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This paper is the continuation of (Castéras 2015), in which we investigated
a gradient flow related to the mean field type equation. First, we show that
this flow exists for all time. Next, using the compactness result of Castéras
(2015), we prove, under a suitable hypothesis on its energy, the convergence
of the flow to a solution of the mean field type equation. We also get a
divergence result if the energy of the initial data is largely negative.

Introduction

Let (M, g) be a compact Riemannian surface without boundary. We will study an
evolution problem associated to a mean field type equation

el)

(0-1) —AvEO =Pty
M

where p is a real number, Q € C°°(M) is a given function such that f yQdV=p
and A is the Laplacian with respect to the metric g. Equation (0-1) is equivalent to
the mean field equation

0-2) —Au+p(i+i) —0

[y ferdv M| ’
where | M| stands for the volume of M with respect to the metric g and f € C*°(M)
is a positive function. Indeed, if v is a solution of (0-1), by setting v = u +log f,
we recover that u is a solution of (0-2) with Q = p/|M|+ Alog f.

The mean field equation appears in conformal geometry but also in statistical
mechanics from Onsager’s vortex model for turbulent Euler flows. More precisely,
in this setting the solution u of the mean field equation is the stream function in
the infinite vortex limit (see [Caglioti et al. 1992]). It also arises in the abelian
Chern-Simons—Higgs model (see for example [Caffarelli and Yang 1995; Han 2003;
Tarantello 1996; Yang 2001]).
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Equation (0-2) has a variational structure and its solutions can be found as the
critical points of the functional

(0-3) Ip(u):%/M|Vu|2dV+|’.ﬁ|/AludV—plog(Lfe”dV), ue H (M).

When p < 87, from the Moser—Trudinger inequality one can easily prove that the
functional /, is bounded from below and coercive; thus one can find a solution
of (0-2) by minimizing I,. The existence of solutions becomes more delicate if
p = 8m. When p = 8m, I, admits a lower bound but is no longer coercive, while
for p > 8m, I, is unbounded from below and above. The existence of solutions
of (0-1) has been widely studied in recent decades. Many partial existence results
have been obtained for p # 8k, k € N*, and according to the Euler characteristic
of M (see for example [Brezis and Merle 1991; Chen and Lin 2003; Ding et al.
1999; Li 1999; Li and Shafrir 1994; Malchiodi 2008; Struwe and Tarantello 1998]).
Finally, when p # 8k, k € N*, Djadli [2008] has generalized the previous results,
establishing the existence of solutions for all surfaces M by studying the topology
of sublevels {I, < —C} to achieve a min-max scheme (already introduced in [Djadli
and Malchiodi 2008]).

In this paper, we consider the evolution problem associated to (0-1), namely
the equation

0 e’

D= Av— Q4 po e,
(0-4) ot fM evdVv
v(x, 0) = vo(x),

with initial data vy € C?>T*(M), o € (0, 1) and a function Q € C*®(M) such that
/, y QdV = p. Itis a gradient flow with respect to the following functional, which
will be called energy:

(0-5) Jp(v)=%/M|Vv|2dV+/MQv(t)dV—pln(/Me”dV>, ve HY(M).

This functional is unbounded from below (except in the case p < 8m) and above.
The interest of this flow is that it satisfies some important geometrical properties
useful for its convergence (see in particular estimate (2-2) of Section 2). When
Q is a constant equal to the scalar curvature of M with respect to the metric g,
the flow (0-4) (normalized) has been studied by Struwe [2002] (we note that in
this case p = f 1y @ dV < 8m). For other curvature flows, we refer to [Baird et al.
2004; Brendle 2003; 2005; 2006; Castéras 2013; Hamilton 1988; Lamm et al. 2009;
Malchiodi and Struwe 2006; Schwetlick and Struwe 2003; Struwe 2005] and the
references therein.
We begin by studying the global existence of the flow (0-4). We prove:
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Theorem 0.1. For all initial data vo € C** (M), a € (0, 1), all p € R and all
functions Q € C*°(M) such that | w QdV = p, there exists a unique global solution
ve CEP T2 (0 % [0, 4+00)) of (0-4).

loc
Next, we investigate the convergence of the flow. Let v(z) : M — R denote the
function defined by v(¢)(x) = v(x, t). We show that if the energy J,(v(t)) of the
global solution is bounded from below uniformly in time (when p > 8), then
as t — +00, v(t) converges to a function v, which is a solution of (0-1). More
precisely, we have:

Theorem 0.2. Let v(t) be the solution of (0-4).
(1) If p < 8m, then v(t) converges in H?*(M) to a solution ve, € C*(M) of

evoe

TAV = v
M

(ii) If p > 87, p # 8k, k € N*, and if there exists a constant C > 0 not depending
ont such that for all t > 0,

(0-6) Jo(w(@)) = =C,

then v(t) converges in H?(M) to a solution ve, € C®(M) of
ev>®

TAVe =T v
M

Moreover, we prove that there exist initial data vg € C°° (M) such that the energy
of the global solution v(¢) of the flow, with v(0)(x) = vo(x) for all x € M, stays
uniformly bounded from below, and hence, thanks to Theorem 0.2, such that the
flow converges.

Theorem 0.3. Let p # 8km, k € N*. There exist initial data vy € C*° (M) such that
the global solution v(t) of (0-4) with v(x, 0) = vo(x), for all x € M, satisfies (0-6),
i.e., such that the global solution v(t) of (0-4) converges in H*(M) to a solution
Voo € C*(M) of (0-1):
A e
—Avee + 0 = 'OfMeU—OOdV'

Finally, we show that if the energy of the initial data vy of (0-4) is largely negative

then the flow diverges when ¢ — +o0.

Theorem 0.4. Let p € (8km, 8(k + 1)), k = 1. There exists a constant C > 0
depending on M, Q and p such that for all vy € C*+* (M) satisfying Jp(vo) < —C,
the global solution v(t) of (0-4) satisfies

Jo(v(1)) n_>—+>oo —00.
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To prove these convergence results, we use the compactness result of [Castéras
2015]. There we studied the compactness property of solutions (vy,), € H*(M) of
the perturbed elliptic mean field type equation

(0-7) —Av, = Qo + hpe + pe',
where p > 0, Qp € C°(M) and (h,), € C°(M). The term h, corresponds to the

parabolic term of (0-4). We also assume that there exists a constant C > 0 not
depending on n such that

(i) lim [ hZ2e™dV =0,
(0-8) n—>-+oo0 Jy "

(i) hp(x)e™™ + peV™ > _C, VxeM, Vn=>0.

We will see that these conditions are satisfied by the solution of the flow (0-4). We
have established in [Castéras 2015] the following compactness result:

Theorem 0.5. Let (vy,), € H*(M) be a sequence of solutions of (0-7) such that
fM e’ dV =1 for all n > 0, and satisfying (0-8). If p # 8kn, k € N*, then there
exists a constant C not depending on n such that

”Un ||H2(M) f C

The paper is organized as follows. In Section 1, we prove the global existence of
a solution of (0-4). We also show the continuity of the flow with respect to its initial
data. In Section 2, we study the convergence of the flow (0-4). We begin by proving
Theorem 0.2. We first show that the global solution v(¢) of (0-4) is uniformly (with
respect to ) bounded in H'(M) when v(¢) satisfies condition (0-6). The proof
involves the compactness result obtained in Theorem 0.5. We point out that, when
p < 8m, condition (0-6) is always satisfied. Then, we show that the parabolic term
of (0-4), dv(t)/dt, tends to 0 as t — +o0 in the L?(M) norm with respect to the
metric g (t) = "V g. This implies that v(¢) is uniformly bounded in H 2(M). Next
we prove Theorem 0.3, i.e., there exists initial data in C°°(M) such that condition
(0-6) is satisfied. Our proof is based on the study of the topology of the level set

fveX : Jy(v) <—L},

where X is the space of C*°(M) functions endowed with the C 2+ (M) norm,
o € (0, 1). The end of Section 2 is devoted to the proof of Theorem 0.4.

1. Global existence of the flow

We begin by noticing that since the flow is parabolic, standard methods (see for
example [Friedman 1964]) provide short time existence. Thus, there exists 77 > 0
such that v € C2T!1+/2(M x [0, T1]) is a solution of (0-4). We give two basic
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properties of the flow: the conservation of the volume of M endowed with the
metric g (t) = e'" ) g, and the decreasing along the flow of the functional J,(v(¢)).

Proposition 1.1. (i) Forallt € [0, T1], we have

(1-1) /ev<’>dvzfev0dv.
M M

(1) If0 <ty <t; <Ty, we have

(1-2) Jo(w(t)) = Jp(v(10)).

Proof. To see that (1-1) holds, it is sufficient to integrate (0-4) on M. Differentiating
J,(v(t)) with respect to ¢ and integrating by parts, one finds, for all # € [0, T1],

(1-3) %Jp(v(t)) — /M (%)zev“) v <0.
This implies (1-2). O
Proof of Theorem 0.1. To prove the global existence of the flow, we set

T =sup {T > 0: CHrelFe2pr % [0, T1) contains a solution v of (0—4)},

and suppose that T < +o00. From the definition of 7, we must have a solution
ve ittty 2(M x [0, T)). We show that there exists a constant Cy > 0, depending

loc
onT, M, Q, p, o and |vo|| such that

C2+a (M) °

<Cr.

(1-4) ||U|IC2+oc.l+a/2(Mx[O,T)) =

This estimate allows us to extend v beyond T, contradicting the definition of T'.
In the following, C denotes constants depending on M, Q, p, « and ||vol| ~>1a M)’
while Cy represents constants depending on M, Q, p, o and T.

They are allowed to vary from line to line.

s || vO||C2+"(M)

Proposition 1.2. For all p € R, there exists a constant C 7.1 depending on M, Q, p,

||UO||Cz+a( M) and T, such that

(1-5) WOl gy < 1o ¥2E1O,T).

Moreover, if p < 8w, then there exists a constant c 1 depending on M, Q, p and
| UO||C2+a(M) but not on T such that
(1-6) 0Ol 1 4py < 1 Vi €10, 7).

Proof. We decompose the proof into three steps.
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Step 1. Let p > 8. There exists a constant C, depending on M, Q, p,
and T, such that

||U0||C2+O((M)

1-7) v(x,1) <Cp, VxeM, Viel0,T).

Proof of Step 1. Define vy () =maXyep v(x, t) =v(x;, t) where x, € M. Consider
the upper derivative of v« (?), i.e.,

(1-8)

ivmax(t) = lim sup v(Xypn, t+h)—v(xy, t) _
ot h—0t h

We can assume that vy (7) is differentiable. By the maximum principle, and since
v satisfies (0-4), we find

[y e dv

Umax (1) < - P

0
7™ S gy (uQan(M)

where we use the fact that [}, €' dV = [, e"dV for all t € [0, T). Integrating
this last inequality between O and ¢, we get

fMeUOdV S(
0

+ e Umax (t)>

ot
fM eUO dV)efMevO dv

ev,mx(l) + || Q ||LOC(M) eUmux(O) + ” Q“LOO(M)

and (1-7) follows.

Step 2. Let p > 8. There exists a subset A of M, with volume satisfying |[A| > Cr
for some constant C7 > 0, and a constant § depending on M, Q, p,
and T, such that

||UO||C2+“(M)

(1-9) lv(x, 1) <8, VxeA, Viel0,T).
Proof of Step 2. Fix t € [0, T') and set
M, ={xeM:e'™" <g},

where & > 0 is a real number which will be determined later. Setting [,, ¢™ dV =a,
by the conservation of the volume and (1-7), we have

azfev“)dv:/ e”(’)dV—i—f "D AV < e|M,| 4 ST |M \ M,|.
M M, M\M

Taking ¢ = m we find

(1-10) M\ M| > %e—c’r > 0.

Setting A = M\ M., by definition of M, we have v(x, t) > Ine = In(a/2|M]|) for
all x € A and r € [0, T). On the other hand, by Step 1, v(x, t) < C’T forall x e M
and ¢ € [0, T). Therefore we find that there exists a constant § such that

lv(x,t)| <8, VxeA, Vtel0,T).
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Step 3. Let p > 8x. Forall ¢ € [0, T), we have

(1-11) f V2(1)dV < 01/ IVo(1)|* dV + Ca,
M M

where C, C, are constants depending on 7', Q, |vol|
the set defined in Step 2).

C2ra ()’ M and A (where A is

Proof of Step 3. By Poincaré’s inequality,

2
(1-12) / 2(z)dv<—/ V@) >dV + — I (/ v(t)dV),
M M|

where A, is the first eigenvalue of the Laplacian. Now, using Young’s inequality
and (1-9), we find

| 2
(1-13) M(/l;lv(t)d‘/)
| 2
|M| (/ v(t) dV)
—l—L(/ v(t)alV)2 2 (/v(t)dV)(f v(t)dV)
M1\ J v a M| M\A

T </ ) 262|A|2 (/ )2
< + £ dv + 2 vt dV)
M| IMI\Jya Vo eiM| IMI\Jma (

where ¢ is a positive constant which will be determined later. By the Cauchy—
Schwarz inequality,

2
(1-14) (/ v(t)dV) <|M\A| v2(t)dV.
M\A M\A
Thus, (1-12), (1-13) and (1-14) yield

(1-15) / V2 (1) dV
M

1 2 |A| 2 ~
R VA dv+( _1AL L 2y A)/v(t)dV+C,
M/M' | M) |
where S S
~  SAPR  28%A|
C = " .
M| e|M|

Choosing ¢ such that the factor in parentheses in (1-15) equals @ < 1, we deduce

(l—oz)/ vz(z)dv§i/ IVu(t)>dV +C,
M M Ju

establishing (1-11).
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Proof of Proposition 1.2. We consider separately the cases p < 8w and p > 8.
In the first case, we prove that the constant C; of estimate (1-6) is independent
of T. Using Poincaré’s and Young’s inequalities, we have

C/ lv(t) —v(@)|dV < s/ IVu()|>dV +C,
M M
where ¢ > 0 is a small constant to be chosen later. This implies that

(1-16) J,(v(1)) =
1/ |Vv(t)|2dV+/ Q(v(t)—f)(t))dV—,olog(/ e"“)—ﬁ(’)czv)
2 M M M

> (1 _ 8)/ Vo) dV —C — plog(/ PRIORD dV).
2 M M

By Jensen’s inequality, we have
(1-17) log(f eV =0 dV) >C, Vrel0,T),
M

where v(t) = (fM v(t)dV)/|M|. Hence, using (1-16) and (1-17), and setting
01 = max{p, 0}, we deduce that

J,(w(0) = (% —8>/M|Vv(t)|2dV— C—p 1og(/Me”(’>—f’<’> dV).

By the Moser—Trudinger inequality (see [Moser 1970/71; Trudinger 1967]), one
has
(1-18) log/ POV gy < L/ IVu()|>dV +C.

M 167 Jy,

Therefore
|
J,(w(t) > (5 o s)/ IVu(r)[2dV - C.
M

Thus, by taking ¢ = (87 — p1)/327 and using the fact that J,(v(?)) < J,(vo) for
allt € [0, T), we find that

(1-19) / IVu(0)|>dV <C, Vp < 8x.
M

Now, using (1-19) and Poincaré’s inequality, we obtain

(1-20) lv(@) = vl g1y =C. Yo <8m.

Since [,,e"VdV = [, dV for all 1 € [0, T), using Jensen’s inequality (1-17),
the Moser—Trudinger inequality (1-18) and (1-19), we deduce that

lv(@®)| < C.
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Finally, from (1-20) and the previous inequality, we find that for all p < 8, there
exists a constant C; independent of T such that

(1-21) IOl <Cri VO <T.

We now consider the second case, p > 8. Since f M e’ qy = f M e for all
t €0, T), by Young’s inequality we have

(1-22) Jo(vg) = J,(v) > 1/ |Vv|2dV+/ QudV—C
2 M M

zlf |Vv|2dV—8/ v2(t)dV —C,
2 M M

where ¢ is a positive constant which will be chosen later. Thanks to estimate (1-11)
of Step 3, inequality (1-22) leads to

1/ |Vv(t)|2dV§C—|—C18f IVu(n)[*aVv.
2 u M

Choosing ¢ such that 1/2 —eC; > 0, we find that for all 7 € [0, T'), there exists a
constant Cr > 0 such that

(1-23) / IVu(@®)|>dV < Cr.
M

Combining (1-11) and (1-23), we obtain fM v2(t)dV < Cr. Finally, for all p € R,
there exists a constant Cr,1 > 0 such that

WOl 14y < Cr1s Y2 €10, T). 0

Proposition 1.3. There is a constant c 1.2 >0, depending on M, Q, p,
and T, such that

||UO||C2+°‘(M)

)l yoayy < Cr2s YO<i<T.

Proof. Since ||v||H1(M) < 511, we just need to bound fM(Av(t))de for all
t € [0, T). To this purpose, set

w(t) = _81(;(;) /2,

By differentiating with respect to ¢ and integrating by parts on M, we have

1o 2 4y = w2y o __pe’” 002
yir [ @vorav = [ (w02 0 - L2 A e R av

= - / Vu@Pdv+ / w2 ()| Vo ()P aV + / AQ(w(n)e™OP) av
M M M

Ly £ ( / Voo Ve ay -3 / w(r)e”<”/2|Vv(t)l2dV)-
M M M
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, 0 () o2
Since Q € C*°(M) and w(t) = Te , we find

10 2
(1-24) 5E/M(Av(t)) v
(1)

ot

5—/ |Vw(r)|2dv+1/wz(t)|w(z)|2dv+c”
M 4 Ju L'(M)

+c( f e"<f>/2(|Vw<r>||Vv<r>|+|Vv<r>|2|w<r>|)dV).
M

We now estimate the positive terms on the right of (1-24). From the Gagliardo—
Nirenberg inequality (see for example [Brouttelande 2003]), for all f € H (M),

1A 4 caay < CUEN 2 cany 1 -
Using the Cauchy—Schwarz inequality and (1-5), we have
(1-25) /M w? OV AV < [wOl 7140 VOO 17201,

= CT”w(t)”LZ(M)”w(t)llHl(M)”v(t)“HZ(M)

Using (1-5) and the Moser—Trudinger inequality (1-18), we deduce that there exists
a constant C7 such that, for all € [0, T) and p € R,

(1-26) / e’ qv < Cr.
M
By the same reasoning used to prove (1-25), from (1-5) and (1-26) we have

(1-27) /|Vv(t)|2|w(t)|e”(’)/2dv
M

1/2 1/4 1/4
< (/ |Vv(t)|4dV) (/ w4(t)dV) (/ 2O dV)
M M M

1/2 1/2
< CrlvO o 10Ol g1 10O 55

(1-28) /|Vw(z)||w(t)|ev<‘)/2dv
M

1/2 1/4 1/4
< (f |Vw(t)|2dv) (f |Vv(t)|4dV> (/ 2™ dv>
M M M

1/2
< CrlwO g1y VO 0 -

i v(t) )\ v 2 / —u() V2
(1-29) fM‘—ar |dV§(/M<—at )e dV) | eay

= CT”w(I)”LZ(M)-
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Finally, putting (1-25), (1-27), (1-28) and (1-29) in (1-24), we obtain

10 (Av()?dV < — | |Vw(@®)|>dV
+CT”w(t)”Hl(M)”w(t)“LZ(M)||U(t)”H2(M)+CT“w(t)“L2(M)
1/2 1/2 1/2

Using Young’s inequality, we get

(1-30) %(/M(Av(t))de—i-l) 5CT(fM(Av(z))%zVJr1>(I|w(z)||§2(M)+1).

On the other hand, by (1-3), we have for all t € [0, T)

t t
2 _ v (s) 2 v(s)
(1-31) /Ollw(s)||L2(M)ds_/0 /M<T> ¢'®) dvds

= _/O %Jp(v(s))ds = Jp(vo) — Jp,(v(1)) < Cr,

where we use the fact that ||v(¢)]] oo = C 7,1 from Proposition 1.2. Integrating

(1-30) with respect to ¢ and using (1-31), we have

/(Av(t))de <Cr, Vtel0,T).
M

Since |Jv(?)]| < 57,1, we deduce that there exists a constant GT,2 such that

H(M)
W)l yoay < Crar ¥2E10,T). O

Proof of Theorem 0.1. We recall that to prove the global existence of the flow it
is sufficient to prove (1-4), i.e., there exists a constant Cr depending on 7 and
a € (0, 1) such that

|| v ” C2+ol+e/2(M x[0,T)) =< CT .
First, we claim that for all @ € (0, 1), there exists a constant C7 such that

(1-32) lv(x1, 1) — v(x2, )| < Cr(|t; — t2]*/* + |x1 — x2|%),

forall x;, xp € M and t;, 1, € [0, T'). Here |x; — x| stands for the geodesic distance
from x; to x, with respect to the metric g. From Proposition 1.3, for all ¢ € [0, T")
we have ||v(?) ]| won = C r,2. Thus, by Sobolev’s embedding theorem (see [Hebey
1997]), we find for @ € (0, 1), v(¢) € C*(M) and for all x, y e M,

(1-33) lv(x, 1) —v(y, D] = Crlx —y|.
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If t, —#; > 1, using (1-33) it is easy to see that (1-32) holds. Thus, from now on we
assume that 0 < t, —1; < 1. Since v(¢) is a solution of (0-4) and ||e"") lcaary = Cr
for all t € [0, T') one has

2
22O < criavol + .
Integrating on M, we obtain for all ¢ € [0, T)
v(t) |?
(1-34) [ [P0 av < Criwiisg +cr <cr.
M t
Now, we write
1

(1-35) Jv(x, 1) —v(x, )| = B —0] lv(x, 1) —v(x, )[dV(y),

Vi —t Bm(x)

<P+P+P

where B = (%) stands for the geodesic ball of center x and radius +/f, — t; and

p=-C / e 1) — vy, 1) V),
L=h B o
C

Py = / (. 1) — v(y, 1) V),
27N B o)
C

P; = / v(y, ) —v(x, )| dV(y),
27N I8 o)

Using (1-33), we obtain

(1-36) P < i/ Ix —y[*dV(y) < Cr(ta—1)*">.
h—t Jp Y=t

In the same way, we have

(1-37) Py < Cr(n—n)*/2.

From Holder’s inequality and (1-34) it follows that

(1-38) P,<C sup /
n=<t=<n Bm(x)

<C\/tp—1t; sup (/
n=t=<n Bm(x)

< Cra/th — 1.
Putting (1-36), (1-37) and (1-38) in (1-35), and noticing that /7, — f; < (to —1;)*/?

Ll vav

) 1/2
e r)dV(y)>
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forall0 < —t; <1, we find
(1-39) lu(x, 11) — v(x, 02)| < Cr(ta —11)*/>.

Therefore, from (1-33) and (1-39), we see that (1-32) holds. In view of (1-32), we
may apply the standard regularity theory for parabolic equations (see for example
[Friedman 1964]) to derive the existence of a constant Cy depending on T and
o € (0, 1) such that

||U|IC2+[X'I+O(/2(MX[O,T)) = 6:T~
This establishes the existence part of Theorem 0.1. The uniqueness follows from
Proposition 1.5. (]

Remark 1.4. Following the proof of Theorem 0.1, we see that, for all 7 > 0 fixed,
if Jluol| crraan = K for some constant K > 0, then there exists a constant C7 > 0
depending on K and T such that

”u ||C2+"‘~1+°‘/2(M><[O,T]) =< CT .

Continuity of the flow with respect to its initial data. We now state the continuity
of the flow with respect to its initial data, which will be useful for the proof of
Theorem 0.3 (see Section 2). The proof is standard and we omit it.

Proposition 1.5. Let u, v € C2T*'/2(M x [0, +00)), a € (0, 1) be solutions of

loc
0 e’
YoV = Ap— __ €
8¢ =TTy

v(x,0) =vp(x),

and

ot P ecdv’

u(x, 0) = uo(x),

where ug, vo € C*>T4(M). Then for all T > 0, there exists a constant Ct > 0,

depending on ””0”C2+a(M)’ ”vO”CZ"""(M) and T, such that

(1_40) ”l/l - v||C2+“‘1+”/2(M><[O,T]) =< CT ”I/l() - UOI|C2+’1(M)'

Remark 1.6. One can also prove that, for all 7' > 0 fixed, if [|uoll 214 an = K
and ||vg|| C2a () < K, for some constants K, K, > 0, then there exists a constant
Cr > 0 depending on K, K, and T such that

”M - UHC2+O‘*1+°{/2(MX[O,T]) =< CT ||M() - UO||C2+°((M)'
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2. Convergence of the flow

This section is devoted to the proof of Theorems 0.2, 0.3 and 0.4.

Proof of Theorem 0.2. Let v: M x [0, +00) — R be the global solution of (0-4).
Throughout this subsection, we assume without loss of generality that || M e’V dv =
1 for all # > 0. C will denote constants not depending on ¢.

In order to prove Theorem 0.2, we need to bound ||v(?)|| H2(M? t > 0 uniformly
in time. For this, we first bound |[v(#) || ,, amytZ 0 uniformly in time. To bound
v, (> We use the compactness result of Theorem 0.5. More precisely, using
Theorem 0.5, we first prove that there exists a sequence (¢,), with lim,_, 1o 1, =
400 such that

”v(tn)”hﬂ(M) S Ca Vi’l Z O

Therefore we aim to prove that there exists a sequence (,),, lim,— 4~ #;, = 400,
such that, setting v, = v(t,) and h, = —(dv/dt)(t,), the sequence (v,), < H*(M)
satisfies conditions (0-8) of Theorem 0.5. First, we show that there exists a sequence
(th)n, lim,— 1 o t, = +00, such that (0-8)(i) is satisfied for v, = v(z,). Recall that
forall T > 0,

T
/0 /M(%)zevm dvdt = J,((0)) = J, (v(T)).

Using hypothesis (2-5), we deduce that there exists a sequence (#,), such that
n<t,<n+1,foralln € N, and

. v (ty)
(2-1) lim /M}T

n—+o00

2e”(”') dv =0.

The next proposition shows that condition (0-8)(ii) of Theorem 0.5 is satisfied.

Proposition 2.1. We have

v(x,t)
(2-2) —867 Fpe’™) > _C. Vi>0, VxeM.
Proof. Set

R(x,1) =€ "™ (=Av(x, 1) + Q(x)).
We can rewrite equation (0-4), satisfied by v, in the form

dv(x, 1) _ .
T (R(x,1) — p).
Hence

OR(x,1)

ot

Define Rpin(#) = min,cp R(x, t). Using the maximum principle (as in (1-8), we

=R(x,1)(R(x,1) — p) + e "“DAR(x, 1).
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may assume that Ry, (¢) is differentiable), we find

8Rmin (t)
dt

Integrate between O and ¢ to obtain

> —pRuin(1).

Ruin(1) > e P! Rmin(0).

This implies that

8ev(x,t)
T

Set vmax () = max, ¢y v(x, t). By the maximum principle, we have

(2—3) +,0€v(x’t) > _|Rmin(0)|€_pt+v(x’t).

d Vmax (1) 1 Umax (1)
5 = o (S 1y et ).

Integrating again between 0 and ¢, we get
ax(D)— , 1 1 _
(2_4) evmax(t) pt < eUmax(O) +;||Q||L°°(M) — ;”Q”LOO(M)E pt < C.

Combining (2-3) and (2-4), we finally conclude

v(x,t)
04 pet D = —ClRyin(0)] = —C. O

We are now in position to bound |[v(t)]| t > 0, uniformly in time.

H! (M) )
Proposition 2.2. Let p € (8km, 8(k+1)1), k € N* and v(t) : M — R be the solution
of (0-4). Suppose that

(2-5) J,(v(t)) > —C, Vi=>0.

Then there exists a constant C, depending on M, Q, p, o and ||vol| 24« ) but not
on T, such that

(2-6) WOl gy <C. V220

Proof. Thanks to (2-1) and (2-2), from Theorem 0.5 there exists a constant C > 0
such that

”v(t”)”Hz(M) E Ca
where (7,), is the sequence defined in (2-1). By Sobolev’s embedding theorem, it
follows that ||v(tn)||ca(M) < C forall @ € (0, 1). Since lim,,—, 4 1, = 400, for all

sufficiently large ¢ > 0O there exists n € N such that ¢, <t <t,;. Moreover, since
[th+1 — 1, <2, we have |t —t,| < 2. We claim that for all p > 1,

(2-7) / ePPO gy <C, Vi>0.
M
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Since v () satisfies (0-4), integrating by parts and using Young’s inequality, we see
that

9 / PV gy
at |y

=—pp— 1)/ Vo ()| 2P~ gy — p/ Qe P~ gy + pﬁf e’ ™ dy
M M aJm

< C/ (=D dv+p£/ PO gy
M am

IA

c+cC / eP'® gy,
M

Setting y(1) = | wel V(™ @V and integrating the previous inequality between f,, and
t, it follows that

y(t) < e y(t,) +C (€T — 1),

Since lv@)llcapry = C, @ € (0, 1), and |t —t,,| <2, we have that (2-7) is satisfied.
Fix t > 0 and set

M, ={xeM:e'™) <¢},

where ¢ > 0 is a real number which will be determined shortly. We have

(2-8) 1= / e’y = / e’V av + / e’V av
M ¢ M\M,

1/p
55|Me|+|M\M8|1_1/1’(f eP”(’>dV> .
M

1

Thus, taking € = M)

(2-7) implies
I <CIM\M,|'7VP.

Since p > 1, we get

.9 MM > 1 \»/(p=D
2-9) MM = (55) >
Set A = M\M,, so that

|
(2-10) /Av(t)dV > 1n(2|M|)|A|.

On the other hand, we have

/v(t)dVg/e“(’)dV <1.
A A
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From this inequality and (2-10), we deduce that there exists a constant C such that

fv(t) av
A

Arguing the same way as in Proposition 1.2, (2-9) and (2-11) imply that there exists
a constant C not depending on ¢ such that, for all # > 0,

2-11) <C.

1@ g1 4g) < C- 0

Proof of Theorem 0.2. First, we prove that
(2-12) /(Av(r))2dV <C, V>0
M

following the arguments of Brendle [2003]. Set

(1)

Vi ==

and
y(t) = f V2(1)e'™ av.
M

We claim that lim;_, ;o y(¢) = 0. By (2-6), we have for all T > 0

T
(2-13) / / (a”—“))ze”“) dvdt < J,(v(0)) — J,((T)) < C,

where C is a constant not depending on 7. Let ¢ be some positive real number.
From (2-13), we deduce that there exists 7o > 0 such that y(#y) < e.
We want to prove that
y() <3e, Vt=>r.

Otherwise, define
t) =inf{r >ty : y(t) > 3¢} < +o00.

This implies that

(2-14) y(t) < 3¢, Vl‘() <t<ft.
Since dv(r) =e¢ YO (Av(t) — Q) + p, using (2-14) we arrive at
Y, £
(2-15) f e "D (Av(t) — Q)P dV =y(t) +p* <C1, Vig<t =1,
M

where C; denotes a constant depending on &, and thus on ¢;. From (2-7), we have
forallt >0

(2-16) f e gy <,
M
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with C independent of ¢;. Using Holder’s inequality, (2-15) and (2-16), we obtain
forall to <t <1

3/4 1/4
/ |Av() — Q)/?dV < </ e VD(Av(r) — Q)de) </ v dV) <C.
M M M

Thus, fM |Av(t)]3/?dV < C, for all t) <t < t;. From Sobolev’s embedding
theorem, we get

(2-17) @) <Ci, Vtg<t=<t.

On the other hand, we see that V (1) = dv(¢)/0d¢ satisfies

V() _
or

Now, using (2-18), we have for all 1o <t <t

dy(t) _ 0 20\ ()
= at(fﬂlv (t)e dV)

= 2/ V(l‘)ev(t) (e—v(t)AV(l‘) — V(t)e—v(l)Av(t) + QV(t)e—v(t)) dv
M

(2-18) V(e "D Av(t) +e VDAV (1) + QV (1)e .

+ / V3i(0)e'™ av
M

Integrating by parts, we obtain

(2—19) %:_2/ |VV(Z)|2dV—/ V3(t)ev(t) dv+2pf Vz(t)e”(”dv.
M M M

The Gagliardo—Nirenberg inequality now gives

2/3 1/3
||V(l)||L)3Z1(M) < CllV(t)llLél(M)llV(f)llH;l(M),

where the norms are taken with respect to the metric g;(¢) = e”(’)g. From (2-17),
notice that the first eigenvalue of the Laplacian A;(¢) with respect to the metric
g1(¢) satisfies, for all tp <t <1y,

(2-20) r(t) = Cy.

Combining |, y Ve’ dV =0, Poincaré’s inequality and (2-20), we have

1/2
(2-21) /e”|V|3dV§C1(/ V2e"dv></ |VV|2dV) .
M M M

Thus we obtain, from (2-19), (2-21) and Young’s inequality,

2
i(/ Vze”dV>§C1</ Vze“dV) +c(/ Vze”dv>,
at \Jy M M
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1.€.,

Ly =0+,

Since y(f9) < € and y(t;) = 3¢, we find
n
2e < y(t1) — y(to) < (Ci +C)/ y(t)dr.
To

Choosing 1y large enough, we have (C; + C) ft;roo y(t) dt < g, and thus we obtain
a contradiction. We conclude that

y(1) S 0,

— 400
and thereby find #; = +o00. This implies that all previous estimates hold for all
t > 0. Thus, for all # > 0 we have |v(¢)| < C and

/ e 'D(Av@) — 0)*dV < C.
M

It follows that, for all r > 0, [, (Av(r))*dV < C.
Thus, using (2-6), for all # > 0 we have [[v(®) |l an = C. Therefore, there exist
a function ve € H2(M) and a sequence (t,), with lim,_, ;oo t, = +00 such that

v(t,) —> v weakly in Hz(M)
n—+00
and

v(ty) —> Vs in C*(M), o € (0, 1).
n—+00

It is easy to check that v is a solution to
eve

et dv’

and, by bootstrap regularity arguments, we have v, € C°®(M). To obtain that
lv(,) — voo||H2(M) — 0, notice that
n——+00

M

/(Av(z‘n) — Avs)2dV
M

2
— B Voo __ v(ty) 8ev(tn)
= /M<a (e e )+ 37 dv

2
gc/ (e“w—e"<’n>)2dv+cf Wi e av — o

n—+o00

Since the flow is a gradient flow for the functional J,, which is real analytic,
from a general result of Simon [1983] we finally obtain that

||U(t)_voo||H2(M) n—>_+)oo 0. U
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Proof of Theorem 0.3. We prove the existence of an initial data vg € C*°(M) for
the flow (0-4) such that the functional J,(v(t)), t > 0, is uniformly bounded from
below. From standard parabolic theory, it is easy to see that for vg € C*°(M), the
solution v of (0-4) belongs to C*°(M x [0, +00)).

Let X be the space of functions C*°(M) endowed with the norm || -
and define

” C2+”(M)’

®: X x [0, +00) — C®(M x [0, +00))

by letting ® (v, t) be a solution of

0P, 1) _  _ow _ ,—®(,0) P
T_e AdP(v,t)—e Q+W—w)dv,
D (v,0)=v.

Suppose that for all v € X, we have
(2-22) Jo(®(v, 1)) —> —o0.
t—+00

Let L > 0. Following the same arguments as in [Malchiodi 2008], one can show that
there exists L > 0 such that {v € X : J,(v) < —L} is not contractible. However,
we prove that if (2-22) is satisfied then {v € X : J,(v) < —L} is contractible. We
proceed in two steps.

Step 1. Let L > 0 be fixed and
T,=inf{t >0: J,(P(v,1)) <—L},
then the function T : C*t%(M) — R, v > T, is continuous.
Proof of Step 1. From (2-22), we have
(t=0:J,(P(v.1) <—L} #2.

and from the uniqueness of solutions of (0-4) having the same initial data, one
can prove that J,(® (v, 1)) is strictly decreasing on [0, +-00). Let v € C*°(M) and
(Vp)n € C*(M) be a sequence such that lim,,_, 1 » v, = ¥ in C*te(M). We claim
that lim,,—, yo0 Ty.n = T3. To prove this, we consider two cases depending on the
value of J,(v).

First case. Suppose that J,(v) < —L. Since the function t — J,(®(v, 1)) is
decreasing, we have J,(® (v, 1)) < —L for all > 0. We deduce that 7; = 0. Since
lim,,— 100 v, =V in C* (M), it is easy to see that

Jp(vn) n—>_+>oo Jp(l_))-
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Thus, there exists ng € N such that J,(v,) < —L for all n > ng. So, we obtain that
T,, =0=T; for all n > ny. This implies that

T, —> T;.
Un n—+400 v

Second case. Suppose that J,(v) > —L. In this case, T verifies J,(® (v, T;)) = —L.
Setting 7, := T,, and supposing that 7, does not converge to T3, then, up to
extracting a subsequence, there exists &9 > 0 such that |7;,, — T;| > 9. So we have
T, >¢eo+ T; or T, < —eo + T;. Suppose, without loss of generality, that

(2-23) T, > e+ T;.

Set T =T; 4+ &9+ 1. Since lim;,, ;oo v, = v in C*te (M) by Proposition 1.5, it is
easy to see that

(2-24) Jp( @, 1)) = Jp(®(B.1),
for all 7 fixed in [0, T']. Since t — J,(P (v, 1)) is strictly decreasing, we have
a1 =J, (P, Tp)) — Jp(P (v, T; +&9)) > 0.
From (2-24), since T; + &9 € [0, T], we get
Jp (@ (vy, T + £0)) e Jp (@, T; +89)) = —L — oy,

and from (2-23),
J,o((p(vn, T,)) < J,o((p(vn, T; + €9)).

This implies that, if n tends to +00, —L < —L — . Thus we obtain a contradiction.

Step 2. If (2-22) holds, then the set {v € X : J,(v) < —L} is contractible.

Proof of Step 2. We construct a deformation retract from {v € X} into {v € X :
J,(v) < —L}. Since {v € X} is contractible, {v € X : J,(v) < —L} must also be
contractible. We denote by 4 the one-to-one function defined by

h(t) 1[0, 1) = [0, 400), 1> T,
and by n(v, t) : X x [0, 1] = X the function defined by

O, h()) ifh@) <T,,

”(v”):{cb(v,Tv) ifh(t)>T,.

First we prove that n = ® o ®; : X x [0,1) — X is continuous, in which
®;: X x[0,1) > X x [0, +00) is the function defined by
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(v, h(r)) ifh() <Ty,

Prlv. 0= {<v, T,) ifh(t)>T,.

From Step 1, ®; : X x [0, 1) — X x [0, +00) is a continuous function. Therefore,
to prove that 7 is a continuous map from X x [0, 1) — X, it is sufficient to prove
that, for T > 0 fixed, ® : X x [0, T] — X is continuous.

Let (v, t,) € C*°(M) x [0, T] be such that lim,,_, o v, = v in C**(M), where
veC®(M)andlim, o t, =t €[0, T]. Then we have

(2-25) [ . 1) = P, Dl caraar,
< 1P W 1) = D Was Dl vy + 19 Wns 1) = D@L 21 -
Since ® (v, -) € C*°(M x [0, T]), Theorem 0.1 implies that for all ¢ € [0, T,
H ad(v,, 1) ‘
ot

<Cr,
C2+D‘(M)_ r

where Cr denotes a constant not depending on n. We deduce that
226) [ Wn. 1) = P D)l 2ty

/t 0D (vy, 5) ds
t,. as

C2+°‘(M)
0P (v, 5) ‘
as

<|t, —t| max

— 0.
s€[ty,t] C2ta (M) n—>+00

On the other hand, using Proposition 1.5, we have for all ¢ € [0, T']

(2-27) 19 1) = S, Dllgarayyy < Crllvn = Vllgaragyyy — 0.

n—+00

Combining (2-25) , (2-26) and (2-27), we find that

19 @n 1) = D, Dll oty , = O
Thus 7 is continuous from X x [0, 1) — X. It remains to prove that it is continuous
on X x [0, 1]. Let (v,,t,) € C*°(M) x [0, 1] be such that lim,_, ; » v, = v in
C*+* (M), where v € C®(M), and lim,,, y oo t, = 1. From Step 1, we have

T, =T, — T;.
Un T

Since T, is finite and lim,,_, . » t, = 1, it follows that lim,_, 1~ A (t,;) = +00. So,
for sufficiently large n, h(¢,) > T, and thus n(v,, t,) = ®(v,, T,). We have, in the
same way as (2-26) and (2-27), that
||n(vl’lv t}’l) - 7’)(1_), 1)“C2+D‘(M)

= ”q)(vna Tn) - (D(l_)v Tf))”c2+a(M)

< 10@n T) = D@, Tl 2va gy + 19 F, T) = 0. Tl c2vaqusy , <22, O
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Therefore 7 is continuous from X x [0, 1] —> X.
Now it is easy to check that n is a deformation retract from X into the set
{ve X :J,(v) <—L}. Hence this set is contractible. O

Nonconvergence of the flow: proof of Theorem 0.4. To prove Theorem 0.4, it is
sufficient to prove that there exists a real number C > 0 depending on M, Q and p
such that, for all vg € C** (M) satisfying J,(vo) < —C, the solution v(¢) of the
flow (0-4), with v(x, 0) = vo(x) for all x € M, satisfies

Jo(v(1)) t_)—+>oo —00.

We recall (see [Li 1999]) that there exists a constant Cp > 0 depending on M, Q
and p such that

(2_28) ||w||C2+D‘(M) S CO
for any solution w € C* (M), o € (0, 1), of

__ pe”
—Aw+Q—fMe—de.

Since J,(v(t)) is decreasing, if lim,_, ;o J,(v(¢)) # —00 then there exists L € R
such that

J,(w(t))>L, Vtel0,+00).
From Theorem 0.2, there is a function vy, € C*° (M) such that

||U(l’) - vOO”HZ(M) t:)oo O
which is a solution of

pe’>

(2—29) —Avoo + Q = fe“—oodV
M

It follows that
|| Voo ”CZJ”"(M) < C(),

where Cy is the constant defined in (2-28). This implies that there exists a constant
C depending on M, Q, p and Cy such that

J(woo) = —C.
Since J,(v(t1)) < J,(v(t2)), for all 1 > 1, we have
Jp (o) > Jp(veo) = —C.

However, J,(v9) < —C by hypothesis. Therefore, by choosing C > C, we get a
contradiction. O
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