VARIATIONS OF THE TELESCOPE CONJECTURE
AND BOUSFIELD LATTICES FOR LOCALIZED
CATEGORIES OF SPECTRA

F. Luke Wolcott
VARIATIONS OF THE TELESCOPE CONJECTURE
AND BOUSFIELD LATTICES FOR LOCALIZED
CATEGORIES OF SPECTRA

F. LUKE WOLCOTT

We investigate several versions of the telescope conjecture on localized categories of spectra and implications between them. Generalizing the “finite localization” construction, we show that, on such categories, localizing away from a set of strongly dualizable objects is smashing. We classify all smashing localizations on the harmonic category, H_{F_p}-local category and I-local category, where I is the Brown–Comenetz dual of the sphere spectrum; all are localizations away from strongly dualizable objects, although these categories have no nonzero compact objects. The Bousfield lattices of the harmonic, $E(n)$-local, $K(n)$-local, H_{F_p}-local and I-local categories are described, along with some lattice maps between them. One consequence is that in none of these categories is there a nonzero object that squares to zero. Another is that the H_{F_p}-local category has localizing subcategories that are not Bousfield classes.

1. Introduction

The telescope conjecture, first stated by Ravenel [1984, Conjecture 10.5], is a claim about two classes of localization functors in the p-local stable homotopy category of spectra. First, one can localize away from a finite type $n + 1$ spectrum $F(n + 1)$; the acyclics are the smallest localizing subcategory containing $F(n + 1)$, and we denote this functor by L^f_n. Second, one can localize at the wedge of the first $n + 1$ Morava K-theories $K(0) \vee \cdots \vee K(n)$; the acyclics are all spectra that smash with $K(0) \vee \cdots \vee K(n)$ to zero and this is denoted L_n. Both these localizations are smashing, i.e., they commute with coproducts. The telescope conjecture (TC_n) claims that L^f_n and L_n are isomorphic. In fact, here we consider three slightly different versions, TC_{1_n}, TC_{2_n}, and TC_{3_n}, of the telescope conjecture. In Section 3 we articulate them carefully and show implications between them.

The conjecture is known to hold for $n = 0$ [Ravenel 1992, p. 79] and for $n = 1$ when $p = 2$ [Mahowald 1982] and $p > 2$ [Miller 1981]. A valiant but unsuccessful

Keywords: telescope conjecture, Bousfield localization, Bousfield lattice, harmonic category, smashing localization.
effort at a counterexample, for \(n \geq 2 \), was undertaken by Mahowald, Ravenel, and Shick, as outlined in [Mahowald et al. 2001]. Since then little progress has been made, and the original conjecture remains open.

A generalization of the telescope conjecture can be stated for spectra, as well as other triangulated categories. Localization away from a finite spectrum, i.e., a compact object of the category, always yields a smashing localization functor (see, e.g., [Bousfield 1979a, Proposition 2.9] or [Miller 1992] or [Hovey et al. 1997, Theorem 3.3.3]). The Generalized Smashing Conjecture (GSC) is that every smashing localization arises in this way. If true, then every smashing localization is determined by its compact acyclics; if the GSC holds in spectra, then so must the \(\text{TC}_n \) for all \(n \).

The GSC, essentially stated for spectra decades ago by Bousfield [1979b, Conjecture 3.4], has been formulated in many other triangulated categories, in many cases labeled as the telescope conjecture, and in many cases proven to hold. Neeman [1992] made the conjecture for the derived category \(D(R) \) of a commutative ring \(R \) and showed that it holds when the ring is Noetherian. See also [Hovey et al. 1997, Theorem 6.3.7] or [Krause and Šťovíček 2010] for a generalization. On the other hand, Keller [1994] gave an example of a non-Noetherian ring for which the GSC fails. Benson, Iyengar, and Krause have shown that the GSC holds in a stratified category [Benson et al. 2011a], such as the stable module category of a finite group [Benson et al. 2011b]. Balmer and Favi [2011] showed that in a tensor triangulated category with a good notion of support, the GSC is a “local” question.

It is worth noting that there are further variations of the GSC that we will not consider here. Krause [2000] formulated a variation of the GSC, in terms of subcategories generated by sets of maps, that makes sense (and holds) for any compactly generated triangulated category. Krause and Solberg [2003] gave a variation for stable module categories, stated in terms of cotorsion pairs. See also [Krause 2005; Angeleri Hügel et al. 2008; Brüning 2007; Šťovíček 2010].

To date, Keller’s ring yields the only category where the GSC is known to fail. In this paper we give several more examples. Incidentally, each is a well generated triangulated category that is not compactly generated.

One of our main results is the following. We weaken the assumptions for “finite localization” and show that, in many categories, localization away from any set of strongly dualizable objects yields a smashing localization. (Recall that an object \(X \) is strongly dualizable if \(F(X, Y) \cong F(X, 1) \wedge Y \) for all \(Y \), where \(1 \) is the tensor unit and \(F(-, -) \) the function object bifunctor.) Let \(\text{loc}(X) \) denote the smallest localizing subcategory containing \(X \). We prove the following as Theorem 3.5.

Theorem (A). Let \(\mathcal{T} \) be a well generated tensor triangulated category such that \(\text{loc}(1) = \mathcal{T} \). Let \(A = \{ B_\alpha \} \) be a (possibly infinite) set of strongly dualizable objects. Then there exists a smashing localization functor \(L : \mathcal{T} \to \mathcal{T} \) with \(\text{Ker} L = \text{loc}(A) \).
Thus we are led to conjecture the following.

Conjecture (Strongly Dualizable Generalized Smashing Conjecture (SDGSC)). Every smashing localization is localization away from a set of strongly dualizable objects.

We give several examples of categories where the GSC fails but the SDGSC holds. In fact, we consider a topological setting, where one can also formulate a version (or versions, rather) of the original telescope conjecture.

Specifically, we consider localized categories of spectra. Let \mathcal{S} be the p-local stable homotopy category, and let \wedge denote the smash (i.e., tensor) product. Take Z to be an object of \mathcal{S}, and let $L = L_Z : S \to S$ be the localization functor that annihilates Z^*-acyclic objects. The full subcategory of L-local objects, that is, objects X for which $X \to LX$ is an equivalence, has a tensor triangulated structure induced by that of \mathcal{S}. Let \mathcal{L} denote this category; the triangles are the same as in \mathcal{S}, the coproduct is $X \bigoplus_{\mathcal{L}} Y = L(X \bigoplus Y)$ and the tensor is $X \wedge_{\mathcal{L}} Y = L(X \wedge Y)$.

In Definition 3.6, we define localization functors l^f_n and l_n on \mathcal{L} that are localized versions of L^f_n and L_n. The localized telescope conjecture (LTC) claims that l^f_n and l_n are isomorphic. In fact, we give three versions of the LTC and in Theorems 3.12 and 3.13 establish implications between them. Then, examining specific examples of localized categories of spectra, we conclude the following in Theorems 4.3, 5.11, 6.1, 6.5 and 6.9 and Corollary 5.6.

Theorem (B). All versions of the localized telescope conjecture, LTC$_1$$_i$, LTC$_2$$_i$, and LTC$_3$$_i$ hold for all $i \geq 0$, in the $\bigwedge_{n \geq 0} K(n)$-local (i.e., harmonic), $K(n)$-local, $H$$_F$-$p$-local, BP-local, and I -local categories, where I is the Brown–Comenetz dual of the sphere spectrum.

In order to consider the GSC and SDGSC in \mathcal{L}, we must classify the smashing localizations on \mathcal{L}. We are able to do this in several examples.

Theorem (C). In the harmonic category, the GSC fails but the SDGSC holds, and likewise in the $H$$_F$-$p$-local and I -local categories. In the BP-local category the GSC fails but the SDGSC is open. In the $E(n)$-local and $K(n)$-local categories the GSC and SDGSC both hold.

Proof. This theorem is concluded from Theorems 4.4 and 5.11, Propositions 6.3 and 6.10, and Corollaries 5.6 and 5.7.

One novelty in our approach is our use of Bousfield lattice arguments. Given an object X in a tensor triangulated category \mathcal{T}, the Bousfield class of X is defined by $\langle X \rangle = \{ W \mid W \wedge X = 0 \}$. It is now known [Iyengar and Krause 2013] that every well generated tensor triangulated category has a set of Bousfield classes. This set has the structure of a lattice and is called the Bousfield lattice of \mathcal{T}. One can now attempt to calculate the Bousfield lattices of categories of localized spectra. Furthermore, every
smashing localization yields a pair of so-called complemented Bousfield classes. Information about the Bousfield lattice of a category gives information about its complemented classes, which gives information about the smashing localization functors on the category.

Moreover, the first version of the telescope conjecture TC1n is that two spectra T(n) and K(n) have the same Bousfield class. In the localized version this becomes (LTC1n) the claim that ⟨LT(n)⟩ = ⟨LK(n)⟩ in the Bousfield lattice of L. One is thus led to investigating Bousfield lattices of localized spectra.

Corollary 2.7 gives an upper bound, 22ℵ0, on the cardinality of such lattices. Jon Beardsley has calculated the Bousfield lattice of the harmonic category to be isomorphic to the power set of ℕ; we give this calculation in Proposition 4.2. In Corollary 5.4 and Proposition 5.7 we show that one can realize this lattice as an inverse limit of the Bousfield lattices of E(n)-local categories, as n ranges over ℕ. Then in Corollary 5.10 and Propositions 6.2 and 6.6, we show that the K(n)-local, HFp-local, and I-local categories all have two-element Bousfield lattices. In Proposition 6.11 we give a lower bound, 2ℵ0, on the cardinality of the Bousfield lattice of the BP-local category.

One immediate object-level application of these Bousfield lattice calculations is the following. Call an object X square-zero if it is nonzero but X ∧ X = 0. Then Proposition 2.9 shows that there are no square-zero objects in the harmonic, E(n)-, K(n)-, HFp-, or I-local categories.

We are also able to answer the analogue of a conjecture by Hovey and Palmieri, originally stated for the stable homotopy category. Conjecture 9.1 in [Hovey and Palmieri 1999] is that every localizing subcategory is a Bousfield lattice. Proposition 6.4 demonstrates that this fails in the HFp-local category by giving two localizing subcategories that are not Bousfield classes.

Section 2 establishes the categorical setting, and provides background on localization, Bousfield lattices, and stable homotopy theory. Section 3 defines the various versions of the telescope conjecture, for spectra and for localized spectra, and establishes implications among them. The remainder of the paper is devoted to examining specific examples: the harmonic category (Section 4), the E(n)-local and K(n)-local categories (Section 5), and the HFp-local, I-local, BP-local, and F(n)-local categories (Section 6). All results are new unless cited. Most of the results on the E(n)-local and K(n)-local categories in Section 5 follow in a straightforward way from Hovey and Strickland’s work [1999] and are included for completeness.

2. Preliminaries

2A. Categorical setting. We start with the notion of a tensor triangulated category C, i.e., a triangulated category with set-indexed coproducts and a closed
symmetric monoidal structure compatible with the triangulation [Hovey et al. 1997, Appendix A]. Let \(\Sigma : C \to C \) denote the shift and \([X, Y]\) the morphisms from \(X \) to \(Y \), and let \([X, Y]_n = [\Sigma^n X, Y]\) for any \(n \in \mathbb{Z} \).

Let \(- \wedge - \) denote the smash (tensor) product, \(\mathbb{1} \) the unit, and \(F(-, -) \) the function object bifunctor; \(F(X, -) \) is the right adjoint to \(X \wedge - \). Recall that an object \(X \) in \(C \) is said to be strongly dualizable if the natural map \(DX \wedge Y \to F(X, Y) \) is an isomorphism for all \(Y \), where \(DX = F(X, \mathbb{1}) \) is the Spanier–Whitehead dual. Since \(F(\mathbb{1}, X) \cong X \) for all \(X \), the map \(F(\mathbb{1}, \mathbb{1}) \wedge Y \to F(\mathbb{1}, Y) \) is an equivalence and \(\mathbb{1} \) is always strongly dualizable.

For a regular cardinal \(\alpha \), we say an object \(X \) is \(\alpha \)-small if every morphism \(X \to \bigsqcup_{i \in I} Y_i \) factors through \(\bigsqcup_{i \in J} Y_i \) for some \(J \subseteq I \) with \(|J| < \alpha \). If \(X \) is \(\aleph_0 \)-small we say \(X \) is compact ([Hovey et al. 1997] calls this small); this is equivalent to the condition that the natural map \(\bigoplus_{i \in K} [X, Z_i] \to [X, \bigsqcup_{i \in K} Z_i] \) is an isomorphism for any set-indexed coproduct \(\bigsqcup_{i \in K} Z_i \). We say \(C \) is \(\alpha \)-well generated if it has a set of perfect generators [Krause 2010, Section 5.1] which are \(\alpha \)-small, and \(C \) is well generated if it is \(\alpha \)-well generated for some \(\alpha \). See [Krause 2010] for more details.

A localizing subcategory is a triangulated subcategory of \(C \) that is closed under retracts and coproducts; a thick subcategory is a triangulated subcategory that is closed under retracts. Given an object or set of objects \(X \), let \(\text{loc}(X) \) (resp. \(\text{th}(X) \)) denote the smallest localizing (resp. thick) subcategory containing \(X \). We say that \(\text{loc}(X) \) is generated by \(X \).

Notation 2.1. Throughout this paper let \(T \) be a well generated tensor triangulated category such that \(\text{loc}(\mathbb{1}) = T \).

In the language of [Hovey et al. 1997], such a \(T \) is almost a “monogenic stable homotopy category”, except that we do not insist that the unit \(\mathbb{1} \) is compact.

In practice, in this paper \(T \) will always be either the \(p \)-local stable homotopy category of spectra \(S \) or the category \(L_Z \) of \(L_Z \)-local objects derived from a localization functor \(L_Z : S \to S \). The former satisfies **Notation 2.1** by [Hovey et al. 1997, Example 1.2.3(a)], and the latter by **Theorem 2.3** and **Lemma 2.4** below.

2B. Background on localization

Recall that a localization functor (or simply localization) on a tensor triangulated category \(C \) is an exact functor \(L : C \to C \), along with a natural transformation \(\eta : 1 \to L \) such that \(L \eta \) is an equivalence and \(L \eta = \eta L \). We call \(\text{Ker} L \) the \(L \)-acyclics. It follows that there is an exact functor \(C : C \to C \), called colocalization, such that every \(X \) in \(C \) fits into an exact triangle \(CX \to X \to LX \), with \(CX \) \(L \)-acyclic. An object \(Y \) is \(L \)-local if it is in the essential image of \(L \), and this is equivalent to satisfying \([Z, Y] = 0\) for all \(L \)-acyclic \(Z \). See [Hovey et al. 1997, Chapter 3] or [Krause 2010] for further background.

We also recall two special types of localizations. A localization \(L : C \to C \) is said to be smashing if \(L \) preserves coproducts, equivalently if \(LX \cong LX \wedge X \) for all \(X \).
Given a set A of objects of C, we say that a localization functor $L : C \to C$ is localization away from A if the L-acyclics are precisely $\text{loc}(A)$. If such a localization exists, we also say it is generated by A. When $C = S$, it is well known (e.g., [Miller 1992; Mahowald and Sadofsky 1995]) that localization away from a set of compact objects exists and yields a smashing localization functor. As mentioned in the introduction, this result has been generalized to other categories as well (e.g., [Hovey et al. 1997, Theorem 3.3.3], [Balmer and Favi 2011, Theorem 4.1]). We present a further generalization in Theorem 3.5.

In this paper we will restrict our attention to homological localizations, which we now describe. Given an object Z in a tensor triangulated category C, the Bousfield class of Z is defined to be $\langle Z \rangle = \{ W \in C \mid W \wedge Z = 0 \}$.

Extending a classical result of Bousfield’s for S, Iyengar and Krause recently showed [2013, Proposition 2.1] that for every object Z in a well generated tensor triangulated category C, there is a localization functor $L_Z : C \to C$ with L_Z-acyclics precisely $\langle Z \rangle$. We call such an L_Z a homological localization at Z.

Notation 2.2. Let T be as in Notation 2.1, with tensor unit $\mathbb{1}$. For an object Z in T, let $L_Z : T \to T$ be homological localization at Z. Let \mathcal{L}_Z denote the category of L_Z-local objects, the essential image of L_Z.

Theorem 2.3 [Hovey et al. 1997, 3.5.1, 3.5.2]. Let $L = L_Z : T \to T$ be a localization, and \mathcal{L}_Z the category of L_Z-local objects. Then \mathcal{L}_Z has a natural structure as a tensor triangulated category, generated by $L_Z \mathbb{1}$, which is the unit. Considered as a functor from T to \mathcal{L}_Z, L preserves triangles, the tensor product and its unit, coproducts, and strong dualizability. Furthermore, L preserves compactness if and only if L is a smashing localization.

Explicitly, for L-local objects X, X_i and Y, in \mathcal{L} we have $\bigsqcup_\mathcal{L} X_i = L(\bigsqcup_T X_i)$ and $X \wedge_\mathcal{L} Y = L(X \wedge_T Y)$ and $F_L(X, Y) = F(X, Y)$. Note that $L_Z \mathbb{1}$ is strongly dualizable but may not be compact in \mathcal{L}_Z.

Lemma 2.4. The category \mathcal{L}_Z is well generated.

Proof. By Proposition 2.1 of [Iyengar and Krause 2013], the L_Z-acyclics $\langle Z \rangle$ form a well generated localizing subcategory of T. Then by [Krause 2010, Theorem 7.2.1], the Verdier quotient $T/\langle Z \rangle$, which is equivalent to the local category \mathcal{L}_Z, is well generated. □

We conclude this subsection with a lemma containing four useful well-known facts. Recall that a ring object in a tensor triangulated category is an object R with an associative multiplication map $\mu : R \wedge R \to R$ and a unit $\iota : \mathbb{1} \to R$, making the evident diagrams commute. If R is a ring object, then an R-module object is an
object M with a map $m : R \wedge M \rightarrow M$ along with evident commutative diagrams. Note that $R \wedge X$ is an R-module object for every X. A skew field object is a ring object such that every R-module object is free, i.e., isomorphic to a coproduct of suspensions of R [Hovey et al. 1997, Definition 3.7.1].

Lemma 2.5. Let C be a tensor triangulated category with $\text{loc}(1) = C$, and $L : C \rightarrow C$ a localization.

1. Every localizing subcategory S of C is tensor-closed; that is, if $X \in S$ and $Y \in C$, then $X \wedge Y \in S$.
2. For all X and Y in C, $L(X \wedge Y) = L(LX \wedge LY)$.
3. Considered as a functor from C to L, L also preserves ring objects and module objects.
4. If R is a ring object and M is an R-module object (in particular, if $M = R$), then M is R-local.

Proof. For (1), note that $Y \in \text{loc}(1) = C$, so $X \wedge Y \in \text{loc}(X \wedge 1) = \text{loc}(X) \subseteq S$.

For (2), consider the exact triangle $X \wedge CY \rightarrow X \wedge Y \rightarrow X \wedge LY$. Since CY is L-acyclic and these form a localizing subcategory, $L(X \wedge CY) = 0$, so $L(X \wedge Y) = L(X \wedge LY)$. Using the same reasoning with the triangle $CX \wedge LY \rightarrow X \wedge LY \rightarrow LX \wedge LY$, the result follows.

If $R \in C$ is a ring object, then $L(\mu) : L(R \wedge R) = L(LR \wedge LR) = LR \wedge LRL \rightarrow LR$, and all the localized diagrams commute. A similar argument applies to module objects, completing part (3).

Part (4) is [Ravenel 1984, Proposition 1.17(a)].

2C. **Background on Bousfield lattices.** Every well generated tensor triangulated category, and hence every localized category of spectra, has a set (rather than a proper class) of Bousfield classes [Iyengar and Krause 2013, Theorem 3.1]. This was also recently shown for every tensor triangulated category with a combinatorial model [Casacuberta et al. 2014]. This set is called the Bousfield lattice $\text{BL}(T)$ and has a lattice structure which we now recall. Refer to [Hovey and Palmieri 1999; Wolcott 2014] for more details.

The partial ordering is given by reverse inclusion: we say $\langle X \rangle \leq \langle Y \rangle$ when $W \wedge Y = 0$ implies $W \wedge X = 0$. It is also helpful to remember that, unwinding definitions, $\langle X \rangle \leq \langle Y \rangle$ precisely when every L_X-local object is also L_Y-local. Clearly $\langle 0 \rangle$ is the minimum and $\langle 1 \rangle$ is the maximum class. The join of any set of classes is $\bigvee_{i \in I} \langle X_i \rangle = \bigll\bigcup_{i \in I} X_i \bigrr\bigll$, and the meet is defined to be the join of all lower bounds.

The smash product induces an operation on Bousfield classes, where $\langle X \rangle \wedge \langle Y \rangle$ is equal to $\langle X \wedge Y \rangle$. This is a lower bound, but in general not the meet. However, if we restrict to the subposet $\text{DL} = \{ \langle W \rangle \mid \langle W \wedge W \rangle = \langle W \rangle \}$, then the meet and smash
agree. Since coproducts distribute across the smash product, DL is a distributive lattice.

We say a class \(\langle X \rangle \) is complemented if there exists a class \(\langle X^c \rangle \) such that \(\langle X \rangle \wedge \langle X^c \rangle = \langle 0 \rangle \) and \(\langle X \rangle \vee \langle X^c \rangle = \langle 1 \rangle \). The collection of complemented classes is denoted BA. For example, every smashing localization \(L : T \to T \) gives a pair of complemented classes, namely \(\langle C \mathbb{1} \rangle \) and \(\langle L \mathbb{1} \rangle \). Because every complemented class is also in DL, BA is a Boolean algebra.

Proposition 2.6. Let \(T \) be as in Notation 2.1, and \(L_Z : T \to T \) a localization functor as in Notation 2.2. Then \(L_Z \) induces a well-defined order-preserving map of lattices \(BL(T) \to BL(L_Z) \), where \(\langle X \rangle \mapsto \langle L_Z X \rangle \). This map is surjective and sends \(DL(T) \) onto \(DL(L_Z) \) and \(BA(T) \) onto \(BA(L_Z) \).

Proof. Most of this is proved in Lemma 3.1 of [Wolcott 2014]. For \(\langle X \rangle \in DL(T) \), using Lemma 3.10 we get

\[
\langle LX \rangle = \langle L(X \wedge X) \rangle = \langle L(LX \wedge LX) \rangle = \langle LX \wedge L(LX) \rangle.
\]

Likewise, one can check that for \(\langle X \rangle \in BA(T) \), the class \(\langle LX \rangle \in BL(L) \) is complemented by \(\langle L(X^c) \rangle \), keeping in mind that \(\langle L \mathbb{1} \rangle \) is the top class in \(BL(L) \).

Corollary 2.7. For any \(Z \in S \), we have \(|BL(L_Z)| \leq 2^{2^{80}} \).

Proof. Observe that \(|BL(L_Z)| \leq |BL(S)| \leq 2^{2^{80}} \), where the second inequality is proved in [Ohkawa 1989].

Lemma 2.8. Let \(T \) be as in Notation 2.1, and \(X \) and \(Y \) objects of \(T \). Then \(\langle X \rangle \leq \langle Y \rangle \) if and only if \(L_X = L_X L_Y = L_Y L_X \) and in this case the following diagram commutes (also with \(BL \) replaced by \(DL \) or \(BA \)).

```
\[
\begin{array}{ccc}
BL(T) & \rightarrow & BL(L_X) \\
L_Y \downarrow & & \rightarrow \downarrow L_X \\
L_Y(L_Y) & \rightarrow & BL(L_X)
\end{array}
\]
```

Proof. The first equivalence is straightforward; it follows from [Ravenel 1984, Proposition 1.22] and the observation that \(\langle X \rangle \leq \langle Y \rangle \) precisely when all \(L_X \)-locals are \(L_Y \)-locals. The last remark follows from Proposition 2.6.

Here we mention one object-level application of the Bousfield lattice calculations of Sections 5 and 6.

Proposition 2.9. There are no square-zero objects in the harmonic, \(E(n) \)-, \(K(n) \)-, \(HF_p \)-, or \(I \)-local categories.

Proof. In Corollary 2.8 of [Wolcott 2014], we show that in a well generated tensor triangulated category, there are no square-zero objects if and only if \(BA = DL = BL \). The claim follows from Corollaries 5.4 and 5.10 and Propositions 6.2 and 6.6.
2D. Background on spectra. We quickly review some relevant background on the stable homotopy category. See [Ravenel 1992; 1993; Hovey 1995a; Mahowald and Sadowfsky 1995] for more details. Fix a prime p and let S denote the p-local stable homotopy category of spectra. Let S^0 denote the sphere spectrum. The finite spectra \mathcal{F} are the compact objects of S, and $\mathcal{F} = \text{th}(S^0)$. The structure of \mathcal{F} is determined by the Morava K-theories $K(i)$. For each $i \geq 0$, $K(i)$ is a skew field object in S, such that $K(i) \wedge K(j) = 0$ when $i \neq j$. If X is a finite spectrum and $K(j) \wedge X = 0$, then $K(j - 1) \wedge X = 0$. We say a finite spectrum X is type n if n is the smallest integer such that $K(n) \wedge X \neq 0$. Define $\mathcal{C}_n = \langle K(n - 1) \rangle \cap \mathcal{F}$. Then every thick subcategory of \mathcal{F} is \mathcal{C}_n for some n. It follows that any two spectra of type n generate the same thick subcategory, and hence Bousfield class; let $F(n)$ denote a generic type n spectrum.

Given a type n spectrum X, there is a v_n self-map $f : \Sigma^d X \to X$ for which $[s^0, K(n) \wedge f]_i$ is an isomorphism for all i and for which $[s^0, K(m) \wedge f]_j = 0$ for all j and $m \neq n$. We define $f^{-1}X$ to be the telescope, i.e., sequential or homotopy colimit, of the diagram $X \to \Sigma^{-d}X \to \cdots$. By the periodicity theorem, any choice of v_n self-map f yields an isomorphic telescope. The telescopes of different type n spectra are Bousfield equivalent; denote this class by $(T(n))$.

As mentioned above, localization away from a finite spectrum $F(n + 1)$ exists and is smashing. This localization functor is denoted L_n^f and is the same as homological localization at $T(0) \vee \cdots \vee T(n)$.

Let $E(n)$ denote the Johnson–Wilson spectrum; this is a ring spectrum with $\langle E(n) \rangle = \langle K(0) \vee \cdots \vee K(n) \rangle$. Define $L_n : S \to S$ to be homological localization at $E(n)$. A deep theorem of Ravenel [1992, Theorem 7.5.6] shows that L_n is smashing for all n. The functors L_n^f and L_n are the only known smashing localization functors on S.

The L_n^f-acyclics are given by $\text{loc}(F(n + 1)) = \text{loc}(C_{n+1}) = \text{loc}(\langle K(n) \rangle \cap \mathcal{F}) = \text{loc}(\langle E(n) \rangle \cap \mathcal{F})$. The L_n-acyclics are $\langle E(n) \rangle = \text{loc}(\langle E(n) \rangle)$. Thus every L_n^f-acyclic is L_n-acyclic, and we have $\langle K(0) \vee \cdots \vee K(n) \rangle \leq \langle T(0) \vee \cdots \vee T(n) \rangle$ for all n. It follows that there is a natural map $L_n^f \to L_n$.

For convenience later, we collect some calculations in S.

Lemma 2.10. In $\text{BL}(S)$ we have the following.

1. $\langle F(m) \rangle \leq \langle F(n) \rangle$ if and only if $m \geq n$. For all n and m, $\langle F(m) \wedge F(n) \rangle \neq 0$.

 Furthermore, $\langle F(n) \wedge F(n) \rangle = \langle F(n) \rangle$ for all n.

2. $\langle F(m) \wedge T(n) \rangle = \langle 0 \rangle$ when $m > n$, and $\langle F(m) \wedge T(n) \rangle = \langle T(n) \rangle$ when $m \leq n$.

3. $\langle T(m) \wedge T(n) \rangle = \langle 0 \rangle$ when $m \neq n$, and $\langle T(n) \wedge T(n) \rangle = \langle T(n) \rangle$.

4. $\langle F(m) \wedge K(n) \rangle = \langle 0 \rangle$ when $m > n$, and $\langle K(n) \rangle = \langle F(m) \wedge K(n) \rangle \leq \langle F(m) \rangle$ when $m \leq n$.
\((5)\) \(\langle T(m) \land K(n) \rangle = \langle 0 \rangle\) when \(m \neq n\), and \(\langle K(n) \rangle = \langle T(n) \land K(n) \rangle \leq \langle T(n) \rangle\).

\((6)\) \(\langle K(m) \land K(n) \rangle = \langle 0 \rangle\) when \(m \neq n\), and \(\langle K(n) \land K(n) \rangle = \langle K(n) \rangle\).

Proof. Part (1) is Theorem 14 of [Hopkins and Smith 1998], along with the observation that \(\langle F(n) \rangle\) is complemented by \(\langle L_{n-1}^f S^0 \rangle\), and hence is in DL.

Part (2) is in [Ravenel 1993, 2.8(i)], [Mahowald and Sadofsky 1995, 6.2], and [Hovey and Palmieri 1999, Section 5]. Part (3) is also in [Hovey and Palmieri 1999, Section 5].

Part (4) follows from the definition of type \(m\) spectra. Since each \(K(i)\) is a skew field object, \(F(m) \land K(i) \neq \langle 0 \rangle\) implies this \(K(i)\)-module object \(F(m) \land K(i)\) is a wedge of suspensions of \(K(i)\).

From the periodicity theorem, \(T(m)\) has nonzero \(K(m)\) homology, and therefore \(T(m) \land K(m) \neq 0\). The rest of Part (5) is in [Ravenel 1992, Proposition A.2.13]. Finally, Part (6) is well known. \(\square\)

Let \(I\) denote the Brown–Comenetz dual of the sphere spectrum. Recall that a harmonic spectrum is one that is local with respect to \(\bigvee_{i \geq 0} K(i)\). The following theorem plays a large role in the results in this paper.

Theorem 2.11. There are no nonzero compact objects in the following categories.

1. The BP-local category
2. The harmonic category
3. The \(H\mathbb{Z}\)-local category
4. The \(H\mathbb{F}_p\)-local category
5. The \(I\)-local category

Proof. This is Corollary B.13 in [Hovey and Strickland 1999]. \(\square\)

3. Local versions of the telescope conjecture

In this section, let \(L = L_Z : S \to S\) be a localization functor for some \(Z \in S\), and let \(L = L_Z\) denote the category of \(L\)-locals. First we state the various versions of the original telescope conjecture on \(S\).

Definition 3.1. Fix an integer \(n \geq 0\). On \(S\), we have the following versions of the telescope conjecture.

TC\(_n\) \(\langle T(n) \rangle = \langle K(n) \rangle\).

TC\(_n\) \(L_n^f X \sim L_n X\) for all \(X\).

TC\(_n\) If \(X\) is type \(n\) and \(f\) is a \(v_n\) self-map, then \(L_n X \cong f^{-1} X\).

GSC Every smashing localization is generated by a set of compact objects.

SDGSC Every smashing localization is generated by a set of strongly dualizable objects.
Theorem 3.2. On the category S, we have the following statements.

1. TC$_1^n$ holds if and only if TC$_3^n$ holds.
2. TC$_2^n$ holds if and only if TC$_1^i$ holds for all $i \leq n$.
3. If TC$_2^{n-1}$ and TC$_1^n$ hold, then TC$_2^n$ holds.
4. GSC holds if and only if SDGSC holds, and this implies TC$_2^n$ for all n.

Remark 3.3. Note that if we quantify over all n, the first three versions of the telescope conjecture are equivalent. That is,

$$TC_1^n \text{ for all } n \iff \text{TC}_2^n \text{ for all } n \iff \text{TC}_3^n \text{ for all } n.$$

Remark 3.4. TC$_2^n$ holds if and only if $L_n^f S^0 \simeq L_n S^0$. Indeed, since both L_n^f and L_n are smashing, the subcategory of objects W such that $L_n^f W \sim L_n W$ is localizing. Thus if it contains S^0, it contains $\text{loc}(S^0) = S$.

Proof. First we show the equivalence of TC$_1^n$ and TC$_3^n$. This is also sketched in [Mahowald et al. 2001, 1.13]. For any type n spectrum Y, $\text{th}(Y) = \text{th}(F(n))$ and so we have $\text{th}(L_n Y) = \text{th}(L_n F(n))$, and $\langle L_n Y \rangle = \langle L_n F(n) \rangle$. A construction in [Ravenel 1992, 8.3] gives a type n spectrum Y with $L_n Y \in \text{th}(K(n))$. Thus $\langle L_n Y \rangle \leq \langle K(n) \rangle$, and $0 \neq \langle L_n F(n) \rangle = \langle K(n) \rangle$. Suppose TC$_3^n$ holds. Then $\langle L_n Y \rangle = \langle f^{-1} Y \rangle = \langle T(n) \rangle$, and so $\langle T(n) \rangle = \langle K(n) \rangle$.

If X is type n and f is a v_n self-map, then [Mahowald and Sadofsky 1995, Proposition 3.2] implies that $L_n^f X \simeq L_{T(n)} X \simeq f^{-1} X$. Thus assuming TC$_1^n$, we have $L_{K(n)} X \simeq f^{-1} X$, and to prove TC$_3^n$ it suffices to show that $L_n X \simeq L_{K(n)} X$. This is known (see, e.g., [Hovey 1995a]), but we will give a proof that extends well to the localized setting. Since $\langle K(n) \rangle \leq \langle E(n) \rangle$, localization at $K(n)$ gives a map $L_n X \to L_{K(n)} X$. It suffices to show that this is an L_n-equivalence. The fiber is $K(n)$ acyclic, so $L_n X \wedge K(n) \to L_{K(n)} X \wedge K(n)$ is an isomorphism. Consider $i < n$. The triangle $C_n X \wedge K(i) \to X \wedge K(i) \to L_n X \wedge K(i)$ shows that $L_n X \wedge K(i)$ is zero, because X is type n and $C_n X$ is $K(i)$ acyclic. Lemma 3.3.1 in [Hovey et al. 1997] states that $L W = L S^0 \wedge W$ for any localization L and strongly dualizable W. Since every finite spectrum is strongly dualizable, $L_{K(n)} X \wedge K(i) = L_{K(n)} S^0 \wedge X \wedge K(i) = 0.$ Thus $L_n X \wedge K(i) \to L_{K(n)} X \wedge K(i)$ is an isomorphism for all $i \leq n$, and hence $L_n X \to L_{K(n)} X$ is an L_n-equivalence.

For the second statement, we note that TC$_2^n$ is equivalent to the statement $\langle T(0) \vee \cdots \vee T(n) \rangle = \langle K(0) \vee \cdots \vee K(n) \rangle$. Smashing this with $\langle T(i) \rangle$, for $0 \leq i \leq n$, and using Lemma 2.10, yields TC$_1^i$ for each i. The third statement is also clear from this observation.

Finally, GSC holds if and only if SDGSC holds because objects in S are compact if and only if they are strongly dualizable. Given GSC, consider L_n. The GSC
would imply that the L_n-acyclics are $\operatorname{loc}((E(n)) \cap F)$. As observed earlier, this is the same as $\operatorname{loc}(F(n + 1))$, the L_n'-acyclics. Therefore we would have $L_n' \cong L_n$. □

The SDGSC is new, and we will discuss it first. As mentioned in the above proof, in S compactness is equivalent to strong dualizability. It is well known that localization away from a set of compact objects is smashing. The GSC is precisely the statement that the converse holds. However, as we will show next, one only needs strong dualizability to generate a smashing localization functor. We will state our result in slightly more general terms.

Theorem 3.5. Let T be a well generated tensor triangulated category such that $\operatorname{loc}(\mathbb{1}) = T$, as in Notation 2.1. Let $A = \{B_\alpha\}$ be a (possibly infinite) set of strongly dualizable objects. Then there exists a smashing localization functor $L : T \to T$ with $\operatorname{Ker} L = \operatorname{loc}(A)$.

Proof. Let $E = \vee_\alpha B_\alpha$ and note that $\operatorname{loc}(E) = \operatorname{loc}(A)$. The category T is well generated by hypothesis. The localizing subcategory $S = \operatorname{loc}(E)$ is also well generated, by [Iyengar and Krause 2013, Remark 2.2], and is tensor-closed by Lemma 2.5.

By [Iyengar and Krause 2013, Proposition 2.1] there exists a localization functor $L : T \to T$ with $\operatorname{Ker} L = S$. We will show that L is a smashing localization.

First we claim that the L-locals are tensor-closed. For any $Y \in T$, we have

$$Y \text{ is } L\text{-local} \iff [W, Y]_n = 0 \text{ for all } W \in S \text{ and all } n \in \mathbb{Z} \iff [E, Y]_n = \prod [B_\alpha, Y]_n = 0 \text{ for all } n \in \mathbb{Z} \iff [B_\alpha, Y]_n = 0 \text{ for all } \alpha \text{ and } n \in \mathbb{Z} \iff DB_\alpha \land Y = 0 \text{ for all } \alpha.$$

The second equivalence follows from the fact that $\{X \mid [X, Y]_n = 0 \text{ for all } n \in \mathbb{Z}\}$ is a localizing subcategory containing E, and hence all of S. The final equivalence uses the fact that the B_α are strongly dualizable.

Now suppose Y is L-local and X is arbitrary. Then $DB_\alpha \land Y = 0$ for all α, so $DB_\alpha \land Y \land X = 0$ for all α, and thus $Y \land X$ is L-local. This shows that the L-locals are tensor-closed.

Consider the localization triangle $C\mathbb{1} \to \mathbb{1} \to L\mathbb{1}$, where $L\mathbb{1}$ is L-local and $C\mathbb{1} \in S$. For arbitrary $X \in T$, tensoring gives an exact triangle,

$$C\mathbb{1} \land X \to X \to L\mathbb{1} \land X.$$

The object $L\mathbb{1} \land X$ is L-local, since the locals are tensor-closed. Likewise, $C\mathbb{1} \land X \in S$, since S is tensor-closed and so $L(C\mathbb{1} \land X) = 0$. Therefore $X \to L\mathbb{1} \land X$ is an L-equivalence from X to an L-local object, and it follows that $LX \cong L\mathbb{1} \land X$. This shows that L is a smashing localization. □
In the stable homotopy category, and more generally whenever $1 \in T$ is compact, this gives nothing new; by [Hovey et al. 1997, Theorem 2.1.3(d)] compact and strongly dualizable are equivalent. Consider, however, the harmonic category, which has no nonzero compact objects. In Section 4 we classify all smashing localizations on the harmonic category; they are indexed by \mathbb{N}. Thus the GSC fails in the harmonic category but, as we show in Theorem 4.4, the SDGSC holds. In fact, in the following sections we will give several examples of categories where the GSC fails but the SDGSC holds.

On the other hand, we do not expect the SDGSC to hold in complete generality, since Keller’s counterexample [1994] to the GSC is also a counterexample to the SDGSC; in the derived category of a ring R, the unit R is compact and strongly dualizable, so the GSC and SDGSC are equivalent.

The GSC and SDGSC make sense in any localized category, but TC$_1^n$, TC$_2^n$, and TC$_3^n$ may not, since $T(n)$ and $K(n)$ may not be objects in L. Instead we present the following definitions.

Definition 3.6. Let $L : S \to S$ be a localization, and \mathcal{L} the category of L-locals.

1. Let $l^F_n : \mathcal{L} \to \mathcal{L}$ denote localization at $\langle LT(0) \lor LT(1) \lor \cdots \lor LT(n) \rangle$.
2. Let $l^K_n : \mathcal{L} \to \mathcal{L}$ denote localization at $\langle LK(0) \lor LK(1) \lor \cdots \lor LK(n) \rangle$.

Before stating and proving a local version of Theorem 3.2, we establish some results about l^F_n and l^K_n. First we make an observation about calculations in BL(L).

Lemma 3.7. All the calculations in Lemma 2.10 are valid in BL(L) if we replace $F(n)$, $T(n)$, and $K(n)$ with $L F(n)$, $L T(n)$, and $L K(n)$.

Proof. This follows from Theorem 2.3 and the statements in Lemma 2.10. □

Proposition 3.8. The functor l^F_n is localization away from $L F(n + 1)$, and hence is smashing.

Proof. By Theorem 3.5 we know that there is some smashing localization functor $l : \mathcal{L} \to \mathcal{L}$ that is localization away from $L F(n + 1)$; we wish to show $l = l^F_n$. Let $\mathbb{1} = LS^0$ for simplicity of notation, and let c denote the colocalization corresponding to l. We claim that the l-acyclics are precisely loc($c\mathbb{1}$). Clearly $c\mathbb{1}$ is l-acyclic, and these are a localizing subcategory, so loc($c\mathbb{1}$) $\subseteq \{l$-acyclics\}. On the other hand, suppose W is l-acyclic. Because l is smashing, $L W = W \land l\mathbb{1} = 0$, so $W = W \land c\mathbb{1}$. Then since $W \in \text{loc}(\mathbb{1}) = \mathcal{L}$, we have $W = W \land c\mathbb{1} \in \text{loc}(\mathbb{1} \land c\mathbb{1}) = \text{loc}(c\mathbb{1})$, proving the claim.

By definition, the l-acyclics are also given by loc($L F(n + 1)$). Therefore, we have $\langle L F(n + 1) \rangle = \langle c\mathbb{1} \rangle$.

The class $\langle F(n + 1) \rangle$ is complemented by $\langle T(0) \lor \cdots \lor T(n) \rangle$ in BL(S) [Hovey and Palmieri 1999, Section 5], and therefore $\langle L F(n + 1) \rangle$ is complemented by
\[\langle LT(0) \vee \cdots \vee LT(n) \rangle \] in \(BL(\mathcal{L}) \). At the same time, \(\langle c \mathbb{1} \rangle \) is complemented by \(\langle \mathbb{1} \rangle \), and complements are unique. We conclude that \(\{l\text{-acyclics}\} = \langle \mathbb{1} \rangle = \langle LT(0) \vee \cdots \vee LT(n) \rangle \). Since \(l \) and \(l_n^f \) are two localizations on \(\mathcal{L} \) with the same acyclics, they are equal.

Lemma 3.9. If \(L \) is smashing, then \(l_n^f = LL_n^f = L_n^f L \) and \(l_n = LL_n = L_nL \), and both are smashing.

Proof. Smashing localization functors always commute, and they compose to give a smashing localization. The functor \(LL_n : \mathcal{S} \to \mathcal{S} \), sending \(X \mapsto L(L_n S^0 \wedge X) = LS^0 \wedge L_n S^0 \wedge X \) is a smashing localization. Since \(LL_n \)-locals are \(L \)-local, it also gives a smashing localization on \(\mathcal{L} \). The acyclics of this functor are \(\langle LL_n S^0 \rangle \) in \(BL(\mathcal{L}) \), which is \(\langle LK(0) \vee \cdots \vee LK(n) \rangle \). Thus \(LL_n \) and \(l_n \) are localizations on \(\mathcal{L} \) with the same acyclics, and hence isomorphic. The same proof works for \(l_n^f = LL_n^f \).

In the category \(\mathcal{S} \), for a type \(n \) finite spectrum \(X \) with a \(v_n \) map \(f : \Sigma^d X \to X \) and telescope \(f^{-1}X \), it is known [Mahowald and Sadofsky 1995, Proposition 3.2] that \(L_n^f X \cong LT(n)X \cong f^{-1}X \). The following proposition shows that the local version of this result holds as well.

Lemma 3.10. Let \(L : \mathcal{S} \to \mathcal{S} \) be a localization, and \(l_n^f, X \) and \(f^{-1}X \) as above. Then

\[
L_n^f (LX) \cong L_{LT(n)}(LX) \cong L(f^{-1}X).
\]

Proof. The proof parallels the [Mahowald and Sadofsky 1995] result; one must only check that everything works when localized. If \(L_{LT(n)}(LX) \cong L(f^{-1}X) \) holds for a single type \(n \) spectrum, then it holds for all type \(n \) spectra. So without loss of generality, we can choose \(X \) to be a type \(n \) spectrum that is a ring object in \(\mathcal{S} \). Then for any \(v_n \) self-map \(f \), the telescope \(f^{-1}X \) is also a ring object [Mahowald and Sadofsky 1995, Lemma 2.2]. By Lemma 2.5, \(L(f^{-1}X) \) is a ring object in \(\mathcal{L} \), and hence is local with respect to itself.

Lemma 2.2 in [Mahowald and Sadofsky 1995] shows that we have \(X \wedge f^{-1}X \cong f^{-1}X \wedge f^{-1}X \) in \(\mathcal{S} \), so \(LX \wedge_{\mathcal{L}} L(f^{-1}X) \cong L(f^{-1}X) \wedge_{\mathcal{L}} L(f^{-1}X) \) in \(\mathcal{L} \) and the canonical map \(LX \to L(f^{-1}X) \) is an \(L(f^{-1}X) \)-equivalence. It follows that \(L_{LT(n)}(LX) \cong L(f^{-1}X) \).

Since \(\langle LT(n) \rangle \leq \langle LT(0) \vee \cdots \vee LT(n) \rangle \), we have that \(L(f^{-1}X) \) is \(l_n^f \)-local. One then uses Lemma 3.7 to see that \(LX \to L(f^{-1}X) \) is a \(l_n^f \)-equivalence, and so \(l_n^f (LX) = l_n^f (L(f^{-1}X)) = L(f^{-1}X) \). □

Definition 3.11. Let \(L : \mathcal{S} \to \mathcal{S} \) be a localization, and consider the category \(\mathcal{L} \) of locals. Fix an \(n \geq 0 \). We have the following versions of the telescope conjecture on \(\mathcal{L} \).
Theorem 3.2, along with the computations of Lemma 3.7 and some definition Remark 3.14.

Theorem 3.12. On the category \(\mathcal{L} \), we have the following statements.

1. \(\text{LTC}_1 \) implies \(\text{LTC}_3 \).
2. \(\text{LTC}_2 \) holds if and only if \(\text{LTC}_1 \) holds for all \(i \leq n \).
3. If \(\text{LTC}_{2n-1} \) and \(\text{LTC}_1 \) hold, then \(\text{LTC}_2 \) holds.

Proof. Note that \(\text{LTC}_2 \) is equivalent to the statement \(\langle LT(0) \vee \cdots \vee LT(n) \rangle = \langle LK(0) \vee \cdots \vee LK(n) \rangle \), so the last two statements are clear. We will show that \(\text{LTC}_1 \) implies \(\text{LTC}_3 \) by mimicking the proof in Theorem 3.2.

If \(X \) is type \(n \) and \(f \) is a \(v_n \) self-map, Lemma 3.10 shows that \(l_n^f (LX) \cong L_{LT(n)}(LX) \cong L(f^{-1}X) \). Then \(\text{LTC}_1 \) implies \(L_{LK(n)}LX \cong L(f^{-1}X) \). So it suffices to show that \(l_n(LX) = L_{LK(n)}LX \). Now we must show that the map \(L_{LK(n)} : l_n(LX) \to L_{LK(n)}LX \) is an \(l_n \)-equivalence. The same reasoning as in Theorem 3.2, along with the computations of Lemma 3.7 and some definition unwinding, gives us that \(l_n(LX) \wedge LK(i) \to L_{LK(n)}LX \wedge LK(i) \) is an equivalence for all \(i \leq n \); we only need to notice that Lemma 3.3.1 in [Hovey et al. 1997] applies to strongly dualizable objects, and that \(LX \) is strongly dualizable.

Theorem 3.13. If, furthermore, \(L : S \to S \) is a smashing localization, then on the category \(\mathcal{L} \) of locals we have that \(\text{LTC}_3 \) implies \(\text{LTC}_1 \), and

\[
\text{GSC} \iff \text{SDGSC} \Rightarrow \text{LTC}_2 \text{ for all } n.
\]

Remark 3.14. In this case, \(\text{LTC}_2 \) is equivalent to \(l_n^f (LS^0) \cong l_n(LS^0) \), since by Lemma 3.9 both \(l_n^f \) and \(l_n \) are smashing, so the argument in Remark 3.4 applies.

Proof. By [Hovey et al. 1997, Theorem 2.1.3(d)], the compact objects and strongly dualizable objects in \(\mathcal{L} \) coincide. Thus \(\text{GSC} \) holds if and only if \(\text{SDGSC} \) holds, and this implies \(\text{LTC}_2 \) just as in Theorem 3.2.

Suppose \(X \) has type \(n \) and \(\text{LTC}_3 \) holds. As in the proof of Theorem 3.2, \(\langle L_nF(n) \rangle = \langle K(n) \rangle \) in \(\text{BL}(S) \), and so \(\langle LL_nL_F(n) \rangle = \langle LK(n) \rangle \) in \(\text{BL}(\mathcal{L}) \). By Lemma 3.9, we have \(\langle l_nL_F(n) \rangle = \langle LK(n) \rangle \). Then \(\text{LTC}_3 \) implies that \(\langle LT(n) \rangle = \langle L(f^{-1}X) \rangle = \langle l_n(LX) \rangle = \langle l_nL_F(n) \rangle \), so \(\text{LTC}_1 \) holds.

Question 3.15. Is \(l_n : \mathcal{L} \to \mathcal{L} \) always a smashing localization?

This is the case in all the local categories investigated in this paper, whether or not \(L : S \to S \) is a smashing localization. If one could show \(l_n \) is always smashing, then most likely on \(\mathcal{L} \) one would have that \(\text{SDGSC} \) implies \(\text{LTC}_2 \) for all \(n \).
We would of course like to know if and when information on localized telescope conjectures can help with those in the original category S, where all versions remain open.

Proposition 3.16. Let $L : S \to S$ be a localization, with localized category \mathcal{L}.

1. If $T_{C1}n$ holds on S, then $T_{C1}n$ holds on \mathcal{L}.
2. If $T_{C2}n$ holds on S, then $T_{C2}n$ holds on \mathcal{L}.
3. If $T_{C3}n$ holds on S, then $T_{C3}n$ holds on \mathcal{L}.

Furthermore, if L is a smashing localization, then we have the following.

4. If GSC holds on S, then GSC holds on \mathcal{L}.
5. If $SDGSC$ holds on S, then $SDGSC$ holds on \mathcal{L}.

Proof. Part (1) follows immediately from Proposition 2.6. So does Part (2), since $T_{C2}n$ is equivalent to the statement $\langle T(0) \lor \cdots \lor T(n) \rangle = \langle K(0) \lor \cdots \lor K(n) \rangle$, and similarly for $T_{C2}n$. From this and Theorems 3.2 and 3.12 we have

$$T_{C3}n \iff T_{C1}n \Rightarrow T_{C1}n \Rightarrow T_{C3}n.$$

Now suppose L is smashing and the GSC holds on S. Let $l : \mathcal{L} \to \mathcal{L}$ be a smashing localization. Thus l is defined by $l(LY) = l(\langle LS^0 \rangle \land \mathcal{L} LY = \langle LS^0 \rangle \land \mathcal{L} Y$. We can therefore extend l to be a smashing localization on all of S, with the map $X \mapsto \langle LS^0 \rangle \land \mathcal{L} X = \langle LS^0 \rangle \land \mathcal{L} X$. Since the GSC holds on S by assumption, the acyclics of this functor are $\langle LS^0 \rangle = \text{loc}(A)$, for some set of compact objects A in S. Here $\langle LS^0 \rangle$ refers to the Bousfield class in $BL(S)$.

We must show that $\langle LS^0 \rangle$ in $BL(\mathcal{L})$ is generated by a set of objects that are compact in \mathcal{L}. Note that $\langle LS^0 \rangle$ in $BL(\mathcal{L})$ is $\{LW \mid LW \land \mathcal{L} LS^0 = 0\} = \{LW \mid LW \land \mathcal{L} LS^0 = 0\} = \langle LS^0 \rangle \cap \mathcal{L}$, where the latter $\langle LS^0 \rangle$ is in $BL(S)$. Therefore $\langle LS^0 \rangle$ in $BL(\mathcal{L})$ is $\text{loc}(A) \cap \mathcal{L}$. We claim that this is $\text{loc}(L(A))$. Since L sends compacts to compacts, this will show that l is generated by a set of compacts.

If $X \in \text{loc}(A)$, then $LX \in \text{loc}(L(A))$. If $X \in \mathcal{L}$ in addition, then we have $X \cong LX \in \text{loc}(L(A))$. For the other inclusion, note that the intersection of two localizing subcategories is a localizing subcategory, and \mathcal{L} is a localizing subcategory of S because L is smashing. For $Y \in A$, LY is in \mathcal{L}, and $LY = LS^0 \land Y \in \text{loc}(Y) \subseteq \text{loc}(A)$. Therefore $L(A) \subseteq \text{loc}(A) \cap \mathcal{L}$, and $\text{loc}(L(A)) = \text{loc}(A) \cap \mathcal{L}$.

Part (5) follows immediately, since if L is smashing then GSC holds if and only if SDGSC in both S and \mathcal{L}.

Balmer and Favi [2011, Proposition 4.4] have also recently proved Part (4) in the slightly more general setting of a smashing localization on a unital algebraic stable homotopy category; the above proof would apply there as well. One would
Proposition 4.2. The Bousfield lattice of W has if this is possible. Letting $L = L_Z$, for $Z = \bigvee_{i \geq 0} K(i)$, $E(n)$, $K(n)$, BP, $H \mathbb{F}_p$, or I provides interesting examples of categories L on which to investigate these telescope conjectures. Furthermore, LTC_{1n} suggests the relevance of Bousfield lattices to understanding these questions. In the remaining sections, we focus on specific localized categories.

4. The Harmonic category

Let $Q = \bigvee_{i \geq 0} K(i)$ and $L = L_Q : S \rightarrow S$, and consider the harmonic category \mathcal{H} of L-locals. Harmonic localization is not smashing. An object is called harmonic if it is L-local and dissonant if it is L-acyclic. For example, finite spectra, suspension spectra, finite torsion spectra, and BP are known to be harmonic [Hovey 1995a; Ravenel 1984]. On the other hand, I and $H \mathbb{F}_p$ are dissonant.

In order to answer the telescope conjectures in \mathcal{H}, we will first calculate the Bousfield lattice of \mathcal{H}. In this section all smash products are in \mathcal{H} unless otherwise noted. Given any set P, let 2^P denote the power set of P.

Definition 4.1. Given $X \in \mathcal{H}$, define the support of X to be

$$\text{supp}(X) = \{i \mid X \wedge K(i) \neq 0\} \subseteq \mathbb{N}.$$

The following result and proof was pointed out to us by Jon Beardsley.

Proposition 4.2. The Bousfield lattice of \mathcal{H} is $2^{[\mathbb{N}]}$.

Proof. Each $K(n)$ is a ring object, and hence $K(n)$-local by Lemma 2.5. Because $\langle K(n) \rangle \leq \langle Q \rangle$, $K(n)$-locals are harmonic, thus each $K(n)$ is harmonic. The argument hinges on the fact that $K(n)$ is a skew field object in \mathcal{H}: for $X = LX$ in \mathcal{H}, if $X \wedge K(n) \neq 0$ then $X \wedge K(n) = L(X \wedge_S K(n))$ so $X \wedge_S K(n) \neq 0$, and $X \wedge_S K(n)$ must be a nonempty wedge of suspensions of $K(n)$'s. Thus

$$X \wedge K(n) = L(X \wedge_S K(n)) = L(\vee \Sigma^i K(n)) = L(\vee \Sigma^i LK(n)) = \bigsqcup_{\mathcal{L}} \Sigma^i LK(n) = \bigsqcup_{\mathcal{L}} \Sigma^i K(n).$$

It follows that $LX \wedge K(n) = 0$ if and only if $LX \wedge_S K(n) = 0$. Furthermore, if $LX \wedge K(n) \neq 0$, then $\langle LX \wedge K(n) \rangle = \langle K(n) \rangle$, where these are Bousfield classes in $\text{BL}(\mathcal{H})$.

By the definition of L, for any $W \in \mathcal{S}$, if $W \wedge_S K(n) = 0$ for all n, then $LW = 0$. Combining this with the above observation, we get that a local object $W = LW$ has $W \wedge K(n) = 0$ in \mathcal{H} for all n if and only if $W = 0$.

Therefore, for any $X, Y \in \mathcal{H}$, we have

$$Y \wedge X = 0 \iff Y \wedge X \wedge K(n) = 0 \text{ for all } n \iff Y \wedge K(n) = 0 \text{ for all } n \in \text{supp}(X).$$
We conclude that there is a lattice isomorphism $F : \text{BL}(\mathcal{H}) \to 2^\mathbb{N}$, given by
\[
\langle X \rangle = \bigvee_{\text{supp}(X)} \langle K(i) \rangle \mapsto \text{supp}(X), \quad N \subseteq \mathbb{N} \mapsto \bigvee_{i \in N} \langle K(i) \rangle.
\]
\[\square\]

Theorem 4.3. On \mathcal{H}, for all $n \geq 0$, we have that LTC1$_n$, LTC2$_n$, and LTC3$_n$ hold.

Proof. By Lemmas 2.10 and 3.7, $L^T(n)$ and $L^K(n) = K(n)$ have the same support. The above theorem then implies that $\langle L^T(n) \rangle = \langle L^K(n) \rangle$. Thus LTC1$_n$ holds for all n, and the claim follows from Theorem 3.12. \[\square\]

Next, we classify all smashing localizations on \mathcal{H}, and show that the GSC fails but the SDGSC holds. The proof is based on that of [Hovey and Strickland 1999, Theorem 6.14], which classifies smashing localizations in the $E(n)$-local category.

Theorem 4.4. If $L' : \mathcal{H} \to \mathcal{H}$ is a smashing localization functor, then $L' = l^n_0$ for some $n \geq 0$, or $L' = 0$ or $L' = \text{id}$. Therefore the GSC fails but the SDGSC holds on \mathcal{H}.

Proof. Let $L' : \mathcal{H} \to \mathcal{H}$ be a smashing localization functor, and let $1 = LS^0$ be the unit in \mathcal{H}. The acyclics of L' are given by $\langle L'1 \rangle$. From Proposition 4.2, $\langle L'1 \rangle$ is equal to the wedge of $\langle K(i) \rangle$ for all $i \in \text{supp}(L'1)$. If $\text{supp}(L'1) = \emptyset$ then $\langle L'1 \rangle = \langle 0 \rangle$ and $L' = 0$.

Assume now that $\text{supp}(L'1)$ is not empty, and take $j \in \text{supp}(L'1)$. We will show that $\langle L'1 \rangle \geq \langle K(0) \lor \cdots \lor K(j) \rangle$. It follows that either $\langle L'1 \rangle = \bigvee_{i \geq 0} \langle K(i) \rangle = \langle 1 \rangle$ and $L' = \text{id}$, or $L' = l^n_0 = l^n_i$ for $n = \text{max}(\text{supp}(L'1))$.

Since $\langle K(j) \rangle \leq \langle L'1 \rangle$, from Lemma 2.8 we have $L_K(j) L' = L' L_K(j) = L_K(j)$. Therefore $\langle L_K(j)1 \rangle = \langle L'1 \lor L_K(j)1 \rangle \leq \langle L'1 \rangle$. Proposition 5.3 of [Hovey and Strickland 1999] shows that, in S, $L_K(j) S^0 \land_S K(i)$ is nonzero for $0 \leq i \leq j$ and zero for $i > j$. Note that $L_K(j) S^0 = L_K(j) L S^0 = L_K(j) 1$ and, as remarked in the proof of Proposition 4.2, $L X \land K(i) = 0$ if and only if $L X \land_S K(i) = 0$. Therefore, in $\text{BL}(\mathcal{H})$ we have $\langle L_K(j)1 \rangle = \langle K(0) \lor \cdots \lor K(j) \rangle$, and so $\langle L'1 \rangle \geq \langle K(0) \lor \cdots \lor K(j) \rangle$ as desired.

Each l^n_i is localization away from $L F(n+1)$ by Proposition 3.8, which is strongly dualizable by Theorem 2.3. The identity is localization away from zero, and the zero functor is localization away from LS^0; these are both strongly dualizable. Therefore the SDGSC holds. On the other hand, Corollary B.13 in [Hovey and Strickland 1999] shows that there are no nonzero compact objects in \mathcal{H}, so the GSC fails. \[\square\]

Question 4.5. Classify localizing subcategories of \mathcal{H}.

It seems likely that every localizing subcategory of \mathcal{H} is a Bousfield class, and so these are in bijection with $2^\mathbb{N}$, but we have been unable to prove this.
5. The \(E(n)\) - and \(K(n)\) - local categories

5A. The \(E(n)\)-local category. Recall that \(\langle E(n) \rangle = \langle K(0) \vee K(1) \vee \cdots \vee K(n) \rangle\).

In this section, fix \(L = L_n = L_{E(n)} : S \to S\) and let \(\mathcal{L}_n\) denote the local category. The functor \(L_n\) is smashing, and so by Notation 2.1 each \(LF(i)\) is compact in \(\mathcal{L}_n\). Hovey and Strickland [1999] have studied \(\mathcal{L}_n\) in detail and determined the localizing subcategories, smashing localizations, and Bousfield lattice of \(\mathcal{L}_n\). We begin by recalling these results.

Lemma 5.1. For \(0 \leq i \leq n\) we have \(LK(i) = K(i)\), and for \(i > n\) we have \(LK(i) = 0\).

Proof. This follows from \(\langle E(n) \rangle = \langle K(0) \vee K(1) \vee \cdots \vee K(n) \rangle\). \(\Box\)

Theorem 5.2 [Hovey and Strickland 1999, Theorem 6.14]. The lattice of localizing subcategories of \(\mathcal{L}_n\), ordered by inclusion, is in bijection with the lattice of subsets of the set \(\{0, 1, \ldots, n\}\), where a localizing subcategory \(S\) corresponds to \(\{i \mid K(i) \in S\}\).

Corollary 5.3. Every localizing subcategory of \(\mathcal{L}_n\) is a Bousfield class, in particular a localizing subcategory \(S\) is the Bousfield class \(\bigvee \{K(j) \mid K(j) \notin S, 0 \leq j \leq n\}\).

Corollary 5.4. For every \(n \geq 0\), there is a lattice isomorphism \(f_n : BL(\mathcal{L}_n) \sim \to 2^{\{0, 1, \ldots, n\}}\).

Proof. The isomorphism is given by \(\langle X \rangle = \bigvee_{X \wedge K(i) \neq 0} \{K(i)\} \mapsto \{i \mid X \wedge K(i) \neq 0\}, \quad N \subseteq \{0, 1, \ldots, n\} \mapsto \bigvee_{i \in N} \{K(i)\}\). \(\Box\)

Theorem 5.5 [Hovey and Strickland 1999, Corollary 6.10]. If \(L' : \mathcal{L}_n \to \mathcal{L}_n\) is a smashing localization, then \(L' = L_i = L_i^f\) for some \(0 \leq i \leq n\) or \(L' = 0\). Thus the GSC holds on \(\mathcal{L}_n\).

Corollary 5.6. On \(\mathcal{L}_n\), all of LTC1\(_i\), LTC2\(_i\), LTC3\(_i\) hold for all \(i\), and GSC and SDGSC also hold.

Proof. This follows from Theorems 5.5 and 3.13. Note that for \(i > n\), we have \(LT(i) = 0 = LK(i)\) by Lemma 2.10, and so \(l_i = l_n = l_n^f = l_i^f\). \(\Box\)

Recall that there is a natural map \(L_nX \to L_{n-1}X\) for all \(X\) in \(S\) and \(n\), and by Proposition 2.6 this induces a surjective lattice map \(BL(\mathcal{L}_n) \to BL(\mathcal{L}_{n-1})\) and an inverse system of lattice maps.

\[\cdots \to BL(\mathcal{L}_n) \to BL(\mathcal{L}_{n-1}) \to \cdots \to BL(\mathcal{L}_1) \to BL(\mathcal{L}_0)\]
Proposition 5.7. The lattice isomorphisms F and f_n from Proposition 4.2 and Corollary 5.4 realize $\text{BL}(\mathcal{H})$ as the inverse limit of the maps $\text{BL}(\mathcal{L}_n) \to \text{BL}(\mathcal{L}_{n-1})$.

Proof. By Lemma 2.8 and the facts that $L_Q K(i) = K(i)$ for all i, and $L_n K(i) = K(i)$ for $i \leq n$ and $L_n K(i) = 0$ for $i > n$, we get the following diagram for all n. The map $2^{\{0,1,\ldots,n\}} \to 2^{\{0,1,\ldots,n-1\}}$ is induced by sending $m \mapsto m$ for $m < n$ but $n \mapsto 0$, and the maps $2^{|} \to 2^{\{0,1,\ldots,i\}}$ are defined similarly.

\[
\begin{array}{ccc}
\text{BL}(\mathcal{H}) & \xrightarrow{F} & 2^{|} \\
\downarrow f_n & & \downarrow f_n \\
\text{BL}(\mathcal{L}_n) & \xrightarrow{f_n} & 2^{\{0,1,\ldots,n\}} \\
\downarrow & & \downarrow \\
\text{BL}(\mathcal{L}_{n-1}) & \xrightarrow{f_{n-1}} & 2^{\{0,1,\ldots,n-1\}} \\
\end{array}
\]

5B. The $K(n)$-local category. Although an incredibly complicated category in its own right, the $K(n)$-local category is quite basic from the perspective of localizing subcategories, Bousfield lattices, and telescope conjectures. In this subsection, let $L = L_{K(n)} : S \to S$ be localization at $K(n)$, and let \mathcal{K}_n denote the category of locals. Hovey and Strickland classify the localizing subcategories of \mathcal{K}_n, and there are not many of them.

Proposition 5.8 [Hovey and Strickland 1999, Theorem 7.5]. There are no nonzero proper localizing subcategories of \mathcal{K}_n.

This Proposition implies that the Bousfield lattice of \mathcal{K}_n is the two-element lattice $\langle 0 \rangle, \langle K(n) \rangle$. We will prove a slightly more general result that will be used again in Section 6A.

Proposition 5.9. Consider a category T as in Notation 2.1, an object Z in T, and localization $L_Z : T \to T$ with localized category \mathcal{L}_Z.

1. If Z is a ring object, then $\langle L_Z Z \rangle = \langle Z \rangle$ is the maximum class in $\text{BL}(\mathcal{L}_Z)$.
2. If Z is a skew field object, then $\text{BL}(\mathcal{L}_Z)$ is the two-element lattice $\langle 0 \rangle, \langle Z \rangle$.

Proof. For (1), note that Lemma 2.5 implies $L_Z Z = Z$. Consider $\langle Z \rangle$ in $\text{BL}(\mathcal{L}_Z)$. By definition, this is the collection of all $W \in \mathcal{L}_Z$ with $L(Z \wedge_T W) = 0$. But $Z \wedge_T W$ is a Z-module object in T, and hence L_Z-local. The only object that is both local and acyclic with respect to any localization is zero, so $Z \wedge_T W = 0$. But this says that W is L_Z-acyclic, and hence zero in \mathcal{L}_Z. Therefore, in $\text{BL}(\mathcal{L}_Z)$ we have $\langle Z \rangle = \langle 0 \rangle$.

Now suppose Z is a skew field object in T. In particular, it is a ring object, so $\langle Z \rangle$ is the maximum class in $\text{BL}(\mathcal{L}_Z)$. Consider $\langle LX \rangle$ in $\text{BL}(\mathcal{L}_Z)$, for arbitrary $X \in T$. If $X \wedge_T Z = 0$, then $LX = 0$. Otherwise, $X \wedge_T Z$ is a wedge of suspensions.
of Z, so $\langle Z \rangle = \langle X \land_T Z \rangle \leq \langle X \rangle$ in $\text{BL}(T)$. Then $\langle Z \rangle = \langle LZ \rangle \leq \langle LZX \rangle$ in $\text{BL}(L_Z)$, so $\langle LZX \rangle = \langle Z \rangle$. □

Corollary 5.10. The Bousfield lattice of \mathcal{K}_n is $\{\langle 0 \rangle, \langle K(n) \rangle \}$.

Theorem 5.11. In \mathcal{K}_n, all of LTC$_1$, LTC$_2$, LTC$_3$ hold for all i, and GSC and SDGSC also hold.

Proof. In light of Theorem 3.12, we will show that LTC$_1$ holds for all i. This follows from Lemma 2.10: for $i \neq n$ we have $LT(i) = 0 = LK(i)$, but $LT(n) \neq 0$ so by the last corollary $\langle LT(n) \rangle = \langle K(n) \rangle = \langle LK(n) \rangle$.

There are exactly two smashing localizations on \mathcal{K}_n. The identity functor is smashing and is localization away from 0, which is compact and strongly dualizable. The zero functor is smashing and is localization away from LS^0, which is strongly dualizable. It is not compact, but by Theorem 7.3 in [Hovey and Strickland 1999] $LF(n)$ is compact in \mathcal{K}_n and $\text{loc}(LF(n)) = \text{loc}(LS^0) = \mathcal{K}_n$. Therefore the zero functor is also generated by a compact object. This shows that both the GSC and SDGSC hold. □

6. Other localized categories

In this section we will consider several other localized categories. In each case, let $L_Z : S \to S$ denote the localization functor that annihilates $\langle Z \rangle$, and let L_Z denote the category of L_Z-locals.

6A. The HF_p-local category. The Eilenberg–MacLane spectrum HF_p is a skew field object in S; in fact, every skew field object in S is isomorphic to either HF_p or a $K(n)$. Unlike the $\langle K(n) \rangle$, it is not complemented; for example, $\langle I \rangle \leq \langle HF_p \rangle$ but $I \land HF_p = 0$. So $\langle HF_p \rangle \in DL \setminus BA$. Hovey and Palmieri [1999] have conjectured several results about the collection of classes less than $\langle HF_p \rangle$ in $BL(S)$. The telescope conjectures and Bousfield lattice of L_{HF_p} are quite simple.

Theorem 6.1. In L_{HF_p}, all of LTC$_1$, LTC$_2$, LTC$_3$ hold for all n.

Proof. For all n, $K(n) \land HF_p = 0$ and $T_n(n) \land HF_p = 0$, by [Hovey and Palmieri 1999, p. 16]. Therefore $LK(n) = 0 = LT_n(n)$ and LTC$_1$ holds for all n. Note that $l_n = l_n^T$ is the zero functor for all n. □

In order to discuss the GSC and SDGSC in this category, we must classify the smashing localizations. We will do this by using what we know about the Bousfield lattice.

Proposition 6.2. The Bousfield lattice of L_{HF_p} is the two-element lattice $\{\langle 0 \rangle, \langle HF_p \rangle \}$.

Proof. This follows immediately from Proposition 5.9 because HF_p is a skew field object in S. □
Recall that every smashing localization gives a pair of complemented classes in $\mathcal{B}A \subseteq \mathcal{B}L$. Thus in \mathcal{L}_{HF_p}, there are exactly two smashing localizations, the trivial ones given by smashing with zero and with the unit.

Proposition 6.3. In \mathcal{L}_{HF_p}, the GSC fails but the SDGSC holds.

Proof. The identity functor is smashing and is localization away from 0, which is compact and strongly dualizable. By [Hovey and Strickland 1999, Corollary B. 13], there are no nonzero compact objects in \mathcal{L}_{HF_p}. So the zero functor, which is localization away from LS^0, is generated by a strongly dualizable object but not a compact one. □

One application of this Bousfield lattice calculation is to the question of classifying localizing subcategories. Every Bousfield class is a localizing subcategory. Hovey and Palmieri [1999, Conjecture 9.1] suggest that the converse holds in the p-local stable homotopy category. The original conjecture is still open, but the question can be asked in any well-generated tensor triangulated category. For example, in a stratified category every localizing subcategory is a Bousfield class. The question is interesting, since in general localizing subcategories are hard to classify. In many cases, including S, it is not even known if there is a set of localizing subcategories. Recently Stevenson [2014] found the first counterexample, in an algebraic setting: in the derived category of an absolutely flat ring that is not semiartinian, there are localizing subcategories that are not Bousfield classes. Now we show that \mathcal{L}_{HF_p} provides another counterexample.

Proposition 6.4. In \mathcal{L}_{HF_p} there are localizing subcategories that are not Bousfield classes.

Proof. The following counterexample was suggested to us by Mark Hovey. The Bousfield lattice of \mathcal{L}_{HF_p} has only two elements: $\langle 0 \rangle = \mathcal{L}_{HF_p}$ and $\mathbb{1} = \{0\}$. It suffices to find a proper nonzero localizing subcategory in \mathcal{L}_{HF_p}.

Consider the Moore spectrum $M(p)$, defined by the triangle $S^0 \xrightarrow{p} S^0 \to M(p)$; this spectrum is HF_p-local. Consider the following full subcategory in \mathcal{L}_{HF_p}.

$$A = \{ X \in \mathcal{L}_{HF_p} \mid [X, M(p)]_n = 0 \text{ for all } n \in \mathbb{Z} \}.$$

This is a localizing subcategory, called the cohomological Bousfield class of $M(p)$ and denoted $\langle M(p)^* \rangle$ in [Hovey 1995b]. The spectrum HF_p is a ring object, and hence local with respect to itself. As mentioned in Section 4, it is known that HF_p is dissonant and $M(p)$ is harmonic, so $[HF_p, M(p)]_n = 0$ for all n, and $HF_p \in A$. On the other hand, the identity on $M(p)$ is nonzero, so $M(p) \notin A$. This shows that A is a localizing subcategory that is not a Bousfield class.

Another example comes from $Z = L_{HF_p}(BP)$. Clearly $Z \notin \langle Z^* \rangle$. But BP is also harmonic, so $[HF_p, BP]_n = 0$ and $[HF_p, Z]_n = 0$ for all n, and $HF_p \in \langle Z^* \rangle$. Since $Z \notin \langle M(p)^* \rangle$, we know that $\langle M(p)^* \rangle \neq \langle Z^* \rangle$.

□
Both these counterexamples are cohomological Bousfield classes. It would be interesting to find a localizing subcategory in $L_{H\mathbb{F}_p}$ that is not a cohomological Bousfield class, or show there are none. Also, it is not clear what, if anything, the previous proposition might tell us about the original conjecture in S. For example, as localizing subcategories in S, we have that $\langle M(p)^* \rangle = \langle I \rangle$ [Hovey 1995b, 3.3].

6B. The I-local category. Recall that by I we mean the Brown–Comenetz dual of the sphere spectrum. It is a rare example of a nonzero spectrum that squares to zero. Hovey and Palmieri [1999, Lemma 7.8] conjecture that $\langle I \rangle$ is minimal in $BL(S)$.

Theorem 6.5. On L_I, for all n we have that $LTC_1, LTC_2, and LTC_3$ all hold.

Proof. By Lemma 7.1(c) of [Hovey and Palmieri 1999], $T(n) \cap I = 0$ for all n, so $LT(n) = 0$. Since $K(i)$ is a BP-module, and $BP \cap I = 0$ by [Hovey and Strickland 1999, Corollary B.11], we also have $K(n) \cap I = 0$ for all n. Therefore $\langle LT(n) \rangle = \langle 0 \rangle = \langle LK(n) \rangle$ for all n, and the rest follows from Theorem 3.12.

Proposition 6.6. The Bousfield lattice of L_I is the two-element lattice $\{\langle 0 \rangle, \langle L_I S^0 \rangle\}$.

Proof. By [Hovey and Palmieri 1999, 7.1(c)], $\langle I \rangle < \langle H\mathbb{F}_p \rangle$. Then Proposition 2.6 implies that there is a surjective lattice map from $BL(L_{H\mathbb{F}_p}) = \{\langle 0 \rangle, \langle H\mathbb{F}_p \rangle\}$ onto $BL(L_I)$. Note that, by Lemma 2.8, we have $\langle L_I H\mathbb{F}_p \rangle = \langle L_I L_{H\mathbb{F}_p} S^0 \rangle = \langle L_I S^0 \rangle$.

It remains to show that $\langle L_I S^0 \rangle \neq \langle 0 \rangle$. But any X in S with $X \cap I \neq 0$ in S will have $L_I X \neq 0$ and $L_I X \not\in \langle L_I S^0 \rangle$ in $BL(L_I)$; this is due to the fact that $L_I X \cap_{L_I} L_I S^0 = L_I (L_I X \cap_S L_I S^0) = L_I (X \cap_S S^0) = L_I (X)$. For example, $F(n) \cap I \neq 0$ for all n [Hovey and Palmieri 1999, 7.1(e)].

Corollary 6.7. In L_I, the GSC fails but the SDGSC holds.

Proof. Corollary B.13 of [Hovey and Strickland 1999] also shows that L_I has no nonzero compacts, so the proof is the same as for $L_{H\mathbb{F}_p}$.

Hovey states the Dichotomy Conjecture in [1995a, Conjecture 3.10]: In S, every spectrum has either a finite local or a finite acyclic. In [Hovey and Palmieri 1999] the authors discuss several equivalent formulations and some implications. We briefly point out a relationship between this conjecture and Proposition 6.6.

Proposition 6.8. If the Dichotomy Conjecture holds, then the cardinality of $BL(L_I)$ is at most two.

Proof. Lemma 7.8 of [Hovey and Palmieri 1999] shows that if the Dichotomy Conjecture holds, then $\langle I \rangle$ is minimal among nonzero classes in $BL(S)$. This is the case if and only if $a \langle I \rangle$ is maximal among non-top classes in $BL(S)$, where $a(-)$ denotes the complementation operation first studied by Bousfield [1979b]. Let $a \langle I \rangle$ denote the sublattice $\{\langle X \rangle \mid \langle X \rangle \geq a \langle I \rangle\} \subseteq BL(S)$. In [Wolcott 2014, Proposition 3.2] we show that there is a surjective lattice map from $a \langle I \rangle$ onto $BL(L_I)$. Thus, if the
Dichotomy Conjecture holds, $a(I)\uparrow$ has cardinality two and $\text{BL}(\mathcal{L}_I)$ has cardinality at most two. \hfill \Box

As for classifying localizing subcategories of \mathcal{L}_I, or at least perhaps finding a proper nonzero localizing subcategory, we must get around the fact that so many spectra are I-acyclic. We know that $LF(n) \neq 0$ for all n, however $\text{loc}(LF(n))$ is the acyclics of $I_{n-1}^f: \mathcal{L}_I \to \mathcal{L}_I$ and Theorem 6.5 shows that $I_n^f = 0$ for all n. Thus $\text{loc}(LF(n)) = \text{loc}(Ls^0)$ in \mathcal{L}_I for each n.

6C. The BP-local category.

Theorem 6.9. On \mathcal{L}_{BP}, for all n we have that $\text{LTC}_1, \text{LTC}_2, \text{and} \text{LTC}_3$ all hold.

Proof. We will show that LTC_2 holds for all n, and the rest follows from Theorem 3.12. Since each $K(i)$ is a BP-module spectrum, $\langle K(i) \rangle \leq \langle BP \rangle$, and since $K(i)$ is local with respect to itself this implies that $K(i)$ is BP-local. Furthermore, this implies $\langle E(n) \rangle \leq \langle BP \rangle$, so from Lemma 2.8 $L_n = L_nL = LL_n$ as functors on S.

We claim that $L_n: \mathcal{L}_{BP} \to \mathcal{L}_{BP}$, taking $LY \mapsto L_nLY = L_nY$, is a smashing localization functor on \mathcal{L}_{BP}. We have $L_n(LY) = L(L_nY) = L(L_nS^0 \wedge_S Y) = L(LL_nS^0 \wedge_S LY) = L(L_nLS^0 \wedge_S LY) = (L_nLS^0) \wedge_{\mathcal{L}_{BP}} (LY)$. This shows that on \mathcal{L}_{BP} the localization functor L_n is also given by smashing with the localization of the unit, L_nLS^0, and thus is smashing.

We know that L_n and l_n are isomorphic since both are localization functors on \mathcal{L}_{BP} that annihilate $\langle K(0) \vee \cdots \vee K(n) \rangle = \langle LK(0) \vee \cdots \vee LK(n) \rangle$.

On S, the natural map $L_n^f X \to L_nX$ is a BP-equivalence [Ravenel 1993, Theorem 2.7(iii)]. This means that $LL_n^f X = LL_nX$ for all objects X in S, in particular for all BP-local objects. Therefore $LL_n^f X = L_n = l_n$ is a smashing localization functor on \mathcal{L}_{BP}. The acyclics are $\langle LL_n^f (LS^0) \rangle = \langle LL_n^f S^0 \rangle = \langle LT(0) \vee \cdots \vee LT(n) \rangle$. These are the same acyclics as for l_n^f, and we conclude that l_n^f and l_n are isomorphic, and the natural map $l_n^f X \to l_nX$ is an isomorphism. \hfill \Box

Proposition 6.10. The GSC fails in \mathcal{L}_{BP}.

Proof. The proof of the last theorem showed that $L_n: \mathcal{L}_{BP} \to \mathcal{L}_{BP}$ is a (different) smashing localization for each n. However, by [Hovey and Strickland 1999, Corollary B.13] the category \mathcal{L}_{BP} has no nonzero compact objects. \hfill \Box

Note that the SDGSC could still hold, since all the smashing localizations we have identified on \mathcal{L}_{BP} are of the form $L_n = l_n = l_n^f$, and so are generated by strongly dualizable objects. The question of finding any other smashing localizations on \mathcal{L}_{BP} is probably at least as hard as doing so on S, in light of Proposition 3.16.

All of $\langle E(n) \rangle, \langle K(n) \rangle, \langle H\mathbb{F}_p \rangle$, and $\langle I \rangle$ are “small” in $\text{BL}(S)$, so by Lemma 2.8 it is not surprising that the Bousfield lattices of their localized categories are not very large; this is not true of $\langle BP \rangle$ in $\text{BL}(S)$. We have the following bounds on the Bousfield lattice of the local category.
Proposition 6.11. The Bousfield lattice of \mathbb{L}_{BP} has $2^{\aleph_0} \leq |\text{BL}(\mathbb{L}_{BP})| \leq 2^{2^{\aleph_0}}$.

Proof. The second inequality is Corollary 2.7. Since $\langle K(i) \rangle \leq \langle BP \rangle$ for all i, we have $\langle Q \rangle = \langle \bigvee_{i \geq 0} K(i) \rangle \leq \langle BP \rangle$, and so by Propositions 2.6 and 4.2 we have $|\text{BL}(\mathbb{L}_{BP})| \geq |\text{BL}(\mathbb{H})| = 2^{\aleph_0}$.

6D. The $F(n)$-local category. We conclude with a discussion of the $F(n)$-local category.

Any smashing localization $L : S \to S$ gives a splitting of the Bousfield lattice

$$\text{BL}(S) \xrightarrow{\sim} \text{BL}(\mathbb{L}_{L^0}) \times \text{BL}(\mathbb{L}_{C^0}),$$

where $\langle X \rangle \mapsto (\langle X \land L^0 \rangle, \langle X \land C^0 \rangle)$. See [Iyengar and Krause 2013, Proposition 6.12] or [Wolcott 2014, Theorem 5.14] for more details. Taking $L = L_f^n : S \to S$, we have $\langle L^0 \rangle = \langle (T(0) \lor \cdots \lor T(n)) \rangle$ and $\langle C^0 \rangle = \langle F(n+1) \rangle$. Of course, the relationship between $\mathbb{L}_{T(0) \lor \cdots \lor T(n)}$ and $\mathbb{L}_{E(n)}$ of Section 5A is immediately related to the original TC1$_n$ in S. However, this suggests that $\mathbb{L}_{F(n)}$ is worth investigating further.

By Lemma 2.10, in $\text{BL}(S)$ there is a chain

$$\langle S^0 \rangle = \langle F(0) \rangle \geq \langle F(1) \rangle \geq \langle F(2) \rangle \geq \cdots,$$

and by Lemma 2.8 this gives a chain of lattice surjections

$$\text{BL}(S) = \text{BL}(\mathbb{L}_{F(0)}) \twoheadrightarrow \text{BL}(\mathbb{L}_{F(1)}) \twoheadrightarrow \text{BL}(\mathbb{L}_{F(2)}) \twoheadrightarrow \cdots.$$

From the above observations, we expect $\text{BL}(\mathbb{L}_{F(n)})$ to be about as complicated as $\text{BL}(S)$. For example, $F(n) \land I \neq 0$ for all n, and so $L_{F(n)} I$ is a square-zero object in $\mathbb{L}_{F(n)}$. This means that, unlike in most of the localized categories discussed throughout this paper, we know that $\text{BA}(\mathbb{L}_{F(n)}) \neq \text{BL}(\mathbb{L}_{F(n)})$.

Acknowledgements

We would like to thank Dan Christensen for extensive discussions and suggestions and Jon Beardsley for Proposition 4.2.

References

Received July 14, 2014. Revised January 13, 2015.

F. LUKE WOLCOTT
DEPARTMENT OF MATHEMATICS
LAWRENCE UNIVERSITY
711 E BOLDT WAY
SPC 24
APPLETON, WI 54911
UNITED STATES
luke.wolcott@gmail.com
Free evolution on algebras with two states, II
MICHAEL ANSHELEVICH

Systems of parameters and holonomicity of A-hypergeometric systems
CHRISTINE BERKESCH ZAMAERE, STEPHEN GRIFFETH and EZRA MILLER

Complex interpolation and twisted twisted Hilbert spaces
FÉLIX CABELLO SÁNCHEZ, JESÚS M. F. CASTILLO and NIGEL J. KALTON

The ramification group filtrations of certain function field extensions
JEFFREY A. CASTAÑEDA and QINGQUAN WU

A mean field type flow, II: Existence and convergence
JEAN-BAPTISTE CASTÉRAS

Isometric embedding of negatively curved complete surfaces in Lorentz–Minkowski space
BING-LONG CHEN and LE YIN

The complex Monge–Ampère equation on some compact Hermitian manifolds
JIANCHUN CHU

Topological and physical link theory are distinct
ALEXANDER COWARD and JOEL HASS

The measures of asymmetry for coproducts of convex bodies
QI GUO, JINFENG GUO and XUNLI SU

Regularity and analyticity of solutions in a direction for elliptic equations
YONGYANG JIN, DONGSHENG LI and XU-JIA WANG

On the density theorem for the subdifferential of convex functions on Hadamard spaces
MINA MOVAHEDI, DARYOUSH BEHMARDI and SEYEDEHSOMAYEH HOSSEINI

L^p regularity of weighted Szegő projections on the unit disc
SAMANGI MUNASINGHE and YUNUS E. ZEYTUNCU

Topology of complete Finsler manifolds admitting convex functions
SORIN V. SABAU and KATSUHIRO SHIOHAMA

Variations of the telescope conjecture and Bousfield lattices for localized categories of spectra
F. LUKE WOLCOTT