
Pacific
Journal of
Mathematics

REGULARITY AND ANALYTICITY OF SOLUTIONS
IN A DIRECTION FOR ELLIPTIC EQUATIONS

YONGYANG JIN, DONGSHENG LI AND XU-JIA WANG

Volume 276 No. 2 August 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 276, No. 2, 2015

dx.doi.org/10.2140/pjm.2015.276.419

REGULARITY AND ANALYTICITY OF SOLUTIONS
IN A DIRECTION FOR ELLIPTIC EQUATIONS

YONGYANG JIN, DONGSHENG LI AND XU-JIA WANG

In this paper, we study the regularity and analyticity of solutions to linear
elliptic equations with measurable or continuous coefficients. We prove
that if the coefficients and inhomogeneous term are Hölder-continuous in
a direction, then the second-order derivative in this direction of the solution
is Hölder-continuous, with a different Hölder exponent. We also prove that
if the coefficients and the inhomogeneous term are analytic in a direction,
then the solution is analytic in that direction.

1. Introduction

We study the regularity and analyticity of solutions in a given direction to the
elliptic equation

(1-1)
n∑

i, j=1

ai j (x)uxi x j +

n∑
i=1

bi (x)uxi + c(x)u = f (x) in �,

assuming that the coefficients ai j , bi , c and the inhomogeneous term f are smooth
or analytic along the direction, where � is a bounded domain in the Euclidean
space Rn . We assume that the equation is uniformly elliptic, namely, that there
exist positive constants 3> λ > 0 such that

(1-2) λ|ξ |2 ≤
∑

ai j (x)ξiξ j ≤3|ξ |
2 for all x ∈�.

We also assume that bi , c ∈ L∞(�), and f ∈ Ln(�).
The regularity of solutions is a fundamental issue in the study of partial differential

equations. Most regularity theories, such as the Schauder estimate and the W 2,p

estimate, are isotropic; namely, the solution is uniformly regular in all directions.
An interesting question is whether the solution to (1-1) is smooth in a direction if
the coefficients ai j , bi , c and the inhomogeneous term f are smooth in this direction
only. This question can be asked for more general nonlinear elliptic and parabolic

Jin was supported by ZJNSF LY14A010016 and NSFC 11371323, Li was supported by
NSFC 11171266, and Wang was supported by ARC DP1094303 and DP120102718.
MSC2010: primary 35J15; secondary 35B45.
Keywords: Elliptic equation, analyticity, estimates, perturbation method.

419

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.276-2


420 YONGYANG JIN, DONGSHENG LI AND XU-JIA WANG

equations. One may also consider the regularity when the coefficients ai j , bi , c and
the inhomogeneous term f are smooth in a submanifold of high codimensions.

This is a significant problem in partial differential equations as it is not only
stronger than the Schauder estimate but also has applications in areas such as fluid
mechanics, partial differential systems, manifolds with nonsmooth metric tensors,
and other physical problems such as the propagation of singularities [Taylor 2000;
Kukavica and Ziane 2007; Cao and Titi 2008; 2011]. For many PDE systems if
one can first prove the regularity of solutions in a direction, one may be able to
obtain the full regularity. At a first glance, one may feel that an affirmative answer
would be too good to be true, even for an expert in the area. However in this
paper we show that this is indeed true at least in dimension two, and also in higher
dimensions if the coefficients are continuous. At the moment we are not aware
of a counterexample without the continuity. This question is also open for most
nonlinear equations and deserves further investigations.

The analyticity of solutions is also an important topic in the regularity theory of
partial differential equations. For the linear elliptic equation (1-1), it is well known
that if the coefficients ai j , bi , c and the inhomogeneous term f are analytic, then
the solution is also analytic. A similar question is whether the solution is analytic
in a direction if ai j , bi , c and f are analytic only in the given direction.

Let us first state our results on the analyticity of solutions in a given direction:

Theorem 1.1. Let u ∈ W 2,n(�) be a strong solution to (1-1). Assume that the
coefficients ai j , bi , c and the inhomogeneous term f are independent of the variable
xn . Then the solution u is analytic in xn .

The proof of Theorem 1.1 is based on the Krylov–Safonov Hölder-continuity of
linear elliptic equations. Using the W 2,p estimate, we also have:

Theorem 1.2. Let u ∈ W 2,n(�) be a strong solution to (1-1). Assume that the
coefficients ai j are continuous, and ai j , bi , c and f are analytic in the variable xn .
Then the solution u is analytic in xn .

In Theorem 1.1, we do not assume the continuity of the coefficients ai j , bi , c but in
Theorem 1.2 we do. An interesting question is whether one can remove the continu-
ity of the ai j in Theorem 1.2. An affirmative answer can be given in dimension two:

Theorem 1.3. Let u ∈W 2,2(�) be a strong solution to (1-1). Assume that n= 2 and
ai j , bi , c and f are analytic in the variable x2. Then the solution u is analytic in x2.

Our results are stronger than the classical results on the analyticity of solutions
to linear elliptic equations. In the classical theory the coefficients ai j , bi , c and the
inhomogeneous term f are assumed to be analytic in all directions.

When the coefficients are Hölder-continuous in a given direction, we have the
following directional C2,α regularity:
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Theorem 1.4. Let u ∈W 2,n(�) be a strong solution to (1-1). Suppose that ai j , bi ,
c are Cα in the ξ -direction for some 0< α < 1 and ai j ∈ C0(�) and satisfy (1-2).
Suppose f ∈ L p(�) for some p > n/α. Then for any 0 < β < α− n/p and any
y, z ∈�δ, we have the estimate

(1-3) |∂ξ∂x u(y)− ∂ξ∂x u(z)|

≤ Cdβ
[

sup� |u| + ‖ f ‖L p(�)+

∫ 1

d

ω f,ξ (r)
r1+β

]
+C

∫ d

0

ω f,ξ (r)
r

+C‖ai j‖Cα
ξ (�)

(‖ f ‖L p(�)+ sup� |u|)d
α−n/p,

where �δ = {x ∈� | dist(x, ∂�) > δ} and d = |y− z|. The constant C depends on
n, α, β, δ, p, λ, 3 and the modulus of continuity of ai j .

In Theorem 1.4, ξ is a given unit vector, and the notation ω f,ξ is defined at
the beginning of Section 4. The continuity assumption of the ai j is for the use of
the W 2,p estimate, hence it suffices to assume that the ai j are in the VMO space
[Chiarenza et al. 1993], or the ai j are continuous in n−1 variables [Kim and Krylov
2007]. In particular, in dimension two, by the W 2,p estimate in the latter reference,
the continuity of the ai j is not needed. Hence we have:

Corollary 1.5. Let u ∈ W 2,2(�) be a strong solution to (1-1). Assume that n = 2
and ai j , bi , c and f are Hölder-continuous in direction ξ . Then ∂ξ∂x u is Hölder-
continuous.

Note that the Hölder-continuity of ∂ξ∂x u in Theorem 1.4 and Corollary 1.5 is
uniform in all directions. But the Hölder exponent of the second derivative is
smaller than that of the coefficients and we need to assume f ∈ L p for a large p.

Theorem 1.4 improves [Tian and Wang 2010, Theorem 3.2], where the coeffi-
cients ai j were assumed to be Lipschitz in ξ , and the directional C2,α regularity
was obtained by differentiating (1-1). We point out that Corollary 1.5 was also
obtained in [Dong 2012, Section 6]. By the W 2,p estimate [Kim and Krylov 2007],
related result holds in higher dimension too. That is, if u is a strong solution to
(1-1) and if ai j , bi , c and f are Hölder-continuous in x ′ = (x1, . . . , xn−1), then
∂x ′∂x u is Hölder-continuous. The C2,α regularity of solutions in a given direction
was also investigated in [Dong and Kim 2011]. See also [Tian and Wang 2010] for
discussions.

To prove Theorems 1.1–1.3, we introduce appropriate function spaces and es-
tablish related interpolation inequalities. We will prove Theorem 1.1 in Section 2,
Theorems 1.2 and 1.3 in Section 3, and Theorem 1.4 in Section 4. In Section 5, we
give a brief discussion on equations of divergence form.
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2. Proof of Theorem 1.1

For simplicity we assume bi = c = 0; namely, we consider the equation

(2-1) L[u] :=
n∑

i, j=1

ai, j (x ′)ui j = f (x) in �,

where � is a bounded domain in Rn , x ′ = (x1, . . . , xn−1), and ui j = uxi x j . The
proof is similar if bi 6= 0 and c 6= 0, provided they satisfy the conditions specified
in the introduction. We assume that the coefficients ai j are measurable and satisfy
the uniformly elliptic condition (1-2), f ∈ Ln(�), and the ai j and f are analytic in
the xn variable.

Set u′ = uxn , u′′ = uxn xn ,

u(k) =
∂ku
∂xk

n
, k = 1, 2, . . . ,

〈u〉α,� = supx,y∈�

{
|u(x)− u(y)|
|x − y|α

∣∣∣ (y− x)//en

}
,

and

(2-2) |u|k+α,� = sup� |u| + 〈u
(k)
〉α,�, k = 0, 1, 2, . . . ,

‖u‖k+α,� = sup� |u| + supx,y∈�
|Dku(x)− Dku(y)|

|x − y|α
,

where 0< α ≤ 1 and (y− x)//en means the vector y− x is parallel to the vector
en = (0, . . . , 0, 1). We also set

(2-3)

〈u(k)〉(β)α,� = supQ2r (x)⊂� r k+α+β
〈u(k)〉α,Qr (x), β ∈ R,

|u|(β)k+α,� = supQ2r (x)⊂�[r
β
‖u‖L∞(Qr (x))+ r k+α+β

〈u(k)〉α,Qr (x)],

and

‖u‖(β)k+α,�

= supQ2r (x)⊂�

[
rβ‖u‖L∞(Qr (x))+ r k+α+βsupy,z∈Qr (x)

|Dku(y)− Dku(z)|
|y− z|α

]
,

where Qr (x) denotes the open cube with center x and side-length 2r . We can
extend the above definition to α = 0 by letting

|u|(β)k,� = supQ2r (x)⊂�[r
β
‖u‖L∞(Qr (x))+ r k+β

〈u(k−1)
〉1,Qr (x)] if k > 0,

|u|(β)0,� = supQ2r (x)⊂� rβ‖u‖L∞(Qr (x)) if k = 0.
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We point out the equivalence of the norm |u|(β)k+α,� given in (2-3) and the norm

[u](β)k+α,� :=supQ(1+σ)r (x)⊂�[r
β
‖u‖L∞(Qr (x))+ r k+α+β

〈u(k)〉α,Qr (x)],

where σ > 0 is a constant. Namely,

C−1
|u|(β)k+α,� ≤ [u]

(β)

k+α,� ≤ C |u|(β)k+α,�,

for some constant C depending only on n, k, α, β and σ . To prove the above
inequalities, it suffices to divide the cube Q3r/2 into 2n disjoint smaller cubes if
σ ∈

[ 1
2 , 2

]
, and divide into more, smaller cubes for other σ . Note that if β =−k,

the constant C is independent of k.
We also point out three differences between our definition of the norms |u|(β)k+α,�

and the usual one [Gilbarg and Trudinger 1998]. That is, (i) the derivative in the
former one is taken only on the xn-direction; (ii) in the Hölder seminorm (2-2) we
assume that (y− x)//en; and (iii) the supremum in (2-3) is taken among all cubes
Qr (x) satisfying the condition Q2r (x)⊂�. The reason of choosing the cubes with
the property Q2r (x)⊂� is that the norm is homogeneous under rescaling.

First we prove an interpolation inequality for the norm ‖u‖(β)k+α,�:

Lemma 2.1. Suppose that j+β < k+α, where j, k= 0, 1, 2, . . . and 0≤ α, β ≤ 1.
Assume that u ∈ Ck,α(�). Then there exists a positive constant C depending on j ,
k, α, β, such that

(2-4) ‖u‖(γ )j+β,� ≤ C[‖u‖(γ )k+α,�]
( j+β)/(k+α)

[‖u‖(γ )0,�]
1−( j+β)/(k+α).

Proof. It is well known [Hörmander 1976] that there is a positive constant C =
C( j, k, α, β) such that

(2-5) ‖u‖ j+β,Q1(0) ≤ C(‖u‖k+α,Q1(0))
( j+β)/(k+α)(‖u‖L∞(Q1(0)))

1−( j+β)/(k+α).

For any Qr (x)⊂�, by rescaling, we obtain

(2-6) ‖u‖L∞(Qr (x))+ r j+β
〈D j u〉β,Qr (x)

≤ C(‖u‖L∞(Qr (x)))
1−( j+β)/(k+α)

×
(
‖u‖L∞(Qr (x))+ r k+α

〈Dku〉α,Qr (x)
)( j+β)/(k+α)

.

That is,

rγ ‖u‖L∞(Qr (x))+ r j+β+γ
〈D j u〉β,Qr (x)

≤ C(rγ ‖u‖L∞(Qr (x)))
1−( j+β)/(k+α)

×
(
rγ ‖u‖L∞(Qr (x))+ r k+α+γ

〈Dku〉α,Qr (x)
)( j+β)/(k+α)

.

Taking the supremum of all cubes Qr (x) with Q2r (x)⊂�, we obtain (2-4). �

Next we extend the inequality (2-4) to the norm |u|(β)k+α,�:
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Lemma 2.2. Suppose that j+β < k+α, where j, k= 0, 1, 2, . . . and 0≤ α, β ≤ 1.
Assume that u ∈ L∞(�) and u(k) ∈ Cα(�). Then there exists a positive constant C
depending on j , k, α, β, such that

|u|(γ )j+β,� ≤ C[|u|(γ )k+α,�]
( j+β)/(k+α)

[|u|(γ )0,�]
1−( j+β)/(k+α).

Proof. By the rescaling argument in the proof of Lemma 2.1, it suffices to prove

(2-7) |u| j+β,Q1(0) ≤ C(|u|k+α,Q1(0))
( j+β)/(k+α)(‖u‖L∞(Q1(0)))

1−( j+β)/(k+α).

By the definition (2-3), it suffices to prove

(2-8) 〈u( j)
〉β,Q1(0) ≤ C(|u|k+α,Q1(0))

( j+β)/(k+α)(‖u‖L∞(Q1(0)))
1−( j+β)/(k+α).

Again, by the definition of (2-3), there exists x ′0 such that

〈u( j)
〉β,Q1(0) ≤ 2 sup

{
|u( j)(x ′0, xn)− u( j)(x ′0, yn)|

|xn − yn|
β

∣∣∣−1< xn, yn < 1
}

= 2〈u( j)(x ′0, · )〉β,I ,

where I = (−1, 1)⊂ R1 is the unit interval. By (2-5) in the one-dimensional case,
the right-hand side is bounded by

〈u( j)(x ′0, · )〉β,I ≤ (‖u(x
′

0, · )‖k+α,I )
( j+β)/(k+α)(‖u(x ′0, · )‖L∞(I ))

1−( j+β)/(k+α)

≤ (|u|k+α,Q1(0))
( j+β)/(k+α)(‖u‖L∞(Q1(0)))

1−( j+β)/(k+α). �

Theorem 2.3. Let u ∈W 2,n(�) be a strong solution of (2-1), where the coefficients
ai j are measurable and independent of xn and satisfy the uniformly elliptic condition
(1-2). Assume that f is analytic in xn . Then there exists a constant C = C(n, λ,3)
such that, for any Q R(x0)⊂�, the following inequality holds:

(2-9) |u(k)(x0)| ≤
(Ck

R

)k
(‖u‖L∞(Q R(x0))+ 1).

Proof. As the coefficients ai j are independent of xn and u is a strong solution, one
sees that

u′δ :=
1
δ
(u(x + δen)− u(x))

is a strong solution to L[u] = f ′δ , where L is the elliptic operator in (2-1). Hence
the Krylov–Safonov Hölder estimate holds for u′δ, uniformly in δ. Similarly,

u′′δ :=
1
δ2 (u(x + δen)+ u(x − δen)− 2u(x))

is a strong solution to L[u] = f ′′δ , and is uniformly Hölder-continuous as δ→ 0.
Sending δ→ 0, we see that u′′ is Hölder-continuous. By induction, we see that for
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any k > 0, u(k) is Hölder-continuous, and

(2-10) 〈u(k)〉α,Q1/4(x) ≤ C
(
‖u(k)‖L∞(Q1/2(x))+‖ f (k)‖L∞(Q1/2(x))

)
for all k = 1, 2, . . . , and the constant C is independent of k.

Set Q0 = Q R(x0). Let Q2r (x̂) ⊂ Q R(x0) be any given cube. Then there exist
x1, x2 ∈ Qr (x̂) with (x2− x1)//en such that

r1+α
〈u′〉α,Qr (x̂) ≤ 2r1+α |u

′(x2)− u′(x1)|

|x2− x1|α
.

If |x2− x1| ≥
1
4r , then, by Lemma 2.2 with j = 1, β = 0, k = 1,

(2-11) r1+α
〈u′〉α,Qr (x̂)

≤ 2 · 4αr |u′(x1)− u′(x2)|

≤ 41+αr‖u′‖L∞(Qr (x̂))

≤ C
(
r1+α
〈u′〉α,Qr (x̂)+‖u‖L∞(Qr (x̂))

)1/(1+α)
(‖u‖L∞(Qr (x̂)))

α/(1+α)

≤ C
[
(r1+α

〈u′〉α,Qr (x̂))
1/(1+α)(‖u‖L∞(Qr (x̂)))

α/(1+α)
+‖u‖L∞(Qr (x̂))

]
.

If |x2− x1|<
1
4r , then, by (2-10) and Lemma 2.2,

(2-12) r1+α
〈u′〉α,Qr (x̂) ≤ 2 · r1+α

〈u′〉α,Qr/4(x1)

≤ C[r‖u′‖L∞(Qr/2(x1))+ r‖ f ′‖L∞(Qr/2(x1))]

≤ C
{
(r1+α

〈u′〉α,Qr/2(x1))
1/(1+α)(‖u‖L∞(Qr/2(x1)))

α/(1+α)

+‖u‖L∞(Qr/2(x1))+ r‖ f ′‖L∞(Qr/2(x1))

}
.

Taking the supremum among all the cubes Qr (x̂) with Q2r (x̂)⊂ Q R(x0), we obtain
from the above estimates (2-11) and (2-12) that

〈u′〉(0)α,Q0
≤ C

{
(〈u′〉(0)α,Q0

)1/(1+α)(‖u‖L∞(Q0))
α/(1+α)

+‖u‖L∞(Q0)+ R‖ f ′‖L∞(Q0)

}
,

which implies
|u|(0)1+α,Q0

≤ C(‖u‖L∞(Q0)+ R‖ f ′‖L∞(Q0)).

By Lemma 2.2 it follows that

‖u′‖L∞(Q R/2(x0)) ≤
C
R
(‖u‖L∞(Q0)+ R‖ f ′‖L∞(Q0)).

Hence we obtain

(2-13) |u′(x0)| ≤
C
R
(‖u‖L∞(Q0)+ R‖ f ′‖L∞(Q0))

≤
C
R
(‖u‖L∞(Q0)+ 1),

where we used the analyticity of f in xn .
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Next we estimate higher derivatives of u at x0. Suppose by induction that

(2-14) |u(k)(x0)| ≤
(C

R

)k
kk(‖u‖L∞(Q0)+ 1).

By (2-13), (2-14), and observing that for any x ∈ Q R/(k+1)(x0), Qk R/(k+1)(x) ⊂
Q R(x0), we have

|u(k+1)(x0)| = |(u(k))′(x0)|

≤
C
R

k+1

(
‖u(k)‖L∞(Q R/(k+1)(x0))+

R
k+ 1

‖ f (k+1)
‖L∞(Q R/(k+1)(x0))

)

≤
C(k+ 1)

R

{(
C
k

k+1 R

)k

kk(‖u‖L∞(Q0)+ 1)+
R

k+ 1
‖ f (k+1)

‖L∞(Q0)

}

≤

(
C
R

)k+1

(k+ 1)k+1(‖u‖L∞(Q0)+ 1).

In the last inequality we used the analyticity of f in xn . �

Theorem 2.4. Let u ∈ W 2,n(�) be a strong solution to (2-1). Assume that the
coefficients ai j are measurable and independent of xn and satisfy (1-2). Assume
that f is analytic in xn . Then the solution u is analytic in xn .

Proof. For any given point x0 = (x
′

0, x0,n) in �, let r0 =
1
4 dist(x0, ∂�). Consider

the Taylor expansion of u in Qr0(x0)

(2-15) u(x ′0, xn)=

n∑
k=0

u(k)(x0)

k!
(xn − x0,n)

k
+

u(n+1)(x ′0, ξ)
(n+ 1)!

(xn − x0,n)
n+1,

where ξ = t x0,n + (1− t)xn for some t ∈ (0, 1). By Theorem 2.3, we know that

|u(k)(x0)| ≤

(
Ck
r0

)k

M,

|u(k+1)(x ′0, ξ)| ≤
(

C(k+ 1)
r0

)k+1

M,

where M := ‖u‖L∞(Q2r0 (x0))+ 1. By Stirling’s formula we have

(k+ 1)(k+1) < ek+1(k+ 1)! .

Hence when |x − x0| ≤ r0/2Ce we have

|u(k)(x0)|

k!
|xn − x0,n|

k
≤

M
2k → 0 as k→∞.

Hence u is analytic in the xn direction. �



REGULARITY AND ANALYTICITY OF SOLUTIONS IN A DIRECTION 427

3. Proof of Theorem 1.2

In this section we prove the analyticity of solutions in xn to the equation

(3-1) L[u] :=
n∑

i, j=1

ai j (x)ui j = f (x) in �,

where the coefficients ai j also depend on xn . We assume that the ai j are in C0(�)

and satisfy (1-2) and f ∈ L p(�) (p ≥ n). We also assume that ai j and f are
analytic in xn and satisfy

(3-2) |∂k
xn

ai j | + |∂
k
xn

f | ≤ Bkk!

for all k ≥ 1, where B > 0 is a constant.
As before, we set u′ = uxn , u′′ = uxn xn and u(k) =

∂ku
∂xk

n
for all integer k ≥ 1. In

this section we also set

(3-3)

[u]W 2,p(�) =

∑
|s|=2

‖Dsu‖L p(�),

[u(`)](β)W 2,p(�)
= supQr (x)⊂� d`+2−n/p+β

Qr (x) [u(`)]W 2,p(Qr (x)),

‖u(`)‖(β)L p(�) = supQr (x)⊂� d`−n/p+β
Qr (x) ‖u(`)‖L p(Qr (x)),

for `= 0, 1, 2, . . . and β ∈ R, where dQr (x) = dist(Qr (x), ∂�).
By the W 2,p estimate, we have:

Lemma 3.1. Let u ∈W 2,n(�) be a strong solution to (3-1). Assume that the ai j are
in C0(�) and satisfy (1-2), f ∈ L p(�) (p ≥ 1), and Q R(x0) ⊂ �. There exists a
constant C such that, if 0< r < r + δ < R, then

(3-4) ‖u‖W 2,p(Qr (x0)) ≤ C
{

1
δ2 ‖u‖L p(Qr+δ(x0))+‖ f ‖L p(Qr+δ(x0))

}
,

where C depends only on n, p, λ, 3 and the moduli of the continuity of the
coefficients ai j .

Proof. When r ≤ δ, by the W 2,p estimate for elliptic equations [Gilbarg and
Trudinger 1998] and a rescaling argument, we have

(3-5) ‖D2u‖L p(Qr (x0)) ≤
C
δ2 (‖u‖L p(Qr+δ(x0))+ (r + δ)

2
‖ f ‖L p(Qr+δ(x0)))

≤ C
(

1
δ2 ‖u‖L p(Qr+δ(x0))+‖ f ‖L p(Qr+δ(x0))

)
.
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When δ < r , we choose m ≥ 2 such that r/m ≤ δ < r/(m− 1), and equally divide
the cube Qr (x0) into smaller cubes with side-length r/m. Then

‖D2u‖p
L p(Qr (x0))

=

∑
i

‖D2u‖p
L p(Qr/m(xi ))

.

By (3-5),

(3-6) ‖D2u‖p
L p(Qr/m(xi ))

≤ C
(

1
δ2p ‖u‖

p
L p(Q2r/m(xi ))

+‖ f ‖p
L p(Q2r/m(xi ))

)
.

Note that for each Qr/m(xi ) there are at most 3n cubes of the form Q2r/m(x j )

intersecting with it. Hence, summing up, we obtain

(3-7) ‖D2u‖p
L p(Qr (x0))

≤ C
(

1
δ2p ‖u‖

p
L p(Qr+δ(x0))

+‖ f ‖p
L p(Qr+δ(x0))

)
.

We obtain (3-4). �

We remark that in Lemma 3.1 the assumption u ∈ W 2,n(�) implies that f ∈
Ln(�). But the inequality (3-4) holds for all p ≥ 1.

Theorem 3.2. Let u ∈ W 2,n(�) be a solution to (3-1). Assume that the ai j are in
C0(�) and satisfy (1-2). Assume also that the ai j and f are analytic in xn and
satisfy (3-2). Then u is analytic in xn .

Proof. By (3-1), we have

(3-8)
∑

ai j (x + δen)[u′δ]i j =−
∑
[ai j ]

′

δ ui j + f ′δ,

where u′δ = (1/δ)[u(x + δen)− u(x)], [ai j ]
′

δ = (1/δ)[ai j (x + δen)− ai j (x)], and
en = (0, . . . , 0, 1) is the unit vector on the xn-axis. Since the ai j are continuous,
by the W 2,p estimate, we see that u′δ ∈W 2,p(�′) (p = n) for any �′ ⊂�. Sending
δ → 0, we obtain that u′ ∈ W 2,p

loc (�) and is a solution to L[u′] = f ′ − a′i j ui j .
Similarly u(k) ∈W 2,p

loc (�) and is a solution to

(3-9) L[u(k)] = f (k)−
k∑
`=1

(
`

k

)
a(`)i j u(k−`)i j := f (k)−φ in �,

where
(
`
k

)
= k!/(`!(k− `)!).

We will prove Theorem 3.2 by induction. There is no loss of generality in
assuming that �= Q0 is the cube of side-length two centered at the origin. By the
definition of [u](n/p)

W 2,p(Q0)
, there exists a cube Qr0(x0)⊂ Q0 such that

[u](n/p)
W 2,p(Q0)

≤ 2d2
0 [u]W 2,p(Qr0 (x0)),
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where d0= dist(Qr0(x0), ∂Q0). We may assume that the center of Qr0 is the origin;
otherwise we may replace Qr0(x0) by the larger cube Q1−d0(0). Therefore the last
inequality becomes

(3-10) [u](n/p)
W 2,p(Q0)

≤ 2(1− r0)
2
[u]W 2,p(Qr0 )

,

where Qr0 is centered at the origin. Thanks to Lemma 3.1, there is a constant C
independent of r0 such that

[u]W 2,p(Qr0 )
≤ C{4(1− r0)

−2
‖u‖L p(Q′r0

)+‖ f ‖L p(Q′r0
)}

≤ C{4(1− r0)
−2
‖u‖L p(Q0)+‖ f ‖L p(Q0)},

where Q′r0
= Qr0+(1−r0)/2 ⊂ Q0. Hence we obtain

(3-11) [u](n/p)
W 2,p(Q0)

≤ C(‖u‖L p(Q0)+‖ f ‖L p(Q0)).

Next we consider the W 2,p estimate for u′. Similarly to (3-10), there exists a
cube Qr1 , centered at the origin, such that

[u′](n/p)
W 2,p(Q0)

≤ 2(1− r1)
3
[u′]W 2,p(Qr1 )

.

By (3-9) and Lemma 3.1,

[u′]W 2,p(Qr1 )
≤ C

{
9

(1− r1)2
‖u′‖L p(Q′r1

)+‖ f ′‖L p(Q′r1
)+

n∑
i, j=1

‖a′i j ui j‖L p(Q′r1
)

}
,

where Q′r1
= Qr1+(1−r1)/3 is a cube centered at the origin. By the interpolation

inequality, the right-hand side of the above formula is

≤C
{
(1−r1)

−3
‖u‖L p(Q′r1

)+(1−r1)
−1
‖D2u‖L p(Q′r1

)+‖ f ′‖L p(Q′r1
)+B‖D2u‖L p(Q′r1

)

}
≤ C B(1− r1)

−3
{‖u‖L p(Q0)+‖ f ′‖L p(Q0)+ [u]

(n/p)
W 2,p(Q0)

}.

Therefore we obtain

[u′](n/p)
W 2,p(Q0)

≤ C B(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1),

where the number 1 arises in ‖ f ′‖L p(Q0).
By induction, let us assume for `= 0, 1, 2, . . . , k that

(3-12) [u(`)](n/p)
W 2,p(Q0)

≤ A``!(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1).

Then, similarly to (3-10), there exists a cube Qrk+1 ⊂ Q0, centered at the origin,
such that

(3-13) [u(k+1)
]
(n/p)
W 2,p(Q0)

≤ 2(1− rk+1)
k+3
[u(k+1)

]W 2,p(Qrk+1 )
,
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where Qrk+1 is a cube with center at the origin. By Lemma 3.1, with δ =
1− rk+1

k+ 3
,

(1− rk+1)
k+3
[u(k+1)

]W 2,p(Qrk+1 )

≤ C(1− rk+1)
k+3
{
(k+ 3)2

(1− rk+1)2
‖u(k+1)

‖L p(Q′rk+1
)+‖ f (k+1)

‖L∞(Q′rk+1
)

+

n∑
i, j=1

k∑
m=0

( m
k+1

)
‖a(k+1−m)

i j u(m)i j ‖L p(Q′rk+1
)

}
,

where Q′rk+1
:= Qrk+1+(1−rk+1)/(k+3). Note that dist(Q′rk+1

, ∂Q0)=
k+2
k+3

(1− rk+1).
We have

(k+ 3)2(1− rk+1)
k+1
‖u(k+1)

‖L p(Q′rk+1
)

≤ (k+ 3)2
(k+3

k+2

)k+1(k+2
k+3

(1− rk+1)
)k+1
[u(k−1)

]W 2,p(Q′rk+1
)

≤ 4(k+ 3)2[u(k−1)
]
(n/p)
W 2,p(Q0)

.

Similarly,

(1− rk+1)
k+3
‖a(k+1−m)

i j u(m)i j ‖L p(Q′rk+1
)

≤ ‖a(k+1−m)
i j ‖L∞(Q0)(1− rk+1)

m+2
[u(m)]W 2,p(Q′rk+1

)

≤ 4‖a(k+1−m)
i j ‖L∞(Q0)[u

(m)
]
(n/p)
W 2,p(Q0)

.

Hence for fixed i , j , by the induction assumptions,

(1− rk+1)
k+3

k∑
m=0

( m
k+1

)
‖a(k+1−m)

i j u(m)i j ‖L p(Q′rk+1
)

≤ 4
k∑

m=0

( m
k+1

)
‖a(k+1−m)

i j ‖L∞(Q0)[u
(m)
]
(n/p)
W 2,p(Q0)

≤ 4(k+ 1)!Am Bk+1−m(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1)

≤ 4(k+ 1)!Ak B(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1).

Hence by (3-13) we obtain

[u(k+1)
]
(n/p)
W 2,p(Q0)

≤ C
{
(k+ 3)2[u(k−1)

]
(n/p)
W 2,p(Q0)

+‖ f (k+1)
‖L∞(Q0)

+ (k+ 1)!Ak B(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1)
}
.

By (3-2) and the induction assumption (3-12), we then obtain

[u(k+1)
]
(n/p)
W 2,p(Q0)

≤ C(k+ 1)!(Ak−1
+ Ak B+ Bk+1)(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1).

Choosing A� B, we obtain (3-12) for k+ 1.
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From (3-12), we obtain that

[u(k+1)
]W 2,p(Q1/2(0)) ≤ 2k+1 Ak+1(k+ 1)!(‖u‖L p(Q0)+‖ f ‖L p(Q0)+ 1).

By the Sobolev embedding and since p > n, we have

|u(k+1)(0)| ≤ C2k+1 Ak+1(k+ 1)!.

Hence u is analytic in xn at the origin. �

As we remarked in Section 1, the continuity assumption on the ai j can be relaxed.
The continuity is used for the W 2,p estimate; it suffices to assume that the ai j are
continuous in any n − 1 variables [Kim and Krylov 2007]. In particular, in the
dimension-two case, we can remove the continuity of ai j in Theorem 1.2, as the
analyticity of ai j automatically implies that they are continuous in one variable.
Therefore, for the equation

(3-14)
2∑

i, j=1

ai j (x)ui j = f (x) in �,

where the coefficients ai j satisfy the uniformly elliptic condition (1-2), we have:

Theorem 3.3. Let u ∈W 2,2(�) be a strong solution to (3-14). Assume that the ai j

satisfy (1-2) and assume that ai j and f are analytic in x2. Then under the above
conditions, u is analytic in x2.

4. Proof of Theorem 1.4

Let � be a bounded domain in Rn . Let ξ be a unit vector in Rn and φ a function
defined in �. Set

ωφ,ξ (r)= sup{|φ(x)−φ(x + tξ)| | x, x + tξ ∈�, |t | ≤ r}.

We say φ is Hölder-continuous in the ξ direction with Hölder exponent α if ωφ,ξ ∈
Cα, and write φ ∈ Cα

ξ (�), with the norm

‖φ‖Cα
ξ (�)
= supx∈� |φ(x)| + supt>0

ωφ,ξ (t)
tα

.

To prove Theorem 1.4, we assume for simplicity that bi = c = 0 and consider
the equation

(4-1) L[u] :=
n∑

i, j=1

ai j (x)ui j = f (x) in �,

where the coefficients ai j satisfies the uniformly elliptic condition (1-2). The proof
below is based on a perturbation argument and follows closely that of [Wang 2006].
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Proof of Theorem 1.4. Without loss of generality we assume ξ = e1 = (1, 0, . . . , 0)
and �= B1(0), the unit ball. We set

Bk = B2−k (0), âi j (x)= ai j (0, x2, . . . , xn), f̂ (x)= f (0, x2, . . . , xn).

For k = 0, 1, 2, . . . , let uk be the solution of

(4-2)

n∑
i, j=1

âi j (x)(uk)xi x j = f̂ (x) in Bk,

uk = u on ∂Bk .

Then

(4-3)

n∑
i, j=1

âi j (x)(uk−u)xi x j=

n∑
i, j=1

(ai j (x)−âi j (x))uxi x j+ f̂ (x)− f (x) in Bk,

uk−u = 0 on ∂Bk .

Hence, by the Alexandrov maximum principle, for k ≥ 1,

(4-4) supBk
|u− uk |

≤ C2−k
[∫

Bk

|(ai j (x)− âi j (x))uxi x j |
n dx

]1/n

+C2−2kω f,ξ (2−k)

≤ C2−k
‖ai j‖Cα

ξ (Bk)

[∫
Bk

|x |nα|uxi x j |
n dx

]1/n

+C2−2kω f,ξ (2−k)

≤ C2−k
‖ai j‖Cα

ξ (Bk)

[(∫
Bk

|x |nαp/(p−n) dx
)(p−n)/p(∫

Bk

|uxi x j |
p dx

)n/p]1/n

+C2−2kω f,ξ (2−k)

≤ C2−k
‖ai j‖Cα

ξ (Bk)(2
−k)α+1−n/p

‖u‖W 2,p(Bk)+C2−2kω f,ξ (2−k)

≤ C(A · (2−k)2+α−n/p
+ 2−2kω f,ξ (2−k)),

where

A = ‖u‖W 2,p(B1)‖ai j‖Cα
ξ (�)

.

Since the ai j are continuous and satisfy the uniformly elliptic condition, by the
W 2,p estimate,

A ≤ C(‖u‖L p(�)+‖ f ‖L p(�))‖ai j‖Cα
ξ (�)

.

Hence

(4-5) ‖uk − uk+1‖L∞(Bk+1) ≤ C{A · (2−k)2+α−n/p
+ 2−2kω f,ξ (2−k)}

= C2−2k
{A · (2−k)α−n/p

+ω f,ξ (2−k)}.
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Since wk := uk+1− uk satisfies

âi j (x)wxi x j = 0

in Bk+1, where the coefficients âi j (x) are independent of x1, by differentiating the
equation and by the W 2,p estimate, we have

‖∂ξwk‖W 2,p(Bk+2) ≤ C23k
‖wk‖L∞(Bk+1) for all p > 1.

Hence by the Sobolev embedding theorem,

‖∂ξwk‖C1,β (Bk+2) ≤ C22k+2β
‖wk‖L∞(Bk+1) for all β ∈ (0, 1).

Therefore by rescaling,

(4-6)

‖∂ξ∂xwk‖L∞(Bk+2) ≤ C[A · (2−k)α−n/p
+ω f,ξ (2−k)],

‖∂ξ∂xw‖Cβ (Bk+2) ≤ C2kβ
[A · (2−k)α−n/p

+ω f,ξ (2−k)].

As the coefficients ai j are continuous, the solution can be approximated by smooth
solutions. Hence, to prove Theorem 1.4, we may assume that u is smooth, so that

D2uk(0)→ D2u(0).

For y near 0, let m ≥ 1 be such that

2−m−4
≤ |y|< 2−m−3.

Then

(4-7) |∂ξ∂x u(y)−∂ξ∂x u(0)|≤ |∂ξ∂x um(y)−∂ξ∂x um(0)|+|∂ξ∂x um(0)−∂ξ∂x u(0)|

+ |∂ξ∂x u(y)− ∂ξ∂x um(y)|.
We have

(4-8) |∂ξ∂x um(0)− ∂ξ∂x u(0)| ≤
∞∑

k=m

|∂ξ∂x uk(0)− ∂ξ∂x uk+1(0)|

≤ C
∞∑

k=m

[A · (2−k)α−n/p
+ω f,ξ (2−k)]

≤ C
{

A · (2−m)α−n/p
+

∫
|y|

0

ω f,ξ (r)
r

}
≤ C

{
A · |y|α−n/p

+

∫
|y|

0

ω f,ξ (r)
r

}
.

Similarly,

|∂ξ∂x u(y)− ∂ξ∂x um(y)| ≤ C
{

A · |y|α−n/p
+

∫
|y|

0

ω f,ξ (r)
r

}
.
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By (4-6) we have

(4-9) |∂ξ∂xwk(y)− ∂ξ∂xwk(0)| ≤ ‖∂ξ∂xwk‖Cβ (Bk+2)|y|
β

≤ C |y|β2kβ
[A · (2−k)α−n/p

+ω f,ξ (2−k)].

Write

um = u1+

m−1∑
k=1

wk .

We have, for β < α− n/p,

(4-10) |∂ξ∂x um(y)− ∂ξ∂x um(0)|

≤ |∂ξ∂x u1(y)− ∂ξ∂x u1(0)| +
m−1∑
k=1

|∂ξ∂xwk(y)− ∂ξ∂xwk(0)|

≤ C |y|β
(
‖u1‖L∞(�)+

m−1∑
k=1

2kβ(A · (2−k)α−n/p
+ω f,ξ (2−k)

))

≤ C |y|β
(
‖u‖L∞(�)+‖ f ‖L p(�)+

∫ 1

|y|

ω f,ξ (r)
r1+β

)
.

This completes the proof of Theorem 1.4. �

5. Equation of divergence form

We consider the following linear elliptic equation of divergence form:

(5-1) Lu = div(A(x)∇u(x))= div f (x) in �,

where the coefficient matrix A(x)= (ai j (x))n×n satisfies the uniformly elliptic condi-
tion (1-2) and f (x)= ( f1(x), f2(x), . . . , fn(x))∈ [L p(�)]n for p> 1. We assume
also that ai j and f are analytic in xn , and that there exists a constant B> 0 such that

(5-2) |∂k
xn

ai j | + |∂
k
xn

f | ≤ Bkk!

for all k ≥ 1.

Definition 5.1. Let 1< p<∞. We say that u is a solution to (5-1) if u ∈W 1,p
loc (�)

and satisfies ∫
�

ai j (x)ux jφxi dx =
∫
�

f (x)φxi dx

for all φ ∈ C∞0 (�).
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As before, we set u′ = uxn , u′′ = uxn xn and u(k) =
∂ku
∂xk

n
for all integers k ≥ 1. We

also define

(5-3)

[u]W 1,p(�) = ‖Du‖L p(�),

‖u(k)‖(β)W 1,p(�)
= supQr (x)⊂� dk+1−n/p+β

Qr (x) [u(k)]W 1,p(Qr (x)),

‖u(k)‖(β)L p(�) = supQr (x)⊂� dk−n/p+β
Qr (x) ‖u(k)‖L p(Qr (x)),

where dQr (x) = dist(Qr (x), ∂�), k is a nonnegative integer, and p> 1 is a constant.
By the W 1,p estimate for the divergence form (5-1) in [Di Fazio 1996], we have:

Lemma 5.2. Let u be a solution to (5-1). Assume that the ai j satisfy (1-2),
f ∈ [L p(�)]n (p > 1) and Q R(x0) ⊂ �. There exists a constant C such that,
if 0< r < r + δ < R, then

(5-4) [u]W 1,p(Qr (x0)) ≤ C
{

1
δ
‖u‖L p(Qr+δ(x0))+

n∑
i=1

‖ fi‖L p(Qr+δ(x0))

}
,

where the constant C depends only on n, p, λ, 3.

By Lemma 5.2 we then have:

Theorem 5.3. Let u be a solution to (5-1). Assume that the ai j satisfy (1-2) and
f ∈ [L p(�)]n (p > n). Assume that the ai j and f are analytic in the variable xn .

Then u is analytic in xn .

The proofs of Lemma 5.2 and Theorem 5.3 are similar to those in Section 3 and
are omitted here. Note that the assumption p > n in Theorem 5.3 is for the use of
Sobolev embedding; namely, by the estimate ‖u(k)‖W 1,p(Qr (0)) ≤ C one infers that
|u(k)(0)| ≤ C1.
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