) Jρ(v)=
1
2

∫
M
|∇v|2 dV +

∫
M

Qv(t) dV − ρ ln
(∫

M
ev dV

)
, v ∈ H 1(M).

This functional is unbounded from below (except in the case ρ < 8π) and above.
The interest of this flow is that it satisfies some important geometrical properties
useful for its convergence (see in particular estimate (2-2) of Section 2). When
Q is a constant equal to the scalar curvature of M with respect to the metric g,
the flow (0-4) (normalized) has been studied by Struwe [2002] (we note that in
this case ρ =

∫
M Q dV ≤ 8π). For other curvature flows, we refer to [Baird et al.

2004; Brendle 2003; 2005; 2006; Castéras 2013; Hamilton 1988; Lamm et al. 2009;
Malchiodi and Struwe 2006; Schwetlick and Struwe 2003; Struwe 2005] and the
references therein.

We begin by studying the global existence of the flow (0-4). We prove:



A MEAN FIELD TYPE FLOW, II: EXISTENCE AND CONVERGENCE 323

Theorem 0.1. For all initial data v0 ∈ C2+α(M), α ∈ (0, 1), all ρ ∈ R and all
functions Q ∈C∞(M) such that

∫
M Q dV = ρ, there exists a unique global solution

v ∈ C2+α,1+α/2
loc (M ×[0,+∞)) of (0-4).

Next, we investigate the convergence of the flow. Let v(t) : M→ R denote the
function defined by v(t)(x)= v(x, t). We show that if the energy Jρ(v(t)) of the
global solution is bounded from below uniformly in time (when ρ > 8π), then
as t →+∞, v(t) converges to a function v∞ which is a solution of (0-1). More
precisely, we have:

Theorem 0.2. Let v(t) be the solution of (0-4).

(i) If ρ < 8π , then v(t) converges in H 2(M) to a solution v∞ ∈ C∞(M) of

−1v∞+ Q = ρ ev∞∫
M ev∞ dV

.

(ii) If ρ > 8π , ρ 6= 8kπ , k ∈N∗, and if there exists a constant C > 0 not depending
on t such that for all t ≥ 0,

(0-6) Jρ(v(t))≥−C,

then v(t) converges in H 2(M) to a solution v∞ ∈ C∞(M) of

−1v∞+ Q = ρ ev∞∫
M ev∞ dV

.

Moreover, we prove that there exist initial data v0 ∈C∞(M) such that the energy
of the global solution v(t) of the flow, with v(0)(x) = v0(x) for all x ∈ M , stays
uniformly bounded from below, and hence, thanks to Theorem 0.2, such that the
flow converges.

Theorem 0.3. Let ρ 6= 8kπ , k ∈N∗. There exist initial data v0 ∈C∞(M) such that
the global solution v(t) of (0-4) with v(x, 0)= v0(x), for all x ∈ M , satisfies (0-6),
i.e., such that the global solution v(t) of (0-4) converges in H 2(M) to a solution
v∞ ∈ C∞(M) of (0-1):

−1v∞+ Q = ρ ev∞∫
M ev∞ dV

.

Finally, we show that if the energy of the initial data v0 of (0-4) is largely negative
then the flow diverges when t→+∞.

Theorem 0.4. Let ρ ∈ (8kπ, 8(k + 1)π), k ≥ 1. There exists a constant C > 0
depending on M, Q and ρ such that for all v0 ∈ C2+α(M) satisfying Jρ(v0)≤−C ,
the global solution v(t) of (0-4) satisfies

Jρ(v(t)) −→
n→+∞

−∞.
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To prove these convergence results, we use the compactness result of [Castéras
2015]. There we studied the compactness property of solutions (vn)n ⊆ H 2(M) of
the perturbed elliptic mean field type equation

(0-7) −1vn = Q0+ hnevn + ρevn ,

where ρ > 0, Q0 ∈ C0(M) and (hn)n ⊆ C0(M). The term hn corresponds to the
parabolic term of (0-4). We also assume that there exists a constant C > 0 not
depending on n such that

(0-8)
(i) lim

n→+∞

∫
M

h2
nevn dV = 0,

(ii) hn(x)evn(x)+ ρevn(x) ≥−C, ∀x ∈ M, ∀n ≥ 0.

We will see that these conditions are satisfied by the solution of the flow (0-4). We
have established in [Castéras 2015] the following compactness result:

Theorem 0.5. Let (vn)n ⊆ H 2(M) be a sequence of solutions of (0-7) such that∫
M evn dV = 1 for all n ≥ 0, and satisfying (0-8). If ρ 6= 8kπ , k ∈ N∗, then there

exists a constant C not depending on n such that

‖vn‖H2(M) ≤ C.

The paper is organized as follows. In Section 1, we prove the global existence of
a solution of (0-4). We also show the continuity of the flow with respect to its initial
data. In Section 2, we study the convergence of the flow (0-4). We begin by proving
Theorem 0.2. We first show that the global solution v(t) of (0-4) is uniformly (with
respect to t) bounded in H 1(M) when v(t) satisfies condition (0-6). The proof
involves the compactness result obtained in Theorem 0.5. We point out that, when
ρ < 8π , condition (0-6) is always satisfied. Then, we show that the parabolic term
of (0-4), ∂v(t)/∂t , tends to 0 as t→+∞ in the L2(M) norm with respect to the
metric g1(t)= ev(t)g. This implies that v(t) is uniformly bounded in H 2(M). Next
we prove Theorem 0.3, i.e., there exists initial data in C∞(M) such that condition
(0-6) is satisfied. Our proof is based on the study of the topology of the level set

{v ∈ X : Jρ(v)≤−L},

where X is the space of C∞(M) functions endowed with the C2+α(M) norm,
α ∈ (0, 1). The end of Section 2 is devoted to the proof of Theorem 0.4.

1. Global existence of the flow

We begin by noticing that since the flow is parabolic, standard methods (see for
example [Friedman 1964]) provide short time existence. Thus, there exists T1 > 0
such that v ∈ C2+α,1+α/2(M × [0, T1]) is a solution of (0-4). We give two basic
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properties of the flow: the conservation of the volume of M endowed with the
metric g1(t)= ev(t)g, and the decreasing along the flow of the functional Jρ(v(t)).

Proposition 1.1. (i) For all t ∈ [0, T1], we have

(1-1)
∫

M
ev(t) dV =

∫
M

ev0 dV .

(ii) If 0≤ t0 ≤ t1 ≤ T1, we have

(1-2) Jρ(v(t1))≤ Jρ(v(t0)).

Proof. To see that (1-1) holds, it is sufficient to integrate (0-4) on M . Differentiating
Jρ(v(t)) with respect to t and integrating by parts, one finds, for all t ∈ [0, T1],

(1-3) ∂

∂t
Jρ(v(t))=−

∫
M

(
∂v(t)
∂t

)2
ev(t) dV ≤ 0.

This implies (1-2). �

Proof of Theorem 0.1. To prove the global existence of the flow, we set

T = sup
{
T > 0 : C2+α,1+α/2(M ×[0, T ]) contains a solution v of (0-4)

}
,

and suppose that T < +∞. From the definition of T , we must have a solution
v∈C2+α,1+α/2

loc (M×[0, T )). We show that there exists a constant C̃T >0, depending
on T , M , Q, ρ, α and ‖v0‖C2+α(M), such that

(1-4) ‖v‖C2+α,1+α/2(M×[0,T )) ≤ C̃T .

This estimate allows us to extend v beyond T , contradicting the definition of T .
In the following, C denotes constants depending on M , Q, ρ, α and ‖v0‖C2+α(M),

while CT represents constants depending on M , Q, ρ, α, ‖v0‖C2+α(M) and T .
They are allowed to vary from line to line.

Proposition 1.2. For all ρ ∈R, there exists a constant C̃T,1 depending on M , Q, ρ,
‖v0‖C2+α(M) and T , such that

(1-5) ‖v(t)‖H1(M) ≤ C̃T,1, ∀t ∈ [0, T ).

Moreover, if ρ < 8π , then there exists a constant C̃1 depending on M , Q, ρ and
‖v0‖C2+α(M) but not on T such that

(1-6) ‖v(t)‖H1(M) ≤ C̃1, ∀t ∈ [0, T ).

Proof. We decompose the proof into three steps.
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Step 1. Let ρ≥8π . There exists a constant C ′T , depending on M , Q, ρ, ‖v0‖C2+α(M)
and T , such that

(1-7) v(x, t)≤ C ′T , ∀x ∈ M, ∀t ∈ [0, T ).

Proof of Step 1. Define vmax(t)=maxx∈M v(x, t)=v(xt , t)where xt ∈M . Consider
the upper derivative of vmax(t), i.e.,

(1-8) ∂

∂t
vmax(t)= lim sup

h→0+

v(xt+h, t+h)−v(xt , t)
h

.

We can assume that vmax(t) is differentiable. By the maximum principle, and since
v satisfies (0-4), we find

∂

∂t
evmax(t) ≤

ρ∫
M ev0 dV

(
‖Q‖L∞(M)

∫
M ev0 dV
ρ

+ evmax(t)
)
,

where we use the fact that
∫

M ev(t) dV =
∫

M ev0 dV for all t ∈ [0, T ). Integrating
this last inequality between 0 and t , we get

evmax(t)+‖Q‖L∞(M)

∫
M ev0 dV
ρ

≤

(
evmax(0)+‖Q‖L∞(M)

∫
M ev0 dV
ρ

)
e

ρt∫
M ev0 dV ,

and (1-7) follows.

Step 2. Let ρ≥ 8π . There exists a subset A of M , with volume satisfying |A|>CT

for some constant CT > 0, and a constant δ depending on M , Q, ρ, ‖v0‖C2+α(M)
and T , such that

(1-9) |v(x, t)| ≤ δ, ∀x ∈ A, ∀t ∈ [0, T ).

Proof of Step 2. Fix t ∈ [0, T ) and set

Mε = {x ∈ M : ev(x,t) < ε},

where ε > 0 is a real number which will be determined later. Setting
∫

M ev0 dV = a,
by the conservation of the volume and (1-7), we have

a =
∫

M
ev(t) dV =

∫
Mε

ev(t) dV +
∫

M\Mε

ev(t) dV ≤ ε|Mε| + eC ′T |M \Mε|.

Taking ε = a
2|M |

, we find

(1-10) |M \Mε| ≥
a
2

e−C ′T > 0.

Setting A = M\Mε, by definition of Mε we have v(x, t) ≥ ln ε = ln(a/2|M |) for
all x ∈ A and t ∈ [0, T ). On the other hand, by Step 1, v(x, t)≤ C ′T for all x ∈ M
and t ∈ [0, T ). Therefore we find that there exists a constant δ such that

|v(x, t)| ≤ δ, ∀x ∈ A, ∀t ∈ [0, T ).
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Step 3. Let ρ ≥ 8π . For all t ∈ [0, T ), we have

(1-11)
∫

M
v2(t) dV ≤ C1

∫
M
|∇v(t)|2 dV+C2,

where C1, C2 are constants depending on T , Q, |v0‖C2+α(M), M and A (where A is
the set defined in Step 2).

Proof of Step 3. By Poincaré’s inequality,

(1-12)
∫

M
v2(t) dV ≤ 1

λ1

∫
M
|∇v(t)|2 dV + 1

|M |

(∫
M
v(t) dV

)2

,

where λ1 is the first eigenvalue of the Laplacian. Now, using Young’s inequality
and (1-9), we find

(1-13) 1
|M |

(∫
M
v(t) dV

)2

=
1
|M |

(∫
A
v(t) dV

)2

+
1
|M |

(∫
M\A

v(t) dV
)2

+
2
|M |

(∫
A
v(t) dV

)(∫
M\A

v(t) dV
)

≤
δ2
|A|2

|M |
+

1
|M |

(∫
M\A

v(t) dV
)2

+
2δ2
|A|2

ε|M |
+

2ε
|M |

(∫
M\A

v(t) dV
)2

,

where ε is a positive constant which will be determined later. By the Cauchy–
Schwarz inequality,

(1-14)
(∫

M\A
v(t) dV

)2

≤ |M\A|
∫

M\A
v2(t) dV .

Thus, (1-12), (1-13) and (1-14) yield

(1-15)
∫

M
v2(t) dV

≤
1
λ1

∫
M
|∇v(t)|2 dV +

(
1− |A|
|M |
+

2ε
|M |
|M\A|

) ∫
M
v2(t) dV + C̃,

where

C̃ = δ
2
|A|2

|M |
+

2δ2
|A|2

ε|M |
.

Choosing ε such that the factor in parentheses in (1-15) equals α < 1, we deduce

(1−α)
∫

M
v2(t) dV ≤ 1

λ1

∫
M
|∇v(t)|2 dV+ C̃,

establishing (1-11).
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Proof of Proposition 1.2. We consider separately the cases ρ < 8π and ρ ≥ 8π .
In the first case, we prove that the constant C̃1 of estimate (1-6) is independent

of T . Using Poincaré’s and Young’s inequalities, we have

C
∫

M
|v(t)− v̄(t)| dV ≤ ε

∫
M
|∇v(t)|2 dV+C,

where ε > 0 is a small constant to be chosen later. This implies that

(1-16) Jρ(v(t))=

1
2

∫
M
|∇v(t)|2 dV+

∫
M

Q(v(t)− v̄(t)) dV − ρ log
(∫

M
ev(t)−v̄(t) dV

)
≥

(1
2
− ε

)∫
M
|∇v(t)|2 dV−C − ρ log

(∫
M

ev(t)−v̄(t) dV
)
.

By Jensen’s inequality, we have

(1-17) log
(∫

M
ev(t)−v̄(t) dV

)
≥ C, ∀t ∈ [0, T ),

where v̄(t) = (
∫

M v(t) dV )/|M |. Hence, using (1-16) and (1-17), and setting
ρ1 =max{ρ, 0}, we deduce that

Jρ(v(t))≥
(1

2
− ε

)∫
M
|∇v(t)|2 dV−C−ρ1 log

(∫
M

ev(t)−v̄(t) dV
)
.

By the Moser–Trudinger inequality (see [Moser 1970/71; Trudinger 1967]), one
has

(1-18) log
∫

M
e(v(t)−v̄(t)) dV ≤ 1

16π

∫
M
|∇v(t)|2 dV+C.

Therefore
Jρ(v(t))≥

(1
2
−

ρ1
16π
− ε

)∫
M
|∇v(t)|2 dV−C.

Thus, by taking ε = (8π − ρ1)/32π and using the fact that Jρ(v(t))≤ Jρ(v0) for
all t ∈ [0, T ), we find that

(1-19)
∫

M
|∇v(t)|2 dV ≤ C, ∀ρ < 8π.

Now, using (1-19) and Poincaré’s inequality, we obtain

(1-20) ‖v(t)− v̄(t)‖H1(M) ≤ C, ∀ρ < 8π.

Since
∫

M ev(t) dV =
∫

M ev0 dV for all t ∈ [0, T ), using Jensen’s inequality (1-17),
the Moser–Trudinger inequality (1-18) and (1-19), we deduce that

|v̄(t)| ≤ C.
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Finally, from (1-20) and the previous inequality, we find that for all ρ < 8π , there
exists a constant C̃1 independent of T such that

(1-21) ‖v(t)‖H1(M) ≤ C̃1, ∀ 0≤ t < T .

We now consider the second case, ρ ≥ 8π . Since
∫

M ev(t) dV =
∫

M ev0 for all
t ∈ [0, T ), by Young’s inequality we have

(1-22) Jρ(v0)≥ Jρ(v)≥
1
2

∫
M
|∇v|2 dV +

∫
M

Qv dV−C

≥
1
2

∫
M
|∇v|2 dV − ε

∫
M
v2(t) dV −C,

where ε is a positive constant which will be chosen later. Thanks to estimate (1-11)
of Step 3, inequality (1-22) leads to

1
2

∫
M
|∇v(t)|2 dV ≤ C +C1ε

∫
M
|∇v(t)|2 dV .

Choosing ε such that 1/2− εC1 > 0, we find that for all t ∈ [0, T ), there exists a
constant CT > 0 such that

(1-23)
∫

M
|∇v(t)|2 dV ≤ CT .

Combining (1-11) and (1-23), we obtain
∫

M v
2(t) dV ≤ CT . Finally, for all ρ ∈ R,

there exists a constant C̃T,1 > 0 such that

‖v(t)‖H1(M) ≤ C̃T,1, ∀t ∈ [0, T ). �

Proposition 1.3. There is a constant C̃T,2 > 0, depending on M , Q, ρ, ‖v0‖C2+α(M)
and T , such that

‖v(t)‖H2(M) ≤ C̃T,2, ∀ 0≤ t < T .

Proof. Since ‖v‖H1(M) ≤ C̃T,1, we just need to bound
∫

M(1v(t))
2 dV for all

t ∈ [0, T ). To this purpose, set

w(t)= ∂v(t)
∂t

ev(t)/2.

By differentiating with respect to t and integrating by parts on M , we have

1
2
∂

∂t

∫
M
(1v(t))2 dV =

∫
M

(
w(t)ev(t)/2+ Q− ρev(t)∫

M ev0 dV

)
1
(
w(t)e−v(t)/2

)
dV

=−

∫
M
|∇w(t)|2 dV + 1

4

∫
M
w2(t)|∇v(t)|2 dV +

∫
M
1Q

(
w(t)e−v(t)/2

)
dV

+
ρ∫

M ev0 dV

(∫
M
∇v(t)∇w(t)ev(t)/2 dV− 1

2

∫
M
w(t)ev(t)/2|∇v(t)|2 dV

)
.
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Since Q ∈ C∞(M) and w(t)= ∂v(t)
∂t

ev(t)/2, we find

(1-24) 1
2
∂

∂t

∫
M
(1v(t))2 dV

≤−

∫
M
|∇w(t)|2 dV+ 1

4

∫
M
w2(t)|∇v(t)|2 dV+C

∥∥∥∂v(t)
∂t

∥∥∥
L1(M)

+C
(∫

M
ev(t)/2

(
|∇w(t)||∇v(t)| + |∇v(t)|2|w(t)|

)
dV
)
.

We now estimate the positive terms on the right of (1-24). From the Gagliardo–
Nirenberg inequality (see for example [Brouttelande 2003]), for all f ∈ H 1(M),

‖ f ‖2L4(M) ≤ C‖ f ‖L2(M)‖ f ‖H1(M).

Using the Cauchy–Schwarz inequality and (1-5), we have

(1-25)
∫

M
w2(t)|∇v(t)|2 dV ≤ ‖w(t)‖2L4(M)‖∇v(t)‖

2
L4(M)

≤ CT ‖w(t)‖L2(M)‖w(t)‖H1(M)‖v(t)‖H2(M).

Using (1-5) and the Moser–Trudinger inequality (1-18), we deduce that there exists
a constant CT such that, for all t ∈ [0, T ) and p ∈ R,

(1-26)
∫

M
epv(t) dV ≤ CT .

By the same reasoning used to prove (1-25), from (1-5) and (1-26) we have

(1-27)
∫

M
|∇v(t)|2|w(t)|ev(t)/2 dV

≤

(∫
M
|∇v(t)|4 dV

)1/2(∫
M
w4(t) dV

)1/4(∫
M

e2v(t) dV
)1/4

≤ CT ‖v(t)‖H2(M)‖w(t)‖
1/2
H1(M)‖w(t)‖

1/2
L2(M),

(1-28)
∫

M
|∇w(t)||∇v(t)|ev(t)/2 dV

≤

(∫
M
|∇w(t)|2 dV

)1/2(∫
M
|∇v(t)|4 dV

)1/4(∫
M

e2v(t) dV
)1/4

≤ CT ‖w(t)‖H1(M)‖v(t)‖
1/2
H2(M),

(1-29)
∫

M

∣∣∣∂v(t)
∂t

∣∣∣ dV ≤
(∫

M

(
∂v(t)
∂t

)2
ev(t) dV

)1/2(∫
M

e−v(t) dV
)1/2

≤ CT ‖w(t)‖L2(M).
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Finally, putting (1-25), (1-27), (1-28) and (1-29) in (1-24), we obtain

1
2
∂

∂t

∫
M
(1v(t))2 dV ≤−

∫
M
|∇w(t)|2 dV

+CT ‖w(t)‖H1(M)‖w(t)‖L2(M)‖v(t)‖H2(M)+CT ‖w(t)‖L2(M)

+CT
(
‖w(t)‖H1(M)‖v(t)‖

1/2
H2(M)+‖w(t)‖

1/2
H1(M)‖w(t)‖

1/2
L2(M)‖v(t)‖H2(M)

)
.

Using Young’s inequality, we get

(1-30) ∂

∂t

(∫
M
(1v(t))2 dV+ 1

)
≤ CT

(∫
M
(1v(t))2 dV+ 1

)(
‖w(t)‖2L2(M)+ 1

)
.

On the other hand, by (1-3), we have for all t ∈ [0, T )

(1-31)
∫ t

0
‖w(s)‖2L2(M) ds =

∫ t

0

∫
M

(
∂v(s)
∂s

)2
ev(s) dV ds

=−

∫ t

0

∂

∂s
Jρ(v(s)) ds = Jρ(v0)− Jρ(v(t))≤ CT ,

where we use the fact that ‖v(t)‖H1(M) ≤ C̃T,1 from Proposition 1.2. Integrating
(1-30) with respect to t and using (1-31), we have∫

M
(1v(t))2 dV ≤ CT , ∀t ∈ [0, T ).

Since ‖v(t)‖H1(M) ≤ C̃T,1, we deduce that there exists a constant C̃T,2 such that

‖v(t)‖H2(M) ≤ C̃T,2, ∀t ∈ [0, T ). �

Proof of Theorem 0.1. We recall that to prove the global existence of the flow it
is sufficient to prove (1-4), i.e., there exists a constant C̃T depending on T and
α ∈ (0, 1) such that

‖v‖C2+α,1+α/2(M×[0,T )) ≤ C̃T .

First, we claim that for all α ∈ (0, 1), there exists a constant CT such that

(1-32) |v(x1, t1)− v(x2, t2)| ≤ CT (|t1− t2|α/2+ |x1− x2|
α),

for all x1, x2 ∈ M and t1, t2 ∈ [0, T ). Here |x1− x2| stands for the geodesic distance
from x1 to x2 with respect to the metric g. From Proposition 1.3, for all t ∈ [0, T )
we have ‖v(t)‖H2(M) ≤ C̃T,2. Thus, by Sobolev’s embedding theorem (see [Hebey
1997]), we find for α ∈ (0, 1), v(t) ∈ Cα(M) and for all x, y ∈ M ,

(1-33) |v(x, t)− v(y, t)| ≤ CT |x − y|α.
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If t2− t1 ≥ 1, using (1-33) it is easy to see that (1-32) holds. Thus, from now on we
assume that 0< t2− t1 < 1. Since v(t) is a solution of (0-4) and ‖ev(t)‖Cα(M) ≤CT ,
for all t ∈ [0, T ) one has ∣∣∣∂v(t)

∂t

∣∣∣2 ≤ CT |1v(t)|2+CT .

Integrating on M , we obtain for all t ∈ [0, T )

(1-34)
∫

M

∣∣∣∂v(t)
∂t

∣∣∣2 dV ≤ CT ‖v(t)‖2H2(M)+CT ≤ CT .

Now, we write

(1-35) |v(x, t1)− v(x, t2)| =
1

|B√t2−t1(x)|

∫
B√t2−t1

(x)
|v(x, t1)− v(x, t2)| dV(y)

≤ P1+ P2+ P3

,

where B√t2−t1(x) stands for the geodesic ball of center x and radius
√

t2− t1 and

P1 =
C

t2−t1

∫
B√t2−t1

(x)
|v(x, t1)− v(y, t1)| dV(y),

P2 =
C

t2−t1

∫
B√t2−t1

(x)
|v(y, t1)− v(y, t2)| dV(y),

P3 =
C

t2−t1

∫
B√t2−t1

(x)
|v(y, t2)− v(x, t2)| dV(y),

Using (1-33), we obtain

(1-36) P1 ≤
CT

t2−t1

∫
B√t2−t1

(x)
|x − y|α dV (y) ≤ CT (t2− t1)α/2.

In the same way, we have

(1-37) P3 ≤ CT (t2− t1)α/2.

From Hölder’s inequality and (1-34) it follows that

(1-38) P2 ≤ C sup
t1≤τ≤t2

∫
B√t2−t1

(x)

∣∣∣∂v
∂s

∣∣∣(y, τ ) dV (y)

≤ C
√

t2− t1 sup
t1≤τ≤t2

(∫
B√t2−t1

(x)

∣∣∣∂v
∂s

∣∣∣2(y, τ ) dV (y)
)1/2

≤ CT
√

t2− t1.

Putting (1-36), (1-37) and (1-38) in (1-35), and noticing that
√

t2− t1 ≤ (t2− t1)α/2
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for all 0< t2− t1 < 1, we find

(1-39) |v(x, t1)− v(x, t2)| ≤ CT (t2− t1)α/2.

Therefore, from (1-33) and (1-39), we see that (1-32) holds. In view of (1-32), we
may apply the standard regularity theory for parabolic equations (see for example
[Friedman 1964]) to derive the existence of a constant C̃T depending on T and
α ∈ (0, 1) such that

‖v‖C2+α,1+α/2(M×[0,T )) ≤ C̃T .

This establishes the existence part of Theorem 0.1. The uniqueness follows from
Proposition 1.5. �

Remark 1.4. Following the proof of Theorem 0.1, we see that, for all T > 0 fixed,
if ‖u0‖C2+α(M) ≤ K for some constant K > 0, then there exists a constant CT > 0
depending on K and T such that

‖u‖C2+α,1+α/2(M×[0,T ]) ≤ CT .

Continuity of the flow with respect to its initial data. We now state the continuity
of the flow with respect to its initial data, which will be useful for the proof of
Theorem 0.3 (see Section 2). The proof is standard and we omit it.

Proposition 1.5. Let u, v ∈ C2+α,1+α/2
loc (M ×[0,+∞)), α ∈ (0, 1) be solutions of

∂

∂t
ev =1v− Q+ ρ ev∫

M ev dV
,

v(x, 0)= v0(x),

and 
∂

∂t
eu
=1u− Q+ ρ eu∫

M eu dV
,

u(x, 0)= u0(x),

where u0, v0 ∈ C2+α(M). Then for all T > 0, there exists a constant CT > 0,
depending on ‖u0‖C2+α(M), ‖v0‖C2+α(M) and T , such that

(1-40) ‖u− v‖C2+α,1+α/2(M×[0,T ]) ≤ CT ‖u0− v0‖C2+α(M).

Remark 1.6. One can also prove that, for all T > 0 fixed, if ‖u0‖C2+α(M) ≤ K1

and ‖v0‖C2+α(M) ≤ K2 for some constants K1, K2 > 0, then there exists a constant
CT > 0 depending on K1, K2 and T such that

‖u− v‖C2+α,1+α/2(M×[0,T ]) ≤ CT ‖u0− v0‖C2+α(M).
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2. Convergence of the flow

This section is devoted to the proof of Theorems 0.2, 0.3 and 0.4.

Proof of Theorem 0.2. Let v : M ×[0,+∞)→ R be the global solution of (0-4).
Throughout this subsection, we assume without loss of generality that

∫
M ev(t) dV =

1 for all t ≥ 0. C will denote constants not depending on t .
In order to prove Theorem 0.2, we need to bound ‖v(t)‖H2(M), t ≥ 0 uniformly

in time. For this, we first bound ‖v(t)‖H1(M), t ≥ 0 uniformly in time. To bound
‖v(t)‖H1(M), we use the compactness result of Theorem 0.5. More precisely, using
Theorem 0.5, we first prove that there exists a sequence (tn)n with limn→+∞ tn =
+∞ such that

‖v(tn)‖H2(M) ≤ C, ∀n ≥ 0.

Therefore we aim to prove that there exists a sequence (tn)n , limn→+∞ tn =+∞,
such that, setting vn = v(tn) and hn =−(∂v/∂t)(tn), the sequence (vn)n ⊆ H 2(M)
satisfies conditions (0-8) of Theorem 0.5. First, we show that there exists a sequence
(tn)n , limn→+∞ tn =+∞, such that (0-8)(i) is satisfied for vn = v(tn). Recall that
for all T > 0, ∫ T

0

∫
M

(
∂v(t)
∂t

)2
ev(t) dV dt = Jρ(v(0))− Jρ(v(T )).

Using hypothesis (2-5), we deduce that there exists a sequence (tn)n such that
n ≤ tn ≤ n+ 1, for all n ∈ N, and

(2-1) lim
n→+∞

∫
M

∣∣∣∂v(tn)
∂t

∣∣∣2ev(tn) dV = 0.

The next proposition shows that condition (0-8)(ii) of Theorem 0.5 is satisfied.

Proposition 2.1. We have

(2-2) −
∂ev(x,t)

∂t
+ ρev(x,t) ≥−C, ∀t ≥ 0, ∀x ∈ M.

Proof. Set
R(x, t)= e−v(x,t)(−1v(x, t)+ Q(x)).

We can rewrite equation (0-4), satisfied by v, in the form

∂v(x, t)
∂t

=−(R(x, t)− ρ).

Hence
∂R(x, t)
∂t

= R(x, t)(R(x, t)− ρ)+ e−v(x,t)1R(x, t).

Define Rmin(t)=minx∈M R(x, t). Using the maximum principle (as in (1-8), we
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may assume that Rmin(t) is differentiable), we find

∂Rmin(t)
∂t

≥−ρRmin(t).

Integrate between 0 and t to obtain

Rmin(t)≥ e−ρt Rmin(0).

This implies that

(2-3) −
∂ev(x,t)

∂t
+ ρev(x,t) ≥−|Rmin(0)|e−ρt+v(x,t).

Set vmax(t)=maxx∈M v(x, t). By the maximum principle, we have

∂

∂t
evmax(t) ≤ ρ

( 1
ρ
‖Q‖L∞(M)+ evmax(t)

)
.

Integrating again between 0 and t , we get

(2-4) evmax(t)−ρt
≤ evmax(0)+

1
ρ
‖Q‖L∞(M)−

1
ρ
‖Q‖L∞(M)e

−ρt
≤ C.

Combining (2-3) and (2-4), we finally conclude

−
∂ev(x,t)

∂t
+ ρev(x,t) ≥−C |Rmin(0)| ≥ −C. �

We are now in position to bound ‖v(t)‖H1(M), t ≥ 0, uniformly in time.

Proposition 2.2. Let ρ ∈ (8kπ, 8(k+1)π), k ∈N∗ and v(t) :M→R be the solution
of (0-4). Suppose that

(2-5) Jρ(v(t))≥−C, ∀t ≥ 0.

Then there exists a constant C̃ , depending on M , Q, ρ, α and ‖v0‖C2+α(M) but not
on T , such that

(2-6) ‖v(t)‖H1(M) ≤ C̃, ∀t ≥ 0.

Proof. Thanks to (2-1) and (2-2), from Theorem 0.5 there exists a constant C > 0
such that

‖v(tn)‖H2(M) ≤ C,

where (tn)n is the sequence defined in (2-1). By Sobolev’s embedding theorem, it
follows that ‖v(tn)‖Cα(M) ≤ C for all α ∈ (0, 1). Since limn→+∞ tn =+∞, for all
sufficiently large t ≥ 0 there exists n ∈ N such that tn ≤ t ≤ tn+1. Moreover, since
|tn+1− tn| ≤ 2, we have |t − tn| ≤ 2. We claim that for all p > 1,

(2-7)
∫

M
epv(t) dV ≤ C, ∀t ≥ 0.
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Since v(t) satisfies (0-4), integrating by parts and using Young’s inequality, we see
that

∂

∂t

∫
M

epv(t) dV

=−p(p− 1)
∫

M
|∇v(t)|2e(p−1)v(t) dV − p

∫
M

Qe(p−1)v(t) dV + pρ
a

∫
M

epv(t) dV

≤ C
∫

M
e(p−1)v(t) dV+ pρ

a

∫
M

epv(t) dV

≤ C+C
∫

M
epv(t) dV .

Setting y(t)=
∫

M epv(t) dV and integrating the previous inequality between tn and
t , it follows that

y(t)≤ eC(t−tn)y(tn)+C
(
eC(t−tn)− 1

)
.

Since ‖v(tn)‖Cα(M) ≤ C , α ∈ (0, 1), and |t − tn| ≤ 2, we have that (2-7) is satisfied.
Fix t ≥ 0 and set

Mε = {x ∈ M : ev(x,t) < ε},

where ε > 0 is a real number which will be determined shortly. We have

(2-8) 1=
∫

M
ev(t) dV =

∫
Mε

ev(t) dV +
∫

M\Mε

ev(t) dV

≤ ε|Mε| + |M\Mε|
1−1/p

(∫
M

epv(t) dV
)1/p

.

Thus, taking ε = 1
2|M |

, (2-7) implies

1
2 ≤ C |M\Mε|

1−1/p.

Since p > 1, we get

(2-9) |M\Mε| ≥

( 1
2C

)p/(p−1)
> 0.

Set A = M\Mε, so that

(2-10)
∫

A
v(t) dV ≥ ln

( 1
2|M |

)
|A|.

On the other hand, we have∫
A
v(t) dV ≤

∫
A

ev(t) dV ≤ 1.
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From this inequality and (2-10), we deduce that there exists a constant C such that

(2-11)
∣∣∣∣∫

A
v(t) dV

∣∣∣∣≤ C.

Arguing the same way as in Proposition 1.2, (2-9) and (2-11) imply that there exists
a constant C̃ not depending on t such that, for all t ≥ 0,

‖v(t)‖H1(M) ≤ C̃ . �

Proof of Theorem 0.2. First, we prove that

(2-12)
∫

M
(1v(t))2 dV ≤ C, ∀t ≥ 0

following the arguments of Brendle [2003]. Set

V (t)= ∂v(t)
∂t

and
y(t)=

∫
M

V 2(t)ev(t) dV .

We claim that limt→+∞ y(t)= 0. By (2-6), we have for all T ≥ 0

(2-13)
∫ T

0

∫
M

(
∂v(t)
∂t

)2
ev(t) dV dt ≤ Jρ(v(0))− Jρ(v(T ))≤ C,

where C is a constant not depending on T . Let ε be some positive real number.
From (2-13), we deduce that there exists t0 ≥ 0 such that y(t0)≤ ε.

We want to prove that
y(t)≤ 3ε, ∀t ≥ t0.

Otherwise, define
t1 = inf{t ≥ t0 : y(t)≥ 3ε}<+∞.

This implies that

(2-14) y(t)≤ 3ε, ∀t0 ≤ t ≤ t1.

Since ∂v(t)
∂t
= e−v(t)(1v(t)− Q)+ ρ, using (2-14) we arrive at

(2-15)
∫

M
e−v(t)(1v(t)− Q)2 dV = y(t)+ ρ2

≤ C1, ∀t0 ≤ t ≤ t1,

where C1 denotes a constant depending on ε, and thus on t1. From (2-7), we have
for all t ≥ 0

(2-16)
∫

M
e3v(t) dV ≤ C,
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with C independent of t1. Using Hölder’s inequality, (2-15) and (2-16), we obtain
for all t0 ≤ t ≤ t1∫

M
|1v(t)− Q|3/2 dV ≤

(∫
M

e−v(t)(1v(t)− Q)2 dV
)3/4(∫

M
e3v(t) dV

)1/4

≤ C1.

Thus,
∫

M |1v(t)|
3/2 dV ≤ C1 for all t0 ≤ t ≤ t1. From Sobolev’s embedding

theorem, we get

(2-17) |v(t)| ≤ C1, ∀t0 ≤ t ≤ t1.

On the other hand, we see that V (t)= ∂v(t)/∂t satisfies

(2-18) ∂V (t)
∂t
=−V (t)e−v(t)1v(t)+ e−v(t)1V (t)+ QV (t)e−v(t).

Now, using (2-18), we have for all t0 ≤ t ≤ t1

∂y(t)
∂t
=
∂

∂t

(∫
M

V 2(t)ev(t) dV
)

= 2
∫

M
V (t)ev(t)

(
e−v(t)1V (t)− V (t)e−v(t)1v(t)+ QV (t)e−v(t)

)
dV

+

∫
M

V 3(t)ev(t) dV

Integrating by parts, we obtain

(2-19) ∂y(t)
∂t
=−2

∫
M
|∇V (t)|2 dV −

∫
M

V 3(t)ev(t) dV+ 2ρ
∫

M
V 2(t)ev(t) dV .

The Gagliardo–Nirenberg inequality now gives

‖V (t)‖L3
g1
(M) ≤ C‖V (t)‖2/3L2

g1
(M)‖V (t)‖

1/3
H1

g1
(M),

where the norms are taken with respect to the metric g1(t)= ev(t)g. From (2-17),
notice that the first eigenvalue of the Laplacian λ̃1(t) with respect to the metric
g1(t) satisfies, for all t0 ≤ t ≤ t1,

(2-20) λ̃1(t)≥ C1.

Combining
∫

M V ev dV = 0, Poincaré’s inequality and (2-20), we have

(2-21)
∫

M
ev|V |3 dV ≤ C1

(∫
M

V 2ev dV
)(∫

M
|∇V |2 dV

)1/2

.

Thus we obtain, from (2-19), (2-21) and Young’s inequality,

∂

∂t

(∫
M

V 2ev dV
)
≤ C1

(∫
M

V 2ev dV
)2

+C
(∫

M
V 2ev dV

)
,
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i.e.,
∂

∂t
y(t)≤ C1 y2(t)+Cy(t).

Since y(t0)≤ ε and y(t1)= 3ε, we find

2ε ≤ y(t1)− y(t0)≤ (C1+C)
∫ t1

t0
y(t) dt.

Choosing t0 large enough, we have (C1+C)
∫
+∞

t0
y(t) dt ≤ ε, and thus we obtain

a contradiction. We conclude that

y(t) −→
t→+∞

0,

and thereby find t1 = +∞. This implies that all previous estimates hold for all
t ≥ 0. Thus, for all t ≥ 0 we have |v(t)| ≤ C and∫

M
e−v(t)(1v(t)− Q)2 dV ≤ C.

It follows that, for all t ≥ 0,
∫

M(1v(t))
2 dV ≤ C .

Thus, using (2-6), for all t ≥ 0 we have ‖v(t)‖H2(M) ≤ C . Therefore, there exist
a function v∞ ∈ H 2(M) and a sequence (tn)n with limn→+∞ tn =+∞ such that

v(tn) −→
n→+∞

v∞ weakly in H 2(M)

and
v(tn) −→

n→+∞
v∞ in Cα(M), α ∈ (0, 1).

It is easy to check that v∞ is a solution to

−1v∞+ Q = ρ ev∞∫
M ev∞ dV

,

and, by bootstrap regularity arguments, we have v∞ ∈ C∞(M). To obtain that
‖v(tn)− v∞‖H2(M) −→n→+∞

0, notice that∫
M
(1v(tn)−1v∞)2 dV

=

∫
M

(
ρ

a
(
ev∞ − ev(tn)

)
+
∂ev(tn)

∂t

)2

dV

≤ C
∫

M

(
ev∞ − ev(tn)

)2 dV+C
∫

M

∣∣∣∂v
∂t
(tn)

∣∣∣2ev(tn) dV −→
n→+∞

0.

Since the flow is a gradient flow for the functional Jρ , which is real analytic,
from a general result of Simon [1983] we finally obtain that

‖v(t)− v∞‖H2(M) −→n→+∞
0. �
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Proof of Theorem 0.3. We prove the existence of an initial data v0 ∈ C∞(M) for
the flow (0-4) such that the functional Jρ(v(t)), t ≥ 0, is uniformly bounded from
below. From standard parabolic theory, it is easy to see that for v0 ∈ C∞(M), the
solution v of (0-4) belongs to C∞(M ×[0,+∞)).

Let X be the space of functions C∞(M) endowed with the norm ‖ · ‖C2+α(M),
and define

8 : X ×[0,+∞)−→ C∞(M ×[0,+∞))

by letting 8(v, t) be a solution of
∂8(v, t)
∂t

= e−8(v,t)18(v, t)− e−8(v,t)Q+ ρ∫
M e8(v,t) dV

,

8(v, 0)= v.

Suppose that for all v ∈ X , we have

(2-22) Jρ(8(v, t)) −→
t→+∞

−∞.

Let L > 0. Following the same arguments as in [Malchiodi 2008], one can show that
there exists L1 > 0 such that {v ∈ X : Jρ(v)≤−L1} is not contractible. However,
we prove that if (2-22) is satisfied then {v ∈ X : Jρ(v)≤−L} is contractible. We
proceed in two steps.

Step 1. Let L > 0 be fixed and

Tv = inf{t ≥ 0 : Jρ(8(v, t))≤−L},

then the function T : C2+α(M)→ R, v 7→ Tv is continuous.

Proof of Step 1. From (2-22), we have

{t ≥ 0 : Jρ(8(v, t))≤−L} 6=∅,

and from the uniqueness of solutions of (0-4) having the same initial data, one
can prove that Jρ(8(v, t)) is strictly decreasing on [0,+∞). Let v̄ ∈ C∞(M) and
(vn)n ∈ C∞(M) be a sequence such that limn→+∞ vn = v̄ in C2+α(M). We claim
that limn→+∞ Tv,n = Tv̄. To prove this, we consider two cases depending on the
value of Jρ(v̄).
First case. Suppose that Jρ(v̄) < −L . Since the function t → Jρ(8(v̄, t)) is
decreasing, we have Jρ(8(v̄, t)) <−L for all t ≥ 0. We deduce that Tv̄ = 0. Since
limn→+∞ vn = v̄ in C2+α(M), it is easy to see that

Jρ(vn) −→
n→+∞

Jρ(v̄).
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Thus, there exists n0 ∈ N such that Jρ(vn)≤−L for all n ≥ n0. So, we obtain that
Tvn = 0= Tv̄ for all n ≥ n0. This implies that

Tvn −→n→+∞
Tv̄.

Second case. Suppose that Jρ(v̄)≥−L . In this case, Tv̄ verifies Jρ(8(v̄, Tv̄))=−L .
Setting Tn := Tvn and supposing that Tn does not converge to Tv̄, then, up to
extracting a subsequence, there exists ε0 > 0 such that |Tn − Tv̄| ≥ ε0. So we have
Tn ≥ ε0+ Tv̄ or Tn ≤−ε0+ Tv̄. Suppose, without loss of generality, that

(2-23) Tn ≥ ε0+ Tv̄.

Set T = Tv̄ + ε0+ 1. Since limn→+∞ vn = v̄ in C2+α(M) by Proposition 1.5, it is
easy to see that

(2-24) Jρ(8(vn, t)) −→
n→+∞

Jρ(8(v̄, t)),

for all t fixed in [0, T ]. Since t→ Jρ(8(v̄, t)) is strictly decreasing, we have

α1 = Jρ(8(v̄, Tv̄))− Jρ(8(v̄, Tv̄ + ε0)) > 0.

From (2-24), since Tv̄ + ε0 ∈ [0, T ], we get

Jρ(8(vn, Tv̄ + ε0)) −→
n→+∞

Jρ(8(v̄, Tv̄ + ε0))=−L −α1,

and from (2-23),
Jρ(8(vn, Tn))≤ Jρ(8(vn, Tv̄ + ε0)).

This implies that, if n tends to+∞,−L ≤−L−α1. Thus we obtain a contradiction.

Step 2. If (2-22) holds, then the set {v ∈ X : Jρ(v)≤−L} is contractible.

Proof of Step 2. We construct a deformation retract from {v ∈ X} into {v ∈ X :
Jρ(v) ≤ −L}. Since {v ∈ X} is contractible, {v ∈ X : Jρ(v) ≤ −L} must also be
contractible. We denote by h the one-to-one function defined by

h(t) : [0, 1)→ [0,+∞), t 7→ t
1−t

,

and by η(v, t) : X ×[0, 1] → X the function defined by

η(v, t)=
{
8(v, h(t)) if h(t)≤ Tv,
8(v, Tv) if h(t)≥ Tv.

First we prove that η = 8 ◦ 81 : X × [0, 1) → X is continuous, in which
81 : X ×[0, 1)→ X ×[0,+∞) is the function defined by
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81(v, t)=
{
(v, h(t)) if h(t)≤ Tv,
(v, Tv) if h(t)≥ Tv.

From Step 1, 81 : X ×[0, 1)→ X ×[0,+∞) is a continuous function. Therefore,
to prove that η is a continuous map from X ×[0, 1)→ X , it is sufficient to prove
that, for T > 0 fixed, 8 : X ×[0, T ] → X is continuous.

Let (vn, tn)∈C∞(M)×[0, T ] be such that limn→+∞ vn = v in C2+α(M), where
v ∈ C∞(M) and limn→+∞ tn = t ∈ [0, T ]. Then we have

(2-25) ‖8(vn, tn)−8(v, t)‖C2+α(M)

≤ ‖8(vn, tn)−8(vn, t)‖C2+α(M)+‖8(vn, t)−8(v, t)‖C2+α(M).

Since 8(vn, · ) ∈ C∞(M ×[0, T ]), Theorem 0.1 implies that for all t ∈ [0, T ],∥∥∥∂8(vn, t)
∂t

∥∥∥
C2+α(M)

≤ CT ,

where CT denotes a constant not depending on n. We deduce that

(2-26) ‖8(vn, tn)−8(vn, t)‖C2+α(M)

=

∥∥∥∥∫ t

tn

∂8(vn, s)
∂s

ds
∥∥∥∥

C2+α(M)

≤ |tn − t | max
s∈[tn,t]

∥∥∥∂8(vn, s)
∂s

∥∥∥
C2+α(M)

−→
n→+∞

0.

On the other hand, using Proposition 1.5, we have for all t ∈ [0, T ]

(2-27) ‖8(vn, t)−8(v, t)‖C2+α(M) ≤ CT ‖vn − v‖C2+α(M) −→n→+∞
0.

Combining (2-25) , (2-26) and (2-27), we find that

‖8(vn, tn)−8(v, t)‖C2+α(M) −→n→+∞
0.

Thus η is continuous from X×[0, 1)→ X . It remains to prove that it is continuous
on X × [0, 1]. Let (vn, tn) ∈ C∞(M)× [0, 1] be such that limn→+∞ vn = v̄ in
C2+α(M), where v̄ ∈ C∞(M), and limn→+∞ tn = 1. From Step 1, we have

Tvn = Tn −→
n→+∞

Tv̄.

Since Tn is finite and limn→+∞ tn = 1, it follows that limn→+∞ h(tn)=+∞. So,
for sufficiently large n, h(tn)≥ Tn and thus η(vn, tn)=8(vn, Tn). We have, in the
same way as (2-26) and (2-27), that

‖η(vn, tn)− η(v̄, 1)‖C2+α(M)

= ‖8(vn, Tn)−8(v̄, Tv̄)‖C2+α(M)

≤ ‖8(vn, Tn)−8(v̄, Tn)‖C2+α(M)+‖8(v̄, Tn)−8(v̄, Tv̄)‖C2+α(M) −→n→+∞
0.
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Therefore η is continuous from X ×[0, 1] → X .
Now it is easy to check that η is a deformation retract from X into the set
{v ∈ X : Jρ(v)≤−L}. Hence this set is contractible. �

Nonconvergence of the flow: proof of Theorem 0.4. To prove Theorem 0.4, it is
sufficient to prove that there exists a real number C > 0 depending on M , Q and ρ
such that, for all v0 ∈ C2+α(M) satisfying Jρ(v0) ≤ −C , the solution v(t) of the
flow (0-4), with v(x, 0)= v0(x) for all x ∈ M , satisfies

Jρ(v(t)) −→
t→+∞

−∞.

We recall (see [Li 1999]) that there exists a constant C0 ≥ 0 depending on M, Q
and ρ such that

(2-28) ‖w‖C2+α(M) ≤ C0

for any solution w ∈ C2+α(M), α ∈ (0, 1), of

−1w+ Q = ρew∫
M ew dV

.

Since Jρ(v(t)) is decreasing, if limt→+∞ Jρ(v(t)) 6= −∞ then there exists L ∈ R

such that
Jρ(v(t))≥ L , ∀t ∈ [0,+∞).

From Theorem 0.2, there is a function v∞ ∈ C∞(M) such that

‖v(t)− v∞‖H2(M) −→t→+∞
0

which is a solution of

(2-29) −1v∞+ Q = ρev∞∫
M ev∞ dV

.

It follows that
‖v∞‖C2+α(M) ≤ C0,

where C0 is the constant defined in (2-28). This implies that there exists a constant
C depending on M , Q, ρ and C0 such that

J (w∞)≥−C .

Since Jρ(v(t1))≤ Jρ(v(t2)), for all t1 ≥ t2, we have

Jρ(v0)≥ Jρ(v∞)≥−C .

However, Jρ(v0) ≤ −C by hypothesis. Therefore, by choosing C > C , we get a
contradiction. �
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