Vol. 277, No. 2, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Representations of knot groups into SL$_n({\mathbb C})$ and twisted Alexander polynomials

Michael Heusener and Joan Porti

Vol. 277 (2015), No. 2, 313–354
Abstract

Let Γ be the fundamental group of the exterior of a knot in the three-sphere. We study deformations of representations of Γ into SLn(C) which are the sum of two irreducible representations. For such representations we give a necessary condition, in terms of the twisted Alexander polynomial, for the existence of irreducible deformations. We also give a more restrictive sufficient condition for the existence of irreducible deformations. We also prove a duality theorem for twisted Alexander polynomials and we describe the local structure of the representation and character varieties.

Keywords
variety of representations, character variety, twisted Alexander polynomial, deformations
Mathematical Subject Classification 2010
Primary: 57M25, 57M05
Secondary: 57M27
Milestones
Received: 14 July 2014
Revised: 11 March 2015
Accepted: 12 March 2015
Published: 15 September 2015
Authors
Michael Heusener
Laboratoire de Mathématiques
Clermont Université Auvergne, Université Blaise Pascal
BP 10448, F-63000 Clermont-Ferrand
CNRS, UMR 6620, LM, F-63171 Aubière
France
Joan Porti
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Cerdanyola del Valles
08193 Barcelona
Spain