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JIANCHUN CHU

We consider the complex Monge–Ampère equation on compact manifolds
when the background metric is a Hermitian metric (in complex dimension 2)
or a Hermitian metric satisfying an additional condition (in higher dimen-
sions). We prove that the Laplacian estimate holds when F is in W 1,q0 for
any q0 > 2n. As an application, we show that, up to scaling, there exists a
unique classical solution in W 3,q0 for the complex Monge–Ampère equation
when F is in W 1,q0 .

1. Introduction

We consider the regularity problem of the complex Monge–Ampère equation on
some compact Hermitian manifolds. Let (M, g) be a compact Hermitian manifold
of complex dimension n ≥ 2. For a real-valued function F on M , we consider the
Monge–Ampère equation

det(gi ̄ +φi ̄ )= eF det(gi j ),

with (gi ̄ +φi ̄ ) > 0, for a real-valued function φ such that supM φ =−1. We write

ω =
√
−1gi ̄ dzi

∧ dz̄ j and ω̃ =
√
−1g̃i ̄ dzi

∧ dz̄ j ,

where g̃i ̄ = gi ̄ +φi ̄ . Thus, the Monge–Ampère equation can be written as

(1-1)


ω̃n
= eFωn,

ω̃ = ω+
√
−1 ∂∂̄φ > 0,

supM φ =−1.

For functions f, h and a holomorphic coordinate z = (z1, . . . , zn) we write

fi ̄ =
∂2 f
∂zi∂ z̄ j , 1 f = gi ̄ fi ̄ , 1̃ f = g̃i ̄ fi ̄ ,

|∇ f |2 = gi ̄ fi f̄ , |∇̃ f |2 = g̃i ̄ fi f̄ , 〈∇ f,∇h〉 = gi ̄ fi h ̄ .
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We use ‖ f ‖L p(M,ω) and ‖∇m f ‖L p(M,ω) to denote the corresponding norms with
respect to (M, ω).

When ω is Kähler, the complex Monge–Ampère equation is very important.
Calabi [1957] presented his famous conjecture and transformed that problem into
(1-1). Yau [1978] proved the existence of the classical solution of (1-1) by using
the continuity method and solved Calabi’s conjecture.

The Dirichlet problem for the complex Monge–Ampère equation is also very
important. Bedford and Taylor [1976; 1982] studied the weak solution. After their
work, weak solutions of the complex Monge–Ampère equation have been studied
extensively. There are many existence, uniqueness and regularity results of the
complex Monge–Ampère equation under different conditions, and we refer the
reader to [Błocki 2005; Demailly and Pali 2010; Dinew 2009; Eyssidieux et al.
2009; Guedj and Zeriahi 2007; Kołodziej 1998; 2008; Zhang 2006].

On the other hand, the classical solvability of the Dirichlet problem was estab-
lished by Caffarelli, Kohn, Nirenberg and Spruck [1985] for strongly pseudoconvex
domains in Cn . The reader can also see [Krylov 1989; Krylov 1994]. For further
information, we refer the reader to [Phong et al. 2012], which is a survey of some
recent developments in the theory of the complex Monge–Ampère equation.

When ω is not Kähler, the existence of the solution of the complex Monge–
Ampère equation has been studied under some assumptions on ω (see [Cherrier
1987; Guan and Li 2009; Hanani 1996; Tosatti and Weinkove 2010b]). For a general
ω, Tosatti and Weinkove [2010a] obtained the key C0-estimate. As an application,
they showed that, up to scaling, the complex Monge–Ampère equation on a compact
Hermitian manifold admits a smooth solution when the right hand side F is smooth.

Chen and He [2012] have proved that, on a compact Kähler manifold of complex
dimension n, the Laplacian estimate and the gradient estimate hold and there exists
a classical solution in W 3,q0 for the complex Monge–Ampère equation when the
right-hand side F is in W 1,q0 for any q0 > 2n.

In this paper, we generalize the work of Chen and He. We use a different method
(we don’t need the gradient estimate to get the Laplacian estimate) to consider
the regularity problem of (1-1) on some compact Hermitian manifolds (including
compact Kähler manifolds).

Definition 1.1. A compact Hermitian manifold (M, ω) of complex dimension n
satisfies condition (∗) if, for any φ ∈ C2(M) such that

ω̃ = ω+
√
−1 ∂∂̄φ > 0, ‖φ‖L∞(M,ω) ≤31 and 3−1

2 ωn
≤ ω̃n

≤32ω
n,

there exists a constant C = C(31,32,M, ω) such that

−Cωn
≤
√
−1∂∂̄ω̃n−1

≤ Cωn.
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Remark 1.2. When n = 2, condition (∗) is trivial. Since

∂∂̄ω̃ = ∂∂̄ω,

all compact Hermitian manifolds of complex dimension 2 satisfy condition (∗).

Remark 1.3. When n = 3, if (M, ω) is a compact Hermitian manifold satisfying

∂∂̄ω = 0,

then we have

∂∂̄ω̃2
= 2∂ω∧ ∂̄ω,

which implies this Hermitian manifold (M, ω) satisfies condition (∗).

Remark 1.4. When n ≥ 4, condition (∗) is not a very strong restricted condition.
For example, if (M, ω) is a compact Hermitian manifold satisfying

(1-2) ∂∂̄ω = 0 and ∂∂̄ω2
= 0,

then we can conclude that ∂∂̄ωk
= 0 for all 1≤ k ≤ n− 1 (see, for example, [Fino

and Tomassini 2011]), which implies that ∂∂̄ω̃k
= 0 for all 1 ≤ k ≤ n− 1. Thus,

such a Hermitian manifold (satisfying (1-2)) satisfies condition (∗). For example,
the products of a complex curve with a Kähler metric and a complex surface with
a non-Kähler Gauduchon metric satisfy (1-2). More examples are constructed in
[Fino and Tomassini 2011].

Remark 1.5. All compact Kähler manifolds satisfy condition (∗).

Now, we state our Laplacian estimate as follows.

Theorem 1.6. Let (M,ω) be a compact Hermitian manifold of complex dimension n.
Assume that either

(1) n = 2, or

(2) n ≥ 3 and (M, ω) satisfies condition (∗).

For any q0 > 2n, if φ is a smooth solution of (1-1), then

‖n+1φ‖L∞(M,ω) ≤ C(‖F‖W 1,q0 (M,ω), q0,M, ω).

Usually, we need the gradient estimate to derive the Laplacian estimate. However,
the computation on Hermitian manifolds is more complicated due to the existence
of torsion terms. As a result, the gradient estimate is very difficult to obtain. In
order to solve this problem, we introduce a new method to obtain the Laplacian
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estimate directly. By using Moser’s iteration [1960], L p estimates (for example, see
[Gilbarg and Trudinger 1977]) and some interpolation inequalities, we can obtain
the Laplacian estimate without doing any calculations involving the gradient, which
makes the argument simpler and clearer. Therefore, we believe that our ideas can
be applied to other nonlinear equations on compact manifolds.

As an application of Theorem 1.6, we have the following theorem:

Theorem 1.7. Assume that (M, ω) satisfies condition (1) or (2) of Theorem 1.6.
Let F be a function in W 1,q0 for any q0 > 2n. Then there exist a function φ ∈W 3,q0

and a constant b such that
ω̃n
= eF+bωn,

ω̃ = ω+
√
−1∂∂̄φ > 0,

supM φ =−1.

2. Some preliminary computations

We need the following C0-estimate from [Tosatti and Weinkove 2010a]:

Theorem 2.1. For any compact Hermitian manifold (M, ω), if φ is a smooth
solution of (1-1), then we have

‖φ‖L∞(M,ω) ≤ C,

where C = C(supM F,M, ω).

We need the following lemma from [Tosatti and Weinkove 2015]:

Lemma 2.2. Let (M, ω) be a compact Hermitian manifold of complex dimension n.
If φ is a smooth solution of (1-1), then, for any ε > 0, we have

(2-1) 1̃(1φ)+ (ε− 1)
|∇̃(1φ)|2

(n+1φ)
≥1F − A(1+ 1/ε)(n+1φ)(n− 1̃φ),

where A = A(M, ω, ‖F‖L∞(M,ω)).

Proof. We need the following equation, which is [Tosatti and Weinkove 2015, (9.5)]:

1̃(log(trg g̃))≥
2

(trg g̃)2
Re(g̃kl̄ T i

ik(trg g̃)l̄)+
1F
trg g̃
−C1 trg̃ g−C1,

where the tensor T is the torsion of (M, ω) and C1=C1(M, ω, ‖F‖L∞(M,ω)). After
some calculations, we have

1̃(1φ)−
|∇̃(1φ)|2

(n+1φ)
≥

2
(n+1φ)

Re(g̃kl̄ T i
ik(1φ)l̄)+1F−C2(n+1φ)(n− 1̃φ),
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where C2 =C2(M, ω, ‖F‖L∞(M,ω)); we have used that trg̃ g= (n−1̃φ)≥ ne−F/n .
By the Cauchy–Schwarz inequality, for any ε > 0, we have that

1̃(1φ)−
|∇̃(1φ)|2

(n+1φ)

≥−ε
|∇̃(1φ)|2

(n+1φ)
−

A
ε
(n+1φ)(n− 1̃φ)+1F − A(n+1φ)(n− 1̃φ),

where A = A(M, ω, ‖F‖L∞(M,ω)) and we have used that (n+1φ)≥ neF/n . �

Lemma 2.3. Let (M, ω) be a compact Hermitian manifold of complex dimension n.
If φ is a smooth solution of (1-1), then, for any p ≥ 1, we have

1̃(e f p(φ)(n+1φ)p)

≥ C1(p)(n+1φ)p+ 1
n−1 −C2(p)(n+1φ)p

+ pe f p(φ)(n+1φ)p−11F,

where

f p(φ)= e−A(p+3)φ, A = A(‖F‖L∞(M,ω),M, ω),

C1(p)= C1(p, ‖F‖L∞(M,ω),M, ω), C2(p)= C2(p, ‖F‖L∞(M,ω),M, ω).

Proof. By direct calculation, we have

(2-2) 1̃(e f p(φ)(n+1φ)p)

= f ′pe f p(φ)(1̃φ)(n+1φ)p
+( f ′2p + f ′′p )e

f p(φ)|∇̃φ|2(n+1φ)p

+pe f p(φ)1̃(1φ)(n+1φ)p−1
+ p(p−1)e f p(φ)|∇̃(1φ)|2(n+1φ)p−2

+2p f ′pe f p(φ)(n+1φ)p−1 Re(g̃kl̄φk(1φ)l̄).

By the definition of f p(φ), we have

(2-3)
{

f ′p(φ)=−A(p+ 3)e−A(p+3)φ < 0,
f ′′p (φ)= A2(p+ 3)2e−A(p+3)φ > 0.

Thus, by the Cauchy–Schwarz inequality, we have

2 Re(g̃kl̄φk(1φ)l̄)≤
( f ′2p + f ′′p )(n+1φ)

−p f ′p
|∇̃φ|2+

−p f ′p
( f ′2p + f ′′p )(n+1φ)

|∇̃(1φ)|2,

which implies that

(2-4) 2p f ′pe f p(φ)(n+1φ)p−1 Re(g̃kl̄φk(1φ)l̄)

≥−( f ′2p + f ′′p )e
f p(φ)|∇̃φ|2(n+1φ)p

−
p2 f ′2p

f ′2p + f ′′p
e f p(φ)(n+1φ)p−2

|∇̃(1φ)|2.



374 JIANCHUN CHU

Combining (2-2) and (2-4), we have

1̃(e f p(φ)(n+1φ)p)

≥ f ′pe f p(φ)(n+1φ)p1̃φ+ pe f p(φ)1̃(1φ)(n+1φ)p−1

+ |∇̃(1φ)|2(n+1φ)p−2e f p(φ)

(
p(p− 1)−

p2 f ′2p

f ′2p + f ′′p

)
≥ pe f p(φ)(n+1φ)p−1

(
1̃(1φ)+

( p f ′′p
( f ′p)2+ f ′′p

− 1
)
|∇̃(1φ)|2

(n+1φ)

)
+ f ′pe f p(φ)(n+1φ)p1̃φ.

By Lemma 2.2 (take ε = p f ′′p /(( f ′p)
2
+ f ′′p )), we obtain

(2-5) 1̃(e f p(φ)(n+1φ)p)

≥ f ′pe f p(φ)(n+1φ)p1̃φ+ pe f p(φ)(n+1φ)p−11F

− Ape f p(φ)(n+1φ)p(n− 1̃φ)
(

1+
( f ′p)

2
+ f ′′p

p f ′′p

)
= n f ′pe f p(φ)(n+1φ)p

+ pe f p(φ)(n+1φ)p−11F

+ e f p(φ)(n+1φ)p(n− 1̃φ)
(
− f ′p − Ap

(
1+

( f ′p)
2
+ f ′′p

p f ′′p

))
≥ n f ′pe f p(φ)(n+1φ)p

+ pe f p(φ)(n+1φ)p−11F

+ Ae f p(φ)(n+1φ)p(n− 1̃φ),

where we have used that supM φ =−1 and (2-3). It is clear that

trg g̃ ≤ (trg̃ g)n−1 det g̃
det g

,

which implies that

(2-6) (n+1φ)≤ (n− 1̃φ)n−1eF .

Combining this with (2-5) and (2-6), the proof is complete. �

For convenience, we introduce some notation here: we set

(2-7) u = e f1(φ)(n+1φ).

Thus, by Young’s inequality and Lemma 2.3, we have

(2-8) 1̃u ≥ e f1(φ)1F − C̃,

where C̃ = C̃(‖F‖L∞(M,ω),M, ω).
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3. The Laplacian estimate

We remark that in this section our constants may differ from line to line.

Lemma 3.1. Let (M, ω) be a compact Hermitian manifold. If φ is a smooth solution
of (1-1), then, for any f ∈ C∞(M), we have

|∇ f |2 ≤ Cu|∇̃ f |2,

where u is defined in (2-7) and C = C(‖F‖L∞(M,ω),M, ω).

Proof. By direct calculation, we have

|∇ f |2 ≤ (n+1φ)|∇̃ f |2.

Combining this with (2-7) and Theorem 2.1, the proof is complete. �

Lemma 3.2. Under the assumptions of Theorem 1.6, for any p ≥ 0, we have∫
M
|∇(u

p
2 )|2ωn

≤ C(p2
+ 1)

∫
M

u p(1+ |∇F |2)ωn
+Cp

∫
M

u p
|∇φ||∇F |ωn

+C
∫

M
u p+1ωn,

where u is defined in (2-7) and C = C(‖F‖L∞(M,ω),M, ω).

Proof. By Lemma 3.1 and direct calculation, we have∫
M
|∇(u

p
2 )|2ωn

≤ C1

∫
M

u|∇̃(u
p
2 )|2ω̃n

= C1np
√
−1

∫
M
∂u p
∧ ∂̄u∧ω̃n−1

=−C1np
√
−1

∫
M

u p ∂∂̄u∧ω̃n−1
+

C1np
p+1

√
−1

∫
M
∂̄u p+1

∧∂ω̃n−1

=−C1 p
∫

M
u p(1̃u)ω̃n

−
C1np
p+1

√
−1

∫
M

u p+1 ∂∂̄ω̃n−1,

where C1 = C1(‖F‖L∞(M,ω),M, ω). Since M satisfies condition (∗) (when n = 2,
all Hermitian manifolds satisfy condition (∗)), we have

−
C1np
p+ 1

√
−1

∫
M

u p+1 ∂∂̄ω̃n−1
≤ C2

∫
M

u p+1ωn,

where C2 = C2(‖F‖L∞(M,ω),M, ω) (Since n = dimC M , we can absorb it into the
constant C2). By (2-8) and ω̃n

= eFωn , we obtain
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−C1 p
∫

M
u p(1̃u)ω̃n

≤ C3 p
∫

M
u p(C̃−e f1(φ)1F)ω̃n

≤ C3C̃ p
∫

M
u pω̃n
−C3 p

∫
M

e f1(φ)u p(1(eF )−eF
|∇F |2)ωn

≤ C4 p
∫

M
u p(1+|∇F |2)ωn

+C3 p
∫

M
〈∇(e f1(φ)u p),∇(eF )〉ωn

−
√
−1C3np

∫
M

e f1(φ)u p∂̄eF
∧∂ωn−1,

where C3 = C3(‖F‖L∞(M,ω),M, ω),C4 = C4(‖F‖L∞(M,ω),M, ω). It is clear that

C3 p
∫

M
〈∇(e f1(φ)u p),∇(eF )〉ωn

= C3 p
∫

M
u p
〈∇(e f1(φ)),∇(eF )〉ωn

+C3 p
∫

M
e f1(φ)〈∇(u p),∇(eF )〉ωn

≤ C5 p
∫

M
u p
|∇F ||∇φ|ωn

+
1
2

∫
M
|∇u

p
2 |

2ωn
+C5 p2

∫
M

u p
|∇F |2ωn,

where C5 = C5(‖F‖L∞(M,ω),M, ω). Here we have used the Cauchy–Schwarz
inequality. We notice that

−
√
−1C3np

∫
M

e f1(φ)u p ∂̄eF
∧ ∂ωn−1

≤ C6 p
∫

M
u p
|∇F |ωn,

where C6 = C6(‖F‖L∞(M,ω),M, ω) (Since n = dimC M , we can absorb it into the
constant C6). Combining the above inequalities, we complete the proof. �

Theorem 3.3. Under the assumptions of Theorem 1.6, we have

‖u‖L∞(M,ω) ≤ C
(
‖u‖

L
q0
2 (M,ω)

, ‖F‖W 1,q0 (M,ω), q0,M, ω
)
.

Proof. Without loss of generality, we can assume that q0 < ∞. We use the
iteration method (see [Moser 1960]). By the Sobolev inequality (Corollary A.2)
and Lemma 3.2, for p ≥ 1 we have(∫

M
u pβωn

)1
β

≤ C1

∫
M

u pωn
+C1

∫
M
|∇(u

p
2 )|2ωn

≤ C1

∫
M

u pωn
+C1 p2

∫
M

u p(1+ |∇F |2)ωn

+C1 p
∫

M
u p
|∇φ||∇F |ωn

+C1

∫
M

u p+1ωn

≤ C1 p2
∫

M
u p+1ωn

+C1 p2
∫

M
u p
|∇F |2ωn

+C1 p2
∫

M
u p
|∇φ||∇F |ωn,
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where β = n/(n−1) and C1=C1(‖F‖L∞(M,ω),M, ω). Here we have used Young’s
inequality and the inequality p ≤ p2. By the Hölder inequality, we have∫

M
u p
|∇F |2ωn

≤

(∫
M

u pr0ωn
) 1

r0
(∫

M
|∇F |q0ωn

) 2
q0

and∫
M

u p
|∇φ||∇F |ωn

≤

(∫
M

u pr0ωn
) 1

r0
(∫

M
|∇φ|q0ωn

) 1
q0
(∫

M
|∇F |q0ωn

) 1
q0
,

where 1/r0+2/q0= 1. Combining the above inequalities, when pr0≥ p+1 (that is,
p ≥ (q0− 2)/2), we obtain

‖u‖L pβ (M,ω) ≤ (C2 p2(‖∇φ‖Lq0 (M,ω)+ 1))
1
p
(
‖u‖

p+1
p

L p+1(M,ω)+‖u‖L pr0 (M,ω)
)

≤ (C2 p2(‖∇φ‖Lq0 (M,ω)+ 1))
1
p ‖u‖

p+1
p

L pr0 (M,ω),

where C2 = C2(‖F‖W 1,q0 (M,ω), q0,M, ω). By Lemma A.6, we have

‖∇φ‖Lq0 (M,ω) ≤ C3‖u‖
L

2nq0
2n+q0 (M,ω)

+C3

≤ C3‖u‖
L

q0
2 (M,ω)

+C3,

where C3 = C3(q0, ‖F‖∞,M, ω). Thus, for any k ≥ 0, we have

(3-1) ‖u‖L pkβ (M,ω) ≤ ak‖u‖
bk
L pkr0 (M,ω),

where

ak =
(
C4 p2

k
(
‖u‖

L
q0
2 (M,ω)

+ 1
)) 1

pk , C4 = C4(‖F‖W 1,q0(M,ω), q0,M, ω),

bk =
pk + 1

pk
, pk =

q0− 2
2

(
β

r0

)k

.

Here we point out that q0 > 2n implies that β/r0 > 1. By (3-1), we have

(3-2) ‖u‖L pkβ (M,ω) ≤ akabk
k−1 · · · a

bk ···b1
0 ‖u‖bk ···b0

L p0r0 (M,ω).

Without loss of generality, we can assume that ak ≥ 1 for k ≥ 0. We observe that∏
∞

i=0 bk and
∏
∞

i=0 ak are convergent. In (3-2), letting k→∞, we obtain

‖u‖L∞(M,ω) ≤ C
(
‖u‖

L
q0
2 (M,ω)

, ‖F‖W 1,q0 (M,ω), q0,M, ω
)
. �

Lemma 3.4. Under the assumptions of Theorem 1.6, for any p ≥ 1, we have∫
M

u p+ 1
n−1ωn

≤ C(p)
∫

M
u p−1
|∇φ||∇F |ωn

+C(p)
∫

M
u p−1
|∇F |2ωn

+C(p),

where C(p)= C(p, ‖F‖L∞(M,ω),M, ω).
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Proof. Starting with Lemma 2.3 and then integrating over (M, ω̃), for any p ≥ 1
we obtain∫

M
1̃(e f p(φ)(n+1φ)p)ω̃n

≥ C1(p)
∫

M
u p+ 1

n−1 ω̃n
−C2(p)

∫
M

u pω̃n
+ p

∫
M

e f p(φ)(n+1φ)p−11FeFωn,

where C1(p)=C1(p, ‖F‖L∞(M,ω),M, ω) and C2(p)=C2(p, ‖F‖L∞(M,ω),M, ω).
Here we have used (2-7) and Theorem 2.1. Since M satisfies condition (∗), we have∫

M
1̃(e f p(φ)(n+1φ)p)ω̃n

= n
√
−1

∫
M
∂∂̄(e f p(φ)(n+1φ)p)∧ ω̃n−1

= n
√
−1

∫
M

e f p(φ)(n+1φ)p ∂∂̄ω̃n−1

≤ C3(p)
∫

M
u pωn,

where C3(p) = C3(p, ‖F‖L∞(M,ω),M, ω) (Since n = dimC M , we can absorb it
into the constant C3). Combining the above inequalities, we compute that∫

M
u p+ 1

n−1ωn

≤ C4(p)
∫

M
e f p(φ)(n+1φ)p−1(|∇F |2eF

−1(eF ))ωn
+C5(p)

∫
M

u pωn

≤ C5(p)
∫

M
u p−1
|∇F |2ωn

+C4(p)
∫

M
〈∇(e f p(φ)(n+1φ)p−1),∇eF

〉ωn

−C4(p)n
√
−1

∫
M

e f p(n+1φ)p−1 ∂̄eF
∧ ∂ωn−1

+C5(p)
∫

M
u pωn

≤ C5(p)
∫

M
u pωn

+C5(p)
∫

M
u p−1
|∇F |2ωn

+C5(p)
∫

M
u p−1
|∇F |ωn

+C5(p)
∫

M
|∇(u p−1)||∇F |ωn

+C5(p)
∫

M
u p−1
|∇φ||∇F |ωn,

where C4(p)=C4(p, ‖F‖L∞(M,ω),M, ω) and C5(p)=C5(p, ‖F‖L∞(M,ω),M, ω)
(Since n= dimC M , we can absorb it into the constant C5). By the Cauchy–Schwarz
inequality, we have

C5(p)
∫

M
|∇(u p−1)||∇F |ωn

= C5(p)
∫

M
|∇(u

p−1
2 )|u

p−1
2 |∇F |ωn

≤ C5(p)
∫

M
|∇(u

p−1
2 )|2ωn

+C5(p)
∫

M
u p−1
|∇F |2ωn.



COMPLEX MONGE–AMPÈRE ON COMPACT HERMITIAN MANIFOLDS 379

Combining this with the above inequalities and Lemma 3.2, we get∫
M

u p+ 1
n−1ωn

≤ C6(p)
∫

M
u pωn

+C6(p)
∫

M
u p−1
|∇φ||∇F |ωn

+C6(p)
∫

M
u p−1
|∇F |2ωn,

where C6(p)= C6(p, ‖F‖L∞(M,ω),M, ω). Using Young’s inequality, we complete
the proof. �

Now, we are in a position to prove Theorem 1.6.

Proof of Theorem 1.6. Without loss of generality, we assume that q0 <∞. By
Lemma 3.4 and F ∈W 1,q0 , for any p ≥ 1, we have∫

M
u p+ 1

n−1ωn
≤ C1(p)

∫
M

u p−1
|∇φ||∇F |ωn

+C1(p)
∫

M
u p−1
|∇F |2ωn

+C1(p)

≤ C1(p)
∫

M
u p−1
|∇φ|2ωn

+C2(p)
∫

M
u(p−1) q0

q0−2ωn
+C2(p),

where C1(p)=C1(p,‖F‖L∞(M,ω),M,ω), C2(p)=C2(p, ‖F‖W 1,q0 (M,ω), q0,M, ω)
and we have used the Hölder inequality in the last line. When p ≥ 1 satisfies that

p+
1

n− 1
> (p− 1)

q0

q0− 2
, or equivalently p <

q0− 2
2n− 2

+
q0

2
,

we can use Young’s inequality to get the inequality∫
M

u p+ 1
n−1ωn

≤ C3(p)
∫

M
u p−1
|∇φ|2ωn

+C3(p),

where C3(p)=C3(p, ‖F‖W 1,q0 (M,ω), q0,M, ω). Now, we take p=q0/2−1/(n−1),
we obtain ∫

M
u

q0
2 ωn
≤ C4

∫
M

u
q0
2 −β |∇φ|2ωn

+C4

≤
1
2

∫
M

u(
q0
2 −β)

q0
q0−2βωn

+C4

∫
M
|∇φ|

q0
β ωn
+C4,

where C4 = C4(‖F‖W 1,q0 (M,ω), q0,M, ω) and β = n/(n− 1). It then follows that

(3-3) ‖u‖
L

q0
2 (M,ω)

≤ C4‖∇φ‖
2
β

L
q0
β (M,ω)

+C4.

By Lemma A.7, we have

(3-4) ‖∇φ‖
L

q0
β (M,ω)

≤ C5‖u‖
1
2

L
q0
2β (M,ω)

+C5,
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where C5 = C5(q0, ‖F‖L∞(M,ω),M, ω). Combining (3-3), (3-4) and β > 1, we get

‖u‖
L

q0
2 (M,ω)

≤ C6(‖F‖W 1,q0 (M,ω), q0,M, ω).

By Theorem 3.3, we complete the proof. �

4. The Hölder estimate of second order, and solving the equation

We note that when F is in W 1,q0 , for any q0 > 2n, Sobolev embedding implies that
F ∈ Cα0 , where α0 = 1− 2n/q0. By Theorem 1.1 of [Tosatti et al. 2014], we have
the following theorem:

Theorem 4.1. Let (M, ω) be a compact Hermitian manifold. If φ is a smooth
solution of (1-1) and F ∈ Cα0 , then there exists a constant α ∈ (0, 1) such that

‖φ‖C2,α(M,ω) ≤ C,

where α and C depend only on ‖φ‖L∞(M,ω), ‖1φ‖L∞(M,ω), α0, ‖F‖Cα0 (M,ω), q0,M
and ω.

Now we are in a position to prove Theorem 1.7.

Proof of Theorem 1.7. Our argument here is similar to the argument in [Chen and
He 2012]. Let F ∈ W 1,q0 on M such that ‖F‖W 1,q0 (M,ω) ≤ 3 for some positive
constant 3. Let {Fk} be a sequence of smooth functions such that Fk→ F in W 1,q0 .
In particular, we can assume that ‖Fk‖W 1,q0 (M,ω) ≤3+1 for any k. By [Tosatti and
Weinkove 2010a], there is a unique smooth solution φk and constant bk such that

det(gi ̄ + (φk)i ̄ )= eF+bk det(gi ̄ ),

and such that (gi ̄ + (φk)i ̄ ) > 0 with normalized condition supM φk =−1. By the
maximum principle, we have

(4-1) |bk | ≤ C1(‖Fk‖L∞(M,ω),M, ω).

By Theorem 1.6, Theorem 2.1 and Theorem 4.1, there exists a constant α ∈ (0, 1)
such that

‖φk‖C2,α(M,ω) ≤ C2(‖Fk‖W 1,q0 (M,ω), q0,M, ω).

To get a W 3,q0-estimate, we can localize the estimate as follows. Let ∂ denote an
arbitrary first-order differential operator in a domain � ⊂ M . Since we have a
C2,α-estimate, we compute that

1̃gk (∂φk)= ∂(Fk + log(det(gi ̄ )))− (gk)
i ̄∂gi ̄
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in �, where (gk)i ̄ = gi ̄ + (φk)i ̄ . Since 1̃gk is a uniform elliptic operator, by L p

estimates (for example, see [Gilbarg and Trudinger 1977]), for any �′ ⊂� we have

‖∂φk‖W 2,q0 (�′,ω) ≤ C3(�,�
′, q0,3, ω),

which implies

(4-2) ‖φk‖W 3,q0 (M,ω) ≤ C4(‖F‖W 1,q0 (M,ω), q0,3,M, ω).

By (4-1) and (4-2), we know that there is a subsequence {(φkl , bkl )} of {(φk, bk)}

such that {bkl } converges to b and {φkl } weakly converges to φ ∈ W 3,q0 such that
(gi ̄ +φi ̄ ) > 0, which defines a W 1,q0 Hermitian metric. Since the Sobolev embed-
ding W 3,q0 ↪→ C2 is compact, the subsequence {φkl } converges to φ in C2. Hence
φ with constant b is a classical solution of the complex Monge–Ampère equation.
The uniqueness follows from Remark 5.1 in [Tosatti and Weinkove 2010b]. �

Appendix

Let gR denote the Riemannian metric induced by g; thus (M, gR) is a Riemannian
manifold of real dimension 2n. In this appendix, we deduce some interpolation
inequalities on the Hermitian manifold (M, ω) by using some fundamental inequal-
ities on the Riemannian manifold (M, gR).

Let us recall the definition of gR first. For any local holomorphic coordinates
(z1, . . . , zn) with zi

= x i
+
√
−1yi , (x1, . . . , xn, y1, . . . , yn) forms a smooth local

coordinate system. We define

gR

(
∂

∂x i ,
∂

∂x j

)
= gR

(
∂

∂yi ,
∂

∂y j

)
= 2 Re(gi ̄ ),

while

gR

(
∂

∂x i ,
∂

∂y j

)
= 2 Im(gi ̄ ).

For the Riemannian metric gR, let ∇R and dVR denote the Levi-Civita connection
and the volume form, respectively. By direct calculation, we have

(A-1) dVR =
1
n!
ωn.

For convenience, we introduce some notation. For any function f ∈ C∞(M), let
∇

m
R f and 1R f denote the m-th covariant derivative and the Laplacian of f with

respect to gR. Let ‖ f ‖L p(M,gR) and ‖∇m
R f ‖L p(M,gR) denote the corresponding norms

with respect to (M, gR).
Thus, by (A-1) and some calculation, we have the following lemma:
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Lemma A.1. For any f ∈ C∞(M), we have

‖ f ‖L p(M,gR) = C1(p)‖ f ‖L p(M,ω) and ‖∇R f ‖L p(M,gR) = C2(p)‖∇ f ‖L p(M,ω),

where C1(p)= C1(p, n) and C2(p)= C2(p, n).

Corollary A.2. For any f ∈ C∞(M), we have the Sobolev inequality(∫
M

f 2βωn
)1
β

≤ C
∫

M
f 2ωn
+C

∫
M
|∇ f |2ωn,

where β = n/(n− 1) and C = C(M, ω).

Proof. By the Sobolev embedding W 1,2(M, gR) ↪→ L2β(M, gR), we have(∫
M

f 2β dVR

) 1
β

≤ Cs

∫
M

f 2 dVR+Cs

∫
M
|∇R f |2 dVR,

where Cs = Cs(M, gR). Thus, combining this with Lemma A.1, we complete
the proof. �

Since (M, gR) is a Riemannian manifold of real dimension 2n, we have the
following interpolation inequality (for example, see [Aubin 1998]):

Theorem A.3. Let q, r be real numbers such that 1≤ q, r ≤+∞ and j , m integers
such that 0≤ j < m. Then there exists a constant

C = C(M, gR,m, j, q, r, α)

such that, for all f ∈ C∞(M) with
∫

M f dVR = 0, we have

(A-2) ‖∇
j

R f ‖L p(M,gR) ≤ C‖∇m f ‖αLr (M,gR)
‖ f ‖1−αLq (M,gR)

,

where
1
p
=

j
2n
+α

(1
r
−

m
2n

)
+ (1−α)1

q

for all α in the interval j/m ≤ α ≤ 1, for which p is nonnegative. If r =
2n/(m− j) 6= 1, then (A-2) is not valid for α = 1.

Corollary A.4. Let f ∈ C∞(M); for any ε > 0 and 1≤ p <∞, we have

‖∇R f ‖L p(M,gR) ≤ ε‖∇
2
R f ‖L p(M,gR)+C(ε, p)‖ f ‖L p(M,gR),

where C(ε, p)= C(ε, p,M, ω).

Proof. Set f̃ = f −1/Vol(M, gR)
∫

M f dVR; then
∫

M f̃ dVR = 0. By Theorem A.3
we have

‖∇R f̃ ‖L p(M,gR) ≤ C1(p)‖∇2
R f̃ ‖

1
2
L p(M,gR)

‖ f̃ ‖
1
2
L p(M,gR)

,
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where C1(p)= C1(p,M, gR). Thus, by the Cauchy–Schwarz inequality, for any
ε > 0 we obtain

‖∇R f̃ ‖L p(M,gR) ≤ ε‖∇
2
R f̃ ‖L p(M,gR)+C2(ε, p)‖ f̃ ‖L p(M,gR),

where C2(ε, p)=C2(ε, p,M, gR). By the definition of f̃ , the proof is complete. �

Lemma A.5. Let (M, ω) be a compact Hermitian manifold of complex dimension n.
If φ is a smooth solution of (1-1), then, for any 1< p <∞, we have

‖1Rφ‖L p(M,ω) ≤ C1(p)‖1φ‖L p(M,ω)+C2(p),

where C1 = C1(p, n) and C2(p)= C2(p, ‖F‖L∞(M,ω),M, ω).

Proof. After some calculations, we have

(A-3) ‖1Rφ‖L p(M,gR) ≤ 2‖1φ‖L p(M,gR)+C3(p)‖∇Rφ‖L p(M,gR),

where C3 = C3(p,M, ω). For (A-3), one can find more details in [Tosatti 2007]
(Lemma 3.2 there shows the exact relation between 1R and 21). By Corollary A.4
we obtain

(A-4) C3(p)‖∇Rφ‖L p(M,gR) ≤
1
2‖1Rφ‖L p(M,gR)+C4(p)‖φ‖L p(M,gR),

where C4 = C4(p,M, ω). Combining this with (A-3) and (A-4), we obtain

‖1Rφ‖L p(M,gR) ≤ 4‖1φ‖L p(M,gR)+C5(p)‖φ‖L p(M,gR),

where C5 = C5(p,M, ω). By Theorem 2.1 and Lemma A.1, the proof is complete.
�

Lemma A.6. Under the assumptions of Theorem 1.6, for any 1< p < 2n we have

‖∇φ‖
L

2np
2n−p (M,ω)

≤ C(p)‖u‖L p(M,ω)+C(p),

where u is defined in (2-7) and C(p)= C(p, ‖F‖L∞(M,ω),M, ω).

Proof. By the Sobolev embedding W 2,p(M, gR) ↪→W 1, 2np
2n−p (M, gR), we have

‖∇Rφ‖
L

2np
2n−p (M,gR)

≤ C1(p)‖∇2
Rφ‖L p(M,gR)+C1(p)‖∇Rφ‖L p(M,gR)+C1(p)‖φ‖L p(M,gR),

where C1(p)= C1(p,M, gR). Combining this with Corollary A.4, we have

‖∇φ‖
L

2np
2n−p (M,gR)

≤ C2(p)‖∇2
Rφ‖L p(M,gR)+C2(p)‖φ‖L p(M,gR),

where C2(p)= C2(p,M, gR). By Theorem 2.1 and L p estimates, we have

‖∇φ‖
L

2np
2n−p (M,gR)

≤ C3(p)‖1Rφ‖L p(M,gR)+C3(p),
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where C3(p) = C3(p, ‖F‖L∞(M,ω),M, gR). By Lemma A.1 and Lemma A.5,
we have

‖∇φ‖
L

2np
2n−p (M,ω)

≤ C4(p)‖1φ‖L p(M,ω)+C4(p),

where C4(p)= C4(p, ‖F‖L∞(M,ω),M, gR). By (2-7) and Theorem 2.1, the proof
is complete. �

Lemma A.7. Let p, r be real numbers such that 1< p, r <∞. Under the assump-
tions of Theorem 1.6, we have

‖∇φ‖L p(M,ω) ≤ C(p, r)‖u‖αLr +C(p, r),

where C(p, r)= C(p, r, ‖F‖L∞(M,ω),M, ω) and

1
p
=

1
2n
+α

(1
r
−

1
n

)
for α in the interval 1

2 ≤ α < 1.

Proof. Set φ̃ = φ− 1/Vol(M, gR)
∫

M φ dVR; then
∫

M φ̃ dVR = 0. By Theorem 2.1,
Lemma A.1 and Theorem A.3, we have

‖∇Rφ̃‖L p(M,gR) ≤ C1(p, r)‖∇2
Rφ̃‖

α
Lr (M,gR)

,

which implies that

‖∇Rφ‖L p(M,gR) ≤ C1(p, r)‖∇2
Rφ‖

α
Lr (M,gR)

,

where C1(p, r)= C1(p, r, ‖F‖L∞(M,ω),M, ω) and

α =
(2n− p)r
(2n− 2r)p

.

Combining Lemma A.1, Lemma A.5, (2-7) and L p estimates, the proof is complete.
�
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