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INEQUALITIES OF ALEXANDROV–FENCHEL TYPE
FOR CONVEX HYPERSURFACES IN HYPERBOLIC SPACE

AND IN THE SPHERE

YONG WEI AND CHANGWEI XIONG

By applying the unit normal flow to well-known inequalities in hyperbolic
space HnC1 and in the sphere SnC1, we derive some new inequalities of
Alexandrov–Fenchel type for closed convex hypersurfaces in these spaces.
We also use the inverse mean curvature flow in the sphere to prove an opti-
mal Sobolev-type inequality for closed convex hypersurfaces in the sphere.

1. Introduction

Let N nC1.c/ be the simply connected space form of constant sectional curvature c

and  W †n ! N nC1.c/ be a closed hypersurface. Denote the k-th order mean
curvature of † by pk (see Section 2A). Inequalities about the integrals

R
† pk d�

have attracted much attention for a long time. Among them the most famous one is
the classical Minkowski inequality for closed convex surfaces †� R3, which can
be written as

(1-1)
�

1

!2

Z
†

p1 d�

�2

�
j†j

!2

;

with equality if and only if † is a sphere. Here !n is the area of Sn.1/ and
j†jD

R
† d� is the area of†with respect to the induced metric from R3. The general

inequality is the Alexandrov–Fenchel inequality [Alexandrov 1937; 1938; Fenchel
1936] which states that for convex hypersurfaces in the Euclidean space RnC1,

(1-2) 1

!n

Z
†

pk d��

�
1

!n

Z
†

pl d�

�.n�k/=.n�l/

for 0� l < k � n;

with equality if and only if † is a sphere. See [Chang and Wang 2011; Guan and Li
2009; McCoy 2005; Schneider 1993] for other references on Alexandrov–Fenchel
inequalities for closed hypersurfaces in Euclidean space RnC1.
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It is natural to generalize the Minkowski inequality and Alexandrov–Fenchel
inequalities to the hypersurfaces in space forms. See, for example, [Borisenko and
Miquel 1999; Gallego and Solanes 2005; Natário 2015]. Recently, the following
optimal inequalities of Alexandrov–Fenchel type in HnC1 were obtained (see [Ge
et al. 2013; 2014b; Li et al. 2014; Wang and Xia 2014]): for 1 � k � n and any
closed horospherical convex hypersurface †� HnC1,

(1-3)
1

!n

Z
†

pk d��

��
j†j

!n

�2=k

C

�
j†j

!n

�2.n�k/=kn�k=2

;

with equality if and only if† is a geodesic sphere in HnC1. In particular, when kD2,
Li, Wei and Xiong [Li et al. 2014] proved that (1-3) holds under the weaker condition
that † is star-shaped and 2-convex. In the proof of (1-3), the geometric flow was
used and was an important tool. However, so far there is no inequality comparingR
† pk d� and

R
† pl d� in HnC1 like (1-2) in RnC1. And one also wants to know

whether there exist other inequalities of Alexandrov–Fenchel type in HnC1 for closed
hypersurfaces under a weaker condition than horospherical convex. Besides, in
space forms, the integrals

R
† pk d� are essentially the so-called quermassintegrals

from convex geometry and integral geometry (see, e.g., [Solanes 2006] for the
transformation formula) and many attempts have been devoted to establishing the
relationships for quermassintegrals. See [Santaló 1976; Solanes 2003] and the
references therein. So in this paper we are interested in obtaining new inequalities
between the integrals

R
† pk d�.

The Minkowski inequality and the Alexandrov–Fenchel inequalities can be
viewed as the generalizations of the classical isoperimetric inequality, which com-
pares the area of the hypersurface † and the volume of the domain enclosed
by †. The Minkowski inequality (1-1) was used by Minkowski himself to prove the
isoperimetric inequality for closed convex surfaces (see [Minkowski 1903; Osserman
1978]). Recently, J. Natário [2015] reversed Minkowski’s idea and derived a new
Minkowski-type inequality for closed convex surfaces in the hyperbolic space H3

from the isoperimetric inequality by using the unit normal flow. In this paper, first,
we deal with the higher dimensional case by adapting Natário’s method [2015]. We
will derive some new inequalities of Alexandrov–Fenchel type for closed convex
hypersurfaces in HnC1 and in SnC1, starting from the isoperimetric inequality.

Let † be a closed and convex hypersurface in HnC1. We say a hypersurface † is
convex if all the principal curvatures of † are nonnegative everywhere. Then by the
well-known result of do Carmo and Warner [1970], † is embedded and bounds a
convex body in HnC1. Inspired by [Natário 2015], we flow the initial hypersurface
† by its unit outer normal �. The resulting hypersurfaces are †t D  t .†/, where
 t .x/Dexp .x/.t�.x//;x2†. The†t are also called the parallel hypersurfaces of
†. From Steiner’s formula [Allendoerfer 1948], we can compute the area of †t and
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the volume of the domain�t enclosed by†t . In Natário’s paper, the area of†t was
obtained by using the first and second variation formulas with the help of the Gauss–
Bonnet formula. Steiner’s formula can also be obtained by using the precise expres-
sions of the geodesics in space forms (see Section 2C). Since HnC1 has constant
negative curvature c D�1 and † is convex, it follows that †t can be well-defined
for all t � 0. Define a function r.t/ such that j†t j D jSr.t/j. Then the isoperimetric
inequality (see [Schmidt 1940; Ros 2005]) implies that Vol.�t / � Vol.Br.t//,
where Sr.t/ and Br.t/ are the geodesic sphere and geodesic ball of radius r.t/

in HnC1, respectively. Applying the isoperimetric inequality to †t for sufficiently
large t , we obtain the following inequalities of Alexandrov–Fenchel type in HnC1.

Theorem 1.1. Let †n be a closed and convex hypersurface in HnC1 with n � 3.
Then

(1-4)
nX

kD0

2k � n

n!n

Z
†

C k
n pk d��

�
1

!n

nX
kD0

Z
†

C k
n pk d�

�.n�2/=n

:

A direct calculation shows that if † is a geodesic sphere, then the equality in
(1-4) holds. However, we do not obtain the rigidity (i.e.,we don’t know whether the
equality in (1-4) implies that † is a geodesic sphere). In Remark 3.2, we note that
when the hypersurface †� HnC1 is sufficiently small, the inequality (1-4) reduces
to one of the Alexandrov–Fenchel inequalities in Euclidean space.

Besides the isoperimetric inequality, there are many other known inequalities in
hyperbolic space. If we use the warped product model for the hyperbolic space HnC1,
i.e., HnC1 D RC �Sn with the metric g D dr2C sinh2r gSn , then there are two
important functions on the hypersurface† in HnC1. One is the weight function f D
cosh r , and the other one is the support function uDhDf; �i. Recently, the following
inequality of Alexandrov–Fenchel type with weight f was proved by de Lima and
Girão [2015]: for any mean convex and star-shaped closed hypersurface † in HnC1,

(1-5)
1

!n

Z
†

fp1 d��

�
j†j

!n

�.nC1/=n

C

�
j†j

!n

�.n�1/=n

;

with equality if and only if † is a geodesic sphere centered at the origin in HnC1.
For more weighted inequalities of Alexandrov–Fenchel type in different ambient
spaces, readers can refer to the recent papers [Brendle et al. 2014; Ge et al. 2014a;
2015]. We remark that in [Ge et al. 2014a], the weighted Alexandrov–Fenchel-type
inequalities were used to prove the Penrose-type inequality for the new Gauss–
Bonnet–Chern mass in asymptotically hyperbolic graphs. Thus it is an interesting
question to establish new inequalities with weight.

Applying the same method as in Theorem 1.1 to inequality (1-5), we can obtain
a new inequality as follows:
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Theorem 1.2. Let †n be a closed and convex hypersurface in HnC1. Then

(1-6) 1
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.f Cu/
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kD0
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1
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†
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kD0

C k
n pk d�

�.nC1/=n

:

We remark that if † is a geodesic sphere centered at the origin, then the equality
in (1-6) holds. But as before we do not obtain the rigidity.

Next we will use the same method to derive inequalities for closed convex
hypersurfaces in SnC1. In this case, we can prove the rigidity result.

Theorem 1.3. Let†n be a closed and convex hypersurface in SnC1 with n� 2. Then

(1-7) !n �

nX
sD 1�.�1/n

2
;C2

p
.E.s//2C .F.s//2;

where “C2” means that the step-length of the summation for s is 2 and
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Moreover, the equality holds in (1-7) if and only if †n is a geodesic sphere.

When nD 2, it is easy to check that

E.0/D 2�; F.0/D 0;

E.2/D j†j � 2�; F.2/D

Z
†

p1 d�;

using the Gauss–Bonnet theorem j†jC
R
† p2 d�D 4� (see Section 2B). So (1-7)

implies the Minkowski-type inequality in the sphere

(1-8)
�Z

†

p1 d�

�2

� j†j.4� � j†j/;

which is just Theorem 0.2 in [Natário 2015]. See also [Blaschke 1938; Knothe
1952; Santaló 1963]. Makowski and Scheuer [2013] proved (1-8) by using the
inverse curvature flow in sphere. To get a better feeling of the inequality (1-7),
we also give the precise expressions of (1-7) in the case of nD 3 and nD 4; see
Remark 3.3.
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Finally, in the last part of this paper, we use the inverse mean curvature flow in
the sphere [Makowski and Scheuer 2013; Gerhardt 2015] to prove the following
optimal inequalities for strictly convex hypersurfaces in sphere SnC1.

Theorem 1.4. Let †n be a closed and strictly convex hypersurface in SnC1. Then
we have the optimal inequality

(1-9)
Z
†

Lk d�� C 2k
n .2k/!!2k=n

n j†j.n�2k/=n for k � n=2:

Equality holds in (1-9) if and only if † is a geodesic sphere. Here Lk is the
Gauss–Bonnet curvature of the induced metric on † (see Section 2B for details).

The proof of Theorem 1.4 uses a similar idea as in [Brendle et al. 2014; de Lima
and Girão 2015; Guan and Li 2009; Ge et al. 2013; 2014b; Li et al. 2014]. We define
a curvature quantity Q.t/ which is monotone nonincreasing under the inverse mean
curvature flow in the sphere. Then we obtain the inequality (1-9) by comparing the
initial value Q.0/ with the limit limt!T � Q.t/. We remark that since † is a closed
and strictly convex hypersurface in SnC1, a well-known result due to do Carmo and
Warner [1970] implies that † is embedded and is contained in an open hemisphere.

When k D 1, the inequality (1-9) reduces to

(1-10)
Z
†

p2 d�Cj†j � !2=n
n j†j.n�2/=n;

which was already proved by Makowski and Scheuer [2013]. One can compare
(1-10) with the case kD2 of the Alexandrov–Fenchel-type inequality (1-3) in HnC1;
that is,

(1-11)
Z
†

p2 d�� j†j � !2=n
n j†j.n�2/=n;

which was proved by Li, Wei and Xiong [Li et al. 2014] for star-shaped and 2-convex
hypersurfaces in HnC1. For k > 1, inequalities of the same type as (1-9) were
proved by Ge, Wang and Wu [Ge et al. 2013; 2014b] for horospherical convex
hypersurfaces in the hyperbolic space HnC1.

2. Preliminaries

2A. k-th order mean curvature. Let † be a closed hypersurface in N nC1.c/ with
unit outward normal �. The second fundamental form h of † is defined by

h.X;Y /D hrX �;Y i

for any two tangent vector fields X;Y on †. For an orthonormal basis fe1; : : : ; eng

of †, the components of the second fundamental form are given by hij D h.ei ; ej /

and h
j
i D gjkhki , where g is the induced metric on †. The principal curvatures
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� D .�1; : : : ; �n/ are the eigenvalues of h with respect to g. The k-th order mean
curvature of † for 1� k � n is defined as

(2-1) pk D
1

C k
n

�k.�/D
1

C k
n

X
i1<i2<���<ik

�i1
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;

or equivalently as
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where ıi1���ik

j1���jk
is the generalized Kronecker delta given by
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1CCCCCA :
We have the following Newton–MacLaurin inequalities (see, e.g., [Guan 2006]).

Lemma 2.1. For � 2 �C
k

, 1� k � n, where �C
k

is the closure of the Garding cone

�C
k
D f� 2 Rn

j pj .�/ > 0;8j � kg;

we have the following Newton–MacLaurin inequalities

p1pk�1 � pk ;

p1 � p
1=2
2
� � � � � p

1=k

k
:

Moreover, equalities above hold for some � 2 �C
k

if and only if � D c.1; : : : ; 1/,
where c is a constant.

2B. Gauss–Bonnet curvature Lk. Given an n-dimensional Riemannian manifold
.M;g/, the Gauss–Bonnet curvature Lk , where k � n=2, is defined by (see, e.g.,
[Ge et al. 2014b; 2014c])

(2-3) Lk D
1

2k
ı

i1i2���i2k�1i2k

j1j2���j2k�1j2k
Ri1i2

j1j2 � � �Ri2k�1i2k

j2k�1j2k :

For a closed hypersurface †n � RnC1, recall the Gauss equation

Rij
kl
D hk

i hl
j � hl

ih
k
j :

Then the Gauss–Bonnet curvature of the induced metric on †n � RnC1 is

(2-4) Lk D ı
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i2k�1
h

j2k

i2k

D .2k/!C 2k
n p2k :
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For a closed hypersurface †n � SnC1, the Gauss equations are

(2-5) Rij
kl
D .hk

i hl
j � hl

ih
k
j /C .ı

k
i ı

l
j � ı

l
i ı

k
j /:

Then by a straightforward calculation, we have
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.n�2k/!
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kX
iD0

C i
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Similarly, for a closed hypersurface †n � HnC1, its Gauss–Bonnet curvature is

(2-6) Lk D C 2k
n .2k/!

kX
iD0

C i
k.�1/ip2k�2i :

Finally, note that throughout our paper, we assume that the hypersurface †�
N nC1.c/ is closed and convex. It follows that † is homeomorphic to the n-sphere
(see [do Carmo and Warner 1970]). Then if the dimension of † is even, the
Gauss–Bonnet–Chern theorem [Chern 1944] implies that

(2-7)
Z
†

Ln=2 d�D n!!n:

Equation (2-7) will be used in the following sections. Also (2-7) shows that when
2k D n, the inequality (1-9) is an equality.

2C. Unit normal flow and Steiner’s formula. Let  W†!N nC1.c/ be a closed
and convex hypersurface in the simply connected space form N nC1.c/ of constant
sectional curvature c. Denote by � the domain enclosed by †. The area of †
is denoted by j†j and the volume of � is denoted by jV j. As we mentioned in
Section 1, we flow the initial hypersurface † by its unit outer normal �. The
resulting hypersurfaces are †t D  t .†/, where  t .x/D exp .x/.t�.x//;x 2 †.
The †t are also called the parallel hypersurfaces of †. Denote by �t the domain
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bounded by †t . The convexity assumption of † and the curvature of N nC1.c/

guarantee that the †t are well-defined in the following range:

t 2
�
0; �

2

�
for c D 1;

t � 0 for c D 0 or � 1:

Further, denote the area of †t and the volume of �t by j†t j and jVt j, respectively.
Then Steiner’s formula [Allendoerfer 1948] implies that

(2-8) j†t j D

8̂̂<̂
:̂
Pn

kD0

R
† C k

n pk d� tk if c D 0;Pn
kD0

R
† C k

n pk d� coshn�k t sinhk t if c D�1;Pn
kD0

R
† C k

n pk d� cosn�k t sink t if c D 1:

and

(2-9) jVt j D

8̂̂<̂
:̂
jV jC

Pn
kD0

R
† C k

n pk d� 1
kC1

tkC1 if c D 0;

jV jC
Pn

kD0

R
† C k

n pk d�
R t

0 coshn�k s sinhk s ds if c D�1;

jV jC
Pn

kD0

R
† C k

n pk d�
R t

0 cosn�k s sink s ds if c D 1:

We give a simple proof of (2-8) and (2-9) here. First, when c D 0, the parallel
hypersurface can be expressed as  t D  C t� (see [Montiel and Ros 1991]). So
. t /�.ei/D .1C t�i/ei . Therefore the area element of †t is

d�t D .1C t�1/ � � � .1C t�n/ d�;

which implies that the areas j†t j of the parallel hypersurfaces †t are equal to

j†t j D

Z
†

.1C t�1/ � � � .1C t�n/ d�D

nX
kD0

Z
†

C k
n pk d� tk :

Note that †t D  t .†/ are parallel hypersurfaces of † given by

 t .x/D exp .x/.t�.x//

for x 2†. By integrating and using the co-area formula, we obtain

jVt j D jV jC

Z t

0

j†sj ds D jV jC

nX
kD0

Z
†

C k
n pk d�

1

kC1
tkC1:

Similarly, when c D�1,  t D cosh t  C sinh t � (see [Montiel and Ros 1991])
and so . t /�.ei/D .cosh t C sinh t �i/ei . Therefore the area element of †t is

d�t D .cosh t C sinh t �1/ � � � .cosh t C sinh t �n/ d�;
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which implies

j†t j D

Z
†

.cosh t C sinh t �1/ � � � .cosh t C sinh t �n/ d�

D

nX
kD0

Z
†

C k
n pk d� coshn�k t sinhk t:

Then by integrating, we obtain

jVt j D jV jC

Z t

0

j†sj ds D jV jC

nX
kD0

Z
†

C k
n pk d�

Z t

0

coshn�k s sinhk s ds:

Finally, the case c D 1 can also be proved by noting that  t D cos t C sin t�,
where t 2

�
0; �

2

�
.

3. The results by the method of unit normal flow

3A. The Euclidean case. To demonstrate the method which will be used to prove
Theorems 1.1–1.3, in this subsection we first consider the simple case that † is a
closed and convex hypersurface in RnC1. Let †t be the parallel hypersurfaces of
† and �t be the domain enclosed by †t . Then †t is well-defined for all t � 0.
For all t � 0, the isoperimetric inequality (see [Osserman 1978]) in Euclidean
space RnC1 implies

(3-1)
�
j†t j

!n

�nC1

�

�
.nC 1/

jVt j

!n

�n

:

Substitute Steiner’s formulas (2-8), (2-9) into (3-1). If n is odd, then comparing
the coefficient of tn.nC1/ in (3-1) yields

(3-2)
Z
†

pn d�� !n;

which is a special Alexandrov–Fenchel inequality.
If n is even, (2-4) and the Gauss–Bonnet–Chern theorem (2-7) imply thatR

† pn d� D !n. Thus expanding the two sides of (3-1) and comparing the co-
efficients of tn.nC1/, tn.nC1/�1 and tn.nC1/�2, we can get

(3-3)
�

1

!n

Z
†

pn�1 d�

�2

�
1

!n

Z
†

pn�2 d�;

which is also an Alexandrov–Fenchel inequality. In particular, when nD 2, (3-3)
reduces to the classical Minkowski inequality (1-1).
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3B. The hyperbolic case, I. In this subsection, we prove Theorem 1.1. Assume
that† is a closed and convex hypersurface in HnC1. Then the parallel hypersurfaces
†t are well-defined for all t � 0. Recall that the area of a geodesic sphere Sr and
the volume of a geodesic ball Br with radius r in the hyperbolic space HnC1 are

S.r/ WD jSr j D !n sinhnr;

V .r/ WD Vol.Br /D !n

Z r

0

sinhns ds:

Now define a function r.t/ such that j†t j D S.r.t//. That is,

(3-4)
nX

kD0

coshn�k t sinhk t

Z
†

C k
n pk d�D !n sinhnr.t/:

Then the isoperimetric inequality (see [Schmidt 1940; Ros 2005]) implies

(3-5) jVt j � V .r.t// for t � 0:

From this inequality, we can get some information for †.
First we get a rough estimate for r.t/. When t ! C1, coshn�k t sinhk t D

sinhn t .1C o.1//. Thus from j†t j D S.r.t//, we get

sinhn t .1C o.1//

nX
kD0

Z
†

C k
n pk d�D !n sinhnr.t/;

which implies

(3-6) r.t/D t C
1

n
ln
�

1

!n

nX
kD0

Z
†

C k
n pk d�

�
C o.1/:

However, this estimate for r.t/ is not enough. For our purposes, we should make
better use of j†t j D S.r.t// as follows. The case of n D 2 was considered by
Natário [2015], so we assume that n� 3 in the following calculation. Since we will
examine (3-5) for sufficiently large t , we only care about the terms involving ent

and e.n�2/t . The other terms are o.e.n�2/t /. It is straightforward to check that

coshn�k t sinhk t D
1

2n
ent
C

1

2n
.n� 2k/e.n�2/t

C � � � :

Consequently (3-4) implies

(3-7) 1

2n

nX
kD0

.ent
C .n� 2k/e.n�2/t

C � � � /

Z
†

C k
n pk d�

D !n

�
1

2n
enr
�

1

2n
ne.n�2/r

C � � �

�
:
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On the other hand, from Steiner’s formula (2-9), we have

jVt j D jV jC

nX
kD0

Z t

0

coshn�k s sinhk s ds

Z
†

C k
n pk d�

D jV jC
1

2n

nX
kD0

Z t

0

.ens
C .n� 2k/e.n�2/s

C � � � / ds

Z
†

C k
n pk d�

D jV jC
1

2n

nX
kD0

�
1

n
ent
C

n�2k

n�2
e.n�2/t

C � � �

� Z
†

C k
n pk d�

D
1

2n

1

n
ent

nX
kD0

Z
†

C k
n pk d�C

1

2n
e.n�2/t

nX
kD0

n�2k

n�2

Z
†

C k
n pk d�C � � � ;

and

V .r.t//D !n

Z r

0

sinhns ds

D !n

Z r

0

�
1

2n
ens
�

1

2n
ne.n�2/s

C � � �

�
ds

D
!n

2n

1

n
enr
�
!n

2n

n

n� 2
e.n�2/r

C � � � :

Now taking (3-7) into account yields

V .r.t//D
!n

2n
e.n�2/r

C
1

2n

1

n

nX
kD0

.ent
C .n� 2k/e.n�2/t

C � � � /

Z
†

C k
n pk d�

�
!n

2n

n

n� 2
e.n�2/r

D
!n

2n

�
�2

n� 2

�
e.n�2/r

C
1

2n

1

n
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nX
kD0

Z
†

C k
n pk d�

C
1

2n

1

n
e.n�2/t

nX
kD0

.n� 2k/

Z
†

C k
n pk d�C � � � :

Noting (3-6), we have

V .r.t//D
!n

2n

�
�2

n�2

�
e.n�2/t

�
1

!n

nX
kD0

Z
†

C k
n pk d�

�.n�2/=n

C
1

2n

1

n
ent

nX
kD0

Z
†

C k
n pk d�C

1

2n

1

n
e.n�2/t

nX
kD0

.n�2k/

Z
†

C k
n pk d�C�� � :
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Now jVt j � V .r.t//; t !C1 gives us

1

2n

nX
kD0

�
n�2k

n�2
�

n�2k

n

�Z
†

C k
n pk d��

!n

2n

�2

n�2

�
1

!n

nX
kD0

Z
†

C k
n pk d�

�.n�2/=n

;

or equivalently

(3-8)
nX

kD0

2k � n

n

Z
†

C k
n pk d��!n

�
1

!n

nX
kD0

Z
†

C k
n pk d�

�.n�2/=n

for n� 3:

Hence we complete the proof of Theorem 1.1.

Remark 3.1. It is easy to check that for a geodesic sphere in HnC1, the equality
holds in (3-8). However this method can not yield the rigidity result; i.e., we cannot
conclude that † is a geodesic sphere if the equality holds in (3-8).

Remark 3.2. We also remark that for a small hypersurface †� HnC1 (i.e., with
small diameter), the inequality (3-8) can reduce to the Euclidean inequalities (3-2)
and (3-3). For example, we first assume nD 4. For 4-dimensional hypersurface
†� H5, the Gauss–Bonnet–Chern formula (2-7) implies

(3-9)
Z
†

.p4� 2p2C 1/ d�D
1

4!

Z
†

L2 d�D !4:

Substituting (3-9) into the inequality (3-8) gives that�
1C

2

!4

Z
†

.p3Cp2�p1� 1/ d�

�2

� 1C
4

!4

Z
†

.p3C 2p2Cp1/ d�:

Expanding the left-hand side of the above inequality, and comparing both sides by
orders (note that † is a small hypersurface), we obtain that

(3-10)
�

1

!4

Z
†

p3 d�

�2

�
1

!4

Z
†

p2 d�:

This is just the inequality (3-3) for hypersurfaces in Euclidean space R5. For the
general even-dimensional case, by using the Gauss–Bonnet–Chern formula,

Z
†

n=2X
kD0

C k
n=2.�1/kpn�2k d�D

1

n!

Z
†

Ln=2 d�D !n:

We can also reduce the inequality (3-8) to the Euclidean version (3-3) for small
hypersurfaces †� HnC1. For the odd-dimensional case, the argument is similar.
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3C. The hyperbolic case, II. In this subsection, we will prove Theorem 1.2. Since
the method is similar to that of the last subsection, we just sketch it.

Here we need the following model of the hyperbolic space. Let RnC2
1

be the
Minkowski space with the Lorentzian metric

hx;yi D x1y1C � � �CxnC1ynC1�xnC2ynC2:

Then the .nC1/-dimensional hyperbolic space can be defined by

HnC1
D fx 2 RnC2

1
j hx;xi D �1;xnC2 � 1g

with the induced metric from RnC2
1

.
Fix a point aD .0; : : : ; 0;�1/. Then it is easy to check that the weight function

and the support function can be written down as

f D h ; ai;

uD h�; ai:

Next define a family of parallel hypersurfaces †t D  t .†/, where  t .x/ D

exp .x/.t�.x//, x 2 †, and �.x/ is the outward unit normal of †. In fact,  t D

cosh t  C sinh t �. And since the initial hypersurface is convex, †t is well-defined
for all t � 0. Then . t /�.ei/D .cosh t C �i sinh t/ei and

�i.t/D
tanh t C �i

1C �i tanh t
:

For convenience, we define a function Q.t/ by

Qn.t/D .1C t�1/ � � � .1C t�n/D 1CC 1
n p1t C � � �CC n

n pntn:

Then the mean curvature of †t is

p1.t/D
n cosh t sinh t Qn.tanh t/CQ0n.tanh t/

n cosh2 t Qn.tanh t/
:

Note that p1.t/! 1 as t !C1. So for sufficiently large t , †t is mean convex.
And h�t ; ai D hsinh t  C cosh t �; ai � 0 for sufficiently large t , which implies †t

is star-shaped for these t . Thus, we can apply (1-5) to †t :

1

!n

Z
†

hcosh t Csinh t �;aip1.t/ coshnt Qn.tanh t/d�

�

�
1

!n

Z
†

coshnt Qn.tanh t/d�

�nC1
n

C

�
1

!n

Z
†

coshnt Qn.tanh t/d�

�n�1
n

:

Let t ! C1. Taking into account that tanh t ! 1, p1.t/ ! 1 and sinh t D

cosh t .1C o.1//, we obtain (1-6). So we have finished the proof.
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3D. The spherical case. We now prove Theorem 1.3. Assume that † is a closed
and convex hypersurface in SnC1. Then the parallel hypersurface†t is well-defined
for t 2

�
0; �

2

�
. Recall that the area of a geodesic sphere Sr and the volume of a

geodesic ball Br with radius r in the sphere SnC1 are

S.r/D !n sinnr;

V .r/D !n

Z r

0

sinns ds:

Now since jVt j is increasing in t , when t satisfies

jVt j D V

�
�

2

�
D !n

Z �=2

0

sinnr dr;

the isoperimetric inequality (see [Ros 2005]) implies j†t j � S.�
2
/D !n for this t .

Therefore, a weaker requirement is

(3-11) max
t2Œ0;�=2/

j†t j � !n:

Then the key point is to estimate maxt2Œ0;�=2/j†t j. Direct computation shows that

cosn�k t sink t D

�
eit C e�it

2

�n�k�
eit � e�it

2i

�k

D
1

2n

n�kX
pD0

kX
qD0

C
p

n�k
C

q

k
cos
�
.2.pC q/� n/t �

k�

2

�
.�1/k�q:

Then Steiner’s formula (2-8) implies

j†t jD

nX
kD0

C k
n cosn�k t sink t

Z
†

pk d�

D

nX
kD0

C k
n

1

2n

n�kX
pD0

kX
qD0

C
p

n�k
C

q

k
cos
�
.2.pCq/�n/t�
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2

�
.�1/k�q

Z
†

pk d�

D

X
0�k�n

2jk

C k
n

1

2n

n�kX
pD0

kX
qD0

C
p

n�k
C

q

k
.�1/

k
2 cos..2.pCq/�n/t/.�1/k�q

Z
†

pk d�

C

X
0�k�n

2−k

C k
n

1

2n

n�kX
pD0

kX
qD0

C
p

n�k
C

q

k
.�1/Œ

k
2 � sin..2.pCq/�n/t/.�1/k�q

Z
†

pk d�:
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Next let 2.pC q/� nD˙s and sum up in terms of s first. We get

(3-12) j†t j D

nX
sD 1�.�1/n

2
;C2

X
pCqD.n˙s/=2

p;q�0

X
q�k�n�p

2jk

C k
n

1

2n
C

p

n�k
C

q

k

�.�1/
k
2
Ck�q cos.st/

Z
†

pk d�

C

nX
sD 1�.�1/n

2
;C2

X
pCqD.n˙s/=2

p;q�0

X
q�k�n�p

2−k

C k
n

1

2n
C

p

n�k
C

q

k
.�1/Œ

k
2 �Ck�q

� .�1/�f2.pCq/�n�0g sin.st/

Z
†

pk d�

�

nX
sD 1�.�1/n

2
;C2

p
.E.s//2C .F.s//2;

in the notation of Theorem 1.3.
Next we show that for the geodesic sphere with radius r2

�
0; �

2

�
, the equality holds.

For this special hypersurface,
R
†pk d�D!nsinnrcotk r D!nsinn�krcoskr . Thus

j†t j D !n

nX
kD0

C k
n .cos t sin r/n�k.sin t cos r/k D !n sinn.r C t/

D !n
1

2n

nX
qD0

C q
n cos

�
.2q� n/.r C t/�

n�

2

�
.�1/n�q:

For simplicity, we assume n is even. Then

j†t j D !n
1

2n

nX
qD0

C q
n cos..2q� n/.r C t//.�1/n=2Cn�q

D !n

X
sD0;2;:::;n

X
2q�nD˙s

1

2n
C q

n cos.s.r C t//.�1/3n=2�q

D !n

X
sD0;2;:::;n

X
2q�nDs

2
1

2n
C q

n cos.s.r C t//.�1/3n=2�q;

where we note that the coefficients of cos.s.r C t// for the two choices of q are
the same.

Now expand cos.s.r C t// D cos sr cos st � sin sr sin st . We find that all the
inequalities in (3-12) become equalities for t D �

2
� r and j†t j D !n sinn �

2
D !n.

Thus for the geodesic sphere, the equality in (3-12) holds.
On the other hand, assume the equality holds. Then when some t satisfies

jVt j D V .�
2
/D !n

R �=2
0 sinnr dr , we must have j†t j D S.�

2
/D !n for this t . So
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the isoperimetric inequality implies that †t D Sn.1/. Then the initial hypersurface
must be a geodesic sphere.

Thus Theorem 1.3 is proved.

Remark 3.3. In Section 1, we discussed the special case nD 2 of (1-7), which is
just the Minkowski-type inequality for convex surfaces in S3. Here, to get a better
feeling of the inequality (1-7), we give the precise expressions for nD 3 and nD 4.
For nD 3, we have

!3 �

s�
1

4

�
j†j � 3

Z
†

p2 d�

��2

C

�
1

4

�
3

Z
†

p1 d��

Z
†

p3 d�

��2

C

s�
3

4

�
j†jC

Z
†

p2 d�

��2

C

�
3

4

�Z
†

p1 d�C

Z
†

p3 d�

��2

:

And for nD 4, we have
(3-13)

!4 �

s�
1

8

�
j†j � 6

Z
†

p2 d�C

Z
†

p4 d�

��2

C

�
1

2
.

Z
†

p1 d��

Z
†

p3 d�/

�2

C

s�
1

2

�
j†j �

Z
†

p4 d�

��2

C

�Z
†

p1 d�C

Z
†

p3 d�

�2

C
3

8

�
j†jC 2

Z
†

p2 d�C

Z
†

p4 d�

�
:

For a 4-dimensional hypersurface † in S5, we have the Gauss–Bonnet–Chern
formula

(3-14)
Z
†

.p4C 2p2C 1/ d�D
1

4!

Z
†

L2 d�D !4:

Therefore, the inequality (3-13) can be further simplified by using the formula (3-14).

Remark 3.4. As in the hyperbolic case, when the hypersurface †� S5 is small,
the inequality (3-13) reduces to the Euclidean version (3-3). This can be seen using
a similar argument to that in Remark 3.2.

4. The results by the method of inverse mean curvature flow

In this section we give the proof of Theorem 1.4 using a different method from the
one in the previous section.

4A. Evolution equations. Considering † as the initial hypersurface, we flow †

in SnC1 under the flow equation X W†� Œ0;T �/! SnC1,

@tX D F�;
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where F is a curvature function and � is the unit normal to the flow hypersurfaces†t .
First we recall the following evolution equations.

Lemma 4.1 [Makowski and Scheuer 2013]. Under the curvature flow @tX D F�

in SnC1, we have
d

dt
j†t j D n

Z
†t

Fp1 d�t ;(4-1)

d

dt

Z
†t

pm d�t D .n�m/

Z
†t

FpmC1 d�t �m

Z
†t

Fpm�1 d�t :(4-2)

To simplify the notation, in the following we define

(4-3) zLk D
1

C 2k
n .2k/!

Lk D

kX
iD0

C i
kp2k�2i :

Using Lemma 4.1, we obtain the following.

Lemma 4.2. Under the curvature flow @tX D F� in SnC1, we have

d

dt

Z
†t

zLk d�t D .n� 2k/

kX
iD0

C i
k

Z
†t

Fp2k�2iC1 d�t :

Proof. The proof is by a direct calculation:

d

dt

Z
†t

zLk d�t D

kX
iD0

C i
k

d
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Z
†t

p2k�2i d�t

D

kX
iD0

C i
k

Z
†t

�
.n�2kC2i/Fp2k�2iC1�2.k�i/Fp2k�2i�1

�
d�t

D

kX
iD0

C i
k

Z
†t

.n�2kC2i/Fp2k�2iC1 d�t

�

kX
iD1

C i�1
k

Z
†t

2.k�iC1/Fp2k�2iC1 d�t

D .n�2k/

kX
iD0

C i
k

Z
†t

Fp2k�2iC1 d�t : �

4B. Proof of Theorem 1.4. Recently, Makowski and Scheuer [2013] and Gerhardt
[2015] studied the curvature flows in the sphere. If the initial hypersurface†�SnC1

is closed and strictly convex, then under the inverse mean curvature flow

@tX D
1

p1
�;
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there exists a finite time T � <1 such that the flow hypersurface †t converges
to an equator in SnC1 and the mean curvature of †t converges to zero almost
everywhere in the sense of (see Theorem 1.4 in [Makowski and Scheuer 2013])

(4-4) lim
t!T �

Z
†t

p˛1 d�t D 0 for all 1� ˛ <1:

For each t 2 Œ0;T �/, define the quantity Q.t/ by

(4-5) Q.t/D j†t j
�.n�2k/=n

Z
†t

zLk d�t :

On the one hand, by Lemmas 4.2 and 2.1 (note that strictly convex implies all
principal curvatures of †t are positive, and certainly belong to �C

k
), we have

d

dt

Z
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zLkd�t D .n� 2k/
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iD0
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k

Z
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Z
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p2k�2i d�t

D .n� 2k/

Z
†t

zLk d�t :

Equality holds if and only if †t is totally umbilical. On the other hand, the area of
the flow hypersurface evolves as

d

dt
j†t j D nj†t j:

Therefore we obtain that the quantity Q.t/ is monotone nonincreasing in t ; i.e.,

(4-6)
d

dt
Q.t/� 0:

Since under the inverse mean curvature flow, the flow hypersurfaces converge
to an equator in SnC1 and the mean curvature of †t converges to zero almost
everywhere in the sense of (4-4), we have

(4-7) lim
t!T �

Q.t/D !2k=n
n :

Combining (4-6) and (4-7), we have

Q.0/D j†j�.n�2k/=n

Z
†

zLk d�� lim
t!T �

Q.t/D !2k=n
n :

Hence noting (4-3), we obtain that

(4-8)
Z
†

Lk d�� C 2k
n .2k/!!2k=n

n j†j.n�2k/=n:
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Equality holds in (4-8) if and only if Q.t/ is constant in t . Then †t is totally
umbilical for each t 2 Œ0;T �/, and, in particular, † is totally umbilical and hence
a geodesic sphere. The inequality (4-8) says that the induced metric of convex
hypersurfaces in SnC1 satisfies the optimal Sobolev inequalities. See [Ge et al.
2014b] for further information about the Sobolev inequalities of the same type.
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