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THE BOREL–WEIL THEOREM
FOR REDUCTIVE LIE GROUPS

JOSÉ ARAUJO AND TIM BRATTEN

In this manuscript we consider the extent to which an irreducible represen-
tation for a reductive Lie group can be realized as the sheaf cohomology of
an equivariant holomorphic line bundle defined on an open invariant sub-
manifold of a complex flag space. Our main result is the following: suppose
G0 is a real reductive group of Harish-Chandra class and let X be the asso-
ciated full complex flag space. Suppose O� is the sheaf of sections of a G0-
equivariant holomorphic line bundle onX whose parameter � (in the usual
twisted D-module context) is antidominant and regular. Let S � X be a
G0-orbit and supposeU �S is the smallestG0-invariant open submanifold
of X that contains S . From the analytic localization theory of Hecht and
Taylor one knows that there is a nonnegative integer q such that the com-
pactly supported sheaf cohomology groups H p

c .S;O�jS / vanish except in
degree q, in which caseH q

c .S;O�jS / is the minimal globalization of an as-
sociated standard Beilinson–Bernstein module. In this study, we show that
the q-th compactly supported cohomology group H q

c .U;O�jU / defines, in
a natural way, a nonzero submodule of H q

c .S;O�jS /, which is irreducible
(i.e., realizes the unique irreducible submodule of H q

c .S;O�jS /) when an
associated algebraic variety is nonsingular. By a tensoring argument, we
can show that the result holds, more generally (for nonsingular associated
variety), when the representationH q

c .S;O�jS / is what we call a classifying
module.

1. Introduction

In this manuscript we show there is a natural generalization of the Borel–Weil
theorem to the class of reductive Lie groups which serves to realize many, but not
all, irreducible admissible representations.

Starting with Schmid’s thesis [1989], there are general results realizing irreducible
representations as sheaf cohomologies of finite-rank holomorphic vector bundles
defined over open orbits in generalized complex flag spaces [Wong 1995; Bratten
1998]. However, relatively few irreducible representations can be realized this

MSC2010: 22E46.
Keywords: reductive Lie group, representation theory, flag manifold.

257

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.277-2
http://dx.doi.org/10.2140/pjm.2015.277.257


258 JOSÉ ARAUJO AND TIM BRATTEN

way. The equivariant D-module theory of Beilinson and Bernstein [1981] provides
a powerful generalization to the Borel–Weil theorem and produces geometric
realizations for any irreducible Harish-Chandra module. However, one would also
like to find a natural realization of a corresponding group representation. In a
general sense, the analytic localization defined by Hecht and Taylor [1990] does
just that, by giving realizations for the minimal globalizations [Schmid 1985] of
Harish-Chandra modules. Along these lines, the theory of analytic localization was
used by Hecht and Taylor to realize minimal globalizations of the standard modules
defined by the Beilinson–Bernstein theory. In many cases, standard modules are
irreducible, but when they are not, it is not obvious how to proceed. One difficulty
is that the geometric realization defined by Hecht and Taylor is obtained via an
equivalence of derived categories so that the analytic localization of an irreducible
representation can (and sometimes does) appear as a complex of sheaves that has
nonzero homologies in various degrees. In spite of this difficulty, it turns out
(somewhat surprisingly to us) that the theory of analytic localization can be used
to realize many more irreducible representations than the example of irreducible
standard modules. In the end, one sees that the key point hinges on whether a certain
associated algebraic variety has singularities. When it does not, then the Beilinson–
Bernstein realization of the corresponding irreducible Harish-Chandra module has a
simple geometric description and this fact controls the analytic localization. When
the associated variety is singular, this simplicity breaks down, and it turns out that
it is impossible to realize the irreducible representation as the sheaf cohomology of
a finite-rank holomorphic vector bundle defined over an invariant open submanifold
of a generalized flag manifold.

Rather than make a general statement about our main results in the introduction
(our main results are Theorem 5.1 and Corollary 6.2), we would like to illustrate
how the theory works in the context of a connected complex reductive group where
the relationship to the Beilinson–Bernstein classification of irreducible admissible
representations is more transparent. In particular, suppose G0 is a connected
complex reductive group with Lie algebra g0 and let K0 �G0 be a compact real
form. Associated to K0 is a corresponding Cartan involution � W G0 ! G0 (in
this case � is the conjugation given by the real form). Let X0 be the complex flag
manifold of Borel subgroups of G0, and let X c

0 be the conjugate complex manifold.
Then the flag manifold X of Borel subalgebras of the complexified Lie algebra g

of g0 can be identified with the direct product

X DX0 �X
c
0:

We need to consider two actions of G0 on X. The diagonal action

g � .x; y/D .gx; gy/
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corresponds to the fact that G0 is a real group with real Lie algebra g0 and the
action

g � .x; y/D .gx; �.g/y/

corresponds to the fact that G0 D K is the complexification of K0. Choose a
� -stable Cartan subgroup H0 �G0 and a Borel subgroup B0 �H0. Let W.G0/ be
the Weyl group of H0 in G0. Then we can identify the set of Borel subgroups of
G0 that contain H0 with W.G0/ (the identity in W.G0/ corresponds to the Borel
subgroup B0). Let Bop

0 be the Borel subgroup opposite to B0 with respect to H0
(this subgroup corresponds to the longest element in W.G0/). Then each G0-orbit
and each K-orbit on X contains exactly one point of the form

.w �B0; B
op
0 / 2X0 �X

c
0

for w 2W.G0/. Thus, the orbits for both actions are simultaneously parametrized
by W.G0/. Observe that the open orbit for the G0-action and the closed orbit for
the K-action correspond to the identity in W.G0/ We introduce the length function,
l.w/, on W.G0/. In particular, each element w 2 W.G0/ can be expressed as a
product of simple reflections and the corresponding length, l.w/, is defined to be
the number of simple reflections that appear in a minimal expression (i.e., a reduced
word) for w. Observe that if Qw is the K-orbit corresponding to w 2W.G0/ then
the complex dimension of Qw is given by

dimC.Qw/D dimC.X0/C l.w/:

For simplicity we will consider the sheaf of holomorphic functions OX on X
(more generally one could consider the sheaf of sections O� of a G0-equivariant
holomorphic line bundle on X whose parameter � in the usual twisted D-module
context is antidominant and regular). The Beilinson–Bernstein classification gives
a one-to-one correspondence between the equivalence classes of irreducible admis-
sible representations for G0 that have the same infinitesimal character as the trivial
representation and the G0-orbits on X given in the following way. For w 2W.G0/,
let Sw be the corresponding G0-orbit and define

q D dimC.X0/� l.w/:

Thus, q is the (complex) codimension of the K-orbit Qw in X. Using their theory
of analytic localization, Hecht and Taylor have shown that the compactly supported
sheaf cohomologies

Hpc .Sw ;OX jSw
/

of the restriction of OX to Sw vanish except when p D q, in which case the
module H q

c .Sw ;OX jSw
/ is the minimal globalization of a corresponding stan-

dard Beilinson–Bernstein module. It follows that H q
c .Sw ;OX jSw

/ has a unique
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irreducible submodule Jw � H
q
c .Sw ;OX jSw

/. These representations Jw for
w 2 W.G0/ are exactly the irreducible admissible representations for G0 that
have the same infinitesimal character as the trivial representation.

In this manuscript we want to realize the representations Jw . Along those lines
we introduce the Bruhat order in W.G0/: if w; u 2W.G0/ then we write u � w
if u is an ordered subword that occurs in a reduced expression for w in terms of
products of simple reflections. Given w 2W.G0/, it is well known that the Bruhat
interval ‡.w/ D fu 2 W.G0/ W u � wg characterizes the Zariski closure of the
K-orbit Qw in the following way:

Qw D
[

u2‡.wA/

Qu:

We call Qw the algebraic variety associated to the G0-orbit Sw . Define

Uw D
[

u2‡.w/

Su:

Then, Uw is the smallest G0-invariant open submanifold of X that contains Sw
and it is not hard to show that Sw is the unique G0-orbit that is closed in Uw .
Put U D Uw � Sw . Letting .OX jU /X, etc., denote the extension by zero of the
restriction of OX to U, we obtain the following short exact sequence of sheaves on
X :

0! .OX jU /X ! .OX jUw
/X ! .OX jSw

/X ! 0:

Using an argument like [Bratten 2008, Lemma 3.3], it is not hard to show that

Hpc .U;OX jU /D 0 if p < qC 1

and that
H q

c .Uw ;OX jUw
/

is a nonzero minimal globalization. Thus, the long exact sequence in sheaf coho-
mology determines an inclusion

H q
c .Uw ;OX jUw

/ ,!H q
c .Sw ;OX jSw

/:

We note that when Uw is the preimage of an open G0-orbit on a generalized flag
space Y then there is a natural identification of the representation H q

c .Uw ;OX jUw
/

with the q-th compactly supported cohomology of the holomorphic functions on the
given open orbit in Y. (This is one of the key points in [op. cit.].) When this happens,
it is known that the representation H q

c .Uw ;OX jUw
/ is irreducible. We say that Uw

is parabolic when Uw is the preimage of an open G0-orbit on a generalized flag
space Y . Our main result in this study shows that (more generally) the submodule
H
q
c .Uw ;OX jUw

/ is irreducible when the associated algebraic varietyQw is smooth.
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Thus we can realize Jw as H q
c .Uw ;OX jUw

/ when (and, in fact, only when) this
happens.

For example, if G0 is the complex general linear group GL.3;C/, then 4 out of
the 6 G0-orbits on X are parabolic but the algebraic varieties associated to all 6
orbits are smooth so we can realize all irreducible representations with the given
infinitesimal character in this case. IfG0DGL.4;C/, then only 8 of the 24G0-orbits
are parabolic, but 22 out of 24 orbits have smooth associated varieties so we can
realize all but two of the irreducible representations with the given infinitesimal
character (and so on). We will also see (for some examples) that when the algebraic
variety Qw is singular the representation H q

c .Uw ;OX jUw
/ is reducible, and it is

actually impossible to realize the irreducible representation Jw as the compactly
supported sheaf cohomology of an equivariant (finite-rank) holomorphic vector
bundle defined on a G0-invariant open submanifold in a generalized flag space.

Our manuscript is organized as follows. In Section 2, we will present the main
results we need about orbits and invariant subspaces in X. In Section 3, we will
introduce the equivariant homogeneous line bundles and prove the basic embedding
theorem. In Section 4, we introduce the algebraic localization theory and give a
geometric description to the irreducible Harish-Chandra module in the Beilinson–
Bernstein classification, assuming the corresponding algebraic variety is smooth. In
Section 5, we introduce the analytic localization and use the comparison theorem
to prove our main result. Then, in Section 6, we use a tensoring argument to extend
our result to antidominant parameters and also consider how our construction relates
to the classical parabolic induction (in the case of a complex reductive group) so we
can consider some examples. We conclude our manuscript with a brief consideration
of how Serre duality applies. We would like to mention that the idea of our proof
involves a mix of ideas from the two articles [Bratten 2008; 1997]. Although our
argument requires a heavy use of the D-module theory and some familiarity with
derived categories, we would hope it looks natural to anyone familiar with these
two previous articles.

2. G0-orbits and K-orbits

Throughout this manuscript G0 will denote a real reductive Lie group of Harish-
Chandra class with Lie algebra g0 and complexified Lie algebra g. Abusing notation
a bit, we let G denote the complex adjoint group of g. (Note that G has Lie algebra
Œg; g�.) There is a natural morphism of Lie groups

G0!G:

We also fix a maximal compact subgroup K0 � G0 and let K be the complex-
ification of K0. Associated to the maximal compact subgroup, there is an involutive
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automorphism

� WG0!G0;

whose fixed point set is K0. The involution � (as well as the complexification
� W g! g of its derivative) is called the Cartan involution.

A Borel subalgebra of g is a maximal solvable subalgebra. G acts transitively
on the set of Borel subalgebras of g and the resulting homogeneous G-space X is a
complex projective variety called the full flag space of G0. Since G0 has finitely
many orbits on X [Wolf 1969], the G0-orbits are locally closed submanifolds.

A basic geometric property of flag manifolds that is fundamental to our study
is the existence of a one-to-one correspondence between G0-orbits and K-orbits
referred to as Matsuki duality. For x 2X we let bx denote the corresponding Borel
subalgebra of g. Then, the nilradical nx of bx is given by nx D Œbx; bx�. The point
x 2 X (as well as the Borel subalgebra bx) is called special if there is a Cartan
subalgebra c of bx such that

c0 D g0\ c is a real form of c and �.c/D c:

Matsuki [1979] showed that both the special points in a G0-orbit as well as the
special points in a K-orbit form a (nonempty) K0-orbit. A G0-orbit S and a K-orbit
Q are said to be Matsuki dual if S \Q contains a special point. It follows that
Matsuki duality defines a bijection between the set of G0-orbits and the set of
K-orbits. When S is a G0-orbit and Q is a K-orbit then we will write S �Q when
S and Q are Matsuki dual.

Given a K-orbit Q, the associated algebraic variety is defined to be the Zariski
closure Q of Q (when S is the G0-orbit dual Q, we will also refer to Q as the
algebraic variety associated to S ). There is a partial order, called the closure order,
defined on the set of K-orbits by

Q1 �Q2 if Q1 �Q2:

While the associated algebraic variety is a closed K-invariant subvariety of X
associated to a G0-orbit S, we will now define a corresponding G0-invariant open
submanifold of X. In particular, suppose S0 is a G0-orbit and letQ0 be the Matsuki
dual. We define an associated indexing set ‡.S0/ of G0-orbits by

S 2 ‡.S0/ () 9Q such that Q � S and Q �Q0:

We define the corresponding G0-invariant subspace U by

U D
[

S2‡.S0/

S:
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Proposition 2.1. With the previous notation, U is the smallest G0-invariant open
submanifold that contains S0, and S0 is the unique closed G0-orbit in U.

Proof. We consider the closure orders on the set of K-orbits and on the set of
G0-orbits. Matsuki [1988] showed that duality reverses the corresponding closure
relations. It follows that

S 2 ‡.S0/ () S0 � S () S0 � S:

Thus, if S … ‡.S0/, then S0 \S D¿; therefore, S0 \S1 D¿ for each G0-orbit
S1 contained in S. Hence,

U \S D¿:

Since there are a finite number of orbits, the set

C D
[

S…‡.S0/

S

is closed and therefore
U DX �C

is open.
Now, suppose that W is an open G0-invariant submanifold that contains S0.

Suppose S � U. Then S0 � S. Thus,

S \W ¤¿:

Hence, S \W is a nonempty open G0-invariant subset of S. Since S is locally
closed, it follows that S is open and dense in S. Hence, from the G0-invariance,

S � S \W D) S �W

so that U �W, which proves that U is the smallest G0-invariant open submanifold
that contains S0.

To prove the last claim, first observe that if S is a G0-orbit contained in S0 then
S � S0 so that S � U if and only if S D S0. Thus,

S0\U D S0

and S0 is closed in U. On the other hand, if S is a closed G0-orbit in U, then

S D S \U:

However, from the definition of U, for S � U, we have S0 � S, hence

S0 � S \U:

It follows that S D S \U if and only if S D S0. �
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Example 2.2. Suppose that p � g is a parabolic subalgebra and let Y be the
corresponding G-homogeneous space of parabolic subalgebras of g conjugate to
p. For each y 2 Y , let py denote the corresponding parabolic subalgebra of g.
For x 2 X, there is a unique y 2 Y such that bx � py . Thus there is a canonical
G-equivariant projection

� WX ! Y

given by �.x/ D y if bx � py . A point y 2 Y is called special if py contains a
special Borel subalgebra.

Suppose W � Y is an open G0-orbit and let y 2W be a special point. Let O
be the K-orbit of y. Then, O is closed in Y (in fact O �W ), and Matsuki [1982]
showed that the G0-orbits in U D ��1.W / are Matsuki dual to the K-orbits in
��1.O/. Also, there is a unique G0-orbit S0 that is closed in U and its Matsuki
dual Q0 is the unique open orbit in the closed algebraic variety ��1.O/. Therefore,
Q0 D �

�1.O/ and it follows that a G0-orbit S is contained in U if and only if
its Matsuki dual Q is contained in Q0; thus, U is the smallest G0-invariant open
submanifold that contains S0. Observe that, in this case, the associated algebraic
variety Q0 D ��1.O/ is smooth since the fibers of � are smooth and since �
defines a locally trivial algebraic fibration of ��1.O/ over O.

3. Equivariant line bundles

In this section, we introduce the equivariant line bundles on the full flag space X,
as well as the corresponding standard modules associated to a G0-orbit S �X. We
begin this section by introducing the abstract Cartan dual, which is the parameter
set for the twisted sheaves of differential operators (TDOs) on X. Recall that G
is the complex adjoint group of g. For x 2 X, let nx denote the nilradical of the
corresponding Borel subalgebra bx and put

hx D bx=nx :

Since the stabilizer of x in G (i.e., the corresponding Borel subgroup in G) acts
trivially on hx it also acts trivially on the complex dual h�x . It follows that the
corresponding G-homogeneous holomorphic vector bundle on X is trivial and that
the associated space of global sections h� is naturally isomorphic to h�x via the
evaluation at x. The vector space h� is called the abstract Cartan dual for g. If c
is a Cartan subalgebra of bx , then by coupling the natural projection of c onto
hx with the evaluation at x, we obtain an isomorphism of c� with h� called the
specialization of h� to c� at x. Using the specializations, we can identify an abstract
set of roots

†� h�
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and an abstract set of positive roots

†C �†;

where † corresponds to the set of roots of c in g and †C corresponds to the roots
of c in bx , via the specialization at x. Given ˛ 2† and � 2 h�, we can also define
the complex number

_

˛.�/;

the value of � on the coroot of ˛. The element � 2 h� is called integral if
_

˛.�/ 2 Z for each ˛ 2†:

It just so happens that the half-sum of positive roots, denoted by �, is an integral
element of h� that plays a key role in the TDO parametrization.

Let zG denote the universal cover of G and suppose � 2 h� is integral. For a
point x 2 X, the Lie algebra of the corresponding Borel subgroup zBx in zG (i.e.,
the stabilizer of x in zG) is given by bx \ Œg; g�. Thus, using the evaluation at x, the
global section � determines a one-dimensional representation

bx \ Œg; g� �! hx
�x
�! C:

Since zG is simply connected, it is known that there is a (unique) holomorphic
character of zBx whose derivative is given, in this way, by �x . Thus, corresponding
to each integral � 2 h� there is a corresponding zG-homogeneous holomorphic line
bundle

L.�/ �!X:

Let O.�/ be the corresponding sheaf of holomorphic sections. In a natural way, zG
and thus Œg; g� act on O.�/. Let z be the center of g. Suppose W �X is an open
set, and let

� WW ! L.�/

be a local holomorphic section. Then, extend O.�/ to a sheaf of g-modules by

.� � �/.x/D �.�/�.x/ for � 2 z and x 2W:

We say that L.�/ is a G0-equivariant line bundle if there exists a G0-action on
L.�/ (in the sense of differentiable G0-actions on vector bundles over differentiable
G0-spaces) such that the induced morphisms L.�/! L.�/, given by multiplication
by group elements, are holomorphic and such that the derivative of the G0-action
on local sections coincides with the g-action.

Example 3.1. An important class of G0-equivariant holomorphic line bundles
corresponds to the family of (equivalence classes of) finite-dimensional irreducible
representations of G0 that are also irreducible for the corresponding g-action (i.e.,
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irreducible finite-dimensional g-modules with a compatibleG0-action). In particular,
let V be a finite-dimensional G0-module that is irreducible as a g-module. For
each x 2 X, let G0Œx� denote the stabilizer of x and consider the corresponding
.bx , G0Œx�/-module

V=nxV:

Choosing a Cartan subalgebra c� bx and using the specialization to x, the action
of c on V=nxV is given by an element � 2 h� that corresponds to the lowest weight
in V . Hence, if we define

�D �� �

then
_

˛.�/ is a negative integer, for each positive root ˛ 2†C. We can define the
total space of a G0-equivariant holomorphic line bundle L� by

L� D
[
x2X

V=nxV:

Using the action of zG one can define holomorphic transition functions. Then the
Borel–Weil Theorem says that the representation V is recovered as the global
holomorphic sections of the bundle L�.

In general„ when O.�/ is the sheaf of holomorphic sections of G0-equivariant
line bundle we will use the shifted parameter �D �� � and write

O� DO.�/

for the sheaf of holomorphic sections. We say � is regular if
_

˛.�/¤ 0 for each root ˛ 2†:

An element � is called singular when it is not regular. We say � is antidominant if
_

˛.�/ … N for each positive root ˛ 2†C:

Suppose that O� is the sheaf of holomorphic sections of a G0-equivariant line
bundle. Let S be a G0-orbit in X and let Q be the Matsuki dual to S. We define
the vanishing number q of S to be the (complex) codimension of Q in X. Suppose
that � is antidominant and regular. One of the main results of the Hecht–Taylor
analytic localization theory is that the compactly supported sheaf cohomology of
the restriction O�jS of O� to S vanishes, except in degree q, in which case

H q
c .S;O�jS /

is the minimal globalization of a corresponding standard Beilinson–Bernstein
module. (We will describe this module in the following section.) In particular,
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H
q
c .S;O�jS / has a unique irreducible submodule. In general, (for any parameter

�), the sheaf cohomology groups

Hpc .S;O�jS /

vanish [Bratten 1997] for p < q, and in the nonzero cases these cohomology
groups are minimal globalizations of the sheaf cohomology groups of an associated
standard Harish-Chandra sheaf.

In general, terms, we now consider a simple geometric procedure which can be
used in the context of the Hecht–Taylor realization of minimal globalizations, to
study representations. We first remark that the sheaves O� are examples of what
is referred to in the Hecht–Taylor development as DNF (stands for dual nuclear
Fréchet) sheaves of analytic G0-modules (we will not need the formalism of DNF
sheaves of analytic G0-modules in our study however we would simply like to
mention the general criteria used to establish the following results). We want to
remark that, in the case of the global sheaf cohomology on X, the sheaf cohomology
groups

Hp.X;O�/

are finite-dimensional and were originally studied in [Bott 1957]. Now suppose
L� X is a locally closed G0-invariant subspace and let

.O�jL/X

denote the extension by zero to X of the restriction of O� to L. Then there is a
natural isomorphism of functors

Hp.X; .O�jL/X /ŠHpc .L;O�jL/

and it follows from the results of Hecht and Taylor (at least for � regular — in the
singular case one can prove this by a tensoring argument as in [Bratten 1997]) that
the sheaf cohomology groups

Hpc .L;O�jL/

are minimal globalizations of Harish-Chandra modules. Let W � L be an open,
G0-invariant subspace and let C DL�W . Then we have the following short exact
sequence of DNF sheaves of analytic G0-modules:

0! .O�jW/X ! .O�jL/X ! .O�jC/X ! 0:

Therefore, the corresponding long exact sequence in cohomology

� � �!Hpc .W;O�jW/!Hpc .L;O�jL/!Hpc .C;O�jC/!HpC1
c .W;O�jW/!� � �

is a sequence of minimal globalizations with continuous G0-morphisms.



268 JOSÉ ARAUJO AND TIM BRATTEN

Return to the case where S is a G0-orbit and let U be the smallest G0-invariant
open set that contains S. Then the compactly supported sheaf cohomology groups

Hpc .U;O�jU /

are minimal globalizations of Harish-Chandra modules. Recall that q is the van-
ishing number of S. We will now show that there is a natural embedding of
H
q
c .U;O�jU / in H q

c .S;O�jS /. Let W DU �S. Then W is open and we have the
following short exact sequence of sheaves on X :

0! .O�jW/X ! .O�jU /X ! .O�jS /X ! 0:

This sequence will induce a sequence of continuous morphisms of minimal global-
izations when we apply the long exact sequence of sheaf cohomology. To prove we
have an inclusion in grade q we use the vanishing on S, and the following lemma.

Lemma 3.2. Maintain the previously defined notations. Then,

Hpc .W;O�jW/D 0 for p � q:

Proof. First observe that since Q is open in Q then for each Q0 � Q such that
Q0 ¤Q then the codimension of Q0 is strictly bigger than the codimension of
Q, so that the vanishing numbers for G0-orbits in W are at least qC 1. Suppose
O �W is a G0-invariant open subset. We define the length of O to be the number
of G0-orbits contained in O. We show that the announced vanishing result holds
for every G0-invariant open subset of W by an induction on length. When O has
length one, it is an open G0-orbit so the result holds since it has vanishing number
at least qC1. In general, let S0�O be a G0-orbit of minimal dimension. Since S0
is open and dense in its closure it follows that any G0-orbit in the closure different
from S0 has strictly smaller dimension. Thus,

S0\O D S0

and O0DO�S0 is an open G0-invariant of shorter length. Thus, the result follows
by induction, using the long exact sequence in cohomology applied to the short
exact sequence of sheaves:

0! .O�jO0
/X ! .O�jO/X ! .O�jS0

/X ! 0: �

Corollary 3.3. Let O� be the sheaf of sections of a G0-equivariant holomorphic
line bundle over X. Suppose S �X is G0-orbit with associated vanishing number
q and let U be the smallest G0-invariant open submanifold that contains S. Then
there is a natural inclusion of analytic G0-modules

H q
c .U;O�jU /!H q

c .S;O�jS /
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4. Localization and standard Beilinson–Bernstein modules

We begin this section by introducing the sheaves of twisted differential operators and
reviewing some of the necessary theory. For a basic reference on the algebraic side
of the localization theory, we note that [Miličić 1993] provides a nice overview to the
geometric realization of Harish-Chandra modules given by the Beilinson–Bernstein
theory.

Let U.g/ be the enveloping algebra of g and let Z.g/ be the center of U.g/. An
infinitesimal character ‚ is a morphism of algebras (with identity)

‚ WZ.g/! C:

We let U‚ be the quotient of U.g/ by the two-sided generated from the kernel of
‚ in Z.g/. Observe that U‚ is the algebra that acts naturally on a g-module with
infinitesimal character ‚.

Let W be the Weyl group of h�. By Harish-Chandra’s classical result, Z.g/
is isomorphic to the Weyl group invariants in the enveloping algebra of a Cartan
subalgebra of g. It follows that the infinitesimal characters are naturally parametrized
by the W-orbits in h�. For � 2 h�, we write

‚DW � and � 2‚

when the W orbit of � parametrizes the infinitesimal character ‚. It is known
that if � 2 h� is integral (or regular) then w� is integral (or regular) for every
w 2W . In this case we also say that the corresponding infinitesimal character is
integral (or regular). When an infinitesimal character ‚ is integral and regular
then there exists a unique � 2‚ that is antidominant. Notice that the infinitesimal
character of an irreducible admissible representation is an important invariant and
that the Beilinson–Bernstein realization of irreducible Harish-Chandra modules
with infinitesimal character ‚ depends, to some extent, on the choice of � 2‚.

At this point we need to distinguish between the algebraic and analytic structures
on X. Therefore, we consider the full flag space X as both an algebraic variety
(with the Zariski topology) and as a complex manifold (with the analytic topology)
according to the context. Since the line bundles, defined for integral � 2 h� in
the previous section, have a compatible algebraic structure, we can consider the
corresponding sheaf of algebraic sections Oalg

�
defined on the algebraic variety

X. Associated to the sheaf Oalg
�

is a corresponding twisted sheaf of differential
operators (TDO) Dalg

�
.

We can also consider the corresponding TDO D�, with holomorphic coefficients
and defined on complex variety X. In a natural way, O� is a sheaf of modules for
D�. When O� is the sheaf of holomorphic sections of a G0-equivariant line bundle,
G0 acts on D� while K acts compatibly (extending the K0-action) on Oalg

�
and
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Dalg
�

. We want to emphasize that we are using the shifted parametrization from the
previous section. In particular, O�� is the sheaf of holomorphic functions on X
and D�� is the sheaf of holomorphic differential operators.

Suppose that � 2‚. Beilinson and Bernstein showed that

�.X;Dalg
� /Š U‚ and Hp.X;Dalg

� /D 0 for p > 0:

Thus, the sheaf cohomology groups of a sheaf of Dalg
�

-modules are g-modules with
infinitesimal character ‚. When F is a sheaf of quasicoherent Dalg

�
-modules and �

is antidominant, Beilinson and Bernstein showed that

Hp.X;F/D 0 for p > 0:

In particular, when � is antidominant, the functor of global sections is exact on the
category of quasicoherent Dalg

�
-modules. The localization functor

��.M/D Dalg
� ˝U‚

M

is defined on the category ofU‚-modules and is the left adjoint to the global sections
functor on the category of quasicoherent Dalg

�
-modules. When � is antidominant and

regular, Beilinson and Bernstein showed that the localization functor and the global
sections functor are mutual inverses and determine an equivalence of categories.

Suppose S �X is a G0-orbit with associated vanishing number q. Let O� be the
sheaf of holomorphic sections of a G0-equivariant line bundle. We now consider the
geometric construction of the underlying Harish-Chandra module of the minimal
globalization

H q
c .S;O�jS /:

Let Q denote the K-orbit Matsuki dual to S (equip Q with the Zariski topology)
and consider the K-equivariant sheaf Oalg

�
. Let i WQ ,!X be the inclusion and let

i�.Oalg
� /D i�1.Oalg

� /˝i�1.O alg
X /O

alg
Q

be the inverse image of Oalg
�

with respect to the structure sheaves of the algebraic
varieties Q and X. Therefore, i�.Oalg

�
/ is the sheaf of sections of a corresponding

K-homogeneous algebraic line bundle defined on Q. Let Dalg
Q;�

be the sheaf of
differential operators for the locally free sheaf i�.Oalg

�
/. Then, there is a corre-

sponding direct image functor iC in the category of sheaves of (twisted) D-modules.
In this case, since the morphism i is an affine inclusion of smooth varieties, the
direct image is an exact functor [Hecht et al. 1987]. The sheaf

I.Q; �/D iCi�.Oalg
� /

is a K-equivariant sheaf of Dalg
�

-modules called the corresponding standard Harish-
Chandra sheaf onX, which contains a unique (coherent andK-invariant) irreducible
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subsheaf
J .Q; �/� I.Q; �/:

of Dalg
�

-modules. We note that the notation being used is a bit ambiguous since the
structure of these objects also depends on the K0-action and not just the orbit Q
and the integral parameter �. However, in the current context it should be clear
how one construction leads to the other and we feel our approach avoids an overly
complicated notation. The Harish-Chandra module

I.Q; �/D �.X; iCi
�.Oalg

� //

is called the corresponding standard Beilinson–Bernstein module. In general, one
knows [Bratten 1997] that I.Q; �/ is the underlying Harish-Chandra module of
H
q
c .S;O�jS /. Observe that when � is antidominant and regular, by the equivalence

of categories, it follows that the Harish-Chandra module

J.Q; �/D �.X;J .Q; �//� I.Q; �/

is the unique irreducible submodule of the corresponding standard Beilinson–
Bernstein module. We call I.Q; �/ a classifying module if � is antidominant
and J.Q; �/ ¤ 0. As the name suggests, the classifying modules are used in
Beilinson–Bernstein classification of irreducible admissible representations. This
works perfectly when G0 is a connected, complex reductive group, however, in
general, one must enlarge the class of standard Harish-Chandra sheaves to include
all irreducible representations with the given integral infinitesimal character.

Suppose � is antidominant and regular and let J.Q; �/min denote the correspond-
ing minimal globalization.

Proposition 4.1. Maintain the above notations (in particular, we assume that �
is antidominant and regular). Let U be the smallest G0-invariant open set that
contains S. Then, there exists a natural inclusion

J.Q; �/min ,!H q
c .U;O�jU /:

Proof. Since I.Q; �/ is the underlying Harish-Chandra module of H q
c .S;O�jS /,

it follows that J.Q; �/min is the unique irreducible submodule in H q
c .S;O�jS /.

Therefore, to establish the result it suffices to show that

H q
c .U;O�jU /¤ 0:

We follow the setup used in Lemma 3.2 and argue by contradiction. Suppose
that H q

c .U;O�jU / D 0 and let W D U � S. Using the long exact sequence in
cohomology, we obtain an inclusion

J.Q; �/min ,!H q
c .S;O�jS / ,!H qC1

c .W;O�jW /:
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Now, suppose that S1 �W is a G0-orbit of minimal dimension and define W1 D
W �S. Then S1 is closed in W1, so using the corresponding long exact sequence
in cohomology, we obtain the sequence

0!H qC1
c .W1;O�jW1

/!H qC1
c .W;O�jW/!H qC1

c .S1;O�jS1
/! � � � :

Since J.Q; �/min, is irreducible either

J.Q; �/min ,!H qC1
c .W1;O�jW1

/ or J.Q; �/min ,!H qC1
c .S1;O�jS1

/:

However, if H qC1
c .S1;O�jS1

/¤ 0, then this representation is the minimal global-
ization of the classifying module I.Q1; �/ where Q1 is the K-orbit Matsuki dual to
S1. Thus, J.Q1; �/min is the unique irreducible submodule of H qC1

c .S1;O�jS1
/.

Since Q1 ¤Q, it follows that J.Q; �/ is not isomorphic to J.Q1; �/. Therefore,

J.Q; �/min ,!H qC1
c .W1;O�jW1

/:

Proceeding in this fashion, we would obtain that

J.Q; �/min ,!H qC1
c .O;O�jO/;

where O is an open G0-orbit. However, this is impossible since H qC1
c .O;O�jO/

is either zero or an irreducible minimal globalization that is not isomorphic to
J.Q; �/min. �

The proof of our main result now consists of two steps. The first part is to char-
acterize the irreducible Harish-Chandra sheaf J .Q; �/ when the associated variety
Q is smooth. Once we have that in hand, it turns out to be fairly straightforward to
calculate the analytic localization of J.Q; �/min on G0-orbits. To finish the proof
we show that the inclusion

J.Q; �/min ,!H q
c .U;O�jU /

induces an isomorphism between the analytic localization of J.Q; �/min and the
sheaf

.O�jU /X:

We can then recover our main result by the Hecht–Taylor equivalence of derived
categories.

For the first step of our proof, we continue with the previous notation.
Let

j WQ ,!X

denote the inclusion and assume Q is smooth. We consider the K-equivariant
sheaf j �.Oalg

�
/ defined on Q. Notice that j �.Oalg

�
/ is the sheaf of sections of a

K-equivariant algebraic line bundle defined on Q. Let Dalg
Q;�

denote the sheaf on Q
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of (twisted) differential operators of the invertible sheaf j �.Oalg
�
/, and let jC be

the corresponding direct image functor. Thus,

jCj
�.Oalg

� /

is a K-equivariant sheaf of Dalg
�

-modules.

Proposition 4.2. Suppose Oalg
�

is the sheaf of sections of aK-equivariant algebraic
line bundle onX. LetQ�X be aK-orbit and suppose I.Q; �/ is the corresponding
standard Harish-Chandra sheaf. Assume that the associated variety Q is smooth
and let j WQ ,!X be the inclusion. Then there exists a natural isomorphism

jCj
�.Oalg

� /Š J .Q; �/:

Proof. Let

l WQ ,!Q

be the inclusion and recall that i WQ ,!X. Since Q is open in Q, it is clear that

j �.Oalg
� /jQ Š i

�.Oalg
� /;

as sheaves of K-equivariant Dalg
Q;�-modules. Furthermore, the direct image lC

coincides with the direct image l� in the category of sheaves. By the adjointness
property of the direct image

Hom.j �.Oalg
� /; l�i

�.Oalg
� //Š Hom.j �.Oalg

� /jQ; i
�.Oalg

� //

so the isomorphism above determines a nonzero morphism

j �.Oalg
� /! l�i

�.Oalg
� /

of K-equivariant Dalg
Q;�

-modules.
Since Q is a closed, smooth subvariety of X, Kashiwara’s equivalence of cate-

gories says that the direct image jC establishes an equivalence between the category
of coherent Dalg

Q;�
-modules and the category of coherent Dalg

�
-modules with support

on Q. Thus, we have a nonzero morphism

jCj
�.Oalg

� /! jCl�i
�.Oalg

� /Š iCi
�.Oalg

� /D I.Q; �/

this last isomorphism since i D j ı l . Now we simply observe that j �.Oalg
�
/ is

an irreducible Dalg
Q;�

-module so that jCj �.Oalg
�
/ is also irreducible (once again by

Kashiwara’s equivalence). Since the morphism we have defined is nonzero and
iCi
�.Oalg

�
/ has a unique irreducible coherent subsheaf, the proposition is proven. �
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5. Analytic localization and comparison

We are now ready to introduce the analytic localization. The Hecht–Taylor version
of the localization functor is built around the topology of the minimal globalization.
One the one hand, Hecht and Taylor consider topological U‚-modules that have a
dual nuclear Fréchet (DNF) topology, where morphisms are continuous morphisms
of modules; on the other hand, they define the concept of a DNF sheaf of D�-
modules with an accompanying concept of continuous morphisms of DNF sheaves
of modules. For � 2‚, the topological localization

�an
� .M/D D� y̋U‚

M

does not have very interesting results, but since free resolutions of DNF modules
are complexes of DNF modules, using these sorts of resolutions, one can define a
derived functor L�an

�
. In particular, the analytic localization takes complexes of

DNF U‚-modules to complexes of DNF sheaves of D�-modules (by applying �an
�

to the corresponding free resolutions). On the other side of the equation, by using
Čech resolutions, Hecht and Taylor show there are enough injectives within the
category of DNF sheaves of D�-modules. Thus, by applying the global sections to
injective resolutions, one can define a derived global sections functor on complexes
of DNF sheaves of D�-modules. The result is then a complex of DNF U‚-modules.
On appropriately defined derived categories, for � regular, it is not hard to show
the derived functors L�an

�
and R� are mutual inverses.

In general, one does not know about the homology groups of the analytic local-
ization of a complex of DNF U‚-modules: these homology groups may very
well not be DNF sheaves (although they will be D�-modules). However, the
homology groups of the analytic localization of a minimal globalization M (any
DNF U‚-module can be thought of as a complex which is zero in all nonzero
degrees) turn out to be DNF sheaves of D�-modules of a very special sort. In
order to explain this, we introduce the concept of the geometric fiber of a sheaf
of OX -modules. In particular, if F is a sheaf of OX -modules and x 2X, then we
define the geometric fiber Tx.F/ of F at x by

Tx.F/D C˝OX;x
Fx;

where OX;x and Fx denote the corresponding stalks of these sheaves at x and where
OX;x acts on C by evaluation at x. Then, letting G0Œx� be the stabilizer of x in G0,
Hecht and Taylor showed (for � regular) that the geometric fiber

Tx.Lp�
an
� .M//

of the p-th homology group Lp�
an
�
.M/ of the analytic localization of the minimal

globalization M is a finite-dimensional (continuous) .hx , G0Œx�/-module, where
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hx acts by the evaluation of �C � 2 h� at x, and that the restriction of Lp�
an
�
.M/

to the G0-orbit S of x is the sheaf of (restricted holomorphic) sections of the
corresponding homogeneous vector bundle over S.

When ‚ is a regular and � 2‚ is antidominant, the comparison theorem [Hecht
and Taylor 1993] provides a way to understand the analytic localization L�an

�
.M/

of a minimal globalization M, with infinitesimal character ‚, assuming one under-
stands the (derived) geometric fibers of the localization

��.MHC/

of the underlying Harish-Chandra module MHC of M. To explain this result, we
introduce the geometric fiber

T alg
x .F/D C˝Oalg

X;x
Fx

of a sheaf of Oalg
X -modules F at x 2X. Note that T alg

x defines a left exact functor
(for example) on the category of quasicoherent Dalg

�
-modules and that there are

corresponding derived functors LpT
alg
x . When MHC is a Harish-Chandra module

with infinitesimal character ‚ and � 2 ‚ is antidominant and regular, Beilinson
and Bernstein have shown that the hx-modules

LpT
alg
x ��.MHC/

are finite-dimensional (algebraic) .hx , KŒx�/-modules, where KŒx� is the stabilizer
of x in K and hx acts by the evaluation of �C � 2 h� at x. The comparison
theorem says that when x is a special point, then there exists a natural equivalence
between the finite-dimensional .hx , G0Œx�/-modules and the finite-dimensional
.hx , KŒx�/-modules (given by the .hx , K0Œx�/-structure) and that there is a natural
isomorphism

LpT
alg
x ��.MHC/Š Tx.Lp�

an
� .M//

of .hx , K0Œx�/-modules. Note that a more general comparison theorem, described
in exactly these terms is proved in [Bratten 1997, Theorem 7.2].

Theorem 5.1. Suppose O� is the sheaf of holomorphic sections of aG0-equivariant
line bundle with regular antidominant parameter � 2 h�. Let S �X be a G0-orbit
with vanishing number q and let U � S be the smallest G0-invariant open sub-
manifold that contains S. Let Q be the K-orbit that is Matsuki dual to S and
suppose the associated variety Q is smooth. Then the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q in which case H q
c .U;O�jU / is the unique irreducible

submodule of the standard module H q
c .S;O�jS /.
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Proof. Utilizing the notation from the previous section, we know that H q
c .S;O�jS /

is the minimal globalization of the standard Beilinson–Bernstein module I.Q; �/.
Let J.Q; �/ � I.Q; �/ be the corresponding unique irreducible Harish-Chandra
submodule and J.Q; �/min its minimal globalization. Consider the complex

R�..O�jU /X /

of DNF U‚-modules and let J.Q; �/minŒ�q� denote the complex which has zeros
in all gradings except q, where we have the module J.Q; �/min. The point of our
proof is to present a nonzero morphism in the derived category

J.Q; �/minŒ�q�!R�..O�jU /X /

such that the induced morphism

L�an
� .J.Q; �/minŒ�q�/! L�an

�

�
R�..O�jU /X /

�
Š .O�jU /X Œ0�

is an isomorphism (we include the place holder Œ0� to emphasize the fact that we
think of the sheaf .O�jU /X as a complex concentrated in degree zero). By the
equivalence of derived categories, we will thus obtain an isomorphism

R�..O�jU /X /Š J.Q; �/minŒ�q�;

which is the desired result.
To present a morphism in the derived category, recall, by Proposition 4.1, that

we have a natural inclusion

J.Q; �/min!H q
c .U;O�jU /:

Since the sheaf cohomology groups of .O�jU /X vanish in degrees smaller that q, a
standard truncation argument provides a nonzero morphism in the derived category

H q
c .U;O�jU /Œ�q�!R�..O�jU /X /:

Composing this morphism with the inclusion gives the desired result.
We now want to show that the cohomology groups of the complex

L�an
� .J.Q; �/minŒ�q�/

vanish except in degree zero. That is, we want to calculate the homology groups

Lp�
an
� .J.Q; �/min/

and see that they vanish except in degree q. To do this, we use the comparison
theorem. So we need to calculate the derived geometric fibers of the sheaf

��.J.Q; �//D J .Q; �/:
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Let j WQ ,!X denote the inclusion. Since Q is smooth, we have

J .Q; �/Š jCj �.Oalg
� /:

Thus, calculating the geometric fibers

LpT
alg
x ��.J.Q; �//Š LpT

alg
x .jCj

�.Oalg
� //

is a straightforward application of the base change formula for the direct image
in the category of TDOs. In particular, since the codimension of Q in X is q, it
follows that, for each x 2X,

LpT
alg
x ��.J.Q; �//D 0 if p ¤ q:

When x 2Q,

LqT
alg
x ��.J.Q; �//Š LqT

alg
x .jCj

�.Oalg
� //Š T alg

x .Oalg
� /;

and when x …Q,
LqT

alg
x ��.J.Q; �//D 0:

In particular, if we let
V D �.X;Oalg

� /

be the corresponding irreducible finite-dimensional .g; K/-module, then for each
special point x 2Q,

LqT
alg
x ��.J.Q; �//Š V=nxV

as .hx; KŒx�/-modules.
By the comparison theorem, it follows that the homology groups

Lp�
an
� .J.Q; �/min/

vanish except when p D q, and this, in turn, implies that the complex

L�an
� .J.Q; �/minŒ�q�/

is quasi-isomorphic to the complex

Lq�
an
� .J.Q; �/min/Œ0�

which is nonzero only in degree 0. Hence, the nonzero morphism

L�an
� .J.Q; �/minŒ�q�/! .O�jU /X Œ0�

in the derived category reduces to a nonzero morphism

Lq�
an
� .J.Q; �/min/! .O�jU /X
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of G0-equivariant DNF sheaves of D�-modules. We will prove that this morphism
is in fact an isomorphism. In particular, if O is a G0-orbit in U , then since both
Lq�

an
�
.J.Q; �/min/jO and O�jO are induced equivariant sheaves, it follows that

the restricted morphism

Lq�
an
� .J.Q; �/min/jO !O�jO

is either an isomorphism or zero.
Notice that these limited possibilities for the restricted morphism can also be

deduced from the fact that we have a morphism of .D�jO/-modules and both
objects are locally free rank one sheaves of .OX jO/-modules. Indeed, if we knew
a priori that Lq�

an
�
.J.Q; �/min/ was a locally free sheaf of OU -modules, then

it would follow immediately from standard D-module theory [Hotta et al. 2008,
Theorem 1.4.10] that a nonzero morphism of D�-modules would be an isomorphism.

Define W to be the set of x 2 U such that the induced morphism

Lq�
an
� .J.Q; �/min/x! .O�/x

is nonzero. We will show that W is an open set that contains S. Since G0 acts on
W and since U is the smallest G0-invariant open set that contains S it will follow
from our previous remarks that the morphism in question is an isomorphism.

Consider the composition

Lq�
an
� .J.Q; �/min/! .O�jU /X ! .O�jS /X;

where the second morphism is the canonical one. Since these morphisms induce
the nonzero composition

J.Q; �/min!H q
c .U;O�jU /!H q

c .S;O�jS /;

it follows that the restricted morphism

Lq�
an
� .J.Q; �/min/jS !O�jS

is an isomorphism and S �W . To show W is open, suppose x 2W . Since O� is a
locally free rank one sheaf of OX -modules there is a local section � of O�, defined
on a neighborhood of x such that every local section has the form f� where f is a
holomorphic function. Since the induced morphism on the geometric fiber

Tx.Lq�
an
� .J.Q; �/min//! Tx.O�/

is nonzero, it follows that for some open set W1 that contains x, there is a holomor-
phic function f defined on W1 such that f .x/¤ 0, and there is a local section in
�
�
W1; Lq�

an
�
.J.Q; �/min/

�
that maps onto f� . Thus,

W2 D fz 2W1 W f .z/¤ 0g
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is an open set such that x 2W2 �W , and we have finished the proof. �

6. Some additional considerations

6.1. A tensoring argument. We maintain the notation from the previous section.
In particular, S is a G0-orbit in X, Q is the K-orbit that is Matsuki dual to S, O�
is the sheaf of holomorphic sections of a G0-equivariant line bundle on X, and so
on. When the parameter � 2 h� is antidominant then it may be the case that the
Harish-Chandra module

J.Q; �/D �.X;J .Q; �//

is zero. However, when J.Q; �/ ¤ 0, it is the unique irreducible submodule
of the standard Beilinson–Bernstein module I.Q; �/. When � is antidominant
and J.Q; �/ ¤ 0, we will refer to I.Q; �/ (as well as its minimal globalization
H
q
c .S;O�jS /) as a classifying module. Let U be the smallest G0-invariant open

submanifold that contains S. Under the assumption that the associated variety Q is
smooth and � is antidominant, we can give the following tensoring argument that
shows that H q

c .U;O�jU / is the minimal globalization of J.Q; �/. Hence, when
H
q
c .S;O�jS / is a classifying module, it follows that H q

c .U;O�jU / is the unique
irreducible submodule.

Lemma 6.1. Assume that � 2 h� is antidominant, and suppose that the associated
variety Q is smooth. Then, the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q, in which case H q
c .U;O�jU / is the minimal globalization

of J.Q; �/.

Proof. The proof is basically the same as (but simpler than) the proof in [Bratten
1997, Theorem 9.4] with the slight difference that we need to use the description
of the irreducible Harish-Chandra sheaf J .Q; �/ from Proposition 4.2 instead
of the description for I.Q; �/. We sketch some details to help the reader adapt
the notation here to the notation in Section 9 of that reference. From the theory
of highest weight modules, one knows there is an irreducible finite-dimensional
G0-module F � which is irreducible as a g-module and has a highest weight � 2 h�

sufficiently dominant that ��� is antidominant and regular. Observe that O��� is
the sheaf of holomorphic sections of a G0-equivariant line bundle. Let ‚ be the
infinitesimal character

‚DW ��:
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If M is a g-module (or if M is a sheaf of g-modules) we let M‚ (respectively M‚)
denote the corresponding Z.g/-eigenspace. Then, as in the proof of [loc. cit.], we
have the natural isomorphisms:

(i)
�
O���jU ˝F �

�
‚
ŠO�jU , and

(ii)
�
J .Q; ���/˝F �

�
‚
Š J .Q; �/.

Taking sheaf cohomology, in the first case we obtain

Hpc .U;O�jU /Š
�
Hpc .U;O���jU /˝F

�
�
‚
;

which implies that the compactly supported sheaf cohomology groupsHpc .U;O�jU /
vanish except when pD q, in which caseH q

c .U;O�jU / is the minimal globalization
of a Harish-Chandra module. To see which Harish-Chandra module, we begin with
the natural isomorphism from the previous section

.J���/min ŠH
q
c .U;O���jU /:

Therefore, we obtain the isomorphism

Œ.J���˝F
�/‚�min Š .H

q
c .U;O���jU /˝F

�/‚ ŠH
q
c .U;O�jU /:

Finally, taking global sections for the isomorphism in (ii), we obtain

.J���˝F
�/‚ Š J�;

which completes the proof of the lemma. �

Corollary 6.2. Let S �X be aG0-orbit with vanishing number q and let U �S be
the smallest G0-invariant open submanifold that contains S. Let Q be the K-orbit
that is Matsuki dual to S and suppose the associated variety Q is smooth. Let O�
be the sheaf of holomorphic sections of a G0-equivariant line bundle and suppose

H q
c .S;O�jS /

is a classifying module. Then, the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q in which case H q
c .U;O�jU / is the unique irreducible

submodule of the standard module H q
c .S;O�jS /.

6.2. Maximal parabolic subgroups of complex reductive groups. Suppose G0 is
a connected, complex reductive group. It turns out that the representation we are
studying has a close relationship to the classical parabolic induction when the
parabolic subgroup under consideration is maximal. This allowed us to consider
some examples (with the help of D. Vogan and A. Paul) to see how the representa-
tion works when the associated algebraic variety is singular. In the examples we
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considered, the representation is irreducible only when the associated algebraic
variety is nonsingular.

In particular, let H0 � G0 be a �-stable Cartan subgroup (� is the complex
conjugation of G0 with respect to a compact real form) and let B0 � H0 be a
Borel subgroup. We consider a maximal, proper parabolic subgroup P0 of G0
that contains B0. These are determined in the following way. Let W.G0/ be the
Weyl group of H0 (we can think of W.G0/ as the quotient of the normalizer of
H0 in G0 over H0). Then, W.G0/ acts naturally on the set of Borel subgroups
that contain H0. As in the introduction, we let X0 be the complex flag manifold of
Borel subgroups of G0 and let X c

0 be the conjugate complex manifold. Then, the
flag manifold X of Borel subalgebras of the complexified Lie algebra g of g0 can
be identified with the direct product

X DX0 �X
c
0:

We have the two actions of G0 on X: the diagonal action

g � .x; y/D .gx; gy/;

corresponding to the fact that G0 is a real group with real Lie algebra g0, and the
action

g � .x; y/D .gx; �.g/y/;

corresponding to the action of G0 DK as the complexification of K0. As before
let Bop

0 be the Borel subgroup opposite to B0 (this subgroup corresponds to the
longest element in W.G0/). Then, each G0-orbit and each K-orbit on X contains
exactly one special point of the form

.w �B0; B
op
0 / 2X0 �X

c
0;

so we can identify G0-orbits andK-orbits with elements ofW.G0/. One knows that
Qw1

�Qw2
if and only w1 � w2 in the Bruhat order � on W.G0/. In particular,

the Bruhat interval
Œ1; w�D fu 2W.G0/ W u� wg

characterizes the K-orbits Qu contained in Qw , as well as the G0-orbits Su con-
tained in the smallestG0-invariant open submanifold Uw that contains Sw . Let n be
the number of simple reflections in W.G0/. Observe that the number of G0-orbits
with vanishing number 1 is exactly n. (The closed G0-orbit is the unique orbit with
vanishing number 0.)

Let Y0 be the generalized complex flag space of G0-conjugates to P0 and let Y c
0

be the complex manifold conjugate to Y0. Consider the generalized flag space

Y D Y0 �Y
c
0 ;
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and let C be the G0-orbit of y D .P0; P0/ 2 Y . Then, C is closed in Y , and the
G0-orbit of y is a real form in Y . Let

� WX ! Y

denote the equivariant projection. Then, ��1.C / is a closed G0-invariant sub-
manifold, and, since P0 is a maximal, it contains exactly n�1 orbits with vanishing
number 1. In particular, if L0 � P0 is the Levi factor of P0 that contains H0 then
these n� 1 orbits correspond to the simple reflections of the Weyl group W.L0/ of
H0 in L0, and the orbits in ��1.C / correspond to the elements in W.L0/. Indeed,
by intersection with the fiber, these G0-orbits give the L0-orbits in the complex
flag manifold

Xy D �
�1.fyg/

for L0. Let S be the remaining G0-orbit with vanishing number 1 and let

U DX ���1.C /:

Then, U is the smallest G0-invariant open set that contains S. (To see this fact,
since U is open and contains S, is sufficient to check that S is the unique G0-orbit
that is closed in U.)

Let O� be the sheaf of holomorphic sections of aG0-equivariant line bundle onX
and assume � is antidominant and regular. In a natural way, the sheaf O� determines
a corresponding sheaf of holomorphic sections OXy ;� for an L0-equivariant line
bundle defined on Xy . Let

F D �.Xy ;OXy;�/

be the corresponding irreducible finite-dimensional representation for L0 with
lowest weight �C �. In a unique way, this representation extends to an irreducible
representation

! W P0! GL.F /:

Consider the corresponding classical (unnormalized) parabolic induction IG0

P0
.F /,

given by

I
G0

P0
.F /D freal analytic functions ' WG0! F W '.gp/D !.p�1/'.g/g:

Then, there is a natural isomorphism of G0-modules (see, e.g., [Bratten 2008]),

�.��1.C /;O�/Š I
G0

P0
.F / and Hp.��1.C /;O�/D 0 for p > 0;

where we obtain the vanishing by the Leray spectral sequence and the fact that
the sheaf cohomology groups of a real analytic vector bundle over a real analytic
manifold vanish in positive degree.
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Now, consider the short exact sequence of sheaves

0! .O�jU /X !O�! .O�j��1.C//
X
! 0:

Thus, we have the short exact sequence of representations

0! V ! I
G0

P0
.F /!H 1

c .U;O�jU /! 0;

where V D�.X;O�/ is the corresponding irreducible finite-dimensionalG0-module.
Therefore, the minimal globalization H 1

c .U;O�jU / is irreducible if and only if the
quotient

I
G0

P0
.F /=V

is irreducible.
Let Q be the K-orbit Matsuki dual to S. Then one would like to know when Q

is smooth. The calculation for GL.nC 1;C/ (which is not difficult) works like this.
The Levi factor of P0 is characterized by a partition

n1Cn2 D nC 1;

where
L0 D GL.n1;C/�GL.n2;C/� GL.nC 1;C/:

It turns out that Q is smooth if and only n1 and n2 belong to fn; 1g. Therefore,
I
G0

P0
.F /=V is irreducible in this case. At this point, we contacted D. Vogan

to see what was known about the composition factors of these principal series
(we asked about the case when V D C is the trivial G0-module). After doing a
calculation, he guessed that there are minfn1; n2g composition factors occurring
in the representation IG0

P0
.C/=C: Vogan passed this on to Annegret Paul, who

confirmed the guess for some low-dimensional examples by using a computer
program (apparently the group GL.6;C/ is already a difficult calculation for the
algorithms that were used).

Hence, for these examples, the representation H 1
c .U;O�jU / is irreducible if and

only if the associated algebraic variety is smooth.

7. Serre duality

Since the resolutions used in the Hecht–Taylor construction of the derived category
of DNF sheaves of D�-modules are Čech resolutions, perhaps it is worth mentioning
that it is not difficult to establish the validity of Serre duality using these sorts of
resolutions [Bratten 1997, Section 10]. In particular, let n be the complex dimension
of X and let �n be the canonical bundle on X. Thus, for x 2X, the geometric fiber
Tx.�

n/ of �n at x is given by

Tx.�
n/D

Vnnx
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as aG0Œx�-module (recall thatG0Œx� denotes the stabilizer of x inG0). In particular,
�n is a G0-equivariant holomorphic line bundle on X. Using the unshifted notation
from Section 3 of this paper, suppose O.�/ is the sheaf of holomorphic sections of a
G0-equivariant line bundle onX. Then, the sheaf of holomorphic sections of the dual
bundle is given by O.��/ (i.e., the sheaf of sections of the line bundle associated
to the dual geometric fiber). If U �X is any G0-invariant open submanifold of X,
then Serre duality gives a natural isomorphism of topological G0-modules

Hpc .U;O.�/jU /
0
ŠHn�p.U;O.��/˝O.�n/jU /

where Hpc .U;O.�/jU /0 denotes the continuous dual of the topological G0-module
H
p
c .U;O.�/jU / and O.�n/ is the sheaf of holomorphic sections of the canonical

bundle. In terms of the shifted D-module parameters � 2 h�, we obtain

Hpc .U;O�jU /
0
ŠHn�p.U;O��jU /

for each p. In particular, the sheaf cohomology groups of a G0-equivariant holo-
morphic line bundle on aG0-invariant open submanifold are maximal globalizations
of Harish-Chandra modules.
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A CURVATURE FLOW UNIFYING
SYMPLECTIC CURVATURE FLOW

AND PLURICLOSED FLOW

SONG DAI

Streets and Tian (2010, 2014) introduced pluriclosed flow and symplectic
curvature flow. Here we construct a curvature flow to unify these two flows.
We show the short-time existence of our flow and exhibit an obstruction to
long-time existence.

1. Introduction

In recent years, Streets and Tian initialized the study of special geometric structures,
such as generalized Kähler and symplectic structures, by using curvature flows
they introduced. They include Hermitian curvature flow, pluriclosed flow, almost
Hermitian curvature flow and symplectic curvature flow [Streets and Tian 2010;
2011; 2014]. Subsequently, there are several further works along this direction; see
[Boling 2014; Enrietti et al. 2015; Enrietti 2013; Fernández-Culma 2013; Pook 2012;
Smith 2013; Streets and Tian 2013; 2012; Vezzoni 2011]. In this paper, we introduce
a curvature flow which unifies symplectic curvature flow and pluriclosed flow.

Streets and Tian [2014] introduced symplectic curvature flow, which preserves
almost Kähler structure, as follows:

(1)

∂

∂t
g =−2 Ric+ 1

2 B1
− B2,

∂

∂t
J =4J +N+R,

g(0)= g0,

J (0)= J0,

where R is a curvature term and B1, B2,N are all quadratic terms of D J . We will
give the precise definitions of these tensors in Section 3.

Streets and Tian [2010] introduced pluriclosed flow, which preserves pluriclosed
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structure, as follows:

∂

∂t
ω = ∂∂∗ω+ ∂∂∗ω+ 1

2

√
−1∂∂ logdet g,

ω(0)= ω0.

Then, in [Streets and Tian 2013; 2012] they observed that, after a gauge transfor-
mation induced by the Lee form θ =−Jd∗ω, pluriclosed flow is equivalent to the
following flow:

(2)

∂

∂t
g =−2 Ric+ 1

2 B,

∂

∂t
J =4J +R+Q,

g(0)= g0,

J (0)= J0,

where B and Q are quadratic terms of D J . We will give the precise definitions
of these tensors in Section 3. In this setting, they showed that twisted generalized
Kähler manifolds are a natural background in which to run pluriclosed flow [Streets
and Tian 2012].

Hitchin [2003] first introduced the notion of generalized complex structure,
which unifies symplectic structure and complex structure. After that, Gualtieri
discussed generalized complex structure in detail in his thesis [Gualtieri 2011].
In that work, Gualtieri discovered that a pair of compatible almost generalized
complex structures (J1,J2) is equivalent to almost bi-Hermitian data (g, J+, J−, b),
where J± are almost complex structures, compatible with g, and b is a 2-form. If
J1,J2 are both integrable, i.e., generalized Kähler, the integrability condition is
equivalent to

NJ+ = NJ− = 0,

−dc
+
ω+ = dc

−
ω− = db.

If we only require db to be a closed 3-form H (which is the twisted case) Streets
and Tian [2012] showed that the equivalent pluriclosed flow (2) of (g, J+) and
(g, J−) preserves generalized Kähler structure.

A symplectic structure ω gives a generalized complex structure Jω, and an almost
Kähler structure (ω, J ) gives a compatible pair of almost generalized complex
structures (Jω,JJ ), where Jω is integrable while JJ is not necessarily. So one may
also regard symplectic curvature flow as a curvature flow to deform a compatible
pair of almost generalized complex structures (J1,J2), where J1 is integrable. This
leads to the question of whether or not there is a curvature flow that unifies the
flows in (1) and (2). The following theorem gives a solution to this problem.
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Theorem 1.1. Let (M, g0, J0) be an almost Hermitian manifold. Suppose M
is compact. Then there exists a unique family of almost Hermitian structures
(g(t), J (t)), t ∈ [0, ε) on M satisfying the equations

(3)

∂

∂t
g =−2 Ric+Q1,

∂

∂t
J =4J +N+R+ Q2,

g(0)= g0,

J (0)= J0.

Here R and N are the same as in (1), and Q1 and Q2 are quadratic terms of D J
(see Section 3 for their precise definitions). This flow preserves the integrability of J .
Furthermore, if the initial data is almost Kähler, this flow coincides with symplectic
curvature flow, and if the initial data is pluriclosed, this flow is equivalent to
pluriclosed flow. In particular, if the initial data is Kähler, this flow is Kähler–Ricci
flow.

Another motivation to unify (1) and (2) is to try to understand symplectic curva-
ture flow better. The tremendous success of [Perelman 2002] motivates us to find
similar tools in symplectic curvature flow as exist in Ricci flow. To begin with, we
consider whether symplectic curvature flow is a gradient flow, as is Ricci flow. It
seems difficult to construct such a functional directly. But as shown in [Streets and
Tian 2013], pluriclosed flow is a gradient flow, and the functional is similar to the
case of Ricci flow. So maybe our flow could give some hints to discover the desired
functional in symplectic curvature flow.

Turning to regularity, we derive the evolution equations, and then obtain the
derivative estimates, as follows.

Theorem 1.2. Let (M, g(t), J (t)) be a solution of (3) for t ∈ [0, T ). Suppose M is
compact. If there exists a constant K such that

sup
[0,T )×M

{t |Rm|, t1/2
|D J |} ≤ K ,

then for k ≥ 0 there exists a constant C = C(k, n, K ) such that

sup
[0,T )×M

{t (k+2)/2
|Dk Rm|, tk/2

|Dk J |} ≤ C.

Finally, we obtain an obstruction to long-time existence.

Theorem 1.3. Let (M, g(t), J (t)) be a solution of (3) for t ∈ [0, T ), and let T <

+∞ be the maximal existence time. Suppose M is compact. Then

sup
[0,T )×M

{|Rm|, |D J |} = +∞.
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We outline the proof now. Some results in this paper can be implied directly
from the results in [Streets and Tian 2014]. For the convenience of readers, we give
the complete proof here.

To prove Theorem 1.1, we use the DeTurck trick. But we notice that the almost
complex structure J does not live in a vector space. So we transform the equation on
the space of almost complex structures to its tangent space at J0. We don’t assume
(g, J ) is compatible at first, so we do some modifications to ensure the compatibility,
which gives the nondegenerate symbol. Thus we obtain the short-time existence of
the modified flow. Then we do some estimates to show that the modified flow gives
a compatible pair (g, J ) and that it coincides with the initial flow. For uniqueness,
it is the same as in Ricci flow. In the symplectic and pluriclosed settings, by direct
calculation in Section 3 we see that this flow can be reduced to symplectic curvature
flow and pluriclosed flow, respectively. So, by uniqueness, they coincide with our
flow. And a similar argument also applies to the integrability of J .

To prove Theorem 1.2, the argument is standard. We derive the evolution
equations of Dk J and Dk Rm, then we construct a function involving the terms
we want to estimate. Calculating the evolution equation of this function, and then
using the maximum principle, we obtain the desired result. To prove Theorem 1.3,
the argument is also standard and the same as in Ricci flow.

We organize the paper as follows. In Section 2, we recall some preliminaries
in almost Hermitian geometry and derive the necessary condition of a variation
of almost Hermitian pairs. In Section 3 we define the tensors we will use in this
paper. Then we do some calculations to show that our flow satisfies the necessary
condition. And, also by calculation, we show that the additional tensors will vanish
in special cases. In Section 4, we prove Theorem 1.1. In Section 5, we prove
Theorem 1.2 and Theorem 1.3.

2. Preliminaries

We fix some conventions first.

Convention. (i) Let g be a Riemannian structure. We identify elements T ∈
0(End(TM)) and T ∈ 0(T ∗M ⊗ T ∗M) by

g(T (X), Y )= T (X, Y ).

We implicitly use this identification throughout this paper.

(ii) When we write repeated indices, we always mean to take the trace with respect
to these two positions, i.e., to choose an orthonormal basis and take the sum.

(iii) We write D J ∗3 for D J ∗ D J ∗ D J , etc.

(iv) Sometimes we write i instead of ei for short.
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(v) Sometimes we omit the time parameter t if there is no ambiguity.

(vi) D denotes the Levi-Civita connection, which we always use throughout the
paper.

We come back to the preliminaries.
Let M be a manifold, J be a section of End(TM). We call J an almost complex

structure if J 2
= −1. An almost complex structure J is called integrable if J is

induced by holomorphic coordinates. By the theorem of Newlander and Nirenberg
[1957], J is integrable if and only if N = 0, where

N (X, Y )= [J X, JY ] − [X, Y ] − J [J X, Y ] − J [X, JY ]

is called the Nijenhuis tensor.
We call (g, J ) an almost Hermitian structure if g is a Riemannian metric, J is

an almost complex structure and (g, J ) is compatible, meaning that

g(J X, JY )= g(X, Y ).

For almost Hermitian structure (g, J ), we define

ω(X, Y )= g(J X, Y ).

Moreover, if J is integrable, (g, J ) is called a Hermitian structure. If dω = 0, then
(g, J ) is called an almost Kähler structure. If J is integrable and dω = 0, then
(g, J ) is called a Kähler structure. If J is integrable and ddcω = 0, where

dcω(X, Y, Z) := −dω(J X, JY, J Z),

then (g, J ) is called a pluriclosed or SKT structure (strong Kähler with torsion).

Definition 2.1. Let h ∈ 0(T ∗M ⊗ T ∗M). We define

hsym(X, Y )= 1
2(h(X, Y )+ h(Y, X)),

hskew(X, Y )= 1
2(h(X, Y )− h(Y, X)).

Definition 2.2. Let (g, J ) be an almost Hermitian structure. Let h∈0(T ∗M⊗T ∗M).
We define

h(1,1)(X, Y )= 1
2(h(X, Y )+ h(J X, JY )),

h(0,2)+(2,0)(X, Y )= 1
2(h(X, Y )− h(J X, JY )).

We say that h is (1, 1) or (0, 2)+ (2, 0) if h(0,2)+(2,0) = 0 or h(1,1) = 0, respectively.

In Lemma 2.3 and Lemma 2.6, we derive the necessary condition of a variation
of almost Hermitian pair.

Lemma 2.3. Let Jt be a family of almost complex structures, and let (∂/∂t)J = K .
Then

K J + J K = 0.
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Proof. By definition,

0= ∂

∂t
J 2
= K J + J K . �

Lemma 2.4. Let (g, J ) be an almost Hermitian structure, K ∈ 0(End(TM)). Then

K J + J K = 0 ⇐⇒ K is (0, 2)+ (2, 0).

Proof. By definition,

〈(K J + J K )X, Y 〉 = K (J X, Y )− K (X, JY )= 2K (1,1)(J X, Y ). �

Remark 2.5. Similarly, K J = J K if and only if K is (1, 1).

Lemma 2.6. Let Jt be a family of almost complex structures, and let (∂/∂t)J = K .
Let gt be a family of Riemannian structures compatible with Jt , and let (∂/∂t)g= h.
Then

K sym J = h(0,2)+(2,0).

Proof. By using the equation K J + J K = 0, we have

0= ∂

∂t
(g(J X, JY )− g(X, Y ))

= h(J X, JY )− h(X, Y )+ g(K X, JY )+ g(J X, K Y )

=−2h(0,2)+(2,0)(X, Y )+ K (J X, Y )+ K (Y, J X)

=−2h(0,2)+(2,0)(X, Y )+ 2(K sym J )(X, Y ). �

Lemma 2.7. Let (g, J ) be an almost Hermitian structure. Then (L X g, L X J )
satisfies the necessary condition of a variation of (g, J ), i.e.,

(i) L X g is symmetric,

(ii) L X J is (0, 2)+ (2, 0),

(iii) (L X J )sym J = (L X g)(0,2)+(2,0).

Proof. Let φt be the 1-parameter transformation groups generated by X , and let
gt = φ

∗
t g and Jt = φ

∗
t J . Then

∂

∂t

∣∣∣
t=0

gt = L X g, ∂

∂t

∣∣∣
t=0

Jt = L X J.

Then Lemma 2.7 follows from Lemmas 2.3, 2.4 and 2.6. �

Lemma 2.8. Let (g, J ) be an almost Hermitian structure. Then

〈(DX J )Y, Z〉 = −〈(DX J )Z , Y 〉,

(DX J )JY =−J (DX J )Y.
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Proof. Let X, Y, Z be in a normal coordinate system. Then

〈(DX J )Y, Z〉 = 〈DX (JY ), Z〉 = X〈JY, Z〉 = −X〈Y, J Z〉 = −〈(DX J )Z , Y 〉,

and
(DX J )JY = DX (J JY )− J DX (JY )=−J (DX J )Y. �

Lemma 2.9 [Gauduchon 1997]. Let (g, J ) be an almost Hermitian structure. Then

〈(DJ X J )Y, Z〉− 〈J (DX J )Y, Z〉 = 1
2(N (X, Y, Z)+ N (Z , X, Y )− N (Y, Z , X)),

〈(DJ X J )Y, Z〉+ 〈J (DX J )Y, Z〉 = (dω)+(J X, Y, Z)− (dω)+(J X, JY, J Z).

In particular,
DJ X J = J DX J ⇐⇒ N = 0,

DJ X J =−J DX J ⇐⇒ (dω)+ = 0.

3. Main calculations

First, we define the tensors we use in this paper.

Definition 3.1. Let (M, g, J ) be an almost Hermitian manifold, X, Y, Z ∈ TM .

• B1(X, Y )= 〈(DX J )i, (DY J )i〉,

• B2(X, Y )= 〈(Di J )X, (Di J )Y 〉,

• B3(X, Y )= 〈(D(Di J )X J )i, Y 〉 = −〈(Di J )X, j〉〈(D j J )Y, i〉,

• B4(X, Y )= 〈(DX J )i, (Di J )Y 〉,

• B1(X, Y )= 〈(DX J )i, (DY J )J i〉,

• B2(X, Y )= 〈(Di J )X, (DJ i J )Y 〉,

• Q1 =−
1
2(B

1)(1,1)− (B3)(0,2)+(2,0)+ 4(B4)(1,1),sym
− (B1 J )(1,1)− B2 J ,

• Q2 = (B3)(0,2)+(2,0) J ,

• N= B2 J ,

• R(X, Y )= Ric(J X, Y )+Ric(X, JY ),

• Q= B2 J + B3 J ,

• H(X, Y, Z)= dcω(X, Y, Z)=−dω(J X, JY, J Z),

• B(X, Y )= H(X, i, j)H(Y, i, j),

• θ ] =−J (Di J )i ,

• N (X, Y ) = 1
2

(
N ((Di J )X, i, Y ) + N (Y, (Di J )X, i) − N (i, Y, (Di J )X)

)
−

1
2

(
N (i, (DX J )i, Y )+ N (Y, i, (DX J )i)− N ((DX J )i, Y, i)

)
− (Di J )N (X, i),

• K(X)= (Di N )(J i, X),
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• (dω)+(X, Y, Z) = 1
4

(
3dω(X, Y, Z) + dω(J X, JY, Z) + dω(J X, Y, J Z) +

dω(X, JY, J Z)
)
.

The lemmas below are preparation for the proof of Theorem 1.1.

Lemma 3.2. Let (g, J ) be an almost Hermitian structure. Then (−2 Ric+Q1,

4J +N+R+ Q2) satisfies the necessary condition of a variation.

Proof. First, we show that (−2 Ric,4J +N+R) satisfies the necessary condition.
We need to check the following things:

(i) Ric is symmetric,

(ii) 4J +N is (0, 2)+ (2, 0),

(iii) R is (0, 2)+ (2, 0),

(iv) 4J is skew,

(v) N is skew,

(vi) R is symmetric,

(vii) RJ =−2 Ric(0,2)+(2,0).

By definition, it is easy to see (i), (iii), (vi), (vii). For (ii), we use normal coordinates
to calculate the (1, 1) part of 4J , by using Lemma 2.8:

〈(4J )(J X), JY 〉 = 〈(Di D J )(i, J X), JY 〉

= 〈Di ((Di J )(J X))− (Di J )(Di (J X)), JY 〉

= −〈Di (J (Di J )X)+ (Di J )(Di (J X)), JY 〉

= −〈(Di J )(Di J )X + J Di ((Di J )X)+ (Di J )(Di J )X, JY 〉

= −2〈(Di J )(J X), (Di J )Y 〉− 〈(Di Di J )X, Y 〉

= −2N−〈(4J )X, Y 〉.

So N=−(4J )(1,1). For (iv), we also use normal coordinates:

〈(4J )X, Y 〉 = 〈Di ((Di J )X), Y 〉

= ∂i 〈(Di J )X, Y 〉

= ∂i 〈Di (J X), Y 〉− ∂i 〈J (Di X), Y 〉

= ∂i∂i 〈J X, Y 〉− ∂i 〈J X, Di Y 〉+ ∂i 〈Di X, JY 〉,

so we see that 4J is skew. And (v) follows from Lemma 2.8.
Next, we show that (Q1, Q2) satisfies the necessary condition. In fact, by

applying Lemma 2.8, we can easily obtain that all terms in Q1 are symmetric and
all terms in Q2 are (0, 2)+(2, 0). And Q(0,2)+(2,0)

1 = (B3)(0,2)+(2,0). This completes
the proof. �
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Lemma 3.3. Let (g, J ) be an almost Hermitian structure. Suppose dω = 0. Then

Q1 =
1
2 B1
− B2,

Q2 = 0.

Proof. Since dω = 0, by Lemma 2.8 and Lemma 2.9, one sees that B1 and B3

are (1, 1), that B1 J = B1, and that B2 J = B2. Now we prove that B4
=

1
2 B1. In

fact, we notice that

〈(DX J )Y, Z〉+ 〈(DY J )Z , X〉+ 〈(DZ J )X, Y 〉 = dω(X, Y, Z)= 0.

Thus,

〈(DX J )i, (Di J )Y 〉 = 〈(Di J )Y, j〉〈(DX J )i, j〉

= −〈(D(DX J )i J )Y, i〉

= 〈(DY J )i, (DX J )i〉+ 〈(Di J )(DX J )i, Y 〉

= B1(X, Y )−〈(DX J )i, (Di J )Y 〉.

So 〈(Di J )X, (DY J )i〉 = 1
2 B1(X, Y ). This completes the proof. �

Lemma 3.4. Let (g, J ) be an almost Hermitian structure. Suppose N = 0. Then

Q1 =
1
2 B,

Q2 = Q−N.

Proof. The proof is by direct calculations based on Lemma 2.8 and Lemma 2.9. We
notice that B1 is (1, 1) and that B3 is (0, 2)+(2, 0). And B1= B1 J and B2= B2 J .
We also have B4

= 0, since

〈(DX J )i, (Di J )Y 〉 = 〈(DX J )J i, (DJ i J )Y 〉

= −〈J (DX J )i, J (Di J )Y 〉

= −〈(DX J )i, (Di J )Y 〉.

We can calculate B in terms of D J :

B(X, Y )= H(X, i, j)H(Y, i, j)

= dω(J X, J i, J j)dω(JY, J i, J j)

= dω(J X, i, j)dω(JY, i, j).

We have

dω(J X, i, j)= 〈(DJ X J )i, j〉+ 〈(DJ i J ) j, X〉+ 〈(DJ j J )X, i〉.
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Calculating term by term,

〈(DJ X J )i, j〉〈(DJY J )i, j〉 = 〈(DX J )i, (DY J )i〉 = B1(X, Y ),

〈(DJ i J ) j, X〉〈(DJ i J ) j, Y 〉 = 〈(DJ j J )X, i〉〈(DJ j J )Y, i〉 = 〈(Di J )X, (Di J )Y 〉

= B2(X, Y ),

〈(DJ X J )i, j〉〈(DJ i J ) j, Y 〉 = 〈(DJ X J )i, j〉〈(DJ j J )Y, i〉

= −〈(DX J )i, (Di J )Y 〉 = 0,

〈(DJY J )i, j〉〈(DJ i J ) j, X〉 = 〈(DJY J )i, j〉〈(DJ j J )X, i〉

= −〈(DX J )i, (Di J )Y 〉 = 0,

〈(DJ i J ) j, X〉〈(DJ j J )Y, i〉 = 〈(DJ i J ) j, Y 〉〈(DJ j J )X, i〉

= −〈(D(Di J )X J )i, Y 〉 = −B3(X, Y ).

So
1
2 B= 1

2 B1
+ B2

− B3.

Then we obtain the desired result. �

Remark 3.5. In [Streets and Tian 2012], Q is defined as

Q(X)=−(Di J )(DJ X J )i − J (D(Di J )X J )i + (Di J )(DJ i J )X

− (DJ (Di J )i J )X + J (D(Di J )i J )X + (DJ X J )(Di J )i − J (DX J )(Di J )i.

Since N = 0, it coincides with our definition.

Lemma 3.6. Let (g, J ) be an almost Hermitian structure. Then

Lθ] J =4J +Q+R+K+ N .

Proof. In [Streets and Tian 2012], there is a similar formula. But in our case we
don’t assume that N = 0.

We use normal coordinates:

(Lθ] J )X = (L−J (Di J )i J )X(4)

=−[J (Di J )i, J X ] + J [J (Di J )i, X ]

= −DJ (Di J )i (J X)+ DJ X (J (Di J )i)

+ J DJ (Di J )i X − J DX (J (Di J )i)

=−(DJ (Di J )i J )X + (DJ X J )(Di J )i + J DJ X ((Di J )i)

− J (DX J )(Di J )i + DX ((Di J )i)

=−(DJ (Di J )i J )X + (DJ X J )(Di J )i + J (DJ X (Di J ))i

− J (DX J )(Di J )i + DX (Di J )
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= J (D2 J )(J X, i, i)+ (D2 J )(X, i, i)− (DJ (Di J )i J )X

+ (DJ X J )(Di J )i − J (DX J )(Di J )i.

By the Ricci identity,

(5) (D2 J )(X, i, i)= (D2 J )(i, X, i)+ (Rm(X, i)J )i

= (D2 J )(i, X, i)+Rm(X, i)(J i)− J Rm(X, i)i

= (D2 J )(i, X, i)+Rm(X, i)(J i)− J Ric(X).

Similarly,

J (D2 J )(J X, i, i)= J (D2 J )(i, J X, i)+ J Rm(J X, i)(J i)+Ric(J X).(6)

Notice that

N (X, Y )= (DJ X J )Y − (DJY J )X − J (DX J )Y + J (DY J )X.

Hence,

J (D2 J )(i, J X, i)= J Di ((DJ X J )i)− J (D(Di J )X J )i

− J Di (J (DX J )i)+ J Di (J (DX J )i)

= J Di ((DJ X J )i − J (DX J )i)− J (D(Di J )X J )i

+ J (Di J )(DX J )i − (D2 J )(i, X, i)

= J Di ((DJ i J )X − J (Di J )X)+ J Di (N (X, i))

− J (D(Di J )X J )i + J (Di J )(DX J )i − (D2 J )(i, X, i)

Notice that

J Di (N (X, i))= Di (J N (X, i))− (Di J )N (X, i)

= Di (N (J i, X))− (Di J )N (X, i)

= (Di N )(J i, X)+ N ((Di J )i, X)− (Di J )N (X, i).

So

(7) J (D2 J )(i, J X, i)= J (D2 J )(i, J i, X)+ J (D(Di J )i J )X

− J (Di J )(Di J )X + (4J )X +K(X)+ N ((Di J )i, X)− (Di J )N (X, i)

− J (D(Di J )X J )i + J (Di J )(DX J )i − (D2 J )(i, X, i).

And

(8) N ((Di J )i, X)= (DJ (Di J )i J )X − (DJ X J )(Di J )i

+ (D(Di J )i J )J X − (DX J )J (Di J )i

= (DJ (Di J )i J )X − (DJ X J )(Di J )i

− J (D(Di J )i J )X + J (DX J )(Di J )i.
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By resorting to Lemma 2.9, we obtain

(9) 〈−J (D(Di J )X J )i − (D(Di J )J X J )i, Y 〉

= 〈−J (D(Di J )X J )i + (DJ (Di J )X J )i, Y 〉

=
1
2(N ((Di J )X, i, Y )+ N (Y, (Di J )X, i)− N (i, Y, (Di J )X)),

and

(10) 〈J (Di J )(DX J )i, Y 〉

= 〈J (Di J )(DX J )i − (DJ i J )(DX J )i, Y 〉

= −
1
2(N (i, (DX J )i, Y )+ N (Y.i, (DX J )i)− N ((DX J )i, Y, i)).

Then, by the Ricci identity again,

(11) J D2 J (i, J i, X)= 1
2(J D2 J (i, J i, X)− J D2 J (J i, i, X))

=
1
2 J (Rm(i, J i)J )X

=
1
2(J Rm(i, J i)(J X)+Rm(i, J i)X).

By the Bianchi identity,

Rm(i, J i)(J X)+Rm(J i, J X)i +Rm(J X, i)(J i)= 0.

Notice that
Rm(J i, J X)i = Rm(J X, i)(J i).

Thus

J Rm(i, J i)(J X)=−2J Rm(J X, i)(J i),(12)

Rm(i, J i)(X)=−2 Rm(X, i)(J i).(13)

Putting (4)–(13) together, we obtain the desired result. �

4. Proof of Theorem 1.1

The argument is the same as in [Streets and Tian 2014]. We use DeTurck trick to
prove short-time existence and uniqueness.

We consider the following equations:

(14)

∂

∂t
g =−2 Ric+Q1+ L X g , D1(g, J ),

∂

∂t
J =4J +N+R+ Q2+ L X J , D2(g, J ),

g(0)= g0,

J (0)= J0,
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where X = trg(0−0) and 0 is the Christoffel symbol of a fixed metric g.
Then, in order to use the PDE theory in Banach space, we consider the tangent

space at J0. Denote by T JJ the tangent space at J , i.e.,

T JJ = {E ∈ End(TM) | E J + J E}.

Then, in a neighborhood U of J0, we can identify J and E by using the map

π : T JJ0 ⊃U ′→U, πE =−J0eJ0 E ,

and note that Dπ |0 = Id.
Notice that we don’t assume that (g, J ) is compatible. So we need to make

some modifications. For convenience, we write g J and g−J instead of g(1,1) and
g(0,2)+(2,0), respectively, and we do similar things for other tensors. Note that g J is
compatible with J . We consider the following equations:

(15)

∂

∂t
g = D1(gπE , πE)+4g0(g

−πE), D̃1(g, E),

∂

∂t
E = (Dπ |πE)

−1D2(gπE , πE), D̃2(g, E),

g(0)= g0,

E(0)= 0.

Note that D̃1 is symmetric, and D̃2 is well-defined since 4J + N+R+ Q2 +

L X J is (0, 2)+ (2, 0) for the pair (g J , J ). So D̃1 ⊕ D̃2 gives an operator from
0((T ∗M ⊗sym T ∗M)⊕ T JJ0) to itself.

Now, we calculate the symbol of D̃1 ⊕ D̃2 at (g0, 0) to show the short-time
existence of the modified flow. First, we calculate the variation of D̃1 along the
direction of (h, 0), where h = δg. Since δE = 0, πE = π0= J0 is fixed. And note
that δ(g J0)= h J0 and g J0

0 = g0. Therefore

L(g0,0)(D1(gπE , πE))(h, 0)= L
g

J0
0
(D1(g, J0))(h J0)= Lg0(D1(g, J0))(h J0),

where L(g0,0) denotes the linearization operator at (g0, 0).
Noting that only −2 Ric and L X g involve second-order terms, and from standard

calculations in Ricci flow [Chow and Knopf 2004] we have

Lg0(D1(g, J0))(h J0)=4g0(h
J0)+O(∂h).

And
L(g0,0)(4g0(g

−J ))(h, 0)=4g0(h
−J0).

Let σ denote the symbol of a linear differential operator. Thus we obtain

σ(L(g0,0)D̃1)(h, 0)(x, ξ)= |ξ |2h, where ξ ∈ T ∗x M.
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Then we calculate the variation of D̃1 along the direction of (0, K ), where K = δE .
Since Dπ |0 = Id, we have

δ(D̃1(g, E))(0, K )= δ(D1(g J , J ))(0, δ J ).

We identify δ J and K below.
From the calculations above, we see that

(−2 Ric(g J )+ L X (g J )(g
J ))i j = (g J )pq∂p∂q(g J )i j +O(∂g, ∂ J ).

So
L(g0,0)(D1(gπE , πE))(0, K )= ∂

∂t

∣∣∣
t=0
(g0)

pq∂p∂q(g
Jt
0 )i j +O(∂K ).

It is easy to see that

L(g0,0)(4g0(g
−J ))(0, K )= ∂

∂t

∣∣∣
t=0
(g0)

pq∂p∂q(g
−Jt
0 )i j +O(∂K ).

Thus we obtain

σ(L(g0,0)D̃1)(0, K )(x, ξ)= 0, where ξ ∈ T ∗x M.

Next, we calculate the variation of D̃2 along the direction of (δg, δE)= (h, K ).
We have

δ(D̃2(g, E))(h, K )= δ(D2(g J , J ))(δg, δ J ).

In the expression for D2, only 4J , L X J , and R involve second-order terms, so we
only need to calculate these three terms. We calculate them for the pair (g, J ) first.

For 4J , we have

(4J )(ek)= gi j D2 J (ei , e j , ek)

= gi j Di ((D j J )ek)+O(∂g, ∂ J )

= gi j Di (D j (Jek)− J D j ek)+O(∂g, ∂ J )

= gi j Di (D j (J l
kel)− J (0 p

jkep))+O(∂g, ∂ J )

= gi j (Di (∂ j J l
kel)+ Di (J

p
k 0

l
j pel)− Di (0

p
jk J l

pel))+O(∂g, ∂ J )

= gi j (∂i∂ j J l
k + J p

k ∂i0
l
j p − J l

p∂i0
p
jk)el +O(∂g, ∂ J ).

For L X J , we have

(L X J )(ek)= [X, Jek] − J [X, ek]

= [X pep, J l
kel] − J [X pep, ek]

= (X p∂p J l
k − J p

k ∂p X l
+ J l

p∂k X p)el

= gi j (J l
p∂k0

p
i j − J p

k ∂p0
l
i j )el +O(∂g, ∂ J ).
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For R, we have

R(ek)= (J
p

k Ricl
p −J l

p Ricp
k )el

= gi j (−J p
k ∂i0

l
pj + J p

k ∂p0
l
i j + J l

p∂i0
p
k j − J l

p∂k0
p
i j )el +O(∂g, ∂ J ).

So we obtain
(4J +R+ L X J )lk = gi j∂i∂ j J l

k +O(∂g, ∂ J ).

As for the pair (g J , J ), the lower-order terms are still lower-order terms, and when
we evaluate at (g0, J0), from the compatibility, we have

(L(g0,0)D̃2)(h, K )=4g0 K +O(∂g, ∂ J ).

Hence, the total symbol is

σ(L(g0,0)D̃)(h, K )(x, ξ)=
(
|ξ |2 0

0 |ξ |2

)
.

By the standard theory of parabolic PDE, there exists a unique short-time solution
of (15).

Next we show that, under (15), (g, J ) is compatible, where J = πE . Suppose
that (g, J ) exists for t ∈ [0, ε0]. Then by the compactness of M , in this time interval,
every tensor we involve is bounded. Let (∂/∂t)J = K . Then

∂

∂t
|g−J
|
2
g J = 2

〈
∂

∂t
(g−J ), g−J

〉
g J
+C∗(g−J )∗2

= 2
〈
∂

∂t
1
2
(g(·, ·)−g(J ·, J ·)), g−J

〉
g J
+C∗(g−J )∗2

= 2
〈(
∂

∂t
g
)−J

, g−J
〉
g J
−
〈
g(J ·, K ·)+g(K ·, J ·), g−J 〉

g J+C∗(g−J )∗2

≤
〈
2(D1(g J , J ))−J

+2(4g0(g
−J ))−J

−g(J ·, K ·)−g(K ·, J ·), g−J 〉
g J

+C |g−J
|
2
g J .

Note that (g J , J ) is compatible and K = D2(g J , J ), so by Lemmas 3.2 and 2.7,

D1(g J , J )−J
−

1
2(g

J (J ·, K ·)+ g J (K ·, J ·))= 0.

So

∂

∂t
|g−J
|
2
g J ≤ 2

〈
(4g0(g

−J ))−J
− g−J (J ·, K ·)− g−J (K ·, J ·), g−J 〉

g J +C |g−J
|
2
g J

≤ 2
〈
(4g0(g

−J ))−J , g−J 〉
g J +C |g−J

|
2
g J .

Since J acts isometrically on the space 0(T ∗M ⊗sym T ∗M) in the induced metric
from g J , and since the (1, 1) tensors and (0, 2)+ (2, 0) tensors correspond to the
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+1 and −1 eigenspaces, respectively, they are orthogonal. So

〈(4g0(g
−J ))J , g−J

〉g J = 0.

Then,
∂

∂t
|g−J
|
2
g J ≤ 2〈4g0(g

−J ), g−J
〉g J +C |g−J

|
2
g J .

By definition,
4g0(g

−J )= trg0 D2
g0
(g−J ).

Since the second order term about g−J in D2
g0
(g−J ) is the same as in D2

g J (g−J ),

4g0(g
−J )= trg0

(
D2

g J (g−J )+C ′ ∗ Dg J (g−J )+C ∗ g−J ).
Let A be any tensor. We have the formula

D2
〈A, A〉 = D(D〈A, A〉)

= 2D(〈Di A, A〉ei )

= 2〈D2
i, j A, A〉ei

⊗ e j
+ 2〈Di A, D j A〉ei

⊗ e j .

Let A= g−J and the metric above be g J . Taking the trace of each side with respect
to g0, we obtain

2〈trg0 D2
g J (g−J ), g−J

〉g J

= trg0 D2
g J (|g−J

|
2
g J )− 2〈Dg J g−J (ei ), Dg J g−J (e j )〉g J 〈ei , e j

〉g0 .

Along this flow, for t ∈ [0, ε0], g J is uniformly bounded by g0, so we have

2〈trg0 D2
g J (g−J ), g−J

〉g J ≤ trg0 D2
g J (|g−J

|
2
g J )− 2C ′′|Dg J g−J

|
2
g J .

Hence,

∂

∂t
|g−J
|
2
g J ≤ trg0 D2

g J (|g−J
|
2
g J )−2C ′′|Dg J g−J

|
2
g J+C ′∗Dg J (g−J )∗g−J

+C |g−J
|
2
g J .

By using the Cauchy inequality on C ′ ∗ Dg J (g−J ) ∗ g−J , finally we obtain

∂

∂t
|g−J
|
2
g J ≤ trg0 D2

g J (|g−J
|
2
g J )+C |g−J

|
2
g J .

Notice that trg0 D2
g J is elliptic and |g−J

|
2
= 0 at t = 0. Then by the maximum

principle, considering e−Ct
|g−J
|
2, we have |g−J

|
2
= 0 for t ∈ [0, ε0], i.e., (g, J ) is

compatible. Since ε0 is arbitrary, (g, J ) is always compatible as long as the solution
exists. Because the positivity of g is an open condition, we may assume that g is
positive in short time. Then the short-time solution of (15) gives the short-time
solution of (14).
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Now, let (g̃(t), J̃ (t)) be a solution of (14) and let ϕt be the one-parameter family
of diffeomorphisms generated by −X (t) defined as above. Let g(t) = ϕ∗t g̃(t),
J (t)= ϕ∗t J̃ (t). Then

(16) ∂

∂t
g = ∂

∂t
(ϕ∗t g̃(t))

= ϕ∗t

(
∂

∂t
g̃(t)+ L(−X (t))g̃(t)

)
= ϕ∗t (−2 Ric(g̃(t))+ Q1(g̃(t)))

=−2 Ric(ϕ∗t g̃(t))+ Q1(ϕ
∗

t g̃(t))

=−2 Ric(g)+ Q1(g).

So g(t) satisfies the equation. Similarly, J (t) also satisfies the equation. And
(g(t), J (t)) differs from (g̃(t), J̃ (t)) by a diffeomorphism, so (g(t), J (t)) is also
an almost Hermitian pair. This completes the existence part of the theorem.

For uniqueness, let (gi , Ji ) be two solutions of (3), i = 1, 2. Since M is compact,
we can solve the harmonic heat flow

∂

∂t
φi (t)=4gi ,gφi (t),

φi (0)= Id,

for φi (t) for short time, where g is the same fixed metric as above. We can also
assume that the φi (t) are diffeomorphisms. Let ĝi = (φ

−1
i (t))∗gi (t). Note that(

∂

∂t
φi

)
(p)= (4gi ,gφi )(p)

= (4ĝi ,g Id)(φi (p))

=

(
−ĝi j (0̂k

i j −0
k
i j )

∂

∂xk

)
(φi (p))

=−X ĝ(φi (p)).

Then, taking the time derivative of (φi (t))∗ĝi (t) = gi (t), and doing a similar
calculation to (16), we see that both ĝi (t) satisfy (14) and they share the same
initial data. Since we have proved the compatibility, the symbol of (14) is Id, as we
calculated, so the solution of (14) is unique. Then we obtain

ĝ1(t)= ĝ2(t)= ĝ(t), Ĵ1(t)= Ĵ2(t)= Ĵ (t).

Then from the uniqueness of

∂

∂t
φ(t)=−X ĝ(φ(t)),

φ(0)= Id,
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we see the uniqueness of (g, J ) for a short while. Then, by continuity, (g, J ) is
unique as long as it exists.

Next, we check two special cases. Suppose that the initial data is almost Kähler.
Then we run the symplectic curvature flow (1). By definitions and Lemma 3.3, we
see that, in this situation, (g, J ) also satisfies (3). So from the uniqueness of (3), if
the initial data is almost Kähler, then (3) coincides with symplectic curvature flow.
And a similar argument holds in the pluriclosed case when we apply Lemma 3.4.

Finally, we prove that the flow (3) preserves the integrability of J . Let (g0, J0)

be an Hermitian structure. Fix J0 and consider the flow

∂

∂t
g̃ =−2 Ricg̃ +Q1(g̃, J0)− Lθ](g̃,J0)g̃,

g̃(0)= g0.

By the DeTurck trick, we see that g̃(t) exists for a while, but is not necessarily
compatible with J0 now. Then by a gauge transformation induced by θ ](g̃, J0), we
obtain a short-time solution (g(t), J (t)) for the flow

∂

∂t
g =−2 Ricg +Q1(g, J ),

∂

∂t
J = Lθ](g,J ) J,

g(0)= g0,

J (0)= J0.

We still don’t know the compatibility of (g, J ) now, but since J is changed just by
a diffeomorphism, N always vanishes. By Lemma 2.9, one may write Q2−Q+N

in terms of N in the almost Hermitian setting. We denote such a tensor N0, i.e., N0

is in terms of N , and, when (g, J ) is compatible, N0 = Q2−Q+N. So the above
flow is the same as the flow

∂

∂t
g =−2 Ricg +Q1(g, J ),

∂

∂t
J = Lθ](g,J ) J + N0(g, J )− N (g, J )−K(g, J ),

g(0)= g0,

J (0)= J0.

Then by Lemma 3.6, and using the same argument in the proof of short-time
existence above, one sees that (g, J ) is compatible and coincides with (3), so the
integrability of J is preserved.

This completes the proof of Theorem 1.1. �

Remark 4.1. Streets and Tian [2014] introduced almost Hermitian curvature flow,
where the symbol term deforming J is −K. From Lemma 3.6 we see that, modulo
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lower-order terms, −K differs from4J+R just by a gauge term. If we also change
the evolution of g by the same gauge transformation, the second derivative of g will
appear in Lθ]g. So, in general, our flow is not in the family of almost Hermitian
curvature flow.

5. Proof of Theorem 1.2 and Theorem 1.3

First, we derive the evolution equations of D J , Rm and their higher covariant
derivatives.

Lemma 5.1. Under (3),

∂

∂t
D J =4D J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J.

Proof. Using the fact 4DT − D4T = D Rm ∗T +Rm ∗DT , we have

∂

∂t
D J = 0̇ ∗ J + D J̇

= D(Rm+J ∗2 ∗ D J ∗2) ∗ J + D(4J +Rm ∗J + J ∗ D J ∗2)

=4D J + D Rm ∗J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J.

Hence we only need to show there is no D Rm ∗J term. It is the same calculation
as in [Streets and Tian 2014], since the only differences are the first-order terms
in J , which does not involve a D Rm term. �

Lemma 5.2. Under (3),

∂

∂t
Rm=4Rm+Rm∗2+Rm ∗J ∗2 ∗ D J ∗2+

∑
0≤k1,...,k4≤3
k1+···+k4=4

Dk1 J ∗ · · · ∗ Dk4 J.

Proof. Let (∂/∂t)g = h. From the variation formula in Ricci flow (see [Chow and
Knopf 2004]) we have

∂

∂t
Rm(X, Y, Z ,W )= 1

2(h(Rm(X, Y )Z ,W )− h(Rm(X, Y )W, Z))

+
1
2(D

2
Y,W h(X, Z)− D2

X,W h(Y, Z)

+ D2
X,Z h(Y,W )− D2

Y,Z h(X,W )).

And, when h =−2 Ric,

∂

∂t
Rm=4Rm+Rm∗2 .

Notice that, in (3), h = (∂/∂t)g =−2 Ric+J ∗2 ∗ D J ∗2, so we obtain the evolution
equation of Rm. �
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Proposition 5.3. Under (3),

∂

∂t
Dk J =4Dk J +

∑
l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J

and

∂

∂t
Dk Rm=4Dk Rm+

∑
l1+···+l4=k+4
0≤l1,...,l4≤k+3

Dl1 J ∗ · · · ∗ Dl4 J +
k∑

l=0

Dl Rm ∗Dk−l Rm

+

∑
0≤l0≤k

∑
l1+···+l4=k+2−l0

0≤l1,...,l4≤k+1

Dl0 Rm ∗Dl1 J ∗ · · · ∗ Dl4 J.

Proof. By using Lemma 5.1 and the fact that (∂/∂t)0 = D(Rm+J ∗2 ∗ D J ∗2),
we have

∂

∂t
Dk J = ∂

∂t
0 ∗ Dk−1 J + D ∂

∂t
Dk−1 J

=

k−2∑
l=0

Dl ∂

∂t
0 ∗ Dk−1−l J + Dk−1 ∂

∂t
D J

=

k−2∑
l=0

Dl D(Rm+J ∗2 ∗ D J ∗2) ∗ Dk−1−l J

+ Dk−1(4D J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J ).

Interchanging D and 4, we observe that the highest order of Rm is k − 1, and
the highest order of J is k+ 1 if not involving Rm. Then we obtain the evolution
equation of Dk J .

As for the evolution equation of Dk Rm, the calculation is similar. The key point
is to observe the highest order. �

Now we can use Proposition 5.3 to prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. The proof is similar to the higher derivative estimates in
Ricci flow [Chow and Knopf 2004]. We assume t |D2 J | ≤ C first. By induction,
we will prove

(P) |Dk J | ≤ C
tk/2 , |D

k−2 Rm| ≤ C
tk/2 .

(P) holds when k = 2 from the assumption.
Now we assume (P) holds for k− 1. Consider

F(t)= tk+1(|Dk J |2+ |Dk−2 Rm|2)+ λtk(|Dk−1 J |2+ |Dk−3 Rm|2),
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where λ is a large constant to be determined. We will show that

(17) ∂

∂t
F ≤4F +C.

Then, by the maximum principle, (P) holds for k. Now we prove (17) by using
Proposition 5.3:

∂

∂t
|Dk J |2

= (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2+ 2
〈

Dk J,

4Dk J +
∑

l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J
〉

= (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2+4|Dk J |2− 2|Dk+1 J |2

+ Dk J ∗
( ∑

l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J
)

=4|Dk J |2− 2|Dk+1 J |2+ (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2

+ Dk J ∗ Dk+1 J ∗ D J ∗ J ∗3+ Dk J ∗ Dk J ∗ D J ∗2 ∗ J ∗2

+ Dk J ∗ Dk J ∗ D2 J ∗ J ∗3+ Dk J ∗
∑

l1+···+l5=k+2
0≤l1,...,l5≤k−1

Dl1 J ∗ · · · ∗ Dl5 J

+ Dk J ∗Rm ∗Dk J + Dk J ∗ Dk−1 Rm ∗D J + Dk J ∗ Dk−2 Rm ∗D2 J

+ Dk J ∗
k−3∑
l=1

Dl Rm ∗Dk−l J.

From the assumption,

∂

∂t
|Dk J |2 ≤4|Dk J |2− 2|Dk+1 J |2+ C

t
|Dk J |2+ C

t1/2 |D
k J ||Dk+1 J |

+
C

t (k+2)/2 |D
k J | + C

t1/2 |D
k J ||Dk−1 Rm| + C

t
|Dk J ||Dk−2 Rm|.

Similarly, we obtain

∂

∂t
|Dk−2 Rm|2 ≤4|Dk−2 Rm|2− 2|Dk−1 Rm|2+ C

t
|Dk−2 Rm|2

+
C

t1/2 |D
k−2 Rm||Dk+1 J | + C

t (k+2)/2 |D
k−2 Rm| + C

t
|Dk J ||Dk−2 Rm|.
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Then, by the Cauchy–Schwarz inequality,

∂

∂t
(
tk+1(|Dk J |2+ |Dk−2 Rm|2)

)
≤4

(
tk+1(|Dk J |2+ |Dk−2 Rm|2)

)
−tk+1(

|Dk+1 J |2+ |Dk−1 Rm|2
)
+Ctk(

|Dk J |2+ |Dk−2 Rm|2
)
+C.

Replacing k with k− 1 and using the assumption, we obtain

∂

∂t
(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
≤4

(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
− tk(
|Dk J |2+ |Dk−2 Rm|2

)
+Ctk−1(

|Dk−1 J |2+ |Dk−3 Rm|2
)
+C

≤4
(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
− tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C.

Then

∂F
∂t
≤4F − tk+1(

|Dk+1 J |2+ |Dk−1 Rm|2
)

+ (C − λ)tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C

≤4F + (C − λ)tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C.

We choose λ= C , so (17) holds.
Now, we prove that t |D2 J | ≤ C . For p ∈ M , if |D2 J |p,t 6= 0, then similarly, by

Proposition 5.3,

∂

∂t
|D2 J | = 1

2|D2 J |
∂

∂t
|D2 J |2

=
1

2|D2 J |
(
4|D2 J |2− 2|D3 J |2+ D2 J ∗3 ∗ J ∗3

+ D3 J ∗ D2 J ∗ D J ∗ J ∗3+ D2 J ∗2 ∗ D J ∗2 ∗ J ∗2

+ D2 J ∗ D J ∗4+ D2 J ∗2 ∗Rm+D2 J ∗ D J ∗ D Rm
)
.

Notice that, for |D2 J |p,t 6= 0,

4|D2 J |2 = 2|D2 J |4|D2 J | + 2
∣∣D |D2 J |

∣∣2.
So,

∂

∂t
|D2 J | = 4|D2 J | +

∣∣D|D2 J |
∣∣2

|D2 J |
+

1
2|D2 J |

(
−2|D3 J |2+ D2 J ∗3 ∗ J ∗3

+ D3 J ∗ D2 J ∗ D J ∗ J ∗3+ D2 J ∗2 ∗ D J ∗2 ∗ J ∗2

+ D2 J ∗ D J ∗4+ D2 J ∗2 ∗Rm+D2 J ∗ D J ∗ D Rm
)
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≤4|D2 J | +

∣∣D|D2 J |
∣∣2

|D2 J |
−
|D3 J |2

|D2 J |

+C
(
|D2 J |2+

|D3 J |
t1/2 +

|D2 J |
t
+

1
t2 +
|D Rm|

t1/2

)
.

Consider
G(t)= t2

|D2 J | +µt2
|D J |2+ t3

|Rm|2,

where µ is a large constant to be determined.
Then, for |D2 J | 6= 0,

∂

∂t
G ≤4G− t2 |D

3 J |2

|D2 J |
− 2µt2

|D2 J |2− 2t3
|D Rm|2

+C
(
t2
|D2 J |2+ t3/2

|D3 J | +µt |D2 J | +µ+ t3/2
|D Rm|

)
+

〈
D|t2 D2 J |,

D|D2 J |
|D2 J |

〉
≤4G− 1

2 t2 |D
3 J |2

|D2 J |
−

1
2 t2
|D2 J |2− 1

2 t3
|D Rm|2

+

〈
D|t2 D2 J |,

D|D2 J |
|D2 J |

〉
+C,

where µ is determined now.
Then

∂

∂t
G ≤4G− 1

2 t2 |D
3 J |2

|D2 J |
−

1
2 t2
|D2 J |2− 1

2 t3
|D Rm|2+C

+

〈
DG,

D|D2 J |
|D2 J |

〉
−µt2

〈
D|D J |2,

D|D2 J |
|D2 J |

〉
− t3

〈
D|Rm|2,

D|D2 J |
|D2 J |

〉
.

Notice that∣∣D|D J |2
∣∣≤ |2〈DD J, D J 〉| ≤ 2|D2 J ||D J |,

∣∣D|D2 J |
∣∣= ∣∣D|D2 J |2

∣∣
2|D2 J |

≤ |D3 J |.

Hence,

∂

∂t
G ≤4G− 1

4 t2 |D
3 J |2

|D2 J |
−

1
4 t2
|D2 J |2− 1

2 t3
|D Rm|2+C

+

〈
DG,

D|D2 J |
|D2 J |

〉
+C

t2
|D Rm|2

|D2 J |
.

So if we suppose that |D2 J | ≥ 4C/t , we have the estimate

(18) ∂

∂t
G ≤4G+

〈
DG,

D|D2 J |
|D2 J |

〉
+C,
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where C = C(n, K ). That is to say, for any (p, t), either we have the estimate
|D2 J | ≤ 4C/t , or else (18) holds. Let G = G −Ct , where C is chosen suitably.
We obtain that either G ≤ 0 or

∂

∂t
G ≤4G+

〈
DG,

D|D2 J |
|D2 J |

〉
.

Notice that G = 0 when t = 0. Then one may apply the maximum principle to show
that G ≤ 0 for every (p, t), which implies the desired estimate. This completes the
proof of Theorem 1.2. �

Remark 5.4. Theorem 1.2 is scaling-invariant when we replace g(t) by g(t) =
cg(t/c).

Proof of Theorem 1.3. The argument is standard, as in Ricci flow [Chow and Knopf
2004]. We just sketch the proof.

Suppose not. Then |Rm|, |D J | are bounded. From Theorem 1.2, all covariant
derivatives of Rm and J are bounded. Then we see that the metrics g are uniformly
bounded. We fix a coordinate atlas. From the evolution equation of 0 and the
boundedness of the covariant derivatives of Rm and J , we obtain the boundedness
of 0. Then we obtain the boundedness of ∂g, ∂ J , and by induction we see that
∂k g, ∂k J and ∂k0 are bounded. Finally, we obtain that (∂ l/∂t l)∂k g, (∂ l/∂t l)∂k J
are bounded. Then, by theorems in mathematical analysis, (g(t), J (t)) can be
extended to (g(T ), J (T )) smoothly in all variables of space and time. The almost
Hermitian condition is guaranteed by the continuity. Then, from the short-time
existence, (g(t), J (t)) exists for t ∈ [0, T + ε), which is a contradiction to the
maximality of T . �
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REPRESENTATIONS OF KNOT GROUPS INTO SLn(C) AND
TWISTED ALEXANDER POLYNOMIALS
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Let 0 be the fundamental group of the exterior of a knot in the three-sphere.
We study deformations of representations of 0 into SLn(C) which are the
sum of two irreducible representations. For such representations we give
a necessary condition, in terms of the twisted Alexander polynomial, for
the existence of irreducible deformations. We also give a more restrictive
sufficient condition for the existence of irreducible deformations. We also
prove a duality theorem for twisted Alexander polynomials and we describe
the local structure of the representation and character varieties.
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1. Introduction

Let K ⊂ S3 be an oriented knot in the three-sphere. Its exterior is the compact
three-manifold X = S3

\N (K ). Set 0 = π1(X) and let ϕ : 0 � Z denote the
abelianization morphism, so that ϕ(γ ) is the linking number in S3 between any
loop realizing γ ∈ 0 and K . Let

α : 0→ SLa(C) and β : 0→ SLb(C)

be irreducible and infinitesimally regular representations.
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Definition 1.1. A representation α : 0→ SLa(C) is called reducible when it pre-
serves a proper subspace of Ca , otherwise it is called irreducible. The representation
α is called semisimple or completely reducible if α is a direct sum of irreducible
representations.

In what follows we call a representation α : 0→ SLa(C) infinitesimally regular
if H 1(0; sla(C)Adα)∼= Ca−1.

As we assume that α is irreducible and infinitesimally regular, its character is
a regular point of the character variety of 0 in SLa(C) (Proposition 3.6). When
b = 1, then β is trivial and hence it is infinitesimally regular.

For a given nonzero complex number λ ∈ C∗ we consider the representation
ρλ = (λ

bϕ
⊗α)⊕ (λ−aϕ

⊗β), namely for all γ ∈ 0

(1) ρλ(γ )=

(
λbϕ(γ )α(γ ) 0

0 λ−aϕ(γ )β(γ )

)
∈ SLn(C),

where a+b= n. The representation ρλ :0→SLn(C) is reducible and the following
question then arises:

Question 1.2. When can ρλ be deformed to irreducible representations?

We give necessary and sufficient conditions in terms of twisted Alexander poly-
nomials. For this purpose we consider the representations

α⊗β∗ : 0→ Aut(Ma×b(C))

defined by (α⊗β∗)(γ )(A)=α(γ )Aβ(γ−1) for γ ∈0 and A∈Ma×b(C). Similarly,
consider

β⊗α∗ : 0→ Aut(Mb×a(C)).

The corresponding twisted Alexander polynomials of degree i are denoted by

1+i (t)=1
α⊗β∗

i (t) and 1−i (t)=1
β⊗α∗

i (t).

Recall that the twisted Alexander polynomial is a generator of the order ideal of
the twisted Alexander module and hence it is unique up to multiplication with
an invertible element of the group ring C[Z] ∼= C[t±1

], i.e., ctk , with c ∈ C∗ and
k ∈ Z (see Definition 2.1 for more details). We have 1±i (t) = 1 for i > 2 and
1±2 (t)∈ {0, 1}. We prove in Corollary 4.6 that α⊗β∗ is a semisimple representation,
hence by Theorem 2.6 we obtain the duality formula (Corollary 4.7):

1+i (t)
.
=1−i (1/t).

Here p .
= q means that p and q are associated elements in C[Z], i.e., there exists

some unit ctk
∈ C[Z] ∼= C[t±1

], with c ∈ C∗ and k ∈ Z, such that p = ctkq. This
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duality formula is a particular case of Theorem 2.6, where we establish a duality
formula for twisted Alexander polynomials provided that the twisting representation
is semisimple. This duality formula can also be deduced from results of Friedl,
Kim, and Kitayama [Friedl et al. 2012].

We shall prove a necessary condition for the deformability of ρλ to irreducible
representations:

Theorem 1.3. If ρλ can be deformed to irreducible representations, then

1+1 (λ
n)=1−1 (λ

−n)= 0.

The theorem also applies when α or β (or both) is trivial. When both α and
β are trivial, this is a result obtained in 1967 independently by Burde [1967] and
de Rham [1967]. The key idea is to look at the dimension of the fiber of the
algebraic quotient R(0,SLn(C))→ X (0,SLn(C)). When ρλ can be deformed to
irreducible representations, this dimension jumps among characters of reducible
representations, and this translates to the twisted Alexander polynomial by means
of the tangent space and cohomology with twisted coefficients.

The next result is a sufficient condition for the deformability of ρλ to irreducible
representations:

Theorem 1.4. If 1+0 (λ
n) 6= 0 and λn is a simple root of 1+1 (t), then ρλ can be

deformed to irreducible representations.

Again this theorem and the next one apply for α and/or β trivial. Theorems 1.4
and 1.5 are due to [Heusener et al. 2001] when both α and β are trivial, and
also related results were obtained in [Shors 1991; Frohman and Klassen 1991;
Heusener and Klassen 1997; Heusener and Kroll 1998; Ben Abdelghani 2000;
Ben Abdelghani and Lines 2002; Heusener and Porti 2005; Ben Abdelghani et al.
2010; Heusener and Medjerab 2014].

The outline of the proof of Theorem 1.4 is the following: the hypothesis implies
that there exists a representation ρ+ ∈ R(0,SLn(C)) with the same character as ρλ
but not conjugate to it (see Corollary 5.6). An analysis of the cohomology groups
allows us to prove that ρ+ is a smooth point of R(0,SLn(C)). Among other tools,
this uses the vanishing of obstructions to integrability of Zariski tangent vectors,
due to [Goldman 1984], a smoothness result of the variety of representations due
to [Heusener and Medjerab 2014], and the nonvanishing of certain cup product
(following the ideas of [Ben Abdelghani 2000]). Once this smoothness result is
established, we realize that the dimension of the space of reducible representations
is less than the dimension of the component of R(0,SLn(C)) containing ρ+.

Our next result concerns the local structure of the character variety. Let χλ ∈
X (0,SLn(C)) denote the character of ρλ.
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Theorem 1.5. Under the hypotheses of Theorem 1.4, χλ belongs to precisely two
components Y and Z of X (0,SLn(C)), that have dimension n − 1 and meet
transversally at χλ along a subvariety of dimension n − 2. The component Y
contains characters of irreducible representations and Z consists only of characters
of reducible ones.

As in [Heusener et al. 2001] and [Heusener and Porti 2005] for SL2(C) and
PSL2(C) respectively, the key idea for Theorem 1.5 is to study the quadratic cone
of the representation ρλ, by identifying certain obstructions to integrability. Here
we also use Luna’s slice theorem, as in [Ben Abdelghani 2002].

We conclude the paper by an explicit description of the component of the variety
of irreducible characters of the trefoil knot in SL3(C) that illustrates our results.

The paper is organized as follows. Section 2 is devoted to twisted Alexander
modules, and in particular to the duality theorem, Theorem 2.6. In Section 3
we review some preliminaries on the representation varieties and in Section 4
some further preliminaries on twisted cohomology and twisted invariants. Then in
Section 5 we prove Theorem 1.3. The proof of the sufficient condition, Theorem 1.4,
splits in Sections 6 and 7. Theorem 1.5 is proved in Section 8. Finally in Section 9
we compute X (0,SL3(C)) for 0 the fundamental group of the trefoil knot exterior.

2. Twisted Alexander modules

The aim of this section is to introduce twisted Alexander modules and Alexander
polynomials, together with their main properties. We also give a new result that
we will require later: a duality theorem for Alexander polynomials twisted by
semisimple representations. It relies on Franz–Milnor duality for Reidemeister
torsion, but it is different, as the torsion is the ratio of the Alexander polynomials. For
further background about twisted Alexander polynomials see [Kirk and Livingston
1999].

A representation of a group 0 in a finite-dimensional complex vector space V is a
homomorphism ρ : 0→GL(V ). We say that such a map gives V the structure of a
0-module. If there is no ambiguity about the map ρ we call V itself a representation
of 0 and we will often suppress the symbol ρ and write γ · v or γ v for ρ(γ )(v).
Two representations ρ : 0→ GL(V ) and % : 0→ GL(W ) are called equivalent
if there exits an isomorphism T : V → W such that %(γ ) ◦ T = T ◦ ρ(γ ) for all
γ ∈ 0, i.e., if the 0-modules V and W are isomorphic.

Our main reference for group cohomology is [Brown 1994]. Since we work with
left-modules, for defining homology consider the right action of the inverse, as in
[Kirk and Livingston 1999, (2.1)]. As the knot exterior X is an Eilenberg–MacLane
space, (co)homology groups of 0 and X are naturally identified. In what follows,
we will not distinguish between Hi (0; V ) and Hi (X; V ).
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We give an interpretation of the low dimensional (co)homology groups. The
cohomology group in dimension zero is the module of invariants, i.e.,

H 0(0; V )∼= V 0
= {v ∈ V | γ v = v for all γ ∈ 0}.

The homology group in dimension zero is the co-invariant module:

H0(0; V )∼= Z⊗Z[0] V ∼= V/I V

where I ⊂ Z[0] is the augmentation ideal and I V ⊂ V is the subspace generated
by {γ v− v | v ∈ V, γ ∈ 0}.

We will make use of the interpretation of H 1(0; V ) by means of crossed mor-
phisms, it is well suited for our purpose. A crossed morphism d : 0→ V is a map
that satisfies d(γ1γ2) = d(γ1)+ γ1 d(γ2) for all γ1, γ2 ∈ 0. A crossed morphism
d is called principal if there exists v ∈ V satisfying d(γ )= γ v− v for all γ ∈ 0.
Crossed morphisms are precisely the cocycles of the standard or bar resolution of the
0-module V , and the principal ones are the coboundaries. Thus the set of crossed
morphisms or cocycles is denoted by Z1(0; V ) and the set of principal crossed
morphisms or coboundaries by B1(0; V ). In particular, the first cohomology group
is

(2) H 1(0; V )∼= Z1(0; V )/B1(0; V ).

Let ρ : 0→ GL(V ) be a finite dimensional representation of 0. If X∞→ X
denotes the infinite cyclic covering, then

Hi (X∞; V )

is a finitely generated C[Z]-module, because X is compact and V is finite dimen-
sional. Here Z is the group of deck transformations of the covering X∞→ X . We
will sometimes interpret the elements of C[Z] as Laurent polynomials, by using the
isomorphism C[Z] −→∼ C[t±1

] that maps the generator 1 of Z to t .

Definition 2.1. The homology groups Hi (X∞; V ) are called the twisted Alexander
modules, viewed as C[Z] ∼= C[t±1

]-modules. The corresponding orders are the
twisted Alexander polynomials

1
ρ
i (t) ∈ C[t±1

].

They are unique up to multiplication by a unit ctk
∈ C[t±1

], k ∈ Z, c ∈ C∗.

Recall that the order of a finitely generated C[t±1
]-module

M =
⊕

i

C[t±1
]
/

pi (t)C[t±1
]

is
∏

i pi (t). In particular the order is nonzero if and only if M is a torsion module.
Notice that this is not the same convention as in [Kirk and Livingston 1999].
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Due to the indeterminacy in the definition of twisted Alexander polynomials, we
shall write

p(t) .= q(t)

to denote that the polynomials p(t), q(t) ∈ C[Z] are associated, i.e., they are equal
up to multiplication with an element ctk

∈ C[Z], k ∈ Z, c ∈ C∗.

Remark 2.2. It follows from a result of M. Wada [1994, Theorem 2] that the twisted
Alexander polynomial of a link exterior twisted by a representation in SLn(C) is
well defined up to powers of ±tk . It is also well known that for n even there is no
sign ambiguity. We shall not need those facts, as we use essentially the structure of
the Alexander module.

Let
V [Z] = V ⊗C[0] C[Z]

denote the 0-module via the representation ρ⊗ tϕ . Then we have a natural isomor-
phism of C[Z]-modules

(3) Hi (X; V [Z])∼= Hi (X∞; V )

(see [Kirk and Livingston 1999, Theorem 2.1]). Notice that equivalent repre-
sentations give rise to isomorphic 0-modules and hence to associated Alexander
polynomials.

The dual representation ρ∗ : 0→ GL(V ∗) is defined in the usual way by

ρ∗(γ )( f )= f ◦ ρ(γ )−1 for all γ ∈ 0 and f ∈ V ∗ = Hom(V,C).

The following lemma is straightforward.

Lemma 2.3. The representations ρ and ρ∗ are equivalent if and only if there exists
a nondegenerate bilinear form V ⊗ V → C which is 0-invariant.

Example 2.4. For any representation ρ : 0→ SL2(C), the module V = C2 has a
skew-symmetric nondegenerate bilinear form defined by the determinant. Namely,
the vectors (x1, x2) and (y1, y2) ∈ C2 are mapped to

det
(

x1 y1

x2 y2

)
.

In view of Lemma 2.3, ρ∗ and ρ are equivalent and hence 1ρi
.
=1

ρ∗

i .

Recall from the introduction (see Definition 1.1) that a representation ρ : 0→
GL(V ) is called semisimple or completely reducible if ρ is the direct sum of
irreducible representations.

Remark 2.5. A representation ρ is completely reducible if and only if each subspace
of V stable under ρ(0) has a ρ(0)-invariant complement.
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Theorem 2.6. Let ρ : 0→ GL(V ) be a completely reducible representation. Then

1
ρ
i (t
−1)

.
=1

ρ∗

i (t).

Example 2.9 below shows that the hypothesis of complete reducibility is necessary
in Theorem 2.6. This duality formula can also be deduced from results of Friedl,
Kim, and Kitayama [2012].

The first step in the proof of Theorem 2.6 is the following:

Lemma 2.7. Let ρ : 0→ GL(V ) be a completely reducible representation. The
modules H0(X∞; V ) and H0(X∞; V ∗) are finitely generated torsion modules. In
addition,

1
ρ

0 (t
−1)

.
=1

ρ∗

0 (t).

Proof. First notice that if ρ is irreducible or completely reducible then the dual
representation ρ∗ is also irreducible or completely reducible respectively since each
proper invariant subspace of ρ corresponds to a proper invariant subspace of ρ∗ by
the orthogonality relation.

We have that H0(X∞; V )∼= V/ Ĩ V , where Ĩ ⊂ C[π1(X∞)] is the augmentation
ideal. Hence, H0(X∞; V ) is a finite dimensional C-vector space and as C[t±1

]-
module it cannot have a free summand. This proves that H0(X∞; V ) is a finitely
generated torsion module.

In order to prove the symmetry relation it is sufficient to prove it for irreducible
representations since for ρ1 : 0→ GL(V1) and ρ2 : 0→ GL(V2) we have

(ρ1⊕ ρ2)
∗
= ρ∗1 ⊕ ρ

∗

2 and 1
ρ1⊕ρ2
i

.
=1

ρ1
i ·1

ρ2
i .

First we will prove that for every irreducible representation ρ : 0→GL(V ) with
dim V > 1 we have

(4) 1
ρ

0
.
= 1 .
=1

ρ∗

0 .

The irreducibility of ρ and dim V > 1 imply that I V ⊂ V is a nontrivial 0-invariant
subspace, and hence I V = V . It follows that H0(0; V )= 0. Now, for any complex
number λ∈C∗ the vector space V becomes a 0-module via ρ⊗λϕ , i.e., for γ ∈0 and
for v ∈ V we have ρ(γ )⊗ λϕ(γ )(v)= λϕ(γ )ρ(γ )v. This 0-module will be denoted
by Vλ. Notice that Vλ is also an irreducible 0-module since the map v 7→ λϕ(γ )v is
a homothety of V . Moreover, Vλ is a nontrivial 0-module and hence H0(0; Vλ)= 0
for all λ ∈ C∗. Next, the short exact sequence of 0-modules

0→ V [Z] (t−λ)·
−−−→ V [Z] → Vλ→ 0

induces a long exact sequence in homology [Brown 1994, III.§6]:

· · · → H0(0; V [Z]) (t−λ)·
−−−→ H0(0; V [Z])→ H0(0; Vλ)→ 0,
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and H0(0; Vλ)= 0 implies that the multiplication by (t−λ) is surjective. Hence for
all λ∈C∗, the module H0(0; V [Z]) has no (t−λ)-torsion. Hence, H0(0; V [Z])=0
and 1ρ0 = 1. Finally, ρ∗ is also irreducible and dim V ∗ = dim V > 1. This implies
in the same way that 1ρ

∗

0 = 1
Now suppose that dim V = 1, i.e., ρ : 0→ GL(V ) ∼= C∗. Hence ρ is abelian

and completely determined by a nonzero-complex number λ, meaning that for all
γ ∈ 0 and v ∈ V we have ρ(γ )(v)= λϕ(γ )v. So we write ρ = λϕ . Now

H0(0; V [Z])∼= V [Z]/I V [Z] ∼= V [t±1
]/(λt − 1),

since λϕ is an abelian representation and factors through Z. Therefore 1λ
ϕ

0 (t)
.
=

t − λ−1. The dual representation (λϕ)∗ is λ−ϕ , as (λϕ)∗(γ )( f )= f ◦ (λϕ(γ ))−1
=

λ−ϕ(γ ) f , where γ ∈ 0 and f ∈ V ∗. The same calculation as above shows that
H0(0; V ∗[Z]) ∼= V [t±1

]/(λ−1t − 1) and hence 1(λ
ϕ)∗

0 (t) .= t − λ. We obtain
1
(λϕ)∗
0 (t) .=1λ

ϕ

0 (t
−1), which proves the lemma. �

Proof of Theorem 2.6. The knot exterior X has the homotopy type of a 2-dimensional
complex. Therefore Hi (X∞; V )=0 for i>2 and H2(X∞; V ) is a free C[Z]-module.
This implies that 1ρi

.
= 1 for i > 2 and 1ρ2 ∈ {0, 1}. According to the value of 1ρ2

there are two cases to study.
Assume first that 1ρ2 = 0. This is equivalent to H2(X∞; V ) being a nontrivial

free C[Z]-module. By an Euler characteristic argument, H1(X∞; V ) contains also
a nontrivial free factor of the same rank. In particular 1ρ1 = 0. Since Hi (X∞; V )∼=
Hi (X; V [Z]), the universal coefficient theorem yields that Hi (X; V [Z]⊗C[Z]C(t)) 6=
0 for i = 1, 2. Notice also that the natural pairing V × V ∗ → C extends to a
nondegenerate C(t)-bilinear form

(5)
(
V [Z]⊗C[Z] C(t)

)
×
(
V ∗[Z]⊗C[Z] C(t)

)
→ C(t).

Using this bilinear form and Poincaré duality, Hi (X, ∂X; V ∗[Z]⊗C[Z]C(t)) 6= 0 for
i = 1, 2. Since the homology of the 2-torus ∂X with coefficients V ∗[Z]⊗C[Z] C(t)
vanishes [Kirk and Livingston 1999, §3.3], Hi (X; V ∗[Z]⊗C[Z]C(t)) 6=0 for i =1, 2.
Hence 1ρ

∗

1 =1
ρ∗

2 = 0.
Next we deal with the case 1ρ2

.
= 1. Since this is equivalent to H2(X∞; V )= 0,

the homology argument in the previous paragraph gives 1ρ
∗

2
.
= 1. For the first

Alexander polynomials we shall use Reidemeister torsion and Franz–Milnor duality.
By Kitano’s theorem [1996] the torsion of X with coefficients V [Z]⊗C[Z] C(t) is
the ratio of Alexander polynomials:

TOR(X; V [Z]⊗C[Z] C(t))
.
=
1
ρ

1

1
ρ

0
,
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see [Kirk and Livingston 1999, Theorem 3.4] for this precise statement (this is a
version of Milnor’s theorem [1962], see [Turaev 1986]).

Using the bilinear form (5), Franz–Milnor duality for Reidemeister torsion
[Milnor 1962; Franz 1937] gives

TOR
(
X; V [Z]⊗C[Z] C(t)

)
(t) .= TOR

(
X, ∂X; V ∗[Z]⊗C[Z] C(t)

)(1
t

)
.
=

TOR
(
X; V ∗[Z]⊗C[Z] C(t)

)(1
t

)
TOR

(
∂X; V ∗[Z]⊗C[Z] C(t)

)(1
t

) ,
see [Kirk and Livingston 1999, §5.1]. Since ∂X ∼= S1

× S1, TOR(∂X; V ∗[Z]⊗C[Z]

C(t)) .= 1 [Kirk and Livingston 1999, §3.3]. Then the theorem follows from
Lemma 2.7. �

Remark 2.8. Note that every representation ρ : 0→ O(n) is completely reducible
since for each stable subspace W the orthogonal complement W⊥ is also stable.
Moreover, we have ρ∗ = ρ and hence 1ρi (t

−1)
.
=1

ρ
i (t) is symmetric (see [Kitano

1996, Theorem B]). It follows also from the proof of Lemma 2.7 that 1ρ0 (t) =
(t − 1)k+(t + 1)k− where k+ = dim{v ∈ Rn

| ρ(γ )v = v for all γ ∈ 0} and k− =
dim{v ∈ Rn

| ρ(γ )v = (−1)ϕ(γ )v for all γ ∈ 0}.
It was proved in Hillman, Silver, and Williams [2010] that 1ρi (t

−1)
.
= 1

ρ
i (t)

holds if ρ∗ and ρ are conjugates.

We finish this section with an example to show that the hypothesis of complete
reducibility is needed in Theorem 2.6:

Example 2.9. We exhibit representations that are not completely reducible and such
that the conclusion of Theorem 2.6 fails. In order to construct such a representation,
we take ρ : 0→ SL2(C) of the form

ρ =

(
1 d
0 1

)(
λϕ 0
0 λ−ϕ

)
that is not abelian. It is a representation if d ∈ Z1(0;Cλ2) and it is nonabelian if
λ 6=±1 and d 6∈ B1(0;Cλ2), where Cλ2 denotes the 0-module given by γ ·z=λ2ϕ(γ )z
for γ ∈ 0, z ∈ C, see Lemma 5.5. Such a representation exists if and only if λ2 is
a root of the untwisted Alexander polynomial (in particular λ 6= ±1), see [Burde
1967; de Rham 1967; Heusener et al. 2001] for instance, or Lemma 5.5. As ρ is
not abelian, its restriction to π1(X∞) is nontrivial but

ρ(π1(X∞))⊂
{( 1 c

0 1

) ∣∣∣ c ∈ C
}
.

The cohomology module H0(X∞;C2) is isomorphic to C2/I C2. Here the subspace
I C2
⊂ C2 is generated by elements of the form v − ρ(γ )v, with γ ∈ π1(X∞)
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and v ∈ C2, i.e., I C2
=
{(c

0

)
| c ∈ C

}
. So, the linear projection C2

→ C onto the
second coordinate induces a linear isomorphism C2/I C2

−→∼ C. The action of a
meridian m ∈ 0 on C2/I C2 is multiplication by λ−1 and hence H0(X∞;C2) ∼=

C[t±1
]/(t−λ−1) as C[Z]-modules. Therefore, 1ρ0 (t)= t−λ−1. On the other hand,

using that every representation in SL2(C) is equivalent to its dual, see Example 2.4,
1
ρ∗

0 (t)
.
= t − λ−1, and

1
ρ

0 (t
−1)

.
= (t − λ) and 1ρ

∗

0 (t) are not associated.

Notice that if 1ρ2
.
= 1, Franz–Milnor duality (used in the proof of Theorem 2.6)

applies and it holds that 1ρ1 (t
−1)/1

ρ

0 (t
−1)

.
=1

ρ∗

1 (t)/1
ρ∗

0 (t). In particular 1ρ1 (t
−1)

and 1ρ
∗

1 (t) are not associated either.

3. Varieties of representations

In this section we recall some preliminaries on the varieties of representations,
we discuss representations of the peripheral subgroup π1(∂X) ∼= Z⊕ Z, and we
state a regularity result, Proposition 3.3 due to [Heusener and Medjerab 2014].
We also show that infinitesimal regularity implies regularity of the representation
(Corollary 3.5) and its character (Proposition 3.6).

Recall that the set of all representations of 0 in SLn(C) is called the variety of
representations or the SLn(C)-representation variety:

R(0,SLn(C))= Hom(0,SLn(C)).

It is an affine algebraic set (possibly with several components), as 0 is finitely
generated. More precisely, R(0,SLn(C)) embeds in a Cartesian product SLn(C)×

· · ·×SLn(C) by mapping each representation to the image of a generating set, and
SLn(C) is an algebraic group in Cn2

. The group relations of a presentation of 0
induce the algebraic equations defining R(0,SLn(C)). Different presentations give
isomorphic algebraic sets (see [Lubotzky and Magid 1985], for instance).

The group SLn(C) acts on R(0,SLn(C)) by conjugation. The algebraic quotient
by this action is the variety of characters or SLn(C)-character variety

X (0,SLn(C))= R(0,SLn(C)) // SLn(C).

Recall that the GIT quotient exists since SLn(C) is reductive and the representation
variety is an affine algebraic set. (For more details see [Newstead 1978, 3.§3] or
[Shafarevich 1994].)

To describe the Zariski tangent space to R(0,SLn(C)) and X (0,SLn(C)) we
use crossed morphisms or cocycles.

An infinitesimal deformation of a representation is the same as a Zariski tan-
gent vector to R(0,SLn(C)). We use André Weil’s construction that identifies
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Z1(0; sln(C)Ad ρ) with the Zariski tangent space to the scheme R(0,SLn(C)) at ρ.
Here sln(C)Ad ρ is a 0-module via the adjoint action, i.e., γ · x = Adρ(γ )(x) for
γ ∈ 0 and x ∈ sln(C). Notice furthermore that the algebraic equations defining
the representation variety may be nonreduced, hence there is an underlying affine
scheme R(0,SLn(C)) with a possible nonreduced coordinate ring. Weil’s con-
struction assigns to each cocycle d ∈ Z1(0; sln(C)) the infinitesimal deformation
γ 7→ (1+ ε d(γ ))ρ(γ ) for all γ ∈ 0, which satisfies the defining equations for
R(0,SLn(C)) up to terms in the ideal (ε2) of C[ε], i.e., a Zariski tangent vector to
R(0,SLn(C)). Weil’s construction identifies B1(0; sln(C)Ad ρ) with the tangent
space to the orbit by conjugation. See [Weil 1964; Lubotzky and Magid 1985;
Ben Abdelghani 2002] for more details.

Let dimρ R(0,SLn(C)) denote the local dimension of R(0,SLn(C)) at ρ (i.e.,
the maximal dimension of the irreducible components of R(0,SLn(C)) containing
ρ [Shafarevich 1977, Chapter II]). So we obtain:

(6) dimρ R(0,SLn(C))≤ dim Tρ(R(0,SLn(C)))≤ dim Z1(0; sln(C)Ad ρ).

Definition 3.1. Let ρ : 0→ SLn(C) be a representation. We say that ρ is a regular
point of the representation variety if

dimρ R(0,SLn(C))= dim Z1(0; sln(C)Ad ρ).

We call ρ infinitesimal regular if dim H 1(0; sln(C)Ad ρ)= n− 1.

It follows directly from (6) that a regular point is a smooth point of the represen-
tation variety. There are representations of discrete groups which are smooth points
of the representation variety without being regular, as the scheme R(0,SLn(C))

may be nonreduced. (See [Lubotzky and Magid 1985, Example 2.10] for more
details.)

We also make use of the Poincaré–Lefschetz duality theorem with twisted coeffi-
cients: let M be a connected, orientable, compact m-dimensional manifold with
boundary ∂M and let ρ : π1(M)→ SLn(C) be a representation. Then the cup
product and the Killing form b : sln(C)⊗ sln(C)→ C induce a nondegenerate
bilinear pairing

(7) H k(M; sln(C)Ad ρ)⊗ H m−k(M, ∂M; sln(C)Ad ρ)−→̀

H m(M, ∂M; sln(C)Ad ρ ⊗ sln(C)Ad ρ)
b
−→ H m(M, ∂M;C)∼= C

and hence an isomorphism

H k(M; sln(C)Ad ρ)∼= H m−k(M, ∂M; sln(C)Ad ρ)
∗,

for all 0≤ k ≤ m. See [Johnson and Millson 1987; Porti 1997] for more details.



324 MICHAEL HEUSENER AND JOAN PORTI

Lemma 3.2. For any representation % : Z⊕Z→ SLn(C) we have:

dim H 1(Z⊕Z; sln(C)Ad %)≥ 2(n− 1).

In addition, dim H 1(Z⊕Z, sln(C))= 2(n− 1) if and only if % is a regular point of
R(Z⊕Z,SLn(C)).

Recall that a function φ : R(0,SLn(C))→ Z is called upper semicontinuous
if for all k ∈ Z the set φ−1

(
[k,∞)

)
is closed. Moreover, it is easy to prove that

for q = 0, 1 the function ρ 7→ dim Hq(0; sln(C)Ad ρ) is upper semicontinuous (see
[Heusener and Porti 2011, Lemma 3.2], this is a particular case of the semicontinuity
theorem [Hartshorne 1977, Chapter III, Theorem 12.8]).

Proof of Lemma 3.2. Poincaré duality and Euler characteristic give

1
2 dim H 1(Z⊕Z; sln(C)Ad %)= dim H 0(Z⊕Z; sln(C)Ad %)= dim sln(C)

Z⊕Z.

By a result of Richardson [1979, Theorem C], every representation of Z ⊕ Z

into SLn(C) is a limit of diagonal representations, and for diagonal representations
dim sln(C)

Z⊕Z
≥n−1. The general inequality follows from the upper semicontinuity

of the function % 7→ dim H 0(Z⊕Z; sln(C)Ad %).
For the second statement, Richardson proved in the same Theorem C that the

representation variety R(Z ⊕ Z,SLn(C)) is an irreducible algebraic variety of
dimension (n+ 2)(n− 1). It follows that % ∈ R(Z⊕Z,SLn(C)) is a regular point
if and only if dim Z1(Z⊕Z, sln(C))= (n+ 2)(n− 1).

On the other hand,

dim Z1(Z⊕Z, sln(C))= dim H 1(Z⊕Z, sln(C))+ dim B1(Z⊕Z, sln(C));

dim B1(Z⊕Z, sln(C))= n2
− 1− dim H 0(Z⊕Z, sln(C));

dim H 0(Z⊕Z, sln(C))=
1
2 dim H 1(Z⊕Z, sln(C)).

Hence

dim Z1(Z⊕Z, sln(C))=
1
2 dim H 1(Z⊕Z, sln(C))+ n2

− 1.

Thus the lemma follows. (See also [Popov 2008].) �

We will require the following result:

Proposition 3.3 [Heusener and Medjerab 2014, Proposition 3.3]. Let α be a point
in the SLa(C)-representation variety R(0,SLa(C)). If α is infinitesimally regular,
then it is a regular point of R(0,SLa(C)) and belongs to a unique component of
dimension a2

+ a− 2− dim H 0(0; sla(C)).
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Remark 3.4. For an irreducible representation α : 0 → SLa(C), it holds that
H 0(0; sla(C)Adα)= 0. Indeed, if X ∈ sla(C) commutes with α(γ ) for all γ ∈ 0,
then Schur’s lemma implies that X is a scalar matrix and hence X = 0.

As a corollary we obtain from Proposition 3.3 and Remark 3.4:

Corollary 3.5. If an irreducible representation α : 0→ SLa(C) is infinitesimally
regular then it is a regular point of R(0,SLa(C)) of local dimension a2

+ a− 2.

One has furthermore:

Proposition 3.6. If an irreducible representation α : 0→ SLa(C) is infinitesimally
regular, then its character is a smooth point of X (0,SLa(C)) of local dimension
a− 1.

Proof. By Corollary 3.5, α is a regular point of R(0,SLa(C)) of local dimension
a2
+ a − 2. As α is irreducible, the fiber of the projection R(0,SLa(C)) →

X (0,SLa(C)) at α has dimension a2
− 1. The dimension of this fiber is an

upper semicontinuous function, therefore the dimension of X (0,SLa(C)) at α
is at least a − 1. On the other hand, the dimension of the Zariski tangent space
of X (0,SLa(C)) at α is at most dim H 1(0; sla(C)Adα) (this follows from Luna’s
slice as α is irreducible, see [Lubotzky and Magid 1985, Theorem 2.15]). Hence
we have equality of dimensions and the proposition follows. �

4. Twisted cohomology and twisted polynomials

In this section we prove that α⊗β∗ and β⊗α∗ are completely reducible represen-
tations, so that the duality theorem (Theorem 2.6) applies to them. Our assumption
that α : 0→ SLa(C) and β : 0→ SLb(C) are irreducible will be crucial for the
conclusion.

Decomposition of sln(C). Consider the action of 0 on the space of matrices with
a rows and b columns Ma×b(C):

(8) 0×Ma×b(C)→ Ma×b(C), (γ, A) 7→ λnϕ(γ )α(γ )Aβ(γ−1).

The corresponding 0-module is denoted by

M+

λn = Ma×b(C)α⊗β∗⊗λnϕ .

Similarly, we consider the module

M−

λ−n = Mb×a(C)β⊗α∗⊗λ−nϕ .

Notice that those modules occur as factors in the decomposition of sln(C) as
0-modules via the adjoint action Ad ρλ:

sln(C)Ad ρλ= sla(C)Adα ⊕ slb(C)Adβ ⊕C⊕M+

λn ⊕M−

λ−n .
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This can be visualized as

sln(C)Ad ρλ
∼=

(
sla(C)Adα M+

λn

M−

λ−n slb(C)Adβ

)
⊕ C

(
b Ida 0

0 −a Idb

)
.

Duality. For every λ ∈ C∗ we have a nondegenerate bilinear form

(9) 9 :M+

λn ×M−

λ−n → C, (A, B) 7→ tr(AB),

which is 0-invariant: 9(A, B) = 9(γ A, γ B) for all γ ∈ 0. As an immediate
consequence, we have Poincaré and Kronecker dualities:

Hi (X;M±

λ±n )∼= H3−i (X, ∂X;M∓

λ∓n )
∗
;(10)

H i (X;M±

λ±n )∼= H 3−i (X, ∂X;M∓

λ∓n )
∗
;(11)

Hi (X;M±

λ±n )∼= H i (X;M∓

λ∓n )
∗.(12)

The i-th twisted Alexander polynomials of the 0-modules M∓

1 are denoted by

1+i =1
α⊗β∗

i and 1−i =1
β⊗α∗

i .

Taking ρ = α⊗ β∗, then ρ∗ = β ⊗ α∗ by (9). In order to apply Theorem 2.6 to
those polynomials, we need to show that ρ = α⊗β∗ is completely reducible; this
motivates the next subsection.

Linear algebraic groups. We follow Humphreys’ book [1975] as general reference
for linear algebraic groups. A linear algebraic group G contains a unique largest
normal solvable subgroup, which is automatically closed. Its identity component is
then the largest connected normal solvable subgroup of G; it is called the radical
of G, denoted by R(G). The subgroup of unipotent elements in R(G) is normal in
both R(G) and G; it is called the unipotent radical of G, denoted by Ru(G). We
have that R(G)/Ru(G) is a torus. Hence R(G) is a torus if and only if Ru(G) is
trivial.

Recall that a representation ρ : 0→ SL(V ) is called completely reducible if it is
a direct sum of irreducible representations, see Definition 1.1.

Theorem 4.1 [Nagata 1961/1962, Theorem 3]. Let G ⊂ GLn(C) be an algebraic
group. Then Ru(G) is trivial if and only if each rational representation of G is
completely reducible. �

Here a representation ρ :G→GL(V ) is called rational if, with respect to a basis
of V , the matrix entries of ρ(g) are polynomial functions in the n2

+ 1 coordinate
functions xi j (1≤ i, j ≤ n) and 1/det of GLn(C).

Remark 4.2. A nontrivial, connected algebraic group G is called reductive if
Ru(G) is trivial. Since the Zariski closure of a matrix group is in general not
connected we will avoid the term reductive in what follows.
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Lemma 4.3. Let 0 be a group and let ρ :0→ SLn(C) be an irreducible representa-
tion. Then the unipotent radical Ru(G) of the Zariski closure G of ρ(0)⊂ SLn(C)

is trivial.

Proof. Suppose that Ru(G)⊂ SLn(C) is nontrivial. Every unipotent subgroup of
GLn(C) has a nonzero vector fixed by all elements of the group (see [Humphreys
1975, 17.5]). Then the subspace W ⊂ Cn of fixed vectors of Ru(G) is nonzero. By
normality, this subspace is preserved by G, hence by ρ(0), which contradicts the
irreducibility of ρ. �

Lemma 4.4. Let α : 0→ SLa(C) and β : 0→ SLb(C) be irreducible. Then the
unipotent radical Ru(G) of the Zariski closure G of (α⊕β)(0)⊂ SLa(C)×SLb(C)

is trivial.

Proof. Let pa : SLa(C)× SLb(C)→ SLa(C) denote the projection. Then pa((α⊕

β)(0)) = α(0) and therefore pa(Ru(G)) is contained in the unipotent radical
Ru(Ga) of the Zariski closure Ga of α(0) in SLa(C). (The image of an unipotent
element under a morphism of algebraic groups is unipotent [Humphreys 1975,
15.3].) Now, Ru(Ga) is trivial by Lemma 4.3 and hence pa(Ru(G)) is trivial. It
follows in the same way that pb(Ru(G)) is trivial and hence Ru(G)= {1}. �

Remark 4.5. The same argument of Lemma 4.4 proves that the Zariski closure of
a completely reducible linear representation has trivial unipotent radical.

Corollary 4.6. The 0-modules M±

λ±n are completely reducible.

Proof. By Lemma 4.4 the unipotent radical Ru(G) of the Zariski closure G of
(α⊕β)(0)⊂ SLa(C)×SLb(C) is trivial. Hence Nagata’s theorem (Theorem 4.1)
implies that every rational representation of G is completely reducible. In particular,
the restriction to G of the rational representation SLa(C)×SLb(C)→GL(Ma×b(C)),
given by

(A, B) · X = AX B−1,

for all (A, B)∈SLa(C)×SLb(C) and for all X ∈Ma×b(C), is completely reducible.
Since (α ⊕ β)(0) is Zariski dense in G, we obtain that M+

1 is a completely
reducible 0-module. Finally, the action of γ ∈0 on X ∈M+

λn , given by Equation (8),
and the action γ · X = α(γ )Xβ(γ−1) differ only by a homothety. Therefore, M+

λn

is a completely reducible 0-module. The proof for M−

λ−n is similar. �

Corollary 4.7. 1+i (t)
.
=1−i (t

−1).

Proof. The corollary follows directly from Theorem 2.6 and Corollary 4.6. �
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5. Necessary condition

The goal of this section is to prove Theorem 1.3. More precisely, we will prove
that if the representation ρλ = (λbϕ

⊗ α)⊕ (λ−aϕ
⊗ β), as defined in (1), can be

deformed to irreducible representations, then 1+1 (λ
n)= 0. Recall that throughout

the paper we assume that α and β are irreducible and infinitesimally regular.

Lemma 5.1. Assume that ρλ belongs to a component of R(0,SLn(C)) that contains
irreducible representations. Then

dim Z1(0; sln(C)Ad ρλ)≥ n2
+ n− 2.

Proof. It is sufficient to prove the inequality for an irreducible representation
ρ ∈ R(0,SLn(C)), because the dimension of Z1(0; sln(C)Ad ρ) is an upper semi-
continuous function on ρ and because irreducibility is a Zariski-open condition.
We have

dim Z1(0; sln(C)Ad ρ)= dim H 1(0; sln(C)Ad ρ)+ dim B1(0; sln(C)Ad ρ).

Now, dim B1(0; sln(C)Ad ρ)= n2
− 1 because ρ is irreducible.

Next we apply Poincaré duality to the long exact sequence of the pair (X, ∂X):

(13) H 1(X; sln(C)Ad ρ)→ H 1(∂X; sln(C)Ad ρ)→ H 2(X, ∂X; sln(C)Ad ρ).

Poincaré duality (7) implies isomorphy between H 1(X; sln(C)Ad ρ) and the dual
space H 2(X, ∂X; sln(C)Ad ρ)

∗. Moreover, the maps of (13) are dual to each other.
So:

(14) 1
2 dim H 1(∂X; sln(C)Ad ρ)≤ dim H 1(0; sln(C)Ad ρ).

The claimed inequality of the statement follows from Lemma 3.2. �

Lemma 5.2. Under the hypothesis of Lemma 5.1 we have

dim H 1(0;M+

λn ) > dim H 0(0;M+

λn )

or
dim H 1(0;M−

λ−n ) > dim H 0(0;M−

λ−n ).

We shall see in Remark 5.4 below that we get both inequalities.

Proof. Here we use the decomposition of 0-modules (see Section 4):

(15) sln(C)Adρλ = sla(C)Adα ⊕ slb(C)Adβ ⊕C⊕M+

λn ⊕M−

λ−n .

We aim to apply Lemma 5.1, so we compute the dimension of the space of 1-cocycles
for each 0-module in (15). For each 0-module m, we use the formula

(16) dim Z1(0;m)= dim H 1(0;m)+ dim B1(0;m)

= dim H 1(0;m)+ dimm− dim H 0(0;m).
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Ordering the terms as they appear in (16):

dim Z1(0; sla(C)Adα)= (a− 1)+ (a2
− 1)− 0,

dim Z1(0; slb(C)Adβ)= (b− 1)+ (b2
− 1)− 0,

dim Z1(0;C)= 1+ 1− 1,

dim Z1(0;M±

λ±n )= dim H 1(0;M±

λ±n )+ ab− dim H 0(0;M±

λ±n ).

The first two lines use that α and β are irreducible and infinitesimally regular, the
last one that dimM±

λ±n = ab. Adding up the dimensions of the terms in (15) and
using Lemma 5.1 and the fact that a+ b = n, we obtain

n2
+ n− 2≤ n2

+ n− 3+ dim H 1(0;M+

λn )− dim H 0(0;M+

λn )

+ dim H 1(0;M−

λ−n )− dim H 0(0;M−

λ−n ),

which proves the lemma. �

For later use we remark on the following computation, made during the last proof.
Notice that it does not use that ρλ can be deformed to irreducible representations
(but it uses that α and β are irreducible and infinitesimally regular):

(17) dim Z1(0; sln(C)Ad ρλ)= n2
+n−3+dim H 1(0;M+

λn )−dim H 0(0;M+

λn )

+ dim H 1(0;M−

λ−n )− dim H 0(0;M−

λ−n ).

Lemma 5.3. Let ρλ : 0→ SLn(C) be given by ρλ = (λbϕ
⊗α)⊕ (λ−aϕ

⊗β). Then
dim H 1(0;M±

λ±n ) > dim H 0(0;M±

λ±n ) if and only if 1∓1 (λ
∓n)= 0.

Proof. Recall that 1±i is the order of Hi (X∞;M±

1 )
∼= Hi (X;M±

1 [Z]). We have a
short exact sequence of 0-modules

0→M−

1 [Z]
(t−λ−n)·
−−−−→M−

1 [Z] →M−

λ−n → 0

which gives the following long exact sequence in homology [Brown 1994, III.§6]:

. . .→ H1(0;M−

1 [Z])
(t−λ−n)·
−−−→ H1(0;M−

1 [Z])→ H1(0;M−

λ−n )
∂
−→

H0(0;M−

1 [Z])
(t−λ−n)·
−−−→ H0(0;M−

1 [Z])→ H0(0;M−

λ−n )→ 0.

Thus 1−1 (λ
−n)= 0 if and only if ker ∂ is nontrivial.

Next we claim that ker ∂ is nontrivial if and only if H 1(0;M+

λn ) has higher
dimension than H 0(0;M+

λn ). It follows from Lemma 2.7 and Equation (3) that
the C[Z]-module H0(0;M−

1 [Z]) is torsion, i.e., it is a finite dimensional C-vector
space. Hence, by exactness, rank ∂ = dim H0(0;M−

λ−n ) and
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dim ker ∂ = dim H1(0;M−

λ−n )− rank ∂

= dim H1(0;M−

λ−n )− dim H0(0;M−

λ−n )

= dim H 1(0;M+

λn )− dim H 0(0;M+

λn ),

by Kronecker duality (12), which proves the claim. Of course the same proof
applies by symmetry for the opposite signs ± and ∓. �

Proof of Theorem 1.3. By Lemmas 5.2 and 5.3 we get that if ρλ can be deformed to
irreducible representations, then 1+1 (λ

n)= 0 or 1−1 (λ
−n)= 0. Corollary 4.7 yields

1+1 (λ
n)=1−1 (λ

−n)= 0. �

Remark 5.4. Notice that in the situation of Theorem 1.3, from Lemma 5.3 and
Corollary 4.7 we get both inequalities

dim H 1(0;M±

λ±n ) > dim H 0(0;M±

λ±n ).

We will later need the following construction. Given a 1-cochain c∈C1(0;M+

λn ),
i.e., a map c : 0→M+

λn , consider the map ρc
λ : 0→ SLn(C) given by

(18) ρc
λ(γ )=

(
Ida c(γ )
0 Idb

)
ρλ(γ ), γ ∈ 0.

Lemma 5.5. The map ρc
λ : 0→ SLn(C) given by (18) is a representation if and

only if c is a cocycle, i.e., c ∈ Z1(0;M+

λn ). For such c, there is equivalence between
these conditions:

(i) ρc
λ is conjugate to ρλ.

(ii) c is a coboundary (i.e., c ∈ B1(0;M+

λn )).

(iii) ρc
λ is completely reducible.

Proof. The equivalence between being a representation and the cocycle condition is
a straightforward computation; so is the equivalence between being conjugate to ρλ
and the coboundary condition. The equivalence with complete reducibility comes
from the fact that there is a unique orbit of completely reducible representations in
the fiber of the map R(0,SLn(C))→ X (0,SLn(C)) [Lubotzky and Magid 1985].
Hence two completely reducible representations having the same character are
conjugates. �

The following corollary generalizes a result of G. Burde [1967] and G. de Rham
[1967]:

Corollary 5.6. There exists a reducible, not completely reducible representation
ρc
λ : 0→ SLn(C) such that χρc

λ
= χρλ if and only if λn is a root of the product of

twisted Alexander polynomials 1+1 (t)1
+

0 (t).
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Proof. By Lemma 5.5, such a representation exists if and only if H 1(0;M+

λn ) or
H 1(0;M−

λ−n ) does not vanish. By Kronecker duality this is equivalent to saying
that H1(0;M+

λn ) or H1(0;M−

λ−n ) does not vanish. Then, the long exact sequence
in the proof of Lemma 5.3 shows that this is equivalent to one of H1(0;M±

1 [Z])

or H0(0;M±

1 [Z]) to have (t − λ±n)-torsion. With the duality of polynomials,
Corollary 4.7, this proves the lemma. �

This corollary also applies when α = β = 1 and λ=±1. Since 10(t)= (t − 1),
the vanishing 10((±1)2)= 0 corresponds to the representations

γ 7→ ±

(
1 d(γ )
0 1

)
, γ ∈ 0,

where d : 0→ (C,+) is any group morphism.

6. Infinitesimal deformations and cup products

Throughout this section and the next one we assume the hypothesis of Theorem 1.4,
namely that 1+0 (λ

n) 6= 0 and λn is a simple root of 1+1 . By Corollary 4.7, we
also have that 1−0 (λ

−n) 6= 0 and λ−n is a simple root of 1−1 . Thus the C[Z]-
module H0(0;M±

1 [Z]) has no (t − λ±n)-torsion and H1(0;M±

1 [Z]) has a single
C[t±1

]/(t −λ±n)-factor. Furthermore, the following proposition gives more details
on the cohomology.

Proposition 6.1. Assume 1+0 (λ
n) 6= 0 and λn is a simple root of 1+1 . Then

(i) dim H i (0;M±

λ±n )=

{
1 if i = 1, 2,
0 otherwise.

(ii) The (t − λ±n)-torsion of Hq(0;M±

1 [Z]) is zero for q 6= 2 and cyclic of the
form C[Z]/(t − λ±n) for q = 2.

Proof. In order to prove the first assertion, we use the long exact sequence in
the proof of Lemma 5.3. The hypothesis on the twisted Alexander polynomials
gives that the (t −λ±n)-torsion of Hi (0;M±

1 [Z]) is zero for i 6= 1 and t −λ±n for
i = 1. The long exact sequence gives that Hi (X;M±

λ±n ) has dimension 1 if i = 1, 2
and dimension 0 otherwise. Hence the first assertion follows from Kronecker
duality, (12).

For the second assertion, we use the universal coefficient theorem for cohomology:
for any representation ρ : 0→ GL(V ) we have

(19) Hq(X; V ∗[Z])
∼= HomC[Z]

(
Hq(X; V [Z]),C[Z]

)
⊕ExtC[Z]

(
Hq−1(X; V [Z]),C[Z]

)
,

where Hq(X; V ∗[Z]) denotes the group Hq(X; V ∗[Z]) with the conjugate C[Z]-
module structure. For a detailed argument see pp. 638–639 in [Kirk and Livingston
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1999]. We apply (19) to the representation α ⊗ β∗ and its dual β ⊗ α∗. By
the hypothesis on the twisted Alexander polynomials, the (t − λ±n)-torsion of
Hi (0,M±

1 [Z]) is zero for i 6= 1 and t −λ±n for i = 1. Notice that Hq(X;M±

1 [Z])

are torsion C[Z]-modules, and the (t−λ±n)-torsion of H 2(X;M±

1 [Z]) is (t−λ∓n).
The claim follows since −tλ±n(t−1

− λ∓n)= (t − λ±n). �

From now on we fix cocycles

d± ∈ Z1(0;M±

λ±n )

whose cohomology classes do not vanish. Because H 1(0;M±

λ±n )∼=C, the elements
d± are unique up to adding a coboundary and up to multiplying by a nonzero scalar.
Our next goal is to show that the cohomology class of the cup product ϕ` d± does
not vanish in H 2(0;M±

λ±n ). For that purpose we shall use the dual numbers.

Dual numbers. The algebra of dual numbers is defined to be

Cε = C[ε]/ε2.

Similarly define Cε[Z] = C[Z]⊗C Cε and

M±

λ±n(1±ε) =
(
M±

1 [Z]⊗C Cε
)
/
(
t − λ±n(1± ε)

)
.

Lemma 6.2. If λn
∈ C∗ is a simple root of 1+1 such that 1+0 (λ

n) 6= 0, then
dim H 1(0;M±

λ±n(1±ε))= 1.

Proof. Notice that 1−0 (λ
−n) 6= 0 and λ−n is a simple root of 1−1 by Corollary 4.7.

We have that H 1(0;M+

1 [Z] ⊗ Cε) ∼= H 1(0;M+

1 [Z])⊗ Cε since Cε is a trivial
0-module (isomorphic to C2). As before, the short exact sequence

0→M+

1 [Z]⊗C Cε
(t−λn(1+ε))·
−−−−−−→M+

1 [Z]⊗C Cε→M+

λn(1+ε)→ 0

gives a long exact sequence in cohomology (see [Brown 1994, III.§6]),

· · · → H i (0;M+

1 [Z])⊗Cε
(t−(λn(1+ε))·
−−−−−−→ H i (0;M+

1 [Z])⊗Cε

→ H i (0;M+

λn(1+ε))→ H i+1(0;M+

1 [Z])⊗Cε→ · · · .

Note that for µ 6= λn , µ ∈ C, multiplication by t − λn(1 + ε) induces an au-
tomorphism of Cε[Z]/(t − µ)k . Therefore, we are interested in the (t − λn)-
torsion of Hq(0;M+

1 [Z]) described by Proposition 6.1: it vanishes for q 6= 2
and it is C[Z]/(t − λn) for q = 2. Hence, multiplication by (t − λn(1+ ε)) on
H i (0;M+

1 [Z]⊗Cε) is an isomorphism for i 6=2. In order to understand the effect of
the multiplication on H 2(0;M+

1 [Z]⊗Cε) it is sufficient to consider multiplication
by (t − λn(1+ ε)) on

C[Z]/(t − λn)⊗Cε ∼= C[Z]/(t − λn)⊕ εC[Z]/(t − λn).
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Since t −λn vanishes in this ring, multiplication by (t −λn(1+ ε)) is equivalent
to multiplication by −ελn on Cε ∼=C⊕εC. Therefore, its kernel and cokernel have
C-dimension 1, which proves dimC H 1(0;M+

λn(1+ε))= 1.
By symmetry the same argument yields dimC H 1(0;M−

λ−n(1−ε))= 1. �

Cup product and Bockstein homomorphism. Let A1, A2 and A3 be 0-modules.
The cup product of two cochains ci ∈ C1(0; Ai ), i = 1, 2 is the cochain c1` c2 ∈

C2(0; A1⊗ A2) defined by

(20) c1` c2(γ1, γ2) := c1(γ1)⊗ γ1c2(γ2).

Here A1⊗ A2 is a 0-module via the diagonal action.
It is possible to combine the cup product with any 0-invariant, bilinear map

b : A1⊗ A2→ A3. So we obtain a cup product

b` : C1(0; A1)⊗C1(0; A2)−→̀ C1(0; A1⊗ A2)
b
−→ C2(0; A3).

For details see [Brown 1994, V.3]. In what follows we are mainly interested in the
case where the bilinear form is simply the matrix multiplication, i.e.,

C⊗M±

λ±n →M±

λ±n or sla(C)⊗M+

λn →M+

λn .

Hence we will write simply “`” for such a cup product when no confusion can
arise.

Let b : A1⊗ A2→ A3 be bilinear and let τ : A2⊗ A1→ A1⊗ A2 be the twist
operator. Then for ci ∈ C1(0; Ai ), i = 1, 2, we define the cup product

b◦τ` : C1(0; A2)⊗C1(0; A1)→ C2(0; A3).

Again we are mainly interested in matrix multiplication and we will write simply
“τ`” for such a cup product when no confusion can arise.

Example 6.3. Let ca ∈ C1(0; sla(C)) and d ∈ C1(0;M+

λn ) be given. Then

ca ` d(γ1, γ2)= ca(γ1)γ1 d(γ2)= λ
nϕ(γ1)ca(γ1)α(γ1) d(γ2)β(γ1)

−1

and

d τ` ca(γ1, γ2)= γ1ca(γ2) d(γ1)= α(γ1)ca(γ2)α(γ1)
−1 d(γ1).

Remark 6.4. If za ∈ Z1(0; sla(C)) and d+ ∈ Z1(0;M+

λn ) are cocycles, then for
f : 0→M+

λn given by f (γ )= za(γ )d+(γ ) we have

δ f (γ1, γ2)+ za ` d+(γ1, γ2)+ d+ τ` za(γ1, γ2)= 0,

i.e., d+ τ` za ∼−za ` d in C2(0;M+

λn ).
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Lemma 6.5. Consider the nonsplit exact sequence of 0-modules

0→M±

λ±n
ε·
−→M±

λ±n(1±ε) −→M±

λ±n → 0.

Then the image of the cohomology class represented by d± (in H 1(0;M±

λ±n ))
under the Bockstein homomorphism is represented by the cup product d±`ϕ (in
H 2(0;M±

λ±n )).

Proof. In order to calculate the Bockstein homomorphism b : H 1(0;M+

λn )→

H 2(0;M+

λn ) we proceed as follows (according to the snake lemma): given a
cocycle d+ ∈ Z1(0;M+

λn ) we choose a cochain d̃+ ∈ C1(0;M+

λn(1+ε)) which
projects onto d+ and then we calculate δεd̃+ ∈ C2(0;M+

λn(1+ε)) where δε denotes
the coboundary operator of C∗(0;M+

λn(1+ε)). Since d+ is a cocycle we obtain
δεd̃+ = ε · z for a 2-cocycle z ∈ Z2(0;M+

λn ) which represents the image of the
Bockstein map. By abusing notation, we also denote the map constructed in this way
by b : Z1(0;M+

λn )→ Z2(0;M+

λn ), even if it is only well defined in cohomology. In
particular b(d+)∼ z. In order to calculate z∈ Z2(0;M+

λn )we choose d̃+=d++ε·0:

δεd̃+(γ1, γ2)= γ1d̃+(γ2)− d̃+(γ1γ2)+ d̃+(γ1)

= λnϕ(γ1)(1+ εϕ(γ1))α(γ1)d+(γ2)β(γ1)
−1
− d+(γ1γ2)+ d+(γ1)

= εϕ(γ1)γ1d+(γ2)= ε ·ϕ` d+(γ1, γ2).

Therefore, b(d+)∼ ϕ` d+. The calculation for b(d−)∼ ϕ` d− is similar. �

Corollary 6.6. Assume dimC H 1(0;M±

λ±n ) = 1, H 0(0;M±

λ±n ) = 0 and let d± ∈
Z1(0;M±

λ±n ) be not cohomologous to zero. Then dim H 1(0;M±

λ±n(1±ε))= 1 if and
only if the cup product ϕ` d± does not vanish in H 2(0;M±

λ±n ).

Proof. Consider the nonsplit exact sequence of 0-modules

0→M±

λ±n
ε·
−→M±

λ±n(1±ε)→M±

λ±n → 0

and the corresponding long exact sequence in cohomology:

(21) 0→H 1(0;M±

λ±n )
ε·
−→ H 1(0;M±

λ±n(1±ε))→H 1(0;M±

λ±n )
b
→ H 2(0;M±

λ±n ).

The lemma then follows from the sequence (21), as by Lemma 6.5 b(d±) ∼
ϕ` d± and dim H 1(0;M±

λ±n )= 1. �

Combining Proposition 6.1, Lemma 6.2, and Corollary 6.6, we deduce:

Corollary 6.7. Under the hypothesis of Theorem 1.4, the cup product ϕ` d± does
not vanish in H 2(0;M±

λ±n ).
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7. A not completely reducible representation ρ+

In this section we construct a ρ+ ∈ R(0,SLn(C)) that has the same character as ρλ
but is not completely reducible. We show that ρ+ is a smooth point of R(0,SLn(C))

and that it can be deformed to irreducible representations. This proves Theorem 1.4,
because the orbit by conjugation of ρ+ accumulates to ρλ.

Assume throughout this section that the hypotheses of Theorem 1.4 hold true.
Namely (using Corollary 4.7), 1±n

0 (λ±n) 6= 0 and λ±n is a simple root of 1±1 .
Recall we have fixed d+ ∈ Z1(0;M+

λn ), a cocycle not homologous to zero. Let

ρ+ =

(
Ida d+
0 Idb

)
ρλ.

By Lemma 5.5, ρ+ is not completely reducible, hence it is not conjugate to ρλ,
even if it has the same character. We shall prove that ρ+ is a regular point of
R(0,SLn(C)) and that the local dimension is dim SLn(C)+ n − 1 = n2

+ n − 2.
Then we will argue that the reducible representations around ρλ form a Zariski
closed algebraic set of dimension n2

+ n− 3, which will prove Theorem 1.4.
Let P+ =

(
∗ ∗
0 ∗
)
⊂ SLn(C) be the maximal parabolic subgroup that preserves

Ca
⊕ 0. Its Lie algebra is denoted by p+ ⊂ sln(C). We have two short exact

sequences of 0-modules via the action of Ad ρ+:

(22) 0→M+

λn → p+→ D→ 0,

where

(23) D = sla(C)⊕ slb(C)⊕C,

and

(24) 0→ p+→ sln(C)→M−

λ−n → 0.

We will use the corresponding long exact sequences in cohomology to compute
H 1(0; sln(C)Ad ρ+). The first step is the following lemma.

Lemma 7.1. H 0(0; p+)= 0.

Proof. The long exact sequence associated to (22) starts with

0= H 0(0;M+

λn )→ H 0(0; p+)→ H 0(0;D) b
−→ H 1(0;M+

λn ).

The group H 0(0;D)∼= C is generated by the invariant element
(
−b Ida 0

0 a Idb

)
∈ D0 .

A similar calculation as in the proof of Lemma 6.5 using the snake lemma gives
b
(
−b Ida 0

0 a Idb

)
∼ nd+. Therefore b : H 0(0;D)→ H 1(0;M+

λn ) is injective and
hence H 0(0; p+)= 0. �
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We continue the long exact sequence in cohomology associated to (22):

0→ C→ H 1(0;M+

λn )→ H 1(0; p+)→ H 1(0;D) b
−→ H 2(0;M+

λn ).

Since H i (0;M+

λn )∼= C for i = 1, 2 by Proposition 6.1, it shortens to

0→ H 1(0; p+)→ H 1(0;D) b
−→ H 2(0;M+

λn ).

Next we aim to compute b : H 1(0;D)→ H 2(0;M+

λn ). For this we use the
decomposition (23). Every element in H 1(0;D) is represented by a cocycle

(25) ϑ =

(
za 0
0 zb

)
+ zϕ

(
−b Ida 0

0 a Idb

)
where za ∈ Z1(0; sla(C)), zb ∈ Z1(0; slb(C)), and z ∈ C.

Lemma 7.2. For a cocycle ϑ ∈ Z1(0;D) as in (25),

b(ϑ)∼ za ` d++ d+` zb+ znd+`ϕ.

Proof. As in Lemma 6.5 we compute b(ϑ) by using the snake lemma. Namely,
let δ+ be the coboundary operator of C∗(0; p+), and let ϑ̃ ∈ C1(0; p+) be the
composition of ϑ with the inclusion D ↪→ p+. Then

δ+ϑ̃(γ1, γ2)=

(
0 −γ1za(γ2)d+(γ1)+ d+(γ1)γ1zb(γ2)+ znd+(γ1)ϕ(γ2)

0 0

)
and hence b(ϑ)∼−d+ τ` za + d+` zb+ znd+`ϕ.

Finally, Remark 6.4 proves the lemma. �

Since ϕ` d± is not cohomologous to zero (Corollary 6.7) and H 2(0;M+

λn )∼=C

(Proposition 6.1), we deduce:

Corollary 7.3. The cohomology group H 1(0; p+)∼= Cn−2 is naturally identified to
the kernel of the rank one map:

H 1(0;D)∼= H 1(0; sla(C))⊕ H 1(0; slb(C))⊕C b
→ H 2(0;M+

λn )∼= C.

Next we consider the long exact sequence corresponding to (24):

(26) 0→ H 1(0; p+)→ H 1(0; sln(C)Ad ρ+)→ H 1(0;M−

λ−n ).

Hence

(27) dim H 1(0; sln(C)Ad ρ+)≤ dim H 1(0; p+)+ dim H 1(0;M−

λ−n )

= n− 2+ 1= n− 1.



KNOT GROUP REPRESENTATIONS AND TWISTED ALEXANDER POLYNOMIALS 337

On the other hand we apply Poincaré duality to the long exact sequence of the pair
(X, ∂X) (see (13)) and we obtain as in Equation (14):

(28) dim H 1(∂X; sln(C)Ad ρ+)≤ 2 dim H 1(0; sln(C)Ad ρ+)≤ 2(n− 1).

Proposition 7.4. ρ+ is a regular point of R(0,SLn(C)) of dimension n2
+ n− 2.

Proof. The dimension inequality of Lemma 3.2 and the inequality (28) yield
dim H 1(0; sln(C)Ad ρ+)= n− 1, and we apply Proposition 3.3. �

Before proving that the irreducible component of R(0,SLn(C)) containing ρ+

also contains irreducible representations, we need a remark and two lemmas.

Remark 7.5. It follows from the proof of Proposition 7.4 that inequalities (27)
and (28) are equalities, therefore (26) becomes a short exact sequence:

0→ H 1(0; p+)→ H 1(0; sln(C)Ad ρ+)→ H 1(0;M−

λ−n )→ 0.

Lemma 7.6. The representation ρ+ is a smooth point of R(0, P+).

Proof. The key tool here is the vanishing of Goldman’s obstructions [1984] to
integrability, which relies on the naturality of these obstructions and the vanishing
for sln(C). (In our proof of Proposition 7.4 this vanishing is also used implicitly,
since our Proposition 3.3 is taken from [Heusener and Medjerab 2014], where the
vanishing is invoked.)

By Remark 7.5, the long exact sequence in cohomology associated to (24) yields
an injection

0→ H 2(0; p+)→ H 2(0; sln(C)Ad ρ+).

Now Goldman’s obstructions to integrability are natural for the inclusion p+→

sln(C). In addition, the obstructions of a cocycle in p+ remain in p+, because
p+→ sln(C) is a subalgebra (closed under the Lie bracket) and a 0-submodule of
sln(C). Since ρ+ is a smooth point of R(0,SLn(C)), for any cocycle in Z1(0; p+)

the infinite sequence of obstructions to integrability in H 2(0; sln(C)Ad ρ+) vanish,
so the infinite sequence of obstructions to integrability in H 2(0; p+) also vanish.
This establishes that any infinitesimal deformation is formally integrable and it
follows from Artin’s theorem [1968] that it is actually integrable, which proves the
lemma. �

Let 1≤ k ≤ n and let Rk ⊂ R(0,SLn(C)) denote the subset of representations ρ
such that ρ(0) preserves a k-dimensional subspace of Cn .

Lemma 7.7. For all 1≤ k ≤ n, the subset Rk ⊂ R(0,SLn(C)) is Zariski-closed.

Proof. The assertion is clear for k = n since Rn = R(0,SLn(C)). Hence suppose
that 1≤ k<n and let P(k)⊂SLn(C) denote the parabolic subgroup which preserves



338 MICHAEL HEUSENER AND JOAN PORTI

Ck
× {0} ⊂ Cn . The set R(0, P(k)) ⊂ R(0,SLn(C)) is Zariski-closed since it is

given by a finite number of equations. Moreover, we have

Rk = SLn(C) · R(0, P(k))= SLn(C)/P(k) · R(0, P(k))

since P(k) preserves R(0, P(k)). Finally, Rk is Zariski-closed since the quotient
SLn(C)/P(k) is complete (see [Humphreys 1995, §0.15]). �

Lemma 7.8. The unique proper invariant subspace of ρ+(0) is Ca
×{0}.

Proof. We compute the possible nonzero invariant subspaces of ρ+(0) by taking a
nonzero vector v ∈ Cn and considering the linear span of its orbit 〈ρ+(0)v〉. When
v ∈ Ca

×{0}, then 〈ρ+(0)v〉 = Ca
×{0} because α is irreducible. So we assume

that the projection of v to the quotient Cn/Ca
×{0} does not vanish, and since β is

irreducible, the projection of the linear span 〈ρ+(0)v〉 is the whole Cn/Ca
×{0}. In

particular the dimension of 〈ρ+(0)v〉 is at least b. Notice that dimC〈ρ
+(0)v〉 = b

cannot occur, because this would yield a direct sum Cn
= Ca

× {0} ⊕ 〈ρ+(0)v〉;
by Lemma 5.5 this would contradict the choice of ρ+ and the nontriviality of the
cohomology class of d+. Therefore dimC〈ρ

+(0)v〉> b, so that 〈ρ+(0)v〉 contains
at least a nontrivial vector in Ca

×{0} (the kernel of the projection). Irreducibility
of α gives now 〈ρ+(0)v〉 = Cn . �

Let S be the component of R(0,SLn(C)) that contains ρ+. In particular, dim S=
n2
+ n− 2.

Proposition 7.9. S contains irreducible representations.

Proof. We prove the proposition by contradiction, hence assume that there is a
Zariski neighborhood U ⊂ S ⊂ R(0,SL2(C)) of ρ+ so that all representations in
U are reducible. By Lemmas 7.7 and 7.8, the choice of the U can be made so that
the representations in U have only an a-dimensional invariant subspace.

In particular every representation in U is conjugate to a representation in P+ =
P(a). Therefore given any Zariski neighborhood U+ ⊂ R(0, P+) of ρ+, U can
be chosen so that every representation in U is conjugate to a representation in U+.
As ρ+ is a smooth point of R(0, P+) by Lemma 7.6, ρ+ is contained in a single
irreducible component S+ of R(0, P+), and we may chose U+ ⊂ S+. This yields
the inclusion

U ⊂ SLn(C) ·U+ ⊂ SLn(C) · S+.

Now we reach the contradiction by computing dimensions. Using that P+ stabilizes
S+ we get

dim U ≤ dim(SLn(C) · S+)≤ dim(SLn(C)/P+)+ dim S+,

where dim(SLn(C)/P+)= n2
− 1− dim p+, and

dim S+ = dim H 1(0; p+)+ dim p+− dim H 0(0; p+)= n− 2+ dim p+− 0.



KNOT GROUP REPRESENTATIONS AND TWISTED ALEXANDER POLYNOMIALS 339

This yields dim U ≤ n2
+ n− 3, contradicting Proposition 7.4, which asserts that

dim U = dim S = n2
+ n− 2. �

8. The neighborhood of χλ

The aim of this section is to prove Theorem 1.5, i.e., we determine the local structure
of the character variety X (0,SLn(C)) at χλ, the character of the representation ρλ
given by (1). For this purpose we will identify the quadratic cone of X (0,SLn(C))

at χλ by means of algebraic obstructions to integrability. Moreover, we will describe
these obstructions geometrically.

Before discussing the components of the variety of characters, we need to discuss
the components of the variety of representations. In Section 7 we have constructed
S a component of R(0,SLn(C)) of dimension n2

+ n − 2 that contains ρ+ and
irreducible representations (Propositions 7.4 and 7.9).

Next we discuss a component of reducible representations. The representation
variety R(0,SLn(C)) contains

R(0,SLa(C))× R(0,SLb(C))× R(0,C∗)

where the inclusion is given by

(α′, β ′, λ′) 7→ ((λ′)bϕ ⊗α′)⊕ ((λ′)−aϕ)⊗β ′).

Our hypothesis on infinitesimal regularity implies that α ∈ R(0,SLa(C)) and
β ∈ R(0,SLb(C)) are smooth points which are contained in unique components
Vα ⊂ R(0,SLa(C)) and Vβ ⊂ R(0,SLb(C)) respectively. Hence we obtain an
embedding

Vα × Vβ × R(0,C∗) ↪→ R(0,SLn(C)).

Lemma 8.1. There exists a unique component T of R(0,SLn(C)) that contains

Vα × Vβ × R(0,C∗).

Moreover, we have dim T = n2
+ n− 3.

Proof. By the hypothesis of Theorem 1.5 we have 1α⊗β
∗

0 (λn) 6= 0 and λn is a
simple root of 1α⊗β

∗

1 (t). Hence for all λ′ 6= λ which are sufficiently close to λ
we have 1α⊗β

∗

q ((λ′)n) 6= 0 for q = 0, 1. Hence, by the argument in the proof of
Proposition 6.1 we obtain Hq(0;M±

(λ′)±n )= 0 for q = 0, 1.
Now consider the representation

ρλ′ = ((λ
′)bϕ ⊗α)⊕ ((λ′)−aϕ

⊗β) ∈ Vα × Vβ × R(0,C∗)

and the corresponding decomposition of sln(C)Ad ρλ′ as 0-module:

sln(C)Ad ρλ′ = sla(C)Adα ⊕ slb(C)Adβ ⊕C⊕M+

(λ′)n ⊕M−

(λ′)−n .
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Hence

dim Z1(0; sln(C)Ad ρλ′ )= dim H 1(0; sln(C)Ad ρλ′ )+ dim B1(0; sln(C)Ad ρλ′ )

= a− 1+ b− 1+ 1+ n2
− 1− 1= n2

+ n− 3.

On the other hand, for the SLn(C)-orbit of Vα × Vβ × R(0,C∗) we have:

SLn(C) · (Vα × Vβ × R(0,C∗))= SLn(C)/P+ · (U+ · Vα × Vβ × R(0,C∗))

where U+=
{( ida X

0 idb

) ∣∣ X ∈M+

(λ′)n

}
. Now the action of U+ on Vα×Vβ×R(0,C∗)

is generically free since H 0(0;M+

(λ′)n )= 0 and hence

dim SLn(C) · (Vα × Vβ × R(0,C∗))≥ ab+ ab+ a2
+ a− 2+ b2

+ b− 2+ 1

= n2
+ n− 3.

Therefore, ρλ′ is a smooth point of R(0,SLn(C)) which is contained in a unique
n2
+ n − 3-dimensional component T . Note that T is the Zariski closure of the

orbit SLn(C) · (Vα × Vβ × R(0,C∗)). �

Let Y and Z denote the components of the character variety that contain the
characters of S and T respectively. We have dim Y = dim S− dim SLn(C)= n− 1.
In addition dim Z ≥ a−1+b−1+1= n−1 since T contains Vα×Vβ× R(0,C∗).
Notice that the generic dimension of the orbit of (α′, β ′, λ′) ∈ Vα × Vβ × R(0,C∗)

is n2
− 2. Hence, dim Z ≤ dim T − (n2

− 2) = n− 1. Hence dim Z = n− 1 and
dim T = n2

+ n− 3.
Let Zα ⊂ X (0,SLa(C)) and Zβ ⊂ X (0,SLb(C)) denote the irreducible compo-

nents that contain the respective projections of Vα and Vβ . We have a commutative
diagram

Vα × Vβ × R(0,C∗) −−−→ T ⊂ R(0,SLn(C))y y
Zα × Zβ ×C∗ −−−→ Z ⊂ X (0,SLn(C))

The top row is injective but not the bottom one, as conjugation can realize permuta-
tions of rows and columns. In general those permutations are difficult to describe,
but if we restrict to irreducible characters, this is simpler.

Lemma 8.2. There exists a Zariski dense subset Z̊ ⊂ Z such that:

– If Zα 6= Zβ (in particular if a 6= b), then Z̊ ∼= Z irr
α × Z irr

β ×C∗.

– If Zα = Zβ , then Z̊ ∼= Z irr
α × Z irr

β × C∗/∼, where the relation is defined by
(χa, χb, λ)∼ (χb, χa, λ

−1), for (χa, χb, λ) ∈ Z irr
α × Z irr

β ×C∗.

Here Z irr
α denotes the set of irreducible characters in Zα . We use similar notation

for other components of characters and representations.
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Proof. Recall from the proof of Lemma 8.1 that T is the Zariski closure of the
orbit SLn(C) · (Vα × Vβ × R(0,C∗)). As V irr

α and V irr
β are dense in Vα and Vβ ,

SLn(C) · (V irr
α × V irr

β × R(0,C∗)) is dense in T . Its projection Z̊ to Z is the image
of Z irr

α × Z irr
β ×C∗, which is Zariski dense. To determine this image, we use that

each point in X (0,SLn(C)) is the character of a semisimple representation, unique
up to conjugation [Lubotzky and Magid 1985]. This uniqueness implies that for
Zα 6= Zβ this is an injective map, and for Zα = Zβ we quotient by the permutation
of components, with the corresponding transformation for λ. �

Remark 8.3. When a = b = 1, then Zα = Zβ consists of a single point and Z is
the quotient of C∗ by the involution λ 7→ 1/λ. Hence Z ∼= C and it is the variety of
abelian characters in SL2(C). The ring of functions invariant by this involution is
generated by λ+ 1/λ, i.e., the trace of a diagonal matrix with eigenvalues λ and
1/λ (corresponding to the character evaluated at a meridian).

We aim to show that S and T are the only components that contain ρλ. For this
purpose we consider the quadratic cone Q(ρλ) which is defined by the vanishing
of an obstruction to integrability of 1-cocycles. Let

[.` .] : H 1(0; sln(C)Ad ρλ)⊗ H 1(0; sln(C)Ad ρλ)→ H 2(0; sln(C)Ad ρλ)

denote the cup bracket, which is the combination of the cup product with the Lie
bracket sln(C)⊗sln(C) [ . , . ]−−→sln(C). The quadratic cone Q(ρλ)⊂Z1(0;sln(C)Ad ρλ)

is defined by

Q(ρλ)= {ϑ ∈ Z1(0; sln(C)Ad ρλ) | [ϑ `ϑ] ∼ 0}.

Goldman [1984] showed that if ϑ ∈ Z1(0; sln(C)Ad ρλ) is integrable then the cup
bracket [ϑ `ϑ] is a coboundary. In what follows we will compute the projections
of this obstruction, for the projections

pr± : H
2(0; sln(C)Ad ρλ)→ H 2(0;M±

λ±n ).

Here we use the decomposition of 0-modules:

sln(C)Ad ρλ = D⊕M+

λn ⊕M−

λ−n = sla(C)⊕ slb(C)⊕C⊕M+

λn ⊕M−

λ−n .

Recall that 0 acts of sln(C), sla(C) and slb(C) via the adjoint representation Ad ρλ,
Adα and Adβ respectively. For the rest of this section we will understand these mod-
ules with this action. Recall also that, by the hypotheses of Theorem 1.5,1+0 (λ

n) 6=0
and λn is a simple root of 1+1 . By Proposition 6.1 we have dim H 1(0;M±

λ±n )= 1
and we fix d± ∈ Z1(0;M±

λ±n ) which represent nontrivial cohomology classes.
Every element in H 1(0; sln(C)) is represented by a cocycle

(29) ϑ =

(
za u+d+

u−d− zb

)
+ zϕ

(
−b Ida 0

0 a Idb

)
,
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where za ∈ Z1(0; sla(C)), zb ∈ Z1(0; slb(C)) and u±, z ∈ C.

Lemma 8.4. For ϑ ∈ Z1(0; sln(C)) as in (29) we have

pr+[ϑ `ϑ] ∼ 2u+(za ` d++ d+` zb+ znd+`ϕ),

pr−[ϑ `ϑ] ∼ 2u−(d−` za + zb` d−− znd−`ϕ),

where ∼ denotes being cohomologous.

Proof. The lemma follows from Remark 6.4 and a direct calculation of

[ϑ `ϑ](γ1, γ2)= [ϑ(γ1), γ1ϑ(γ2)]. �

In order to understand the cup products appearing in Lemma 8.4 we introduce the
complex number l±(za, zb) ∈ C. Consider a one-parameter analytical deformation
s 7→ αs⊕βs of α⊕β in Vα×Vβ tangent to (za, zb). Notice that the coefficients of
the twisted Alexander polynomial 1αs⊗β

∗
s

1 depend analytically on s. By the implicit
function theorem and since λn is a simple root of 1α⊗β

∗

1 , there is an analytical path
s 7→ r+s of roots of 1αs⊗β

∗
s

1 with r+0 = λ
n . Similarly there is a path s 7→ r−s of roots

of 1βs⊗α
∗
s

1 with r−0 = λ
−n . We define

l±(za, zb)=
d
ds

∣∣∣∣
s=0

log r±s .

Lemma 8.5. The following relations hold in Z1(0;M±

λ±n ):

za ` d++ d+` zb ∼−l+(za, zb)d+`ϕ,

d−` za + zb` d− ∼−l−(za, zb)d−`ϕ.

Proof. We know that za ` d+ + d+` zb is cohomologous to xd+`ϕ for some
x ∈C, as H 2(0;M+

λ )
∼=C and d+`ϕ 6∼ 0 (see Proposition 6.1 and Corollary 6.7).

Hence by Lemma 7.2 the cocycle

ζ =

(
za 0
0 zb

)
+

x
n
ϕ

(
−b Ida 0

0 a Idb

)
∈ Z1(0;D)

satisfies b(ζ )∼ 0 where b : H 1(0;D) b
−→ H 2(0;M+

λn ) is the Bockstein operator of
the exact cohomology sequence associated to (22).

Furthermore, by Corollary 7.3 ζ is cohomologous to the restriction of a cocycle
ζ+ ∈ Z1(0; p+). As ρ+ is a smooth point of R(0, P+) (Lemma 7.6), we may
consider a path s 7→ ρs in R(0, P+) tangent to ζ+ at ρ+, which we write as

ρs =

(
1 ds

0 1

)(
αsλ

bϕ
s 0

0 βsλ
−aϕ
s

)
.
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In particular, by the definition of ζ we have that s 7→ αs is a deformation of α
tangent to za , s 7→βs is a deformation of β tangent to zb, and λs =λ(1− x

n s+o(s2)).
By semicontinuity ds is a cocycle not cohomologous to zero because d0= d+, hence
by Lemma 5.3 we obtain 1αs⊗β

∗
s

1 (λn
s )= 0. Therefore, as

−
x
n
=
λ′0

λ0
=

d
ds

∣∣∣∣
s=0

log λs,

x equals minus the derivative of the logarithm of the root of 1αs⊗β
∗
s

1 . �

Lemmas 8.4 and 8.5 give:

Corollary 8.6. For ϑ ∈ Z1(0; sln(C)) as in (29):

pr±[ϑ `ϑ] ∼ 2u±(−l±(za, zb)± zn)d±`ϕ.

Since 1αs⊗β
∗
s

1 (t)=1βs⊗α
∗
s

1 (1/t) by Corollary 4.7,

l+(za, zb)=−l−(za, zb).

Hence the vanishing of the obstructions to integrability of Corollary 8.6 is equivalent
to

(30) u+(−l+(za, zb)+ zn)= 0 and u−(−l+(za, zb)+ zn)= 0.

Since As z can be interpreted as the derivative of the logarithm of λ, we view

−l+(za, zb)+ zn

as the derivative of the difference between the logarithm of the root of the Alexander
polynomial and the logarithm of λn .

Recall that by (29) every cocycle ϑ ∈ Z1(0; sln(C)) is of the form

(31) ϑ =

(
za u+d++ b+

u−d−+ b− zb

)
+ zϕ

(
−b Ida 0

0 a Idb

)
,

where za ∈ Z1(0; sla(C)) and zb ∈ Z1(0; slb(C)) are cocycles, u±, z ∈ C, and
b± ∈ B1(0;M±

λ±n ) are coboundaries. Notice that this formula differs from (29)
because here the coboundaries are also considered.

Proposition 8.7. The Zariski tangent spaces at ρλ are

TρλS = {ϑ ∈ Z1(0; sln(C)) | −l+(za, zb)+ zn = 0},

TρλT = {ϑ ∈ Z1(0; sln(C)) | u+ = u− = 0},

using the notation of (31) for a cocycle ϑ ∈ Z1(0; sln(C)). In particular S and T
are smooth and transverse at ρλ.
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Proof. First at all, notice that u+ is not identically zero on TρλS, by considering the
tangent vector to the path

s 7→
(

1 sd+
0 1

)
ρλ.

Then (30) implies−l+(za, zb)+zn=0 on TρλS. Furthermore, we know that dim S=
n2
+n−2 and, by (17) and Proposition 6.1, the dimension of Z1(0; sln(C)Ad ρλ) is

n2
+ n− 1. This shows the equality for TρλS and proves that ρλ is a smooth point

of S.
We follow the same lines to prove the equality for TρλT . Notice that−l+(za, zb)+

zn is not identically zero on TρλT , by considering deformations of λ that keep α
and β constant. Hence u+ = u− = 0 on TρλT . Moreover, dim T = n2

+ n− 3. �

We next compute the tangent space to character varieties at χλ. Since the
representation ρλ is completely reducible, its orbit by conjugation is closed, hence
we can apply Luna’s slice theorem as in [Ben Abdelghani 2002] or [Heusener and
Porti 2005, Section 9]. As a consequence of the slice theorem, since the centralizer
of ρλ is C∗:

Tχλ X (0,SLn(C))∼= T0
(
H 1(0; sln(C)) //C∗

)
.

The action of C∗ can be seen on the coordinates u±: an element ς ∈ C∗ maps u±
to ς±nu±. Hence we define a new coordinate

u = u+u−

and the obstructions (30) become

(32) u(−l+(za, zb)+ zn)= 0.

Notice that even if za and zb are cocycles, the logarithmic derivative −l+(za, zb)

only depends on the cohomology class of (za, zb) in H 1(0; sla(C)⊕slb(C)). Also,
z is the scalar that describes a cohomology class zϕ ∈ H 1(0;C)= Z1(0;C)∼= C.
Similarly for u± ∈C and the cohomology class u±[d±] ∈ H 1(0;M±

λ±n )∼=C. Thus
we have the following:

Remark 8.8. The obstruction in (32) is well defined in H 1(0; sln(C)) //C∗.

Corollary 8.9. The Zariski tangent spaces to Y and Z are:

TχλY = {[ϑ] ∈ Tρλ X (0,SLn(C)) | −l+(za, zb)+ zn = 0},

Tχλ Z = {[ϑ] ∈ Tρλ X (0,SLn(C)) | u = 0}.

In particular Y and Z are smooth and transverse at χλ.

Proof. The proof is similar to that of Proposition 8.7: we need to show that u does
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not vanish on the Zariski tangent space to Y and −l+(za, zb)+ zn does not vanish
on the Zariski tangent space to Z . For the first assertion, we start with the cocycle

ϑ =

(
0 d+

d− 0

)
∈ Z1(0; sln(C)).

Following the notation of (31), since za , zb and z vanish for ϑ , Proposition 8.7
implies that ϑ ∈ TρλS. In particular the projection of its cohomology class ϑ in
H 1(0; sln(C)) // C∗ is a vector tangent to Y for which u 6= 0. The proof that
−l+(za, zb)+ zn is not identically zero on Tχλ Z is the same as in Proposition 8.7.
Then one concludes by using the dimension estimates. �

Notice that Corollary 8.9 and the computations of dimensions yield that χλ is a
smooth point of both Y and Z , and that Y and Z intersect transversally at χλ. In
particular their intersection is a variety of dimension n− 2. Since characters in this
intersection must satisfy the condition on Alexander polynomials, we have:

Corollary 8.10. There is a neighborhood χλ ∈U ⊂ X (0,SLn(C)) such that

(Y t Z)∩U =
{
(χα′, χβ ′, λ

′) ∈ Z ∩U
∣∣1α′⊗(β ′)∗1

(
(λ′)n

)
= 0

}
.

9. An example

Let K ⊂ S3 be the trefoil knot and 0 = π1(S3
\N (K )). We use the presentation

0 ∼= 〈x, y | x2
= y3
〉,

in particular the center is the cyclic group generated by z = x2
= y3. The abelian-

ization map ϕ : 0→ Z satisfies ϕ(x)= 3, ϕ(y)= 2 and a meridian of the trefoil is
given by m = xy−1.

Lemma 9.1. Every irreducible representation in R(0,SL2(C)) is conjugate to αs ,
where

(33) αs(x)=
(

i 0
s −i

)
and αs(y)=

(
η η̄− η

0 η̄

)
,

for a unique s ∈ C and for η ∈ C a primitive sixth root of unity. Moreover, αs is
irreducible if and only if s 6= 0, 2i .

Proof. Let α :0→SL2(C) be an irreducible representation. Then by Schur’s lemma
α(x2)= α(y3) lies in the center {± id2} of SL2(C). If we had α(x)2 = id2, then we
would get α(x)=± id2 and α would be reducible, hence α(x)2 = α(y3)=− id2.
Furthermore, as α(y) 6= − id2, the eigenvalues of α(y) are primitive sixth roots of
unity. The eigenspaces of α(x) and α(y) determine four points in P1. These four
points are distinct since α is irreducible and by conjugation we can assume that
Eα(x)(−i)= [0 : 1] is the point at infinity, Eα(y)(η)= [1 : 0] and Eα(y)(η̄)= [1 : 1].
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The last eigenspace Eα(x)(−i)= [2i : s] = [1 : −is/2] determines the representation
α up to conjugation. Hence there exists s ∈ C such that α is conjugate to αs .
Moreover, the eigenspace Eαs(x)(−i) coincides with an eigenspace of αs(y) if and
only if s ∈ {0, 2i}. �

For any representation α ∈ R(0,SL2(C)) we consider the induced action on C2,
as well as the action α⊗ tϕ on C2

[t±1
]. We aim to compute the twisted Alexander

polynomials 1α0 and 1α1 , the orders for the homology of α ⊗ tϕ . The quotient
1
αs
1 /1

αs
0 has been calculated in a different way in [Kitano and Morifuji 2012,

Example 4.3].

Lemma 9.2. For any irreducible α ∈ R(0,SL2(C)), we have

1α0
.
= 1 and 1α1

.
= t2
+ 1.

Proof. First, we have 1α0
.
= 1 since α is irreducible and dim C2 > 1 (see (4) in the

proof of Lemma 2.7).
In order to calculate 1α1 we will use the amalgamated product structure of 0

0 ∼= 〈x〉 ∗〈z〉 〈y〉

and the corresponding Mayer–Vietoris exact sequence in group homology [Brown
1994, VII.9]. We start computing some of the terms. Since 〈z〉 ∼= Z, the groups
Hq(〈z〉,C2

[t±1
]α⊗tϕ ) are the homology groups of the complex

0→ C2
[t±1
]

z−1
−−→ C2

[t±1
] → 0.

Hence a presentation matrix of H0(〈z〉,C2
[t±1
]α⊗tϕ ) is(

−t6
− 1 0

0 −t6
− 1

)
.

The presentation matrices for H0(〈x〉,C2
[t±1
]α⊗tϕ ) and H0(〈y〉,C2

[t±1
]α⊗tϕ ) are

similarly given by (respectively)(
i t3
− 1 0
0 −i t3

− 1

)
and

(
e
π i
3 t2
− 1 0

0 e
−π i

3 t2
− 1

)
.

Since H0(〈x〉,C2
[t±1
]α⊗tϕ ) and H0(〈y〉,C2

[t±1
]α⊗tϕ ) are torsion modules it fol-

lows that H1(〈x〉,C2
[t±1
]α⊗tϕ )∼= H1(〈y〉,C2

[t±1
]α⊗tϕ )=0. Hence Mayer–Vietoris

gives a short exact sequence

0→ H1(0;C
2
[t±1
]α⊗tϕ )→ H0(〈z〉,C2

[t±1
]α⊗tϕ )→

H0(〈x〉,C2
[t±1
]α⊗tϕ )⊕ H0(〈y〉,C2

[t±1
]α⊗tϕ )→ 0.
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Using this sequence and the presentation matrices we obtain

1α1 =
(t6
+ 1)2

(t3+ i)(t3− i)
(
t2− e

π i
3
)(

t2− e
−π i

3
) = t2

+ 1. �

It follows that Theorems 1.4 and 1.5 apply for α irreducible and λ ∈C satisfying
λ6
=−1. Namely Theorem 1.4 yields:

Corollary 9.3. When α ∈ R(0,SL2(C)) is irreducible and λ6
=−1,

(λϕ ⊗α)⊕ (λ−2ϕ
⊗ 1) : 0→ SL3(C)

can be deformed to irreducible representations.

To illustrate Theorem 1.5, we discuss next the variety of characters.

Varieties of characters. The variety of characters X (0,SL2(C)) has two compo-
nents, the abelian one and the one that contains irreducible representations, denoted
by X0(0,SL2(C)). Let χs ∈ X0(0,SL2(C)) denote the character of αs defined
in (33). The following is well known but we provide a proof for completeness and
because it is quite straightforward from Lemma 9.1.

Lemma 9.4. The map s 7→ χs defines an isomorphism C∼= X0(0,SL2(C)).

Proof. Using Lemma 9.1, the regular map f : C → X0(0,SL2(C)) given by
f (s)=χs restricts to a bijection between {s ∈C | s 6= 0, 2i} and the set of characters
of irreducible representations X irr

⊂ X0(0,SL2(C)). A direct calculation gives for
the meridian m = xy−1 that χs(m)= i η̄+ s(η̄− η) is a linear function in s. Hence
there exists a regular map g : X0(0,SL2(C))→ C such that g ◦ f = idC. Since the
image of f contains X irr, f ◦ g ◦ f = f implies

f ◦ g|X irr = idX irr .

Both f and g are regular morphisms (defined on the whole variety, not only on an
open subset), hence density yields:

f ◦ g = idX0(0,SL2(C))

establishing the isomorphism. �

For any λ ∈ C∗ the map α 7→ (λϕ ⊗α)⊕ (λ−2ϕ
⊗ 1) induces an embedding

iλ : X0(0,SL2(C))→ X (0,SL3(C)).

Let Xλ = iλ(X0(0,SL2(C))) denote its image, that consists of characters of re-
ducible representations. We know that when λ6

= −1, Xλ is contained in a two
dimensional component that contains irreducible characters. Before describing the
global structure of X (0,SL3(C)), we discuss the incidence between the Xλ when
λ6
=−1.
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Let σ̃ : R(0,SL2(C))→ R(0,SL2(C)) be the involution such that

σ̃ (α)(x)=−α(x) and σ̃ (α)(y)= α(y),

for every α ∈ R(0,SL2(C)), namely σ̃ (α)= (−1)ϕ ⊗α. Denote by σ the induced
involution on X0(0,SL2(C)). A straightforward computation gives

σ̃ (α) 7→ (λϕ ⊗ σ̃ (α))⊕ (λ−2ϕ
⊗ 1)= ((−λ)ϕ ⊗α)⊕ (λ−2ϕ

⊗ 1)

and hence iλ◦σ = i−λ. It follows that Xλ= X−λ. Notice also that σ̃ (αs) is conjugate
to α2i−s .

Lemma 9.5. For λ 6= ±λ′ satisfying λ6
= (λ′)6 = −1, Xλ and Xλ′ intersect at a

single point iλ(χs), with s ∈ {0, 2i}. In particular Xλ ∩ Xλ′ is the character of a
diagonal representation.

This gives a configuration of three lines Xeπ i/6 , X i , Xe5π i/6 , that intersect pairwise
at one point. We shall prove that there is a single component of X (0,SL3(C)) that
contains irreducible representations, and we shall describe how the three lines meet
in this component.

Irreducible characters in X (0,SL3(C)). Let ρ ∈ R(0,SL3(C)) be an irreducible
representation. We denote ρ(x)= A and ρ(y)= B. The matrix A2

= B3 is a central
element of SL3(C) because ρ is irreducible. The center of SL3(C) consists of three
diagonal matrices {id3, ω id3, ω

2 id3}, where ω2
+ω+ 1= 0.

Lemma 9.6. A2
= B3

= id3.

Proof. We need to exclude the cases A2
= B3

= ω id3 or equal to ω2 id3. Seeking
a contradiction, assume A2

= B3
= ω id3. The equality A2

= ω id3 implies that
one eigenvalue of A has multiplicity at least two. Of course multiplicity three
is not compatible with irreducibility, thus A has a two-dimensional eigenspace.
On the other hand, B3

− ω id3 = 0 combined with det(B) = 1 yields that the
minimal polynomial of B has also degree two. Hence B has also a two dimensional
eigenspace. The intersection of the two dimensional eigenspaces of A and B is a
proper invariant subspace, contradicting irreducibility. The same argument applies
to A2

= B3
= ω2 id3. �

By the discussion in the proof of the previous lemma, the minimal polynomial
of A is A2

− id3 = 0 and the minimal polynomial of B is B3
− id3 = 0. Therefore,

the matrices A and B are conjugate to

A ∼

1
−1
−1

 and B ∼

1
ω

ω2

 ,
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where ω2
+ ω + 1 = 0. The corresponding eigenspaces are the plane E A(−1)

and the lines E A(1), EB(1), EB(ω) and EB(ω
2). The eigenspaces determine the

representation, as they determine the matrices A and B, that have fixed eigenvalues.
Of course E A(1)∩ E A(−1)= 0 and EB(1), EB(ω) and EB(ω

2) are also in general
position. Since ρ is irreducible, the five eigenspaces are in general position. For
instance E A(1) ∩ (EB(1)⊕ EB(ω)) = 0, because otherwise EB(1)⊕ EB(ω) =

E A(1)⊕ (E A(−1)∩ (EB(1)⊕ EB(ω))) would be a proper invariant subspace.
In order to parametrize the conjugacy classes of the irreducible representations,

we fix some normalizations of those eigenspaces. The invariant lines correspond
to fixed points in the projective plane P2. The first normalization is that E A(−1)
corresponds to the line at infinity, so that the 4 invariant lines are points in the
affine plane C2 in general position. We further fix the three fixed points of B,
corresponding to an affine frame. Then the fourth point (the line E A(1)) is a point
in C2 that does not lie in the affine lines spanned by any two of the fixed points
of B. This gives rise to the subvariety {ρs,t ∈ R(0,SL3(C)) | (s, t) ∈ C2

}, where
the representation ρs,t is given by

(34) ρs,t(x)=

1 0 0
s −1 0
t 0 −1

 and ρs,t(y)=

1 ω− 1 ω2
− 1

0 ω 0
0 0 ω2

 .
Here ω is a primitive third root of unity, i.e., ω2

+ω+1= 0. The eigenspaces of B
determine points of P2:

EB(1)= [1 : 0 : 0], EB(ω)= [1 : 1 : 0] and EB(ω
2)= [1 : 0 : 1].

The eigenspaces of A determine a projective line (at infinity) and a point:

E A(−1)= 〈[0 : 1 : 0], [0 : 0 : 1]〉 and E A(1)= [2 : s : t].

Lemma 9.7. For (s, t) ∈C2, the representation ρs,t is reducible if and only if s = 0,
t = 0, or s+ t = 2.

Proof. The representation ρs,t is constructed so that the points in P2 fixed by
B = ρs,t(x) and the line E A(−1)⊂ P2 are fixed. So ρs,t is reducible if and only if
the projective point E A(1) belongs to one of the lines spanned by two of the fixed
points of B. This condition is equivalent to one of the three equations s = 0, t = 0
or s+ t = 2, one for each line. �

It follows from the proof that, when E A(1) equals one of the fixed projective
points of B, then A preserves also the two lines through that point that are B-
invariant. More precisely, we have:

Remark 9.8. If two of the equations {s = 0}, {t = 0} and {s + t = 2} hold true,
then ρs,t preserves a complete flag in C3 and therefore it is conjugate to an upper
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triangular representation. Notice that it has the same character as a diagonal
representation.

Lemma 9.9. Let Rirr
⊂ R(0,SL3(C)) denote the subset of irreducible represen-

tations. Then the Zariski closure Rirr ⊂ R(0,SL3(C)) is an irreducible affine
variety.

Proof. The variety C2
× SL3(C) is irreducible and the map κ : C2

× SL3(C)→

R(0,SL3(C)) given by κ(s, t, D) = Dρs,t D−1 is a regular map. The image of κ
contains the irreducible representations and every representation in the image of κ
is the limit of irreducible representations. Hence

Rirr
⊂ κ

(
C2
×SL3(C)

)
⊂ Rirr

and κ
(
C2×SL3(C)

)
= Rirr follows. Now the assertion of the lemma follows since

the closure of the image of an irreducible variety under a regular map is irreducible.
�

Theorem 9.10. The GIT quotient X = Rirr //SL(3,C) is isomorphic to C2. More-
over, the Zariski-open subset Rirr is SL(3,C)-invariant and its GIT quotient is
isomorphic to the complement of three affine lines in general position in C2.

Proof. By Lemma 9.9 the affine algebraic set Rirr is irreducible. Since it is SL(3,C)-
invariant, the GIT quotient t : Rirr→ X exists and X is also an irreducible affine
algebraic variety. Let X irr

⊂ X denote the projection of Rirr, which is Zariski-open
and hence dense.

Consider the regular morphism f :C2
→ X that maps (s, t)∈C2 to the character

χρs,t . By construction, the image of f contains X irr, because ρs,t realizes every
irreducible representation up to conjugacy.

There is also a regular morphism R(0,SL3(C))→ C2 given by

ρ 7→
(

tr ρ(m), tr ρ(m−1)
)

where m = xy−1 is a meridian of the trefoil knot, which induces (after restriction)
a regular map X→ C2, by invariance. A direct computation gives:

(35)
(

tr ρs,t(m)
tr ρs,t(m−1)

)
=

(
2
2

)
+

(
ω2
− 1 ω− 1

ω− 1 ω2
− 1

)(
s
t

)
.

Thus, after composing with a linear map, we have a regular morphism g : X→ C2

that satisfies
g ◦ f = idC2 .

Since the image of f contains X irr, f ◦ g ◦ f = f implies

f ◦ g|X irr = idX irr .
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Both f and g are regular morphisms (defined on the whole variety, not only on an
open subset), hence density yields

f ◦ g = idX ,

establishing the isomorphism. �

Remark 9.11. It follows from Theorem 9.10 that the set of reducible characters
in X ∼= C2 consists of three lines that intersect pairwise. Those are characters of
representations (λ−ϕ ⊗α)⊕ (λ2ϕ

⊗ 1), with α ∈ R(0,SL2(C)) irreducible except
at the intersection points, that correspond to diagonal representations.

Notice also that there is a symmetry of order three, as the center of SL3(C) has
order three. The symmetry group is generated by

R(0,SL3(C))→ R(0,SL3(C)), α 7→ ωϕ ⊗α,

where ω is a primitive third root of unity. This symmetry maps the character with
coordinates (s, t) to (2−s−t, s), i.e., tr(ρ(m±1)) to ω±1 tr(ρ(m±1)). Its fixed point
has coordinates s= t=2/3 (i.e., tr(ρ(m±1))=0) and corresponds to the character of
an irreducible metabelian representation. This irreducible metabelian representation
is obtained by composing the surjection 0� A4 with the 3-dimensional irreducible
representation of A4 (see [Serre 1978]). Note that irreducible, metabelian repre-
sentations of knot groups into SLn(C) were studied by H. Boden and S. Friedl in a
series of papers [2008; 2011; 2014a; 2014b].

Remark 9.12. It is possible to combine any representation ρ : 0→ SL2(C) with
the irreducible 3-dimensional rational representation of r3 : SL2(C)→ SL3(C) of
SL2(C) (for more details see [Springer 1977] and [Heusener and Medjerab 2014]).
This induces a regular map

(r3)∗ : X0(0,SL2(C))→ X (0,SL3(C)).

It follows from [Heusener and Medjerab 2014, Proposition 3.1] that the image of
(r3)∗ is contained in the component X ⊂ X (0,SL3(C)). Notice that for every matrix
A ∈ SL2(C) the equality tr(r3(A))= tr(r3(A)−1) holds. Then Equation (35) implies
that the image of (r3)∗ is contained in the diagonal {s = t} ⊂C2∼= X . Moreover, the
map (r3)∗ factors through X0(0,PSL2(C)) since Ker(r3)= {± id} is the center of
SL2(C). Hence (r3)∗ is a two-fold branched covering onto its image. The branching
set is the character of the binary dihedral representation d6 : 0→ D6 ⊂ SL2(C).
Notice also that the restriction of r3 onto D6 becomes reducible, r3◦d6∼ ρ1,1, since
dihedral groups have only one and two-dimensional irreducible representations (see
[Serre 1978]).

Remark 9.13. The same argument as in Theorem 9.10 applies to torus knots
T (p, 2), p odd, to prove that the variety of irreducible SL3(C)-characters consist
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of (p− 1)(p− 2)/2 disjoint components isomorphic to C2 and the components of
reducible characters.
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APPROXIMATIONS BY MAXIMAL COHEN–MACAULAY
MODULES

HENRIK HOLM

Auslander and Buchweitz have proved that every finitely generated module
over a Cohen–Macaulay (CM) ring with a dualizing module admits a so-
called maximal CM approximation. In terms of relative homological alge-
bra, this means that every finitely generated module has a special maximal
CM precover. In this paper, we prove the existence of special maximal
CM preenvelopes and, in the case where the ground ring is henselian, of
maximal CM envelopes. We also characterize the rings over which every
finitely generated module has a maximal CM envelope with the unique lift-
ing property. Finally, we show that cosyzygies with respect to the class of
maximal CM modules must eventually be maximal CM, and we compute
some examples.

1. Introduction

Let R be a commutative noetherian local Cohen–Macaulay (CM) ring with a dualiz-
ing module� and denote by MCM the class of maximal CM R-modules. Auslander
and Buchweitz [1989, Theorem A] construct a maximal CM approximation for
every finitely generated R-module M , that is, a short exact sequence

0−→ I −→ X
π
−→ M −→ 0,

where X belongs to MCM and I has finite injective dimension. By a result form
[Ischebeck 1969] one has Ext1R(Y, I )= 0 for all Y in MCM, so in terms of relative
homological algebra, this means that the homomorphism π : X � M is a special
MCM-precover of M . Corollary 2.5 of [Takahashi 2005] shows that if R is henselian
(for example, if R is complete), then every MCM-precover can be refined to an
MCM-cover. The corollary follows from Takahashi’s Proposition 2.4, which the
author attributes to Yoshino [1993, Lemma 2.2]. We summarize these results in the
following theorem.
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Theorem [Auslander and Buchweitz 1989; Takahashi 2005; Yoshino 1993].

(a) Every finitely generated R-module has a special MCM-precover (also called a
special right MCM-approximation).

(b) If R is henselian, then every finitely generated R-module has an MCM-cover
(also called a minimal right MCM-approximation).

This paper is concerned with the existence and the construction of special MCM-
preenvelopes and MCM-envelopes of finitely generated modules. Our first main
result, which is proved in Section 3, is the following “dual” of the theorem above.

Theorem A. (a) Every finitely generated R-module M has a special MCM-pre-
envelope (also called a special left MCM-approximation).

(b) If R is henselian, then every finitely generated R-module has an MCM-envelope
(also called a minimal left MCM-approximation).

(c) Every special MCM-preenvelope (and hence every MCM-envelope)µ : M→ X
of a finitely generated R-module M has the property that HomR(Cokerµ,�)
has finite injective dimension.

Theorem C of [Holm 2014] showed the existence of (nonspecial!) MCM-preenve-
lopes, but its proof is not constructive: it is a consequence of an abstract result —
Theorem (4.2) of [Crawley-Boevey 1994] — combined with the fact, also proved
in [Holm 2014], that the direct limit closure of MCM is closed under products.
Theorem A above is not only stronger than [Holm 2014, Theorem C]; our proof,
modeled on that of [Holm and Jørgensen 2011, Theorem 1.6], also shows how
(special) MCM-(pre)envelopes can be constructed from (special) MCM-(pre)covers.

In Section 4 we compute the MCM-envelope of some specific modules. In
Section 5 we turn our attention to MCM-envelopes with the unique lifting property,
and we characterize the rings over which every finitely generated module admits
such an envelope:

Theorem B. The following conditions are equivalent.

(i) For every finitely generated R-module M , the module HomR(M, �) is maximal
CM.

(ii) The Krull dimension of R is 6 2.

(iii) The inclusion functor MCM ↪→mod has a left adjoint.

(iv) Every finitely generated R-module has an MCM-envelope with the unique
lifting property.

From a homological point of view, maximal CM modules are interesting because
every module can be finitely resolved by such modules. More precisely, if d denotes
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the Krull dimension of the CM ring R, and if M is any finitely generated R-module
with a resolution

· · · −→ Xd −→ Xd−1 −→ Xd−2 −→ · · · −→ X1 −→ X0 −→ M −→ 0

by finitely generated free R-modules X0, X1, . . ., then the n-th syzygy of M , i.e.,
the module Syzn(M) = Ker(Xn−1 → Xn−2), is maximal CM for every n > d.
Actually, the same conclusion holds if X0, X1, . . . are just assumed to be maximal
CM (but not necessarily free); this well-known fact follows from the behavior of
depth in short exact sequences; see [Bruns and Herzog 1993, Proposition 1.2.9] or
Lemma 2.5. Given a finitely generated R-module M , one can not always construct
an exact sequence

(∗) 0−→ M −→ X0
−→ X1

−→ · · ·

where X0, X1, . . . are maximal CM; however, there is a canonical way to con-
struct a complex of the form (∗). Theorem A guarantees the existence of MCM-
preenvelopes, which makes the following construction possible: take an MCM-
preenvelope µ0

: M→ X0 of M and set C1
=Cokerµ0; take an MCM-preenvelope

µ1
: C1
→ X1 of C1 and set C2

= Cokerµ1; etc. The hereby constructed com-
plex (∗) — which is called a proper MCM-coresolution or an MCM-resolvent of M —
is not necessarily exact, but it becomes exact if one applies the functor HomR(−, Y )
to it for any Y in MCM. The module Cn

= Coker(Xn−2
→ Xn−1) is called the

n-th cosyzygy of M with respect to MCM, and it is denoted by Cosyzn
MCM(M). In

Section 6 we prove that such cosyzygies must eventually be maximal CM:

Theorem C. Let M be a finitely generated R-module. For every n > d, any n-th
cosyzygy Cosyzn

MCM(M) of M with respect to MCM is maximal CM.

2. Preliminaries

Setup 2.1. Throughout, (R,m, k) is a commutative noetherian local CM ring of
Krull dimension d . It is assumed that R has a dualizing (or canonical) module �.

Let M be a finitely generated R-module. The depth of M is the number

depthR M = inf{i | ExtiR(k,M) 6= 0} ∈ N0 ∪ {∞};

see [Bruns and Herzog 1993, Definitions 1.2.6 and 1.2.7]. If M 6= 0, then depthR M
is the common length of a maximal M-regular sequence (in m). The depth can also
be computed from the dualizing module:

depthR M = d − sup{i | ExtiR(M, �) 6= 0};

see [Bruns and Herzog 1993, Corollary 3.5.11]. One calls M maximal CM if
depthR M > d, that is, if ExtiR(M, �) = 0 for all i > 0. The category of all such
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R-modules is denoted by MCM. Note that the zero module is maximal CM and has
depth∞. The category of all finitely generated R-modules is denoted by mod.

We recall a few notions from relative homological algebra.

Definition 2.2. Let A be a full subcategory of an abelian category M (e.g., M=
mod and A = MCM), and let M be an object in M. Following [Enochs and
Jenda 2000, Definition 6.1.1], a morphism ε : M→ A with A ∈A is called an A-
preenvelope (or a left A-approximation) of M if every other morphism ε′ : M→ A′

with A′ ∈A factors through ε, as illustrated below.

M ε
//

ε′

��

A

~~

A′

A special A-preenvelope (or a special left A-approximation) is an A-preenvelope
ε : M→ A such that Ext1M(Coker ε, A′)= 0 for every A′ ∈A. An A-envelope (or
a minimal left A-approximation) is an A-preenvelope ε with the property that every
endomorphism ϕ of A that satisfies ϕε = ε is an automorphism.

Remark 2.3. The notions of A-precover (or right A-approximation), special A-
precover (or special right A-approximation), and A-cover (or minimal right A-
approximation) are categorically dual to the notions defined above.

By definition, a special A-precover/preenvelope is also an (ordinary) A-precover/
preenvelope. If A is closed under extensions in M, then every A-cover/envelope is
a special A-precover/preenvelope; this is the content of Wakamatsu’s lemma.1

Remark 2.4. It is well-known that the dualizing module � gives rise to a duality
on the category of maximal CM modules; more precisely, there is an equivalence
of categories:

MCM
HomR(−,�)

//
MCMop.

HomR(−,�)

oo

We use the shorthand notation (−)† for the functor HomR(−, �). For any finitely
generated R-module M there is a canonical homomorphism δM : M→ M††, called
the biduality homomorphism, which is natural in M . An alternative way of phrasing
the equivalence above is to say δM is an isomorphism if M belongs to MCM; see
[Bruns and Herzog 1993, Theorem 3.3.10].

We will need the following result about depth; it is folklore and easily proved.

1This result is implicit in [Wakamatsu 1988]. It is explicitly stated in [Auslander and Reiten 1991,
Lemma 1.3], but without a proof. It is stated and proved in [Xu 1996, Lemmas 2.1.1 and 2.1.2].
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Lemma 2.5. Let m > 0 be an integer and let 0→ Km → Xm−1→ · · · → X0→

M→ 0 be an exact sequence of finitely generated R-modules. If X0, . . . , Xm−1 are
maximal CM, then one has depthR Km >min{d, depthR M +m}. In particular, if
m > d then the R-module Km is maximal CM. �

3. Special MCM-preenvelopes and MCM-envelopes

In this section, we prove Theorem A from the introduction. Our proof follows that
of [Holm and Jørgensen 2011, Theorem 1.6] with some adjustments.

Lemma 3.1. For every R-module M, the composition M†
δM†
// M††† δ

†
M
// M† is

the identity map on M†.

Proof. Straightforward; see [Jans 1961, Theorem 1.4]. �

Lemma 3.2. For every finitely generated R-module M , the next conditions are
equivalent.

(i) Ext1R(M, �)= 0 and Ext1R(X,M†)= 0 for every X ∈MCM.

(ii) Ext1R(M, Y )= 0 for every Y ∈MCM.

Proof. (i)=⇒(ii): Given any Y ∈MCM we must argue that Ext1R(M, Y )= 0, i.e., that
every short exact sequence 0→ Y

α
→ E→ M→ 0 splits. As Ext1R(M, �)= 0, the

functor (−)† leaves this sequence exact; in fact, the induced short exact sequence

0−→ M†
−→ E† α†

−→ Y †
−→ 0

splits as Y † belongs to MCM and hence Ext1R(Y
†,M†) = 0 by assumption. Let

β : Y †
→ E† be a right inverse of α†. Then δ−1

Y β†δE : E→ Y is a left inverse of α
since one has

δ−1
Y β†δEα = δ

−1
Y β†α††δY = δ

−1
Y (α†β)†δY = δ

−1
Y 1Y ††δY = 1Y .

(ii)=⇒(i): Assumption (ii) implies that Ext1R(M, �)= 0 since � ∈MCM. Given
X ∈ MCM we must show that Ext1R(X,M†) = 0, i.e., that every short exact se-
quence 0→ M† α

→ E→ X→ 0 splits. Since X is in MCM we in particular have
Ext1R(X, �)= 0, so an application of the functor (−)† yields another short exact
sequence:

(∗) 0−→ X†
−→ E† α†

−→ M††
−→ 0.

As X† belongs to MCM we have Ext1R(M, X†) = 0, so the functor HomR(M,−)
leaves the sequence (∗) exact. Surjectivity of HomR(M, α†) yields a homomorphism
β : M → E† with α†β = δM . It follows that β†δE : E → M† is a left inverse of
α since one has β†δEα = β

†α††δM† = (α†β)†δM† = δ
†
M δM† = 1M†, where the last

equality follows from Lemma 3.1. �



360 HENRIK HOLM

Proof of Theorem A. We begin by proving the last assertion in the theorem. Let
µ : M → X be any special MCM-preenvelope of M . By assumption, we have
Ext1R(Cokerµ, Y ) = 0 for every Y ∈ MCM. Hence Lemma 3.2 implies that
Ext1R(Z , (Cokerµ)†) = 0 for every Z ∈ MCM. By [Auslander and Buchweitz
1989, Theorem A], we can take a hull of finite injective dimension for the finitely
generated module (Cokerµ)†, that is, a short exact sequence

0−→ (Cokerµ)† −→ I −→ Z −→ 0,

where I has finite injective dimension and Z is maximal CM. This sequence splits
since Ext1R(Z , (Cokerµ)†)= 0, and (Cokerµ)† is therefore a direct summand in I .
Since I has finite injective dimension, so has (Cokerµ)†.

To prove parts (a) and (b), let M be a finitely generated R-module and let
π : Z → M† be a homomorphism with Z ∈ MCM. We will show that if π is
a special MCM-precover, respectively, an MCM-cover of M† (recall that by the
theorem by Auslander, Buchweitz, Takahashi and Yoshino from the introduction,
special MCM-precovers always exist, and MCM-covers exist if R is henselian), then
the homomorphism

µ := π†δM : M −→ Z†

is a special MCM-preenvelope, respectively, an MCM-envelope, of M .
First assume that π is a special MCM-precover. We begin by proving that µ is

an MCM-preenvelope. Note that Z† is in MCM by Remark 2.4. We must show
that HomR(µ, Y ) is surjective for every Y ∈MCM. By Remark 2.4 every such Y
has the form Y ∼= X† for some X ∈ MCM (namely for X = Y †), so it suffices to
show that HomR(µ, X†) is surjective for every X ∈MCM. By definition of µ, the
homomorphism HomR(µ, X†) is the composition of the maps

(∗) HomR(Z†, X†)
HomR(π

†,X†)
// HomR(M††, X†)

HomR(δM ,X†)
// HomR(M, X†) .

Via the “swap” isomorphism, see [Christensen 2000, (A.2.9)], the homomorphisms
in (∗) are identified with the ones in the top row of the following diagram:

(∗∗)

HomR(X, Z††)
HomR(X,π††)

// HomR(X,M†††)
HomR(X,δ

†
M )
// HomR(X,M†)

HomR(X, Z)

HomR(X,δZ ) ∼=

OO

HomR(X,π)
// // HomR(X,M†)

HomR(X,δM† )

OO

The left square in (∗∗) is commutative since the biduality homomorphism δ is
natural, and the right triangle in (∗∗) is commutative by Lemma 3.1. The map δZ

is an isomorphism since Z is in MCM; and HomR(X, π) is surjective as π is an
MCM-precover and X ∈MCM. It follows that the composition of the maps in the
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top row of (∗∗), and therefore also the map HomR(µ, X†), is surjective. Thus, µ is
an MCM-preenvelope.

To see thatµ is a special MCM-preenvelope, we must prove that Ext1R(Cokerµ,Y )
vanishes for every Y ∈ MCM. As the functor (−)† is left exact, (Cokerµ)† is
isomorphic to Ker(µ†). By definition we have µ†

= δ
†
Mπ

††, and hence µ† fits into
the commutative diagram:

(∗∗∗)

Z†† µ†
// M†

Z†† π††
// M†††

δ
†
M

OO

Z

δZ ∼=

OO

π
// M†

δM†

OO
1M† (by Lemma 3.1)

cc

It follows that µ† and π are isomorphic maps, and hence they also have isomorphic
kernels, that is, Ker(µ†)∼= Kerπ . It follows that (Cokerµ)† ∼= Kerπ . Since π is a
special MCM-precover, we now have

Ext1R(X, (Cokerµ)†)∼= Ext1R(X,Kerπ)= 0

for every X ∈MCM. Thus, to see that Ext1R(Cokerµ, Y )= 0 for every Y ∈MCM,
it suffices by Lemma 3.2 to prove that Ext1R(Cokerµ,�) = 0. To this end, set
X = Z†

∈MCM and consider the factorization of µ : M→ Z†
= X given by

M

µ0 �� ��

µ
// X

Imµ
/� ι

??

where µ0 is the corestriction of µ to its image and ι is the inclusion map. As µ0

is surjective and (−)† is left exact, the map µ†
0 is injective. As � ∈ MCM and

µ is an MCM-preenvelope, the map µ†
= HomR(µ,�) is surjective; and hence

so is µ†
0 since µ†

= µ
†
0 ι

†. Thus, µ†
0 is an isomorphism. Hence ι† and µ† are

isomorphic maps, and since µ† is surjective, so is ι†. Thus, application of (−)† to
0→ Imµ

ι
→ X→ Cokerµ→ 0 yields an exact sequence

X† ι†
// (Imµ)†

0
// Ext1R(Cokerµ,�) // Ext1R(X, �)= 0,

which forces Ext1R(Cokerµ,�)= 0, as desired.
Finally, assume that π is an MCM-cover. We show that µ= π†δM is an MCM-

envelope. We have already seen that µ is an MCM-preenvelope. To show that it
is an envelope, let ϕ be an endomorphism of Z† with ϕµ = µ. It follows that
µ†ϕ†

= µ†. The diagram (∗∗∗) shows that µ†δZ = π , and thus π(δ−1
Z ϕ†δZ ) =
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µ†ϕ†δZ = µ
†δZ = π . As π is an MCM-cover, we conclude that δ−1

Z ϕ†δZ , and
therefore also ϕ†, is an automorphism. It follows that ϕ†† is an automorphism of
Z†††, and finally that ϕ = δ−1

Z† ϕ
††δZ† is an automorphism of Z†. �

The proof of Theorem A (above) shows that one can construct MCM-envelopes
from MCM-covers. We do not know if the converse is true, that is, we do not know
if existence of MCM-envelopes is logically equivalent to existence of MCM-covers.
The next result provides a partial answer to this question; it shows that existence of
MCM-envelopes for all finitely generated modules implies existence of MCM-covers
for some finitely generated modules (namely for modules N of the form N ∼= M†

for some M).

Proposition 3.3. Let M be a finitely generated R-module. If µ : M → X is an
MCM-preenvelope, a special MCM-preenvelope, or an MCM-envelope of M , then
µ†
: X†
→ M† is an MCM-precover, a special MCM-precover, or an MCM-cover

of M†, respectively.

Proof. This is left as an exercise to the reader. �

4. Examples

We compute the MCM-envelope of some specific modules. We begin with a charac-
terization of modules with trivial MCM-envelope.

Proposition 4.1. For a finitely generated R-module M , one has dimR M < d if and
only if the zero map M→ 0 is an MCM-envelope of M.

Proof. If dimR M < d then [Bruns and Herzog 1993, Corollary 3.5.11(a)] shows
that HomR(M, �) = 0. It follows that every homomorphism ϕ : M → X with
X ∈ MCM is zero. Indeed, since � cogenerates the category MCM, there exists
a monomorphism ι : X → �n for some natural number n. As HomR(M, �) = 0,
the homomorphism ιϕ : M→�n must be zero, and thus ϕ = 0 since ι is injective.
Since every homomorphism from M to a maximal CM module is zero, the zero
map M→ 0 is an MCM-envelope of M .

Conversely, if M → 0 is an MCM-(pre)envelope then, since � is in MCM,
every homomorphism ϕ : M → � factors through 0, and hence ϕ = 0. Thus
HomR(M, �)=0, and it follows from [Bruns and Herzog 1993, Corollary 3.5.11(b)]
that one can not have dimR M = d; so dimR M < d . �

In general, MCM-(pre)envelopes need not be injective. In fact:

Corollary 4.2. The ring R is artinian if and only if every finitely generated R-
module admits an injective (that is, monic) MCM-(pre)envelope.
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Proof. If R is artinian, then every finitely generated R-module M is maximal CM,
and therefore 1M : M→ M is an injective MCM-envelope of M . Conversely, if R
is not artinian, then the residue field k, which has dimension dimR k = 0, does not
have an injective MCM-preenvelope by Proposition 4.1. �

Next we give a somewhat “general” example.

Example 4.3. Let M be a finitely generated R-module. If M† is maximal CM,
then the identity homomorphism π = 1M† : M†

→ M† is an MCM-cover of M†.
The proof of Theorem A shows that the homomorphism µ= π†δM = δM , i.e., the
biduality homomorphism δM : M→ M††, is an MCM-envelope M .

Here is a concrete application of the example above.

Example 4.4. Let M be a submodule of a maximal CM R-module X with the
property that dimR(X/M) < d−1. For example, M = a could be an ideal in X = R
with heightR(a) > 1; see [Bruns and Herzog 1993, Corollary 2.1.4]. Or M could
be the submodule M = ( f1, f2, . . .)X , where f1, f2, . . . is an X -regular sequence
of length at least two. We claim that, in this case, the inclusion map ι : M ↪→ X is
an MCM-envelope of M .

To see why, note that the short exact sequence 0→ M
ι
→ X→ X/M→ 0 is

mapped by the functor (−)† to the exact sequence

0−→ (X/M)† −→ X† ι†

−→ M†
−→ Ext1R(X/M, �).

Since d − dimR(X/M) > 1, it follows from Corollary 3.5.11(a) of [Bruns and
Herzog 1993] that HomR(X/M, �) = 0 and Ext1R(X/M, �) = 0. Hence the
sequence displayed above shows that ι† is an isomorphism and, in particular,
M† ∼= X† is maximal CM. Thus Example 4.3 shows that the biduality homo-
morphism δM : M→ M†† is an MCM-envelope of M . It remains to argue that δM

can be identified with ι : M ↪→ X ; however, this follows from the commutative
diagram:

M ι
//

δM
��

X
∼= δX
��

M††
∼=

ι††
// X††

Indeed, δX is an isomorphism as X ∈ MCM, and ι††
= (ι†)† is an isomorphism

because ι† is.

Remark 4.5. For a special MCM-precover π : X → M of a finitely generated
module M , the kernel Kerπ has finite injective dimension, and hence one has
ExtiR(X,Kerπ) = 0 for every X ∈ MCM and every i > 0 — not just for i = 1.
A similar phenomenon does not occur for special MCM-preenvelopes. Indeed, if
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in Example 4.4 one has dimR(X/M) = d − 2, say, then Coker ι = X/M satisfies
Ext2R(X/M, �) 6= 0 by [Bruns and Herzog 1993, Corollary 3.5.11(b)].

5. MCM-envelopes with the unique lifting property

If µ :M→ X is an MCM-preenvelope of a finitely generated R-module M , then the
induced homomorphism HomR(µ, Y ) :HomR(X, Y )→HomR(M, Y ) is surjective
for every Y ∈ MCM; see Definition 2.2. If HomR(µ, Y ) is an isomorphism for
every Y ∈MCM, then we say that the MCM-preenvelope µ has the unique lifting
property. Indeed, in this case, there exists for every homomorphism ν :M→ Y with
Y ∈MCM a unique homomorphism ϕ : X→ Y that makes the following diagram
commute:

M
µ
//

ν

��

X

ϕ
~~

Y

Note that an MCM-preenvelope µ : M→ X with the unique lifting property must
necessarily be an MCM-envelope. Indeed, the only endomorphism ϕ of X with
ϕµ= µ is ϕ = 1X . Evidently, every surjective MCM-preenvelope has the unique
lifting property.

Lemma 5.1. For any finitely generated R-module M , one has depthR(M
†) >

min{d, 2}.

Proof. Take an exact sequence L1→ L0→ M→ 0 where L0 and L1 are finitely
generated and free. Since the functor (−)† = HomR(−, �) is left exact, we get
an exact sequence, 0→ M†

→ L†
0→ L†

1→ C → 0, where C is the cokernel of
the homomorphism L†

0 → L†
1. Since the modules L†

0 and L†
1 are maximal CM,

Lemma 2.5 yields

depthR(M
†)>min{d, depthR C + 2}>min{d, 2}. �

Proof of Theorem B. (i)=⇒(ii): Consider an exact sequence of finitely generated
modules

0−→ K −→ L1
α
−→ L0 −→ N −→ 0,

where L0 and L1 are free and K = Kerα. From [Bruns and Herzog 1993, Proposi-
tion 1.2.9] (last inequality) one gets

(∗) depthR N > depthR K − 2.

Set C = Coker(α†) and consider the exact sequence L†
0

α†

−→ L†
1 −→ C −→ 0. As
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the functor (−)† is left exact, we get a commutative diagram with exact rows:

0 // K // L1

∼= δL1
��

α
// L0

∼= δL0
��

0 // C† // L††
1

α††
// L††

0

which shows that K ∼= C†, since δL0 and δL1 are isomorphisms. By assumption (i),
the module K is therefore maximal CM, and hence inequality (∗) yields depthR N >
d − 2. As this holds for every finitely generated R-module N , it holds in particular
for the residue field N = k. We get 0= depthR k > d − 2, and thus d 6 2.

(ii)=⇒(iii): In the case where R is reduced, a proof of this implication can be
found in [Burban and Drozd 2008, Proposition 3.2]. We give a slightly different
argument.

If d 6 2, then Lemma 5.1 shows that for every finitely generated R-module
M , the module M† is maximal CM, and hence so is M††. Thus F = (−)†† is
a functor from mod to MCM, which we claim is a left adjoint of the inclusion
G :MCM→mod. For each finitely generated R-module M and each maximal CM
R-module X , the homomorphism ϕM,X = HomR(δM , X) given by

HomR(FM, X)= HomR(M††, X)
ϕM,X

// HomR(M, X)= HomR(M,GX)

is evidently natural in M and X ; and it is surjective since the biduality map δM :

M→ M†† is an MCM-preenvelope of M by Example 4.3. It remains to see that
HomR(δM , X) is injective. To this end, let µ : M††

→ X be a homomorphism
with µδM = HomR(δM , X)(µ) = 0. It follows that δ†

Mµ
†
= (µδM)

†
= 0. As M†

is maximal CM, the biduality map δM† is an isomorphism, and hence so is δ†
M by

Lemma 3.1. Since δ†
Mµ

†
= 0 we conclude that µ†

= 0. Thus µ††
= (µ†)† = 0 and

consequently µ= δ−1
X µ††δM†† = 0, as desired.

(iii)=⇒(iv): Let F :mod→MCM be a left adjoint of the inclusion G :MCM→mod.
For every finitely generated R-module M , the unit of adjunction ηM : M→ GFM
induces, for every maximal CM R-module Y , an isomorphism:

ϕM,Y : HomR(FM, Y )−→∼ HomR(M,GY ) given by α 7→ G(α)ηM ;

see [MacLane 1971, IV.1 Theorem 1]. If we suppress the inclusion functor G and
set X = GFM = FM , which is maximal CM by the assumption on F, we see that
unit of adjunction ηM : M→ X has the property that the map

HomR(X, Y )−→∼ HomR(M, Y ) given by α 7→ αηM = HomR(ηM , Y )(α)

is an isomorphism. Thus, ηM is an MCM-envelope of M with the unique lifting
property.
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(iv)=⇒(i): Let M be a finitely generated R-module. By assumption, M has an
MCM-envelope µ : M→ X with the unique lifting property. Since � is maximal
CM, the homomorphism µ†

: X†
→ M† is an isomorphism, and as X† is maximal

CM, so is M†. �

6. Cosyzygies with respect to MCM

Let A be a full subcategory of an abelian category M (for example, M=mod and
A=MCM).

Assume that every object in M has an A-precover. In this case, every M ∈
M admits a proper A-resolution, meaning a, not necessarily exact, complex
A = · · · → A1→ A0→ M→ 0 with Ai ∈A such that the sequence HomM(A,A)

is exact for every A ∈A. Such a resolution is constructed recursively as follows:
take an A-precover π0 : A0→ M of M and set K1 = Kerπ0; take an A-precover
π1 : A1→K1 of K1 and set K2=Kerπ1; etc. The object Kn is denoted by SyzAn (M)
and it is called the n-th syzygy of M with respect to A. A given object M ∈M has,
typically, many different A-precovers and proper A-resolutions, so SyzAn (M) is not
uniquely determined by M ; but it almost is: the version of Schanuel’s lemma found
in [Enochs et al. 2001, Lemma 2.2] shows that if Kn and K n are both n-th syzygies
of M with respect to A, then there exist A, A ∈A such that Kn ⊕ A ∼= K n ⊕ A. In
particular, if A is closed under direct summands (as is the case if A=MCM), then
Kn belongs to A if and only if K n belongs to A; and thus it makes sense to ask if
SyzAn (M) belongs to A.

If every object in M admits an A-cover, then π0, π1, . . . in the construction above
can be chosen to be A-covers, and the resulting proper A-resolution is then called a
minimal proper A-resolution of M . In this case, Kn is called the minimal n-th syzygy
of M with respect to A, and it is denoted by min-SyzAn (M). Since an A-cover (of a
given object in M) is unique up to isomorphism, see [Xu 1996, Theorem 1.2.6],
the object min-SyzAn (M) is uniquely determined, up to isomorphism, by M .

Dually, if every M ∈M has an A-preenvelope (resp. A-envelope), then a proper
A-coresolution (resp. minimal proper A-coresolution) 0→ M→ A0

→ A1
→ · · ·

can always be constructed as follows: take an A-preenvelope (resp. A-envelope)
µ0
: M → A0 of M and set C1

= Cokerµ0; take an A-preenvelope (resp. A-
envelope) µ1

: C1
→ A1 of C1 and set C2

= Cokerµ1; etc. The object Cn is called
the n-th cosyzygy of M with respect to A (resp. the minimal n-th cosyzygy of M
with respect to A) and it is denoted by Cosyzn

A(M) (resp. min-Cosyzn
A(M)). The

object min-Cosyzn
A(M) is uniquely determined, up to isomorphism, by M . The

object Cosyzn
A(M) is almost uniquely determined by M in the sense that if Cn and

Cn are both n-th cosyzygies of M with respect to A, then there exist A, A ∈A such
that Cn

⊕ A ∼= Cn
⊕ A. Thus, if A is closed under direct summands, then it makes

sense to ask if Cosyzn
A(M) belongs to A.
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We supplement the definitions above by setting SyzA0 (M)=min-SyzA0 (M)= M ,
and similarly Cosyz0

A(M)=min-Cosyz0
A(M)= M .

Example 6.1. Let (A, n, `) be any local ring and let F be the class of finitely
generated free A-modules. Every finitely generated A-module M has an F-cover; to
construct it one takes a minimal set x1, . . . , xb of generators of M (here b= β A

0 (M)
is the zeroth Betti number of M) and then defines Ab�M by ei 7→ xi ; see [Enochs
and Jenda 2000, Theorem 5.3.3]. A minimal proper F-resolution · · ·→ F1→ F0→

M→ 0 of a finitely generated A-module M is nothing but a minimal free resolution
of M in the classical sense, that is, where each homomorphism Fn→ Fn−1 becomes
zero when tensored with the residue field ` of A.

In this section, we are interested in cosyzygies with respect to the class MCM of
maximal CM R-modules. We begin with a characterization of modules for which
the first such cosyzygy is maximal CM.

Proposition 6.2. For a finitely generated R-module M the next conditions are
equivalent:

(i) M has an MCM-preenvelope whose cokernel is maximal CM, meaning that
Cosyz1

MCM(M) is a maximal CM module.

(ii) M has a surjective MCM-envelope, that is, min-Cosyz1
MCM(M)= 0.

Proof. Evidently, (ii) implies (i). Conversely, letµ :M→ X be an MCM-preenvelope
such that C = Cokerµ is maximal CM. Since X and C = X/ Imµ are maximal
CM, so is Imµ. It follows that the corestriction µ : M � Imµ is a surjective
MCM-envelope of M . �

Next we give a sufficient condition for the second cosyzygy to be maximal CM.

Proposition 6.3. Let M be a finitely generated R-module such that M† is maximal
CM. Then any second cosyzygy, Cosyz2

MCM(M), of M with respect to MCM is
maximal CM.

Proof. By Example 4.3, the homomorphism δM : M→ M†† is an MCM-envelope
of M . Set C1

= min-Cosyz1
MCM(M) = Coker δM . By application of the left ex-

act functor (−)†, the exact sequence M
δM
−→ M††

−→ C1
−→ 0 induces an exact

sequence

0 // (C1)† // M††† δ
†
M
// M†.

As M† is maximal CM, the biduality homomorphism δM† is an isomorphism, and
hence so is δ†

M by Lemma 3.1. It follows that HomR(C1, �) = (C1)† = 0, so
[Bruns and Herzog 1993, Corollary 3.5.11(b)] implies that dimR(C1) < d. Thus
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Proposition 4.1 shows that C1
→ 0 is an MCM-envelope of C1, and therefore the

minimal second cosyzygy of M with respect to MCM is zero:

min-Cosyz2
MCM(M)=min-Cosyz1

MCM(C
1)= Coker(C1

→ 0)= 0.

Hence any second cosyzygy of M with respect to MCM must be maximal CM. �

Proof of Theorem C. First note, that if X is a maximal CM R-module, then
Cosyzi

MCM(X) is clearly maximal CM for every i > 0. If n > d, then the n-th
cosyzygy of M is an (n− d)th cosyzygy of Cosyzd

MCM(M), that is,

Cosyzn
MCM(M)= Cosyzn−d

MCM(Cosyzd
MCM(M));

so it suffices to argue that Cosyzd
MCM(M) is maximal CM.

If d = 0, then certainly Cosyz0
MCM(M)= M is maximal CM, since every finitely

generated R-module is maximal CM over an artinian ring.
Assume that d = 1. By Theorem A we can take a special MCM-preenvelope

µ : M → X of M . We must show that C1
= Cosyz1

MCM(M) = Cokerµ is max-
imal CM. By definition, we have Ext1R(C

1, Y ) = 0 for all Y ∈ MCM, in partic-
ular, Ext1R(C

1, �) = 0. Since � has injective dimension d = 1, we also have
ExtiR(−, �) = 0 for all i > 1, and consequently, ExtiR(C

1, �) = 0 for all i > 0.
Thus C1 is maximal CM.

Finally, assume that d > 2. Let 0→ M→ X0
→ · · · → Xd−3

→ Cd−2
→ 0 be

part of a proper MCM-coresolution of M , where Cd−2
= Cosyzd−2

MCM(M). In the
case d = 2, this just means that we consider the module C0

= Cosyz0
MCM(M)= M .

Since the module � is maximal CM, the sequence

0−→ (Cd−2)† −→ (Xd−3)† −→ · · · −→ (X0)† −→ M†
−→ 0

is exact. From Lemma 2.5 and Lemma 5.1 we derive that depthR(C
d−2)† >

min{d, depthR M†
+ d − 2} = d, so (Cd−2)† = (Cosyzd−2

MCM(M))
† is maximal CM.

Proposition 6.3 now yields that

Cosyzd
MCM(M)= Cosyz2

MCM(Cosyzd−2
MCM(M))

is maximal CM, as desired. �

Dutta [1989] shows that if R is not regular, then no syzygy in the minimal free
resolution of the residue field k (see Example 6.1) can contain a nonzero free direct
summand. The following result has the same flavor, but its proof is easy. Actually,
the proof of [Takahashi 2006, Proposition 2.6] applies to prove Proposition 6.4 as
well, but since it is so short, we repeat it here.

Proposition 6.4. Assume that every finitely generated R-module has an MCM-
envelope (by Theorem A, this is the case if R is henselian). Let M be a finitely
generated R-module and let n > 1 be an integer. The minimal n-th cosyzygy,
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min-Cosyzn
MCM(M), of M with respect to MCM contains no nonzero free direct

summand.

Proof. It suffices to consider the case n= 1. Let µ :M→ X be an MCM-envelope of
M , set C =min-Cosyz1

MCM(M)= Cokerµ, and write π : X � C for the canonical
homomorphism. Let F be a free direct summand in C and denote by ρ : C � F
the projection onto this direct summand. We have a commutative diagram

M
µ
//

µ0

��

X π
// C

ρ

����

// 0

0 // K ι
// X

ρπ
// F // 0,

where ι : K → X is the kernel of ρπ , and µ0 is the corestriction of µ to K . Since
F is free, the lower short exact sequence splits, so ι has a left inverse σ : X→ K .
The endomorphism ισ of X satisfies ισµ = ισ ιµ0 = ιµ0 = µ, and since µ is an
envelope, we conclude that ισ is an automorphism. In particular, ι is surjective, and
hence F is zero. �
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PATTERSON–SULLIVAN CURRENTS,
GENERIC STRETCHING FACTORS

AND THE ASYMMETRIC LIPSCHITZ METRIC
FOR OUTER SPACE

ILYA KAPOVICH AND MARTIN LUSTIG

We quantitatively relate the Patterson–Sullivan currents and generic stretch-
ing factors for free group automorphisms to the asymmetric Lipschitz met-
ric on outer space and to Guirardel’s intersection number. Thus we show
that, given N � 2 and " > 0, there exists a constant c D c.N; "/ > 0 such
that for any two trees T;S 2 cvN of covolume 1 and injectivity radius � ",
we have

j loghS; �T i�dL.T;S /j � c;

where dL is the asymmetric Lipschitz metric on the Culler–Vogtmann outer
space, and where �T is the (appropriately normalized) Patterson–Sullivan
current corresponding to T . As a corollary, we show there exist constants
C1 � 1 and C2 � 1 (depending on N; ") such that for any T;S as above we
have

1

C1

log ic.T;S /�C2 � loghS; �T i �C1 log ic.T;S /CC2;

where ic is the combinatorial version of Guirardel’s intersection number.
We apply these results to the properties of generic stretching factors of free
group automorphisms. In particular, we show that for any N � 2, there
exists a constant 0 < �N < 1 such that for every automorphism ' of FN D

F.A/, we have

0< �N �
�A.'/

ƒA.'/
� 1:

Here �A is the generic stretching factor of ' with respect to the free basis A

of FN and ƒA.'/ is the extremal stretching factor of ' with respect to A.
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1. Introduction

For an integer N � 2, the unprojectivized outer space cvN is the set of all R-trees
equipped with a free discrete minimal isometric action of FN , considered up to
an FN -equivariant isometry. We denote by cv1

N
the set of all T 2 cvN such that

the metric graph T=FN has volume 1. The closure cvN of cvN with respect to
the equivariant Gromov–Hausdorff convergence topology (or equivalently [Paulin
1989], with respect to the hyperbolic length function topology) consists of all very
small minimal isometric actions of FN on R-trees, again up to an FN -equivariant
isometry. There is a natural action of R>0 on cvN by multiplying the metric on
a tree by a positive scalar. The subset cvN of cvN is invariant under this action,
and the quotient CVN D cvN =R>0 is the projectivized outer space, originally
introduced by Culler and Vogtmann [1986]. The quotient CVN D cvN =R>0 is
compact, and is called the Thurston compactification of CVN . All of the above
spaces admit natural Out.FN /-actions. The space CVN is naturally Out.FN /-
equivariantly homeomorphic to cv1

N
, but it is useful to remember that technically

cv1
N

and CVN are distinct objects.
There are three main quantitative tools for studying points of cvN . The first

is the so-called “asymmetric Lipschitz distance”. If T 2 cvN and S 2 cvN , the
extremal Lipschitz distortion is given by

ƒ.T;S/ WD sup
w2FN nf1g

kwkS

kwkT
:

It is known (see [Francaviglia and Martino 2011] for details) that this supremum is
actually a maximum, and that ƒ.T;S/ is the infimum of the Lipschitz constants
of all the FN -equivariant Lipschitz maps T ! S . It is also known that for all
T;S 2 cv1

N
, we have ƒ.T;S/ � 1, and that the equality holds if and only if

T D S . The asymmetric Lipschitz distance is defined as dL.T;S/ WD logƒ.T;S/,
where T;S 2 cv1

N
. Although it is usually the case that dL.T;S/¤ dL.S;T /, the

asymmetric distance dL satisfies all the other properties of being a metric, and
it is known that the topology defined by dL on cv1

N
coincides with the standard

subspace topology for cv1
N
� cvN . Moreover, for any T;S 2 cv1

N
, there exists an

(in general nonunique) dL-geodesic path from T to S in cv1
N

, given by natural
“folding lines” [loc. cit.]. The asymmetric distance dL is a useful tool in the study
of the geometry of Out.FN / and it has found significant recent applications; see,
for example, [Algom-Kfir 2011; 2013; Algom-Kfir and Bestvina 2012; Bestvina
2011; Francaviglia and Martino 2011; 2012; Ladra et al. 2015; White 1991].

Another two important quantitative tools for studying outer space are two notions
of a “geometric intersection number”. The first of these was introduced by Guirardel
[2005] in the general setting of groups acting by isometries on R-trees. Guirardel’s
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intersection number i.T;S/ (where T;S 2 cvN ) is defined as the covolume of the
“core” for the action of FN on T �S . Guirardel’s intersection number is symmetric
and Out.FN /-invariant, and for T;S 2 cvN , one always has 0 � i.T;S/ < 1.
However, for trees in @cvN D cvN n cvN , it is often the case that i.T;S/D1 and
i. � ; � / is discontinuous when viewed as a function on cvN �cvN . Still, Guirardel’s
intersection number is a highly useful tool when studying the asymptotic geometry
of cvN itself, particularly when looking at orbits of subgroups of Out.FN / in cv1

N

and cvN . Examples of such applications can be found in [Behrstock et al. 2010;
Clay et al. 2015; Clay and Pettet 2010; 2012b; Guirardel 2005; Horbez 2012].

The second notion of a “geometric intersection number” was introduced in
[Kapovich and Lustig 2009]. There we constructed a geometric intersection form
h � ; � i W cvN �Curr.FN /!R�0, where Curr.FN / is the space of geodesic currents
on FN . See Section 2C below and [Kapovich 2005; 2006; Kapovich and Lustig
2007; 2009] for the more information and the background on geodesic currents. The
geometric intersection form is continuous, Out.FN /-equivariant, and, importantly,
it always gives a finite output; that is, for every T 2 cvN and � 2 Curr.FN /, one
has 0 � hT; �i <1. If T 2 cvN and g 2 FN n f1g then hT; �gi D kgkT , where
�g 2 Curr.FN / is the “counting current” associated with g. By its very definition,
h � ; � i is an asymmetric gadget. However, its good properties, including finiteness
and global continuity on cvN , make the geometric intersection form a useful tool
that has also found a number of significant applications to the study of the dynamics
and geometry of Out.FN /. See, for example, [Bestvina and Feighn 2010; Bestvina
and Reynolds 2012; Carette et al. 2012; Clay and Pettet 2012a; Coulbois and Hilion
2014; Coulbois et al. 2008b; Hamenstädt 2014a; 2014b; Kapovich and Lustig 2009;
2010a; 2010b; Mann and Reynolds 2013; Reynolds 2012].

For "� 0, we denote by cv1
N;"

the set of all T 2 cv1
N

such that the length of the
shortest simple closed loop in T=FN is at least ". The set cv1

N;"
is called the "-thick

part of cv1
N

. Horbez [2012] showed that, for any fixed ">0, if T;S 2 cv1
N;"

, one has

.}/
1

K1
log ic.T;S/�K2 � dL.T;S/�K1 log ic.T;S/CK2

for some constants K1�1, K2�0 depending only on N and ". Here ic.T;S/ is the
combinatorial version of Guirardel’s intersection number, where ic.T;S/ is defined
as the number of 2-cells in Core.T �S/=FN , while i.T;S/ is defined as the sum
of the areas of all the 2-cells in Core.T �S/=FN . Thus if, for S;T 2 cv1

N
, the trees

T0;S0 2 cvN are obtained from T and S by making all edges have length 1, then
ic.T;S/ WD i.T0;S0/. Also, following the usual convention, in .}/ we interpret
log 0 as log 0D 0.

In the present paper, for T;S 2 cv1
N;"

, we relate ƒ.T;S/ to a natural quantity
defined in terms of h � ; � i. Via Horbez’ result, this connection also relates the
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geometric intersection form h � ; � i to Guirardel’s geometric intersection number
i. � ; � /. Following the results of Furman [2002] in the general set-up of word-
hyperbolic groups, Kapovich and Nagnibeda [2007] associated to every T 2 cvN its
Patterson–Sullivan current. In general, the Patterson–Sullivan current is naturally
defined only up to a multiplication by a positive scalar. Normalizing by the geometric
intersection number with T provides a canonical choice. Thus for a tree T 2 cvN ,
we denote by �T 2 Curr.FN / the Patterson–Sullivan current associated to T ,
normalized so that hT; �T i D 1. We refer the reader to Section 4 below and to
[Furman 2002; Kapovich and Nagnibeda 2007; 2010] for the precise definitions and
background information about the Patterson–Sullivan currents. A key result obtained
by Kapovich and Nagnibeda [2007] shows that the map JPS W cv1

N
! Curr.FN /,

T 7! �T is a continuous Out.FN /-equivariant embedding.
Our main result (see Theorem 4.2 below) is:

Theorem 1.1. Let N � 2 and " > 0. Then there exist constants 0 < ı1 � ı2 such
that for every T 2 cv1

N;"
and every S 2 cvN we have

ı1 �
hS; �T i

ƒ.T;S/
� ı2:

Therefore there exists a constant c D c.N; "/ > 0 such that for every T 2 cv1
N;"

and
S 2 cv1

N
we have

j loghS; �T i � dL.T;S/j � c:

Using the result of Horbez [2012] stated in .}/ above, Theorem 1.1 directly
implies (using the notation introduced after .}/):

Corollary 1.2. Let N � 2 and " > 0. There exist constants C1;C2 � 1 such that
for any T;S 2 cv1

N;"
, we have

1

C1
log ic.T;S/�C2 � loghS; �T i � C1 log ic.T;S/CC2:

The proof of Theorem 1.1 relies on several results regarding geodesic currents,
particularly one from [Kapovich and Lustig 2009] about the continuity of the
already mentioned geometric intersection form on cvN �Curr.FN /, and a result
from [Kapovich and Nagnibeda 2007] saying that the Patterson–Sullivan map
cv1

N
! Curr.FN /, T 7! �T , is a continuous Out.FN /-equivariant embedding.

The crucial point in the argument uses a result from [Kapovich and Lustig 2010a]
characterizing the case hS; �i D 0, where S 2 cvN and � 2 Curr.FN / are arbitrary.
This characterization implies that every current � with full support (such as the
Patterson–Sullivan current �T for T 2 cv1

N
) is filling, that is, satisfies hS; �i> 0 for

every S 2 cvN . Modulo the tools mentioned above, the proof of Theorem 1.1 is not
difficult (although it does require an extra trick exploiting the Out.FN /-equivariant
nature of certain functions and some nice properties of dL). Still, Theorem 1.1
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and its applications obtained here do provide a conceptual clarification regarding
the quantitative relationships between the two notions of a geometric intersection
number used in the study of Out.FN /, and about their relationship to the asymmetric
Lipschitz distance.

One of our main motivations for this paper has been to better understand the
properties of “generic stretching factors” for free group automorphisms.

Proposition-Definition 1.3 [Kaimanovich et al. 2007]. For any free basis A of FN

and any S 2 cvN , there exists a number �A.S/� 0 with the following property.
For a.e. trajectory �Dy1y2 � � �yn � � � of the simple nonbacktracking random walk

on FN with respect to A (that is, for a “random” geodesic ray � D y1y2 � � �yn � � �

over A˙1 with yi 2A˙1), we have ky1y2 � � �ynkA D nC o.n/ and

lim
n!1

ky1y2 � � �ynkS

n
D lim

n!1

ky1y2 � � �ynkS

ky1y2 � � �ynkA
D �A.S/:

The number �A.S/ is called [Kapovich 2006; Kaimanovich et al. 2007] the
generic stretching factor of S with respect to A.

The term “nonbacktracking” in “nonbacktracking simple random walk” refers
to the fact that for this random walk, if x;y 2A[A�1, the transition probability
for x to be followed by y is equal to 1=.2N � 1/ if y ¤ x�1 and is equal to 0 if
y D x�1. Thus the trajectories of this random walk are semi-infinite freely reduced
words over A˙1. Informally, the generic stretching factor �A.S/� 0 captures the
distortion ky1y2 � � �ynkS=n, where y1 � � �yn is a “random” freely reduced word of
length n over A, as n tends to infinity. The existence of �A.S/� 0 follows from
general ergodic-theoretic considerations, as observed in [Kaimanovich et al. 2007].
As noted in Remark 4.6 below, one actually has �A.S/ > 0 for every S 2 cvN .

Let A be a free basis of FN and consider the Cayley tree TA 2 cvN , with
all edges of length 1=N , so that TA 2 cv1

N
. Thus for every w 2 FN , we have

kwkA DN kwkTA
, where kwkA is the cyclically reduced length of w over A˙1. It

is known that the Patterson–Sullivan current�TA
is equal to the “uniform current” �A

on FN corresponding to A. Using the interpretation of hS; �Ai as the “generic
stretching factor” �A.S/ of S 2 cvN with respect to A [Kapovich 2006], as a
consequence of Theorem 1.1 we also obtain (see Theorem 4.7 below):

Corollary 1.4. Let N � 2. There exists a constant ı D ı.N / 2 .0; 1/ with the
following property:

For any free basis A of FN and any S 2 cvN , we have

(|) 0< ı �
�A.S/

ƒ.TA;S/
�

1

N
:

We are particularly interested in relationships between generic stretching factors
and extremal stretching factors in the context of Cayley trees of FN and of elements
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of Out.FN /. Note that if A is a free basis of A then N TA 2 cvN is the standard
Cayley graph of FN with respect to A, where all edges have length 1.

If ' 2 Out.FN / and w 2 FN , then, since ' is an outer automorphism, it acts
on the conjugacy classes of elements of FN (rather than on elements of FN ).
By convention, for ' 2 Out.FN / and w 2 FN , if '.w/ appears in an expression
that depends only on the conjugacy class '.Œw�/, we will use '.w/ to mean any
representative of that conjugacy class.

Definition 1.5 (extremal and generic stretching factors of automorphisms). Let A

be a free basis of FN and let ' 2 Out.FN /.
Define

ƒA.'/ WDƒ.TA;TA'/D sup
w¤1

k'.w/kA

kwkA
D edL.TA;TA'/;

and refer to ƒA.'/ as the extremal stretching factor for ' with respect to A.
Also, define �A.'/ WD �A.N TA'/DN�A.TA'/.
Thus for a.e. trajectory � D y1 � � �yn � � � of the simple nonbacktracking random

walk on FN with respect to A, we have

�A.'/D lim
n!1

k'.y1y2 � � �yn/kA

n
D lim

n!1

k'.y1y2 � � �yn/kA

ky1y2 � � �ynkA
:

We call �A.'/ the generic stretching factor of ' with respect to A.

Thus ƒA.'/ measures the maximal distortion k'.w/kA=kwkA as w varies
over all nontrivial elements of FN , while �A.'/ captures the “generic distortion”
k'.w/kA=kwkA, where w is a “long random” freely reduced (or cyclically reduced)
word over A˙1. In practice, ƒA.'/ is easy to compute since it is known (see, e.g.,
[Francaviglia and Martino 2011]) that ƒA.'/Dmax1�kwk�2.k'.w/kA=kwkA/.

The generic stretching factors �A.'/ were introduced in [Kaimanovich et al.
2007] and further studied in [Francaviglia 2009; Kapovich 2006; Kapovich and
Lustig 2010a; Sharp 2010]. In particular, it is proved in [Kaimanovich et al.
2007] that for every ' 2 Out.FN /, the number �A.'/ is rational, and moreover,
2N�A.'/ 2 ZŒ1=.2N � 1/� and there exists an algorithm that, given ', computes
�A.'/. The definitions directly imply that �A.'/ �ƒA.'/. However, other than
this fact, the quantitative relationship between ƒA.'/ and �A.'/ remained unclear.

Let N � 2 and FN D F.a1; : : : ; aN / with AD fa1; : : : ; aN g. Define

�N WD inf
'2Out.FN /

�A.'/

ƒA.'/
:

For every ' 2 Out.FN /, we have TA;TA' 2 cv1
N;"

with " D 1=N , and thus
Corollary 1.4 directly implies:

Theorem 1.6. For every N � 2 we have �N > 0.
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Therefore for every ' 2 Out.FN /, we have

0< �N �
�A.'/

ƒA.'/
� 1:

Our proof that �N > 0 does not give any explicit quantitative information
about �N . It would be interesting to find some explicit bounds from above and
below for �N , and perhaps to even compute �N , at least for small values of N . We
show in Proposition 7.1 that limN!1 �N D 0 and that �N DO.1=N /.

As another application, we obtain (see Corollary 5.3 below):

Corollary 1.7. Let N � 2 and FN DF.a1; : : : ; an/ with ADfa1; : : : ; aN g. There
exists D DD.N /� 1 such that for every ' 2 Out.FN / we have

1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

Let ' 2 Out.FN /. Recall that the algebraic stretching factor �.'/ is defined as

�.'/ WD sup
w2FN ;w¤1

lim
n!1

n
p
k'n.w/kS ;

where S 2 cvN is an arbitrary base point. It is known that the limit in the last
equality always exists, that this definition of �.'/ does not depend on the choice of
S 2 cvN , and that we always have �.'/ � 1. An element ' 2 Out.FN / is called
exponentially growing if �.'/ > 1, and polynomially growing if �.'/D 1. Indeed,
it is known (see, for example, [Levitt 2009]), that ' is polynomially growing if and
only if for every w 2 FN and S 2 cvN , the sequence k'n.w/kS is bounded above
by a polynomial in n.

The algebraic stretching factor �.'/ can be read off from any relative train-track
representative f W�!� of ' as the maximum of the Perron–Frobenius eigenvalues
for any of the canonical irreducible diagonal blocks of the (nonnegative) transition
matrix M.f /.

As another application of the results of this paper, we explain how the generic
stretching factor �A.'

n/ grows in terms of n for an arbitrary ' 2 Out.FN /. Thus
we obtain (see Theorem 5.6 below) the following result, which answers Problem 9.2
posed in [Kaimanovich et al. 2007]:

Theorem 1.8. Let A be a free basis of FN , let ' 2 Out.FN / and let �.'/ be the
algebraic stretching factor of '. Then there exist constants c1; c2 > 0 and an integer
m� 0 such that for every n� 1, we have

c1 �.'/
n nm

� �A.'
n/� c2 �.'/

n nm:

Moreover, if ' admits an expanding train-track representative with an irreducible
transition matrix (e.g., if ' is fully irreducible), then mD 0 and �.'/ > 1.
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The “polynomial growth degree” m in this result is bounded above by the
number of strata of any relative train track representative f as above which have
PF-eigenvalue equal to �, and it has been determined precisely by Levitt [2009],
see the proof of Proposition 5.4 below.

2. Preliminaries

2A. Basic terminology and notations related to outer space. We denote by cvN

the unprojectivized outer space, that is, the space of all free discrete minimal isomet-
ric actions of FN on R-trees, considered up to FN -equivariant isometry. Denote by
cvN the closure of cvN in the equivariant Gromov–Hausdorff convergence topology
(or, equivalently, in the hyperbolic length functions topology). It is known [Bestvina
and Feighn 1993; Cohen and Lustig 1995; Guirardel 1998] that cvN consists of
all the very small nontrivial minimal isometric actions of FN on R-trees, again
considered up to FN -equivariant isometry. Recall that a point T 2 cvN is uniquely
determined by its translation length function k � kT W FN ! Œ0;1/, where for
w 2 FN , we have kwkT D infx2T d.x; wx/Dminx2T d.x; wx/.

The space cvN has a natural right Out.FN /-action, where for w 2 FN and
T 2 cvN , we have kwkT' Dk'.w/kT . It is sometimes useful to convert this action
to a left Out.FN /-action by setting 'T WD T '�1. Define

cv1
N WD fT 2 cvN j vol.T=FN /D 1g;

and refer to cv1
N

as the volume-normalized outer space or just normalized outer
space. Then cvN is an open dense Out.FN /-invariant subset of cvN , and cv1

N
is a

closed Out.FN /-invariant subset of cvN (but of course cv1
N

is not closed in cvN ).
There is a natural action of R>0 on cvN and cvN by scalar multiplication, which

yields the corresponding projectivizations CVN D cvN =R>0 and CVN D cvN =R>0.
For a tree T 2 cvN , we denote its projective class in CVN by ŒT �. Thus ŒT � D
fcT j c > 0g. Note that CVN is canonically Out.FN / equivariantly homeomorphic
to cv1

N
, but it is still important to remember that technically CVN and cv1

N
are

distinct objects.
For " > 0, we denote by cv1

N;"
the set of all T 2 cv1

N
such that the shortest

nontrivial immersed circuit in the metric graph T=FN has length � ". Equivalently,
cv1

N;"
is the set of all T 2 cv1

N
such that for every w 2FN nf1g, we have kwkT � ".

For every " > 0, the set cv1
N;"
� cv1

N
is a closed Out.FN /-invariant subspace, and

the quotient cv1
N;"
=Out.FN / is compact.

A chart on FN is an isomorphism ˛ W FN ! �1.�;p/, where � is a finite
connected graph with all vertices of degree � 3 and where p is a base vertex in �
(which is usually suppressed). Every such ˛ defines an open cone in cvN consisting
of assigning arbitrary positive lengths to edges of � and then lifting this assignment
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to the universal cover z� to get an element T 2 cvN . The intersection of such an
open cone with cv1

N
is an open simplex � in cv1

N
of dimension m� 1, where m is

the number of nonoriented edges of � . Every point T 2 cvN belongs to a unique
open cone of this form, and every point of cv1

N
belongs to a unique such open

simplex �.
The space CVN is known to be compact and finite-dimensional.

2B. Asymmetric Lipschitz distance. For points T 2 cvN and S 2 cvN , define

ƒ.T;S/D sup
w2FN nf1g

kwkS

kwkT
:

If T;S 2 cv1
N

, we also define dL.T;S/ WD logƒ.T;S/. As noted in the In-
troduction, for T;S 2 cv1

N
, the quantity dL.T;S/ is often called the asymmetric

Lipschitz distance from T to S .

Remark 2.1. If T 2 cvN and S 2 cvN then 0 < ƒ.T;S/ <1. Moreover, it is
known [Francaviglia and Martino 2011; White 1991] that for any open simplex
�� cv1

N
as in Section 2A, there exists a finite subset C� � FN n f1g such that for

every T 2� and every S 2 cvN , we have

ƒ.T;S/D max
w2C�

kwkS

kwkT
:

The set C� can be chosen to be contained in the subset of all elements which
are represented by paths that cross at most twice over every nonoriented edge of
� D T=FN for T 2�.

Note also that from the definition, we see that for every T 2 cvN , S 2 cvN and
' 2 Out.FN /, one has ƒ.T;S/Dƒ.'T; 'S/.

2C. Geodesic currents. We refer the reader to [Kapovich 2006; Kapovich and
Lustig 2007; 2009; 2010a] for detailed background on geodesic currents, and we
only recall a few basic definitions and facts here. Let @2FN D @FN � @FN n diag,
and endow @2FN with the subspace topology and with the diagonal FN -action by
translations. A geodesic current on FN is a positive Borel measure � on @2FN

such that � is finite on compact subsets, FN -invariant and “flip”-invariant (where
the “flip” map @2FN ! @2FN interchanges the two coordinates). The space of
all geodesic currents on FN is denoted Curr.FN /. The space Curr.FN / comes
equipped with a natural weak*-topology and a natural left Out.FN /-action by affine
homeomorphisms.

Let ˛ W FN ! �1.�;p/ be a chart on FN , and consider z� with the simplicial
metric, where every edge has length 1. Then there is a natural FN -equivariant quasi-
isometry (given for any point p 2 z� by the orbit map FN !

z� , g 7! gp) between
FN and z� , which induces a canonical FN -equivariant homeomorphism between
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@FN and @z� . We will therefore identify @FN with @z� using this homeomorphism
without invoking it explicitly, whenever it is convenient.

A nondegenerate geodesic segment 
 in z� defines a cylinder set Cyl˛.
 / con-
sisting of all .X;Y / 2 @2FN such that the geodesic from X to Y in z� passes
through 
 (in the correct direction). The sets Cyl˛.
 /, as 
 varies among all
nondegenerate geodesic edge-paths in z� , are compact and open, and form a basis
for the topology on @2FN . Note that for w 2FN , we have Cyl˛.w
 /Dw Cyl˛.
 /.
If � 2 Curr.FN / and v is a nondegenerate reduced edge-path in � , we define the
weight hv; �i˛ WD �.Cyl˛.
 //, where 
 is any lift of v. Since the measure � is
FN -invariant, this definition does not depend on the specific choice of the lift 

of v to z� . A current � is uniquely determined by its collection of weights with
respect to a given chart. Moreover, if �n; � 2 Curr.FN / and ˛ is a chart as above,
then limn!1 �n D � in Curr.FN / if and only if for every nondegenerate reduced
edge-path v in � , we have limn!1hv; �ni˛ D hv; �i˛.

For every w 2 FN n f1g, there is an associated counting current �w 2 Curr.FN /,
which depends only on the conjugacy class Œw� of w in FN and satisfies �w�1 D

�w and �wn D n �w for all integers n � 1, and such that ' �w D �'.w/ for all
' 2 Out.FN /, w 2 FN n f1g. The precise definition of �w is not important at the
moment, but we will recall some of its basic properties later, as necessary. The set
fc�w j c>0; w2FN ; w¤1g of the so-called rational currents is dense in Curr.FN /.

Be aware that, in general, for a representative (even a train-track representative)
f W �! � of ', one has hv; '�i˛ ¤ hŒf .v/�; �i˛, where Œf .v/� denotes the edge-
path obtained from f .v/ by reduction (that is, the iterative contraction of any
backtracking path).

2D. Intersection form. Kapovich and Lustig [2009] proved the existence of a con-
tinuous geometric intersection form between points of cvN and geodesic currents:

Proposition 2.2 [Kapovich and Lustig 2009]. There exists a unique continuous
function h � ; � i W cvN �Curr.FN /! Œ0;1/, called the geometric intersection form,
with the following properties:

(1) For any �1; �2 2 Curr.FN /, T 2 cvN , c1; c2 � 0 and r > 0, we have

hrT; c1�1C c2�2i D rc1hT; �1iC rc2hT; �2i:

(2) For any T 2 cvN , � 2 Curr.FN / and ' 2 Out.FN /, we have

h'T; '�i D hT; �i:

(3) For any T 2 cvN and w 2 FN n f1g, we have

hT; �wi D kwkT :
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(4) For any T 2 cvN (with the associated chart ˛ W FN ! �1.T=FN /) and any
� 2 Curr.FN /, we have

hT; �i D
X

e2Edges.T=FN /

1
2
heI�i˛;

where the summation is taken over all oriented edges of the graph T=FN .

3. Tree-current morphisms and extremal Lipschitz distortion

Recall that a current � 2 Curr.FN / is called filling if for every S 2 cvN , we have
hS; �i> 0.

We proved in [Kapovich and Lustig 2010a] that for a current � 2 Curr.FN / and
a tree T 2 cvN , we have hT; �i D 0 if and only if the support of � is contained
in the “dual algebraic lamination” of T (in the sense of [Coulbois et al. 2008a]).
Using this fact, it was shown in [Kapovich and Lustig 2010a] that if � is a current
with full support, then � is filling. We denote by Currfill.FN / the set of all filling
� 2 Curr.FN /, and endow Currfill.FN / with the subspace topology given by the
inclusion Currfill.FN /� Curr.FN /.

Definition 3.1 (tree-current morphism). A tree-current morphism is a continuous
function J W cv1

N
!Curr.FN / such that for every T 2 cv1

N
and every ' 2Out.FN /,

we have J.'T /D ' J.T /.
A filling tree-current morphism is a tree-current morphism J W cv1

N
!Curr.FN /

such that for every T 2 cv1
N

, the current J.T / 2 Curr.FN / is filling.

Lemma 3.2. The function cv1
N
� cvN ! R, .T;S/ 7!ƒ.T;S/, is continuous.

Proof. Let T 2 cv1
N

be arbitrary.
Let �1; : : : ; �m be all the open simplices in cv1

N
whose closures in cv1

N
con-

tain T .
Set CT D

Sm
iD1 C�i

. Note that U D�1[� � �[�m is a neighborhood of T in cv1
N

.
Thus for every T 0 2 U and every S 2 cvN , we have

ƒ.T 0;S/D max
w2CT

kwkS

kwkT 0
:

Therefore the function ƒ.T 0;S/ is continuous on U � cvN . Since T 2 cv1
N

was
arbitrary, the conclusion of the lemma follows. �

Let J be a filling tree-current morphism. Then for any S 2 cvN and c > 0,
we have

hS;J.T /i

ƒ.T;S/
D
hcS;J.T /i

ƒ.T; cS/
:



382 ILYA KAPOVICH AND MARTIN LUSTIG

Also, since J.T / is a filling current, for every S 2 cvN , we have hS;J.T /i> 0.
Therefore we have a well-defined function

f W cv1
N �CVN ! .0;1/

given by f .T; ŒS �/D hS;J.T /i=ƒ.T;S/, where T 2 cv1
N

and S 2 cvN .

Lemma 3.3. Let J be a filling tree-current morphism. Then the function

f W cv1
N �CVN ! .0;1/; .T;S/ 7!

hS;J.T /i

ƒ.T;S/

is continuous.

Proof. The conclusion of the lemma follows directly from Lemma 3.2 together with
the continuity of the geometric intersection form h � ; � i. �

Corollary 3.4. Let K � cv1
N

be a compact subset, and let J W cv1
N
! Currfill.FN /

be a filling tree-current morphism.
Then there exist ı1 D ı1.K;J / > 0 and ı2 D ı2.K;J / > 0 such that for every

T 2K and every S 2 cvN , we have ı1 � f .K; ŒS �/� ı2.

Proof. The set K � CVN is a compact Hausdorff space and, by Lemma 3.3,
f WK �CVN ! .0;1/ is a continuous function. Therefore f achieves a positive
minimum ı1 and a positive maximum ı2 on K �CVN , and the conclusion of the
corollary follows. �

Corollary 3.5. Let K � cv1
N

be a compact subset, let TK D
S
'2Out.FN /

'K and
let J W cv1

N
! Curr.FN / be a filling tree-current morphism.

Furthermore, let ı1 D ı1.K;J / > 0 and ı2 D ı2.K;J / > 0 be the constants
provided by Corollary 3.4.

Then for every T 2 TK and every ŒS � 2 CVN , we have

0< ı1 �
hS;J.T /i

ƒ.T;S/
� ı2 <1:

Proof. Let T 2 TK and ŒS � 2 CVN be arbitrary.
Then there exist T 0 2K and ' 2Out.FN / such that T D'T 0. By '-equivariance

of J , we have J.T /D 'J.T 0/. Define S 0 D '�1S , so that 'S 0 D S . Then

hS;J.T /i

ƒ.T;S/
D
h'S 0; 'J.T 0/i

ƒ.'T 0; 'S 0/
D
hS 0;J.T 0/i

ƒ.T 0;S 0/
D f .T 0; ŒS 0�/ 2 Œı1:ı2�;

where the last inclusion holds by Corollary 3.4 since T 0 2K. �

Note that Corollary 3.5 does not require the tree-current morphism J W cv1
N
!

Currfill.FN / to be injective, although in the specific applications of interest to us J

will be injective.
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4. Patterson–Sullivan currents and extremal Lipschitz distortion

4A. Volume entropy and the Patterson–Sullivan currents. We only give here a
brief summary of basic definitions and facts regarding Patterson–Sullivan cur-
rents for points of cvN . We refer the reader to [Furman 2002; Coornaert 1993;
Kaimanovich 1991; Kapovich and Nagnibeda 2007] for more detailed background
information about Patterson–Sullivan measures and Patterson–Sullivan currents in
the context of word-hyperbolic groups and Gromov-hyperbolic spaces.

Let T 2 cvN , where N � 2. Since FN and T are FN -equivariantly quasi-
isometric, there is a natural identification of @FN and @T , which we will use later on.

The volume entropy h.T / of T is defined as

h.T / WD lim
R!1

log
�
#fw 2 FN j dT .p; wp/�Rg

�
R

;

where p 2 T is an arbitrary base point. It is known that the above definition does
not depend on the choice of a base-point p 2 T and that we have h.T / > 0 for
every T 2 cvN . It is also known that h.T / is exactly the critical exponent of the
Poincaré series

…p.s/D
X
w2FN

e�sdT .p;wp/:

In other words, …p.s/ converges for all s > h.T / and diverges for all s � h.T /. It
is also known that as s! hC, any weak limit � of the measures

1

…p.s/

X
w2FN

e�sdT .p;wp/ Dirac.wp/

is a probability measure supported on @T D @FN . Any such � is called a Patterson–
Sullivan measure on @FN corresponding to T , and the measure class of � is
canonically determined by T . As follows from general results of Furman [2002],
in this case there exists a unique, up to a scalar multiple, geodesic current � in the
measure class of � � � on @2FN . We call the unique scalar multiple �T of � such
that hT; �T iD 1, the Patterson–Sullivan current for T 2 cvN . One also has that the
current �T has full support (this follows, for example, both from the general results
of Furman [2002] and from the explicit formulas for �T obtained in [Kapovich and
Nagnibeda 2007]).

Proposition 4.1. The map

JPS W cv1
N ! Curr.FN /; T 7! �T

is a filling tree-current morphism.
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Proof. Since �T has full support, by a result of Kapovich and Lustig [2010a,
Corollary 1.3], it follows that �T 2 Currfill.FN /. The fact that JPS is a continuous
Out.FN /-equivariant map was proved by Kapovich and Nagnibeda [2007]. Thus
JPS is indeed a filling tree-current morphism, as claimed. �

The fact that for T 2 cv1
N

, the Patterson–Sullivan current �T is filling, i.e., that
hS; �T i ¤ 0 for every S 2 cvN , is quite nontrivial and does not follow directly
from Proposition 2.2. This fact, which requires a general result from [Kapovich
and Lustig 2010a] characterizing the case where hS; �i D 0 (where S 2 cvN and
� 2 Curr.FN /), is, in a sense, the place where the real “magic” in the proofs of the
main results of the present paper happens.

We now obtain Theorem 1.1 from the Introduction:

Theorem 4.2. Let N � 2 and " > 0. Then there exist constants ı2 � ı2 > 0 such
that for every T 2 cv1

N;"
, S 2 cvN we have

ı1 �
hS; �T i

ƒ.T;S/
� ı2:

Therefore there exists a constant c > 0 such that for every T 2 cv1
N;"

and S 2 cv1
N

,
we have

j loghS; �T i � dL.T;S/j � c:

Proof. Since cv1
N;"
=Out.FN / is compact and the action of Out.FN / on cv1

N;"
is

properly discontinuous, there exists a compact subset K � cv1
N;"

such that

cv1
N;" D TK D

[
'2Out.FN /

'K:

By Proposition 4.1, the map JPS W cv1
N
! Curr.FN / is a filling tree-current

morphism. The conclusion of the theorem now follows from Corollary 3.5. �

4B. Uniform currents and generic stretching factors. Kapovich and Nagnibeda
also provide reasonably explicit description of �T in terms of its weights on the
“cylinder subsets” of @2FN . The details of that description are not immediately
relevant for the present paper. However, in the case where T 2 cv1

N
and where

T=FN is a regular metric graph (that is, a regular graph where all edges have the
same length), one can give a more precise description of �T as a “uniform current”
corresponding to T and relate �T to the exit measure of the simple nonbacktracking
random walk on T . We briefly recall here the description of uniform currents for
the standard N -roses, that is for points of cv1

N
corresponding to free bases of FN .

Let AD fa1; : : : ; aN g be a free basis of FN . Let RN be the graph given by a
wedge of N loop-edges e1; : : : ; eN at a vertex x0. By identifying ei with ai 2 FN ,
we get an identification of ˛A W FN

Š
�!�1.RN ;x0/, that is, a chart on FN . We

give each edge of RN length 1=N , so that RN becomes a metric graph of volume 1.
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Then the universal cover TA WD
zRN is an R-tree, which can be thought of as the

Cayley graph of FN with respect to A, but where all edges have length 1=N . The
group FN has a natural free and discrete isometric left action on TA by covering
transformations, with TA=FN DRN . Thus TA is a point of cv1

N
.

The uniform current �A on FN corresponding to A is defined explicitly by its
weights. Namely, for every nontrivial freely reduced word v over A˙1, we have

hv; �Ai˛A
D

1

N.2N � 1/jvj�1
:

One can check that this assignment of weights does define a geodesic current and
that hTA; �Ai D 1. Moreover, in this case we also have:

Proposition 4.3. Let N � 2 and let A be a free basis of FN . Then �TA
D �A;

that is, the Patterson–Sullivan current corresponding to TA is exactly the uniform
current �A.

The above fact is not explicitly stated in [Kapovich and Nagnibeda 2007] but
it easily follows from the explicit formulas for the weights for Patterson–Sullivan
currents they obtained in the same work. Alternatively, one knows, for example,
by the results of [Coornaert 1993; Lyons 1994], that for TA the uniform visibility
measure mA on @FN D @TA is a Patterson–Sullivan measure for TA. Since �A 2
Curr.FN / is in the measure class of mA �mA and since hTA; �Ai D 1, it follows
from the definition of the Patterson–Sullivan current that �TA

D �A. Note that for
any other S 2 cvN , the intersection number hS; �Ai measures the distortion of a
“long random geodesic” in TA with respect to S .

Recall that in the Introduction, given a free basis A of FN , S 2 cvN and
' 2 Out.FN /, we defined the generic stretching factors �A.S/ and �A.'/.

Lemma 4.4. For any free basis A of FN and any S 2 cvN , we have

�A.S/�
1

N
ƒ.TA;S/:

Proof. Since all edges in TA have length 1=N , for every w 2 FN , we have
kwkA DN kwkTA

. Then for a random trajectory � D y1y2 � � �yn � � � of the simple
nonbacktracking random walk on FN with respect to A we have

�A.S/D lim
n!1

ky1 � � �ynkS

ky1 � � �ynkA
D lim

n!1

ky1 � � �ynkS

N ky1 � � �ynkTA

D
1

N
lim

n!1

ky1 � � �ynkS

ky1 � � �ynkTA

�
1

N
sup
w¤1

kwkS

kwkTA

D
1

N
ƒ.TA;S/: �

A key fact about generic stretching factors, originally established in [Kapovich
2006, Proposition 9.1] in slightly more limited context, is:
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Proposition 4.5. Let A be a free basis of FN (where N � 2/ and let S 2 cvN . Then

hS; �Ai D �A.S/:

Proof. By [Kapovich 2006, Proposition 7.3], for a.e. trajectory � D y1y2 � � �yn � � �

of the simple nonbacktracking random walk on FN with respect to A, we have

lim
n!1

1

n
�y1���yn

D �A:

Therefore, by Proposition 2.2, for any S 2 cvN , we have

hS; �Ai D lim
n!1

1

n
hS; �y1���yn

i D lim
n!1

ky1 � � �ynkS

n
D �A.S/: �

Remark 4.6. Since the current �A has full support and therefore �A is filling,
Proposition 4.5 implies that for every S 2 cvN , we have �A.S/ > 0. (From the
definition of �A.S/, one only knows that �A.S/� 0 and it is not a priori obvious
that the case �A.S/D 0 cannot occur.)

We can now obtain Corollary 1.4 from the Introduction:

Theorem 4.7. Let N � 2. Then there exists a constant ı D ı.N / 2 .0; 1/ with the
following property:

For any free basis A of FN and any S 2 cvN , we have

0< ı �
�A.S/

ƒ.TA;S/
�

1

N
:

Proof. Let A be a free basis of FN and let S 2 cvN be arbitrary. By Lemma 4.4,
we have

�A.S/

ƒ.TA;S/
�

1

N
:

Let ı D ı1.";N / > 0 be the constant provided by Theorem 4.2. By decreasing
this constant if necessary, we can always assume that 0 < ı1 < 1. Note that the
length of the shortest essential circuit in TA is equal to 1=N .

Since 0< "� 1=N , it follows that TA 2 cv1
N;"

. Since �TA
D �A and hS; �Ai D

�A.S/, by Theorem 4.2 we have

0< ı1 �
hS; �TA

i

ƒ.TA;S/
D
hS; �Ai

ƒ.TA;S/
D

�A.S/

ƒ.TA;S/
�

1

N
;

as required. �

5. Extremal, generic and algebraic stretching factors for free group
automorphisms

We recall the notions of extremal and generic stretching factors from Definition 1.5
in the Introduction:
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Definition 5.1 (extremal and generic stretching factors of automorphisms). Let A

be a free basis of FN and let ' 2 Out.FN /.
Define

ƒA.'/ WDƒ.TA;TA'/D sup
w¤1

k'.w/kA

kwkA
D edL.TA;TA'/;

and refer to ƒA.'/ as the extremal stretching factor for ' with respect to A.
Also, define �A.'/ WD �A.N TA'/DN�A.TA'/.
Thus for a.e. trajectory � D y1 � � �yn � � � of the simple nonbacktracking random

walk on FN with respect to A, we have

�A.'/D lim
n!1

k'.y1y2 � � �yn/kA

n
D lim

n!1

k'.y1y2 � � �yn/kA

ky1y2 � � �ynkA
:

We call �A.'/ the generic stretching factor of ' with respect to A.

First, we obtain, in a slightly restated form, Theorem 1.6 from the Introduction:

Theorem 5.2. For every N � 2, there exists 0 < �N � 1 such that if A is a free
basis of FN and ' 2 Out.FN / then

0< �N �
�A.'/

ƒA.'/
� 1:

Proof. Let A be a free basis of FN . Recall that, by definition, for ' 2Out.FN / we
have �A.'/DN�A.TA'/ and ƒA.'/Dƒ.TA;TA'/. Therefore, by Lemma 4.4,
we have �A.'/�ƒA.'/, so that �A.'/=ƒA.'/� 1. Since for any ' 2 Out.FN /,
we have TA;TA' 2 cv1

N;"
with "D 1=N , the statement of the theorem now follows

directly from Theorem 4.7. �
For two sequences xn > 0;yn > 0 (where n� 1), we say that xn grows like yn,

if there exist 0< c < c0 <1 such that for every n� 1, we have c � xn=yn � c0.
We now obtain Corollary 1.7 from the Introduction:

Corollary 5.3. Let N � 2 and FN DF.a1; : : : ; an/ with ADfa1; : : : ; aN g. There
exists D DD.N /� 1 such that for every ' 2 Out.FN /, we have

1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

Proof. It follows from [Algom-Kfir and Bestvina 2012, Theorem 24] that there
exists D0 DD0.N /� 1 such that for every ' 2 Out.FN /, we have

1

D0
dL.TA;TA'/� dL.TA';TA/�D0dL.TA;TA'/:

Note that dL.TA;TA'/D logƒ.TA;TA'/D logƒA.'/ and that

dL.TA';TA/D dL.TA;TA'
�1/D logƒ.TA;TA'

�1/D logƒA.'
�1/:
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Theorem 5.2 now implies that there exists D00 DD00.N /� 1 such that for every
' 2 Out.FN /, we have

.��/
1

D00
log�A.'/�D00 � log�A.'

�1/�D00 log�A.'/CD00:

It was proved in [Francaviglia 2009; Kapovich and Lustig 2010a] (and also
follows from Theorem 5.2) that the set �N WD f�A.'/ j ' 2Out.FN /g is a discrete
subset of Œ1;1/. It was established in [Kaimanovich et al. 2007] that �A.'/D 1

if and only if ' is a permutational automorphism with respect to A, that is, if and
only if, after a possible composition with an inner automorphism, ' is induced by
a permutation of A, with possibly inverting some elements of A. Note that ' is
permutational with respect to A if and only if '�1 is permutational with respect
to A, so that for ' 2 Out.FN /, �A.'

�1/D 1 if and only if �A.'/D 1. It was also
proved in [loc. cit.] that the minimum of �A.'/, taken over all nonpermutational ',
is equal to 1C .2N � 3/=.2N 2 �N /. Therefore .��/ implies that there exists
D DD.N /� 1 such that for every nonpermutational ' 2 Out.FN /, we have

(})
1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

If ' is permutational, then so is '�1. In this case we have log�A.'
�1/ D

log�A.'/ D 0 and (}) holds as well. Thus (}) holds for every ' 2 Out.FN /,
which completes the proof. �

Recall that for ' 2 Out.FN /, the algebraic stretching factor �.'/ is defined as

�.'/D sup
w2FN ;w¤1

lim
n!1

n
p
k'n.w/kS ;

where S 2 cvN is an arbitrary base-point. As noted earlier, this definition of �.'/
does not depend on the choice of S 2 cvN . The algebraic stretching factor �.'/
can be read off from any relative train-track representative f W �! � of ' as the
maximum of the Perron–Frobenius eigenvalues for any of the canonical irreducible
diagonal blocks of the (nonnegative) transition matrix M.f /.

Corollary 5.5 below describes, given '2Out.FN /, the asymptotics ofƒ.S;S'n/

as n tends to infinity (where S 2 cvN is an arbitrary point, the choice of which
does not affect this asymptotics). The statement of Corollary 5.5 is probably known
to the experts. Since the proof is not yet available in the literature, and since we
need Corollary 5.5 for the applications in this paper, we include the proof here.

Proposition 5.4. Let ' 2 Out.FN /.

(1) Let q� 1 and let ˛D 'q admit an improved relative train-track (in the sense of
[Bestvina et al. 2000]) representative f W�!� . Put � WD1 if ˛ is polynomially
growing (that is, if f has no exponentially growing strata) and otherwise let
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� > 1 be the largest Perron–Frobenius eigenvalue of the exponentially growing
strata of f W �! � .

Then there exists an integer m � 0 such that for every S 2 cvN , there are
some constants 0< C1 � C2 <1 such that for every n� 1,

C1�
n=qnm

�ƒ.S;S'n/� C2�
n=qnm:

(2) If ' admits a train-track representative f W�!� with an irreducible transition
matrix and with the Perron–Frobenius eigenvalue �>1, then for every S 2cvN ,
there exist 0< C1 � C2 <1 such that for every n� 1,

C1�
n
�ƒ.S;S'n/� C2�

n:

Proof. (1) Let T 2 cv1
N

be the point corresponding to the improved relative train-
track f W � ! � , where all edges of � are given equal length. Put LD f1g if f
has no exponentially growing strata. Otherwise let �1 � � � � � �k > 1 be all the
Perron–Frobenius eigenvalues of the exponentially growing strata of f and put
L D f�1; : : : ; �k ; 1g. Finally put � D max L. Thus � � 1 and � D 1 if and only
if f has no exponential strata.

A result of Levitt [2009, Theorem 6.2] shows that there is a finite subset M of
Z�0 such that for every nontrivial w 2 FN , there is some .�0;m0/ 2L�M such
that the sequence k˛n.w/kT grows like .�0/nnm0 . Moreover, there exists some
element 1¤ w0 2 FN such that k˛n.w0/kT grows as �nnm and such that if some
other w ¤ 1 has k˛n.w/kT growing as �nnm0 then m0 �m.

Let D D C� be the finite subset of FN as in Remark 2.1, where � is the open
simplex in cv1

N
containing T . Therefore for every n � 1, we have ƒ.T;T 'n/D

maxw2D.k˛
n.w/kT =kwkT /. Moreover, through replacing D by D [ fw0g, we

can assume that w0 2D.
It follows that ƒ.T;T˛n/Dmaxw2D.k˛

n.w/kT =kwkT / grows like �nnm.
Now let n� 1 and write nD qn1Cr , where n1� 0 and 0� r � q�1 are integers.

As we have seen, ƒ.T;T˛n1/Dmaxw2D.k'
n1.w/kT =kwkT / grows like �n1nm

1
.

Since 0� r � q�1, applying 'r distorts k �kT by a bounded multiplicative amount.
Therefore ƒ.T;T 'n/D maxw2D.k'

n.w/kT =kwkT / grows as �n=q.n=q/m, that
is, as �n=qnm.

Since T and S are FN -equivariantly quasi-isometric, it follows thatƒ.S;S'n/D

ƒA.'
n/ also grows like �n=qnm, and the conclusion of part (1) of the proposition

follows.

(2) The proof of part (2) is known (e.g., see Theorem 8.1 in [Francaviglia and
Martino 2011]) and is simpler than the proof of part (1), and we leave the details to
the reader. The key point is that in this case for every nontrivialw2FN such that the
conjugacy class of w is not '-periodic, the sequence k'n.w/kS grows like �n. �
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Corollary 5.5. Let ' 2 Out.FN /, let S 2 cvN and let �.'/ be the algebraic
stretching factor of '.

Then there is an integer m � 0 such that for every S 2 cvN , there are some
C1;C2 > 0 such that

C1 �.'/
n nm

�ƒ.S;S'n/� C2 �.'/
n nm

for all n� 1.

Proof. It is known [Bestvina et al. 2000] that some positive power ˛ D 'q of '
admits an improved relative train track representative.

In this case we have �.˛/ D �.'q/ D �.'/q , so that Œ�.˛/�1=q D �.'/. The
conclusion of the corollary now follows directly from part (1) of Proposition 5.4. �

Now Corollary 5.5 (applied to S D TA, which gives ƒ.S;S'n/DƒA.'
n/) and

Theorem 5.2 directly imply Theorem 1.8 from the Introduction:

Theorem 5.6. Let A be a free basis of FN , let ' 2 Out.FN / and let �.'/ be the
algebraic stretching factor of '. Then there exist constants c1; c2 > 0 and an integer
m� 0 such that for every n� 1, we have

c1 �.'/
n nm

� �A.'
n/� c2 �.'/

n nm:

Moreover, if ' admits an expanding train-track representative with an irreducible
transition matrix (e.g., if ' is fully irreducible), then mD 0 and �.'/ > 1. �
Example 5.7. To demonstrate that the case �> 1;m> 0 in Theorem 5.6 can indeed
occur, we consider an example explained on p. 1138 in [Levitt 2009]. Let N D 4

and F4DF.A/ with ADfa1; b1; a2; b2g. Let an automorphism ' WF.A/!F.A/

be given by

'.a1/D a1b1; '.b1/D a1; '.a2/D a2b1a1; '.b2/D a2:

For the A-rose RA, the map f WRA!RA, given by the same formula as ', is both a
global train-track and a 2-strata relative train-track representative for '. The bottom
stratum is fa1; b1g and the top stratum is fa2; b2g. The transition matrices for both
strata are the same and are equal to B D

�
1
1

1
0

�
, which has the Perron–Frobenius

eigenvalue �D .1C
p

5/=2. The transition matrix for f has the form M D
�

B
C

0
B

�
,

where C D
�

1
0

0
0

�
. By iterating M one can see that k'n.a2/kA grows like n�n.

One can then show that in this case ƒA.'
n/ also grows as n�n. Therefore, by

Theorem 5.2, �A.'
n/ grows as n�n as well.

6. Other examples of filling tree-current morphisms

The Patterson–Sullivan map JPS W cv1
N
! Curr.FN /, T 7! �T , is just one, albeit

natural and useful, example of a filling tree-current morphism. There are many other
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filling tree-current morphisms J W cv1
N
!Curr.FN /, and Corollary 3.5 is applicable

to all such J . We indicate here some sources of such J , following the approach of
Reiner Martin [1995]. The main idea is that if t 7!�.t/>0 is a monotone decreasing
continuous function which approaches 0 as t !1 “sufficiently quickly”, then

J� W cv1
N ! Curr.FN /; T 7!

X
Œw�¤Œ1�

�.kwkT /�w

is a filling tree-current morphism.
The summation here can be taken either over all nontrivial conjugacy classes Œw�

of elements of FN (or over an Out.FN /-invariant set of such conjugacy classes,
although in the latter case one has to take additional care to ensure that the current
J�.T / is filling).

Let us first observe that such a function J� is, by its construction, always
Out.FN /-equivariant: for any T 2 cv1

N
and ' 2 Out.FN /, we have

'.J�.T //D
X

Œw�¤Œ1�

�.kwkT /'.�w/D
X

Œw�¤Œ1�

�.kwkT /�'.w/

and

J�.'T /D
X

Œw�¤Œ1�

�.kwk'T /�w D
X

Œw�¤Œ1�

�.k'�1.w/kT /�w

D
with uD'�1.w/

X
Œu�¤Œ1�

�.kukT /�'.u/ D '.J�.T //;

so that J� is indeed Out.FN /-equivariant.
We provide here a representative result of the kind described above:

Proposition 6.1. The function

J W cv1
N ! Curr.FN /; T 7!

X
Œw�¤Œ1�

e�ekwkT �w;

where the sum is taken over all nontrivial root-free conjugacy classes Œw� of elements
of FN , is an injective filling tree-current morphism.

Proof. Fix a free basis A of FN and let TA 2 cv1
N

be the Cayley graph of FN

with respect to A, where all edges in TA have length 1=N . For w 2 FN denote by
kwkA the cyclically reduced length of w over A˙1. Thus kwkA DN kwkTA

. We
let RA D TA=FN be the quotient metric graph, which is a wedge of N loop-edges
of length 1=N corresponding to elements of A. Let ˛A W FN ! �1.RA/ be the
associated chart.

Let T 2 cv1
N

be arbitrary and let U be a compact neighborhood of T in cv1
N

.
There exists a constant C � 1 such that for every w 2 FN and every T 0 2 U , we
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have kwkT 0=C � kwkA � CkwkT 0 . Note that for n� 1, the number of conjugacy
classes Œw� with kwkA � n is at most .2N /n.

To show that for each T 0 2U , J.T 0/ is a geodesic current we only need to verify
that J.T 0/ takes finite values on all the two-sided cylinder sets in @2FN determined
by the chart ˛A. Since every cylinder is contained in a cylinder determined by
a single edge, it suffices to show that for every oriented edge e of RA, we have
he;J.T 0/i˛A

<1.
Let T 0 2 U and let e be an edge of RA. For every integer n� 1, set

bn.e;T
0/ WD

X
0:9n�kŒw�kA�1:1n

e�ekwkT 0
he; �wi˛A

:

Then he;J.T 0/i˛A
�
P1

nD1 bn.e;T
0/. The weight he; �wi˛A

is equal to 1=N

times the number of occurrences of e˙1 in the cyclically reduced circuit 
w in
RA representing Œw�. Hence he; �wi˛A

� .1=N /kwkA. Since T 0 2 U , we have
kwkT 0 � kwkA=C . Hence for every n� 1 and T 0 2 U , we have

bn.e;T
0/D

X
kŒw�kA2I

e�ekwkT 0
he; �wi˛A

�
1

N

X
kŒw�kA2I

e�ekwkA=C

kwkA

�
1

N

X
kŒw�kA2I

e�e0:9n=C

1:1n �
1:1n

N
e�e0:9n=C

.2N /1:1n

D
1:1n

N
e�e0:9n=C

e1:1n log.2N /
D

1:1n

N
e1:1n log.2N /�e0:9n=C

;

where I D Œ0:9n; 1:1n�. From here we see that

he;J.T 0/i˛A
�

1X
nD1

bn.e;T
0/� C1;

where C1 D C1.U / <1 is some constant depending only on U .
Thus for every T 0 2 U , J.T 0/ is indeed a geodesic current on FN , and, in

particular, J.T / 2 Curr.FN /.
Note that the current J.T / has full support. Indeed, for every nontrivial freely

reduced word v over A˙1, there exists a root-free cyclically reduced word w over
A˙1 containing v as a subword. Then hv; �wi˛A

> 0 and hence, from the definition
of J.T /, we see that hv;J.T /i˛A

> 0. Thus indeed J.T / has full support and
therefore, by a result of Kapovich and Lustig [2010a], the current J.T / is filling.

Since an automorphism of FN permutes the set of all root-free nontrivial conju-
gacy classes in FN , it follows from the definition of J that for every T 2 cv1

N
and

every ' 2 Out.FN /, we have J.'T /D 'J.T /.
Thus we have constructed an Out.FN /-equivariant map J W cv1

N
! Currfill.FN /.
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We next observe that the map J is continuous. The proof of the continuity of J

is similar to the proof that J.T / is a current. Let T 2 cv1
N

, let U be a compact
neighborhood of T in cv1

N
and let v be a nontrivial freely reduced word over A˙1.

Then for every T 0 2 U , we have

hv;T 0i˛A
D

X
Œw�

hv; e�ekwkT 0 �wi˛A
D

X
Œw�

e�ekwkT 0
hv;wi˛A

:

One can then show, by an argument similar to that used above, that there ex-
ist positive constants Mw > 0 (also depending on U and v but independent of
T 0 2 U ) such that for every T 0 2 U , we have e�ekwkT 0hv;wi˛A

�Mw and thatP
Œw�Mw <1. By the Weierstrass M -test, it follows that the seriesX

Œw�

e�ekwkT 0
hv;wi˛A

;

viewed as the sum of a functions on U , converges uniformly on U and that its sum
hv;T 0i˛A

is a continuous function on U .
Since v was arbitrary, the explicit description of the topology on Curr.FN /

(see [Kapovich 2006]) implies that J is a continuous function on cv1
N

, as required.
It remains to show that J is injective. Fix an enumeration, without repetitions,

w1; w2; : : : of representatives of all the nontrivial root-free conjugacy classes in FN .
Thus for every root-free nontrivial w 2 FN , there exist unique distinct m; n � 1

such that Œw�D Œwm� and Œw�1�D Œwn�.
For every i � 1, set qi D .w

�1
i ; w1i / 2 @

2FN and set Qi D fqig. Note that for
i; j � 1, we have �wj

.Qi/D 1 if Œwi �D Œw
˙1
j � and �wi

.Qi/D 0 otherwise. Then,
by definition of J , for every T 2 cv1

N
and i � 1, we have J.T /.Qi/D 2e�ekwi kT .

Since the function t 7! 2e�et

is strictly monotone and thus injective, it follows
that knowing the current J.T /, we can recover kwikT for all i � 1. Hence we can
recover the length function k � kT W FN ! R and so we can also recover T itself.
Thus J is injective, as required. �

7. Open problems

As we have seen in Theorem 1.6, if N � 2, AD fa1; : : : ; aN g is a fixed free basis
of FN D F.A/, then for

�N D inf
'2Out.FN /

�A.'/

ƒA.'/
;

we have �N > 0. In fact, one can show:

Proposition 7.1. We have limN!1 �N D 0, and moreover, �N DO.1=N /; that
is, lim supN!1N�N <1.
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Proof. For N �2 and m�1, let 'N;m WF.A/!F.A/ be given by 'N;m.a1/Da1am
2

and 'N;m.ai/D ai for 2� i �N . It is not hard to see that

ƒA.'N;m/D sup
w¤1

k'N;m.w/kA

kwkA
DmC 1:

For any freely reduced w 2 F.A/, we have

k'N;m.w/kA � .mC 1/.a1Iw/AC

NX
iD2

.ai Iw/A;

where .aj Iw/A is the number of occurrences of a˙1
j in w. On the other hand, if

wn 2F.A/ is a “long random” freely reduced word of length n, then asymptotically
we have .ai Iwn/A=n n!1

���! 1=N for i D 1; : : : ;N . Therefore

�A.'N;m/� lim
n!1

.mC 1/.a1Iw/AC
PN

iD2.ai Iw/A

n

D .mC 1/
1

N
C

N � 1

N
D

m

N
C 1:

Hence

�N �
�A.'N;m/

ƒA.'N;m/
�

1C m
N

mC 1
:

By taking mDN , we see that �N � 2=.N C 1/ n!1
���! 0. Thus limN!1 �N D 0

and lim supN!1N�N <1. �

Theorem 1.6 and Proposition 7.1 naturally raise the following:

Problem 7.2. Are the values �N algorithmically computable in terms of N ? What
are the exact values of �N for small N , say for N D 2; 3; 4? Is it true that �N 2Q?
What can be said about the precise asymptotics of �N as N !1? (Note that
Proposition 7.1 shows that �N decays at least as fast as 1=N .)

Theorem 1.1 also motivates the definition of a new notion of a continuous
symmetric and Out.FN /-invariant intersection number I W cv1

N
� cv1

N
! R>0,

where for T;S 2 cv1
N

, we define I.T;S/ WD hS; �T ihT; �S i. The function I. � ; � /

was originally suggested to us by Arnaud Hilion, as it appears to be relevant for
attempting to define an analogue of the Weil–Petersson metric on cv1

N
.

Since the Patterson–Sullivan currents are normalized so that hT; �T i D 1, for
T D S , we have I.T;T /D 1.

Problem 7.3. (a) Is it true that for every T;S 2 cv1
N

, we have I.T;S/� 1?

(b) Is it true that for T;S 2 cv1
N

, we have I.T;S/D 1 if and only if T D S?

It was shown in [Kaimanovich et al. 2007] that if A is a free basis of FN and
' 2 Out.FN / then �A.'/ � 1 and that �A.'/ D 1 if and only if TA' D TA. If
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B is another free basis of FN and ' 2 Aut.FN / is such that TA' D TB , then
hTB; �TA

i D �A.'/ and hTA; �TB
i D �A.'

�1/. It follows that if A;B are free
bases of FN then I.TA;TB/ � 1 and that I.TA;TB/D 1 if and only if TA D TB .
However, beyond this fact nothing appears to be known about the above question.

Recently Pollicott and Sharp [2014], using a different approach, defined and
studied a Weil–Petersson type metric on cv1

N
. It would be interesting to investigate

the relationship of their metric to the quantity I.T;S/ defined above.
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ON RECURRENCE OVER SUBSETS AND WEAK MIXING

JIAN LI, PIOTR OPROCHA AND GUOHUA ZHANG

We study properties of weakly mixing sets (of order n) in relation to prox-
imality, sensitivity, scrambled tuples, Xiong chaotic sets and independent
sets. Our main emphasis is on the structure of the set of transfer times
N(U ∩ A, V ) between open sets U and V , both intersecting a weakly mix-
ing set A. We find several conditions on properties of the set A that are
equivalent to weak mixing.

We also prove that on topological graphs weakly mixing sets of order 2
can be approximated arbitrarily closely by a weakly mixing set of all orders.
This property is known to hold on the unit interval but is not true in general
(there are systems with weakly mixing sets of order n but not n + 1).

1. Introduction

This paper is a continuation of the previous papers by Oprocha and Zhang on
local aspects of topological weak mixing [2011; 2012; 2013; 2014] in dynamical
systems (X, f ), that is, continuous maps f : X → X acting on compact metric
spaces. When defining recurrent properties of dynamical systems, it is convenient
to analyze properties of transfer times between sets, expressed in terms of the set

N (U, V )= {n ∈ N : f n(U )∩ V 6=∅},

where U and V are nonempty open subsets of X . For example, (X, f ) is transitive
if N (U, V ) is nonempty for any choice of two nonempty open sets. As mentioned
before, the main concept in this paper is topological weak mixing (in fact, its local
versions), which is usually defined as transitivity of (X × X, f × f ). In other
words, (X, f ) is weakly mixing if N (U1, V1)∩ N (U2, V2) 6=∅ for any choice of
four nonempty open sets U1,U2, V1, V2 ⊂ X . It was shown by Furstenberg [1967]
that if (X, f ) is weakly mixing then for every n ≥ 2 and any nonempty open sets
U1,U2, . . . ,Un, V1, V2, . . . , Vn ⊂ X we have

N (U1, V1)∩ N (U2, V2)∩ · · · ∩ N (Un, Vn) 6=∅.

Guohua Zhang is the corresponding author.
MSC2010: primary 37B05; secondary 37B40, 37E05, 37E25.
Keywords: weakly mixing sets, Xiong chaotic sets, proximality, scrambled tuples, independent sets,

topological graphs.
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Note that weak mixing can be regarded as a ‘global’ property, while topological
entropy is a ‘local’ one since it can be supported on a small set in the space (e.g.,
a nowhere dense attractor). It is also not hard to see that in general there cannot be
any implication between weak mixing and positive topological entropy. Therefore
an appropriate ‘local’ version of weak mixing is needed. Such a concept was
introduced in [Blanchard and Huang 2008]. Strictly speaking, a nontrivial closed
set A⊂ X (i.e., not a singleton) is weakly mixing if for every n≥2 and any nonempty
open sets U1,U2, . . . ,Un, V1, V2, . . . , Vn ⊂ X intersecting A (i.e., Ui ∩ A 6=∅ and
Vi ∩ A 6= ∅ for each i = 1, 2, . . . , n) we have N (U1 ∩ A, V1)∩ N (U2 ∩ A, V2)∩

· · ·∩N (Un∩ A, Vn) 6=∅. As we can see, the above definition is consistent with the
definition of a weakly mixing map and, more importantly, it is proved in [Blanchard
and Huang 2008] that every dynamical system with positive topological entropy
contains many Cantor weakly mixing sets.

Similarly, for a fixed integer n ≥ 2, we say that a nontrivial closed subset A
of X is weakly mixing of order n if for any nonempty open subsets U1,U2, . . . ,Un,

V1, V2, . . . , Vn of X intersecting A, we have N (U1∩A, V1)∩N (U2∩A, V2)∩· · ·∩

N (Un ∩ A, Vn) 6= ∅. Unfortunately, the analog of Furstenberg’s theorem cannot
be proved here. Namely, it is proved in [Oprocha and Zhang 2011; 2014] that for
every n ≥ 2 there exists a dynamical system which contains weakly mixing sets of
order n but no weakly mixing sets of order n+ 1.

Since Furstenberg’s theorem does not work for weakly mixing sets of order n,
it is natural to ask which criteria for weak mixing (i.e., equivalent conditions)
can be used in the case of weakly mixing sets. It was proved in [Banks 1999]
that most of the conditions that can be expressed in terms of intersections of
sets N (U, V ) lead to weak mixing. Of particular interest is the condition, proved
first in [Petersen 1970], which says that a dynamical system is weakly mixing if
and only if N (U, V )∩ N (U,U ) 6= ∅ for any nonempty open sets U, V ⊂ X . In
the spirit of the above fact, we find the following criterion for weak mixing of
order n. It will be shown later, in Example 3.2, that we cannot use exactly the same
condition as in [Petersen 1970].

Theorem 3.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is a weakly mixing set of order n if and only if for
any n+ 1 open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.

It is shown in [Li 2011, Theorem 3.2] that if a dynamical system (X, f ) is
weakly mixing, then there exists a residual subset K of X such that for every
x ∈ K and every nonempty open subset U of X , the set N (x,U ) contains an IP-set.
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This theorem was generalized in [Oprocha and Zhang 2013, Theorem 8], which
states that if A is a weakly mixing set of order 2 and U is an open subset of X
intersecting A, then there is an x ∈U ∩ A such that for every open subset V of X
intersecting A the set N (x, V ) contains an IP-set. Using the idea in the proof of
[Li 2011, Theorem 3.2], we could extend the above fact from [Oprocha and Zhang
2013] a little further.

Theorem 3.4. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order n with n≥2. Then there exists a residual subset K of A such that for any x ∈K
and any choice of n− 1 open subsets U1, . . . ,Un−1 of X intersecting A there exist
points yi ∈Ui ∩ A, where i = 1, . . . , n− 1, such that N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui )

contains an IP-set.

A subset A of X is transitive in (X, f ) if, for any open subsets U and V of X
intersecting A, the set N (U ∩ A, V ) is not empty; A is totally transitive if it is
transitive in (X, f k) for every k ∈ N. Let n ≥ 2 be an integer. It is clear that a
nontrivial closed subset A ⊂ X is weakly mixing of order n if and only if An is a
transitive set in (Xn, f (n)). Using Theorem 3.4, we have the following result.

Proposition 3.6. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset.

(1.3.1) If A is a weakly mixing set of order 2, then A is totally transitive.

(1.3.2) If A is a weakly mixing set of order n for f with n ≥ 3, then, for every k ∈N,
A is a weakly mixing set of order n− 1 for f k .

The authors in [Huang et al. 2012] proved that a dynamical system is weakly
mixing if and only if it has the IP-independent property (a formal definition of
independence will be given later). We will obtain a similar result for the case of
weakly mixing sets.

Inspired by the result of Xiong and Yang [1991], Blanchard and Huang [2008]
provided an alternative definition of a weakly mixing set. Strictly speaking, it was
proved in [Blanchard and Huang 2008] that a nontrivial closed set A⊂ X is a weakly
mixing set if and only if there exists a dense Mycielski subset B of A such that for
any C ⊂ B and any continuous map g : C→ A there exists an increasing sequence
of natural numbers {ni }

∞

i=1 for which limi→∞ f ni (x)= g(x) for any x ∈ C .
Similarly, we can introduce Xiong chaotic sets of a finite order as follows.

A subset K of X with at least n points is called a Xiong chaotic set of order n
if for any subset E of K with cardinality n and for any map g : E → K there is
an increasing subsequence {qi }

∞

i=1 in N such that limi→∞ f qi (x)= g(x) for every
x ∈ E . Later we will show that a result analogous to [Blanchard and Huang 2008]
holds; that is, any nontrivial closed subset A of X is a weakly mixing set of order n
if and only if there exists a dense Mycielski subset S of A which is Xiong chaotic
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of order n. A dynamical system has a weakly mixing set of order n if and only if it
has an uncountable Xiong chaotic set of order n. An advantage of Xiong chaotic
sets is that they are hereditary by subsets, while weakly mixing sets are not.

For a dynamical system (X, f ), the proximal relation is

Prox2( f )=
{
(x, y) ∈ X × X : lim inf

k→∞
d( f k(x), f k(y))= 0

}
,

and the proximal cell of a point x ∈ X is Prox2( f )(x)={y ∈ X : (x, y)∈ Prox2( f )}.
It was shown in [Akin and Kolyada 2003] that if (X, f ) is weakly mixing, then,
for every x ∈ X , the proximal cell Prox2( f )(x) of x is residual in X . The authors
in [Huang et al. 2004] studied the structure of proximal cells of points in weakly
mixing systems and showed that there is a Xiong chaotic set in those proximal cells.
In [Oprocha and Zhang 2013] it was proved that for every closed weakly mixing
set A and every x ∈ A, the set Prox2( f )(x)∩ A is residual in A. We will show that
the same is true if we consider proximal tuples instead of pairs. For a dynamical
system (X, f ) and a positive integer n ≥ 2, the n-th proximal relation is

Proxn( f )=
{
(x1, . . . , xn) ∈ Xn

: lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0
}
,

and the n-th proximal cell of a point x0 ∈ X is

Proxn( f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1
: (x0, x1, . . . , xn−1) ∈ Proxn( f )}.

Theorem 5.6. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then for every x0 ∈ A and n ≥ 2, the set Proxn( f )(x0)∩ An−1 is residual in An−1.

In fact, we prove even more in the following theorem, where LY δn (X, f )(x0) is the
n-scrambled cell of x0 with modular δ>0. More precisely, LY δn (X, f )(x0) is the col-
lection of points (x1, . . . , xn−1) in Xn−1 such that (x0, x1, . . . , xn−1) is proximal and

lim sup
k→∞

min
0≤i< j≤n−1

d( f k(xi ), f k(x j ))≥ δ.

Theorem 5.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every n ≥ 2, there exists a δ > 0 such that, for every x0 ∈ A, it holds that
LY δn (X, f )(x0)∩ An−1 is residual in An−1.

The following result shows that, when we look only at separation of trajectories
of tuples, weak mixing of order 2 is enough to obtain rich structure of such points
(see Section 2B for definitions of sensitivity).

Theorem 3.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. Then A is a sensitive set in

(
Orb(A, f ), f

)
. In particular, the system(

Orb(A, f ), f
)

is n-sensitive for every n ≥ 2.
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In the final section, we prove that on topological graphs weakly mixing sets
of order 2 can be approximated arbitrarily closely (in the Hausdorff metric) by a
weakly mixing set of all orders. This completes our previous research in [Oprocha
and Zhang 2011].

2. Preliminaries

In this section, we provide some basic notation, definitions and results which will
be used later in this paper. Denote by N, N0, Z and R the set of all positive integers,
nonnegative integers, integers and real numbers, respectively. A subset A of N is an
IP-set if there exists a sequence {p j }

∞

j=1 in N such that A = FS
(
{p j }

∞

j=1

)
, where

FS
(
{p j }

∞

j=1
)
=

{∑
j∈α

p j : α is a nonempty finite subset of N

}
is the set of finite sums of {p j }

∞

j=1.
Let X be a compact metric space. A subset C of X is a Cantor set if it is

homeomorphic to the standard Cantor ternary set (equivalently, it is a perfect
and totally disconnected compact metric space). We say that a subset K of X is a
Mycielski set if it can be presented as a countable union of Cantor sets. The next two
facts help to deal with residual relations. They are important tools with numerous
applications. See [Akin 2004] for a comprehensive treatment of this topic.

Lemma 2.1 (Ulam lemma). Let X be a perfect compact metric space. If R is a
dense Gδ subset of Xn , then there exists a dense Gδ subset K of X such that, for
every x ∈ K , the set R(x) = {(x1, . . . , xn−1) ∈ Xn−1

: (x, x1, . . . , xn−1) ∈ R} is
residual in Xn−1.

Theorem 2.2 (Mycielski theorem [1964]). Let X be a perfect compact metric space.
If R is a dense Gδ subset of Xn , then there exists a dense Mycielski subset K of X
such that, for any n distinct points x1, . . . , xn ∈ K , we have (x1, x2, . . . , xn) ∈ R.

2A. Topological dynamics. By a (topological) dynamical system we mean a pair
(X, f ) consisting of a compact metric space (X, d) and a continuous map f : X→ X .
If X is a singleton, then we say that (X, f ) is trivial. If K ⊂ X is a nonempty closed
subset satisfying f (K )⊂ K , then we say that (K , f ) is a subsystem of (X, f ).

Let (X, f ) be a dynamical system with ∅ 6= A ⊂ X and x ∈ X . The set

Orb(A, f )=
⋃

n∈N0

f n(A)

is said to be the (positive) orbit of A under f . Clearly,
(
Orb(A, f ), f

)
is a subsys-

tem of (X, f ). We will write Orb(x, f )= Orb({x}, f ) for short.
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We say that a point x ∈ X is a periodic point of (X, f ) if f n(x) = x for some
n ∈ N, a recurrent point of (X, f ) if there exists an increasing sequence {kn}

∞

n=1
in N such that limn→∞ f kn (x)= x , and a transitive point of (X, f ) if Orb(x, f ) is
dense in X . Denote by Per(X, f ), Rec(X, f ) and Tran(X, f ) the set of all periodic
points, recurrent points and transitive points, respectively, of (X, f ). A dynamical
system (X, f ) is minimal if Tran(X, f ) = X . A point x ∈ X is minimal if the
subsystem

(
Orb(x, f ), f

)
is minimal.

Let (X, f ) be a dynamical system and A ⊂ X with n ≥ 2. Define the sets
An
= {(x1, x2, . . . , xn): x1, . . . , xn ∈ A} and 1n(A)= {(x, x, . . . , x) ∈ An

: x ∈ A}.
The map f (n) is induced on Xn by the formula

f (n)(x1, x2, . . . , xn)= ( f (x1), f (x2), . . . , f (xn)).

Let (X, f ) be a dynamical system with x ∈ X and A, B ⊂ X . Define the sets
N (x, A)={n ∈N : f n(x)∈ A} and N (A, B)={n ∈N : f n(A)∩B 6=∅}. When we
want to emphasize the map f , we instead use Nf (x, A) and Nf (A, B). A dynamical
system (X, f ) is called transitive if, for any nonempty open subsets U and V of X ,
the set N (U, V ) is not empty, totally transitive if (X, f k) is transitive for every
k ∈ N, and weakly mixing if (X2, f (2)) is transitive. It is well known that if (X, f )
is transitive, then Tran(X, f ) is a dense Gδ subset of X .

2B. Proximal and scrambled tuples. We say that an n-tuple (x1, . . . , xn) ∈ Xn

(where n ≥ 2) is proximal if

lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0.

Let Proxn( f ) denote the collection of all proximal n-tuples in (X, f ). It is easy
to verify that Proxn( f ) is a Gδ subset of Xn . For x ∈ X , define the n-th proximal
cell of x as

Proxn( f )(x)= {(x1, . . . , xn−1) ∈ Xn−1
: (x, x1, . . . , xn−1) is proximal}.

An n-tuple (x1, . . . , xn) ∈ Xn (where n ≥ 2) is called scrambled (with modular
δ > 0) if it is proximal and

lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j ))≥ δ.

A subset S of X is called n-scrambled if any n distinct points in S form a scram-
bled n-tuple. The system (X, f ) is called Li–Yorke n-chaotic if there exists an
uncountable n-scrambled subset S of X .

Xiong [2005] introduced the concept of n-sensitivity. Specifically, a dynamical
system (X, f ) is called n-sensitive, where n ≥ 2, if there exists a δ > 0 such that
for every nonempty open set U ⊂ X there are distinct points x1, x2, . . . , xn ∈ U
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and some m ∈ N with

min
1≤i< j≤n

d( f m(xi ), f m(x j )) > δ.

This definition was further generalized in [Ye and Zhang 2008] to sensitive sets. A
subset A of X is sensitive if for any n ≥ 2, any n distinct points x1, x2, . . . , xn in
A, any neighborhood Ui of xi , i = 1, 2, . . . , n, and any nonempty open set U ⊂ X
there exists a k ∈ N and yi ∈ U such that f k(yi ) ∈ Ui for i = 1, 2, . . . , n. It is
shown in [Ye and Zhang 2008] that a transitive system is n-sensitive if and only if
there exists a sensitive set with cardinality n. Note that 2-scrambled set, Li–Yorke
2-chaos and 2-sensitivity are classical definitions.

2C. Transitive sets and weakly mixing sets. Let (X, f ) be a dynamical system.
A subset A of X is transitive in (X, f ) if for any open subsets U and V of X
intersecting A, the set N (U ∩ A, V ) is not empty and totally transitive if A is
transitive in (X, f k) for every k ∈ N. Let n ≥ 2 be an integer. A nontrivial closed
subset A ⊂ X is weakly mixing of order n provided that An is a transitive set in
(Xn, f (n)) and weakly mixing of all orders or simply weakly mixing if A is weakly
mixing of order k for all k = 2, 3, . . . .

Remark 2.3. In the present paper we require a weakly mixing set (of order n) to
be closed and nontrivial which is a little more restrictive than the original definition
in [Oprocha and Zhang 2011].

The following result is derived directly from the definition.

Lemma 2.4. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is weakly mixing of order n if and only if , for any open
subsets U1, . . . ,Un and V1, . . . , Vn of X intersecting A,

n⋂
i=1

N (Ui ∩ A, Vi ) 6=∅.

The following lemmas, while simple in proof, are very useful in practice. The
proofs can be found in [Oprocha and Zhang 2011; 2014].

Lemma 2.5. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing subset
of order 2. Then A is perfect.

Lemma 2.6. Let (X, f ) be a dynamical system and A a closed subset of X. If A is
a transitive set, then:

(2.6.1)
(
Orb(A, f ), f

)
is a transitive subsystem of (X, f ).

(2.6.2) A∩Tran
(
Orb(A, f ), f

)
is a dense Gδ subset of A.
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2D. Symbolic dynamics. Let A be a finite set (an alphabet) endowed with the
discrete topology and let AN0 denote the Cantor space with respect to the product
topology. We write elements of AN0 as x = x0x1 · · · . The shift transformation
σ :AN0→AN0 is given by σ(x)i = xi+1 for i ∈N0. The dynamical system (AN0, σ )

is called the full shift over A.
By a word (over A), we mean any finite sequence u = u0 · · · un−1, n ≥ 1 where

ui ∈A. The length of u is denoted by |u| = n and the set of all words is denoted
by A+. If x ∈AN0 and 0≤ i < j , then by x[i, j] we mean the sequence xi xi+1 · · · x j .
For simplicity, we use the notation x[i, j) = x[i, j−1]. If a1 · · · am ∈ A+, then we
define the cylinder set

C[a1 · · · am] = {x ∈AN0 : x[0,m) = a1 · · · am}.

If X is a subshift, we denote the cylinder set by CX [a1 · · · am] = C[a1 · · · am] ∩ X .

2E. Topological graphs. Roughly speaking, a topological graph is a continuum
which is the union of a finite number of intervals which can intersect only at
endpoints and do not have self-intersections. More formally, a topological graph
is a compact connected metric space G which is homeomorphic to a polyhedron
(a geometric realization) of some finite one-dimensional complex. In particular, we
can naturally endow G with the metric d given by the length of the shortest arc join-
ing x, y in G (induced on G from the polyhedron). An arc I ⊂G is a closed interval
if there is a homeomorphism ϕ : [0, 1]→ I such that the set ϕ((0, 1)) is open in G.

Let (G, f ) be a dynamical system and let I, J ⊂ G be closed intervals. If there
exists a closed interval K ⊂ I such that f (K )= J , then we say that I f -covers J
and denote this fact by I f

H⇒ J . We will need the following standard properties of
f -covering (see [Alsedà et al. 2003, p. 590]):

Lemma 2.7. Let I, J, K , L ⊂ G be closed intervals and let f, g : G → G be
continuous.

(2.7.1) If I ⊂ K , L ⊂ J and I f
H⇒ J , then K f

H⇒ L.

(2.7.2) If I f
H⇒ J and J g

H⇒ K , then I g◦ f
H⇒ K .

(2.7.3) If J ⊂ f (I ), and K1, K2 ⊂ J are closed intervals such that K1 ∩ K2 is at
most one point, then I f

H⇒ K1 or I f
H⇒ K2.

3. Weakly mixing sets of finite order

In this section we study weakly mixing sets of finite order. It is clear that a
dynamical system (X, f ) is weakly mixing if and only if, for any four nonempty
open subsets U1, V1,U2, V2 of X , we have N (U1, V1)∩N (U2, V2) 6=∅. It is shown
in [Petersen 1970] that we can reduce four open sets in the characterization of
weak mixing to two open sets; that is, a dynamical system (X, f ) is weakly mixing



ON RECURRENCE OVER SUBSETS AND WEAK MIXING 407

if and only if, for any two nonempty open subsets U and V of X , it holds that
N (U, V )∩ N (U,U ) 6= ∅ (this was later extended in [Banks 1999] to show that
most of the possible conditions of this kind are equivalent to weak mixing). Similar
to the above condition, we can simplify the condition in Lemma 2.4 to obtain an
alternative definition of weakly mixing set of order n. The advantage is that we
have to verify conditions on transfer times for only n+1 open sets instead of 2n sets
in the original definition.

Theorem 3.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is a weakly mixing set of order n if and only if , for
any n+ 1 open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.

Proof. The necessity follows from Lemma 2.4. Now we prove the sufficiency. Fix
any 2n open subsets U1, V1,U2, V2, . . . ,Un, Vn of X intersecting A. Assume that
for some 1≤ j < n we have

j⋂
i=1

N (Ui ∩ A, Vi )∩

n⋂
l= j+1

N (Vl ∩ A, Vl) 6=∅.

Then there is a k > 0 and open subsets U ′1, . . . ,U
′

j , V ′j+1, . . . V
′
n of X intersecting

A such that U ′i ⊂ Ui and f k(U ′i ) ⊂ Vi for each i = 1, . . . , j , and V ′l ⊂ Vl and
f k(V ′l )⊂ Vl for each l = j + 1, . . . , n. By the assumption we can choose

m ∈ N (U j+1 ∩ A, V ′j+1)∩

j⋂
i=1

N (U ′i ∩ A,U ′i )∩
n⋂

l= j+2

N (V ′l ∩ A, V ′l ),

so that

m+ k ∈
j+1⋂
i=1

N (Ui ∩ A, Vi )∩

n⋂
l= j+2

N (Vl ∩ A, Vl).

Hence, by induction on j , we eventually obtain that

n⋂
i=1

N (Ui ∩ A, Vi ) 6=∅,

which implies that A is weakly mixing of order n. �

Unfortunately, the above technique is not sufficient if we want to directly copy
the condition from [Petersen 1970]. This condition simply will not induce even the
smallest degree of local weak mixing, as shown by the next example. The technique
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used here is a modification of Example 6.1 from [Oprocha and Zhang 2011]. Since
the construction is somewhat long and complicated, we move it to the Appendix.

Example 3.2. There are a dynamical system (X, f ) and a nontrivial closed subset
A of X satisfying the following two conditions:

(3.2.1) N (U ∩ A, V )∩ N (U ∩ A,U ) 6=∅ and N (U ∩ A, V )∩ N (V ∩ A, V ) 6=∅
for any open subsets U, V of X intersecting A.

(3.2.2) A is not weakly mixing of order 2.

It is shown in [Li 2011, Theorem 3.2] that if a dynamical system (X, f ) is weakly
mixing, then there exists a residual subset K of X such that, for every x ∈ K and
every nonempty open subset U of X , the set N (x,U ) contains an IP-set. This
theorem was generalized in [Oprocha and Zhang 2013, Theorem 8], which states
that if A is a weakly mixing set of order 2 and U is an open set of X intersecting
A, then there is an x ∈U ∩ A such that for every open set V of X intersecting A
the set N (x, V ) contains an IP-set. The following lemma is inspired by the proof
of [Li 2011, Theorem 3.2]. It allows us to extend the above fact from [Oprocha and
Zhang 2013] a little further.

Lemma 3.3. Let (X, f ) be a dynamical system with n ≥ 2. If there are n points
x, y1, y2, . . . , yn−1 ∈ X with x 6= y1 such that

(1) (y1, y1, y2, . . . , yn−1) ∈ Orb((x, y1, . . . , yn−1), f (n)),

then, for every choice of open neighborhoods Ui of yi , i = 1, 2, . . . , n− 1, the set

N (x,U1)∩

n−1⋂
i=1

N (yi ,Ui )

contains an IP-set.

Proof. For each i = 1, 2, . . . , n − 1 fix an open neighborhood Ui of yi . Since
x 6= y1, we may assume that x /∈ U1. We are going to construct an IP-set in
N (x,U1) ∩

⋂n−1
i=1 N (yi ,Ui ). We start our construction by setting U (1)

i = Ui for
i = 1, . . . , n− 1.

By (1), there exists a p1 ∈ N such that f p1(x) ∈ U (1)
1 and f p1(yi ) ∈ U (1)

i for
i = 1, . . . , n− 1. Let U (2)

i =U (1)
i ∩ f −p1(U (1)

i ) for i = 1, . . . , n− 1. Clearly, U (2)
i

is also an open neighborhood of yi for i = 1, . . . , n− 1. By (1) again there exists a
p2 > 0 such that f p2(x) ∈U (2)

1 and f p2(yi ) ∈U (2)
i for i = 1, . . . , n− 1. Then, for

every m ∈ FS
(
{p j }

2
j=1

)
, we have f m(x)∈U1 and f m(yi )∈Ui for i = 1, . . . , n−1.

We continue this construction inductively.
Assume that for some k ≥ 2 positive integers p1, p2, . . . , pk have been con-

structed in such a way that if m ∈ FS
(
{p j }

k
j=1

)
then f m(x) ∈U1 and f m(yi ) ∈Ui
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for i = 1, . . . , n− 1. For each i = 1, . . . , n− 1 set

U (k+1)
i =Ui ∩

⋂
m∈FS

(
{p j }

k
j=1

) f −m(Ui )

and observe that each U (k+1)
i is also an open neighborhood of yi for i = 1, . . . , n−1.

By (1) there exists a pk+1 > 0 such that f pk+1(x) ∈U (k+1)
1 and f pk+1(yi ) ∈U (k+1)

i
for i = 1, . . . , n− 1. Then, completing the induction, for every m ∈ FS

(
{p j }

k+1
j=1

)
,

we have f m(x)∈U1 and f m(yi )∈Ui for i = 1, . . . , n−1. Thus, we get a sequence
{p j }

∞

j=1 such that FS
(
{p j }

∞

j=1

)
⊂ N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui ). �

Theorem 3.4. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order n with n≥2. Then there exists a residual subset K of A such that for any x ∈K
and any choice of n− 1 open subsets U1, . . . ,Un−1 of X intersecting A there exist
points yi ∈Ui ∩ A, where i = 1, . . . , n− 1, such that N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui )

contains an IP-set.

Proof. Since An is a transitive set in (Xn, f (n)), we have by Lemma 2.6 that the
relation R= An

∩Tran
(
Orb(An, f (n)), f (n)

)
is a dense Gδ subset of An . By the Ulam

lemma, there exists a dense Gδ subset K of A such that for every x ∈ K the section
of R at x , that is, the set R(x)= {(y1, . . . , yn−1) ∈ An−1

: (x, y1, . . . , yn−1) ∈ R},
is residual in An−1. It remains to show that K satisfies our requirement.

Fix x ∈ K and n− 1 open subsets U1,U2, . . . ,Un−1 of X intersecting A. Since
R(x) is residual, we can select points yi ∈ Ui ∩ A, where i = 1, . . . , n− 1, such
that (x, y1, . . . , yn−1) ∈ R and x 6= y1 (recall that A is perfect by Lemma 2.5). By
the definition of R we obtain

(y1, y1, y2, . . . , yn−1) ∈ Orb((x, y1, . . . , yn−1), f (n)).

Now the result follows by Lemma 3.3. �

Corollary 3.5. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order n with n ≥ 2. Then, for any n open subsets U1, V1, V2, . . . , Vn−1 of X
intersecting A,

N (U1 ∩ A, V1)∩

n−1⋂
i=1

N (Vi ∩ A, Vi )

contains an IP-set.

It is shown in [Oprocha and Zhang 2012, Theorem 6] that a weakly mixing set
of order 2 is totally transitive. Now, with the help of Corollary 3.5, we can extend
it as follows.

Proposition 3.6. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset.
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(3.6.1) If A is a weakly mixing set of order 2, then A is totally transitive.

(3.6.2) If A is a weakly mixing set of order n for f with n ≥ 3, then, for every k ∈N,
A is a weakly mixing set of order n− 1 for f k .

Proof. If F contains an IP-set, then F ∩ nN 6=∅ for every n ∈N. Now the result
follows by Theorem 3.1 and Corollary 3.5. �

The above fact motivates us to state the following question for investigation.

Question. Let (X, f ) be a dynamical system and k ∈ N, n ≥ 2. If a subset A ⊂ X
is weakly mixing of order n for f , is it weakly mixing of order n for f k?

Theorem 3.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. Then A is a sensitive set in

(
Orb(A, f ), f

)
. In particular, the system(

Orb(A, f ), f
)

is n-sensitive for every n ≥ 2.

Proof. Without loss of generality, we assume that Orb(A, f )= X . First note that
both A and X must be perfect. Now let n≥ 2 and fix n distinct points x1, x2, . . . , xn

in A. Let U be a nonempty open subset of X and Ui an open neighborhood of xi for
i = 1, 2, . . . , n. There is some k ≥ 0 such that f k(A)∩U 6=∅ and therefore there
is an open subset V of X intersecting A such that f k(V )⊂U . Since A is a weakly
mixing set of order 2, there exists an m2 ∈ N such that U1 ∩ A ∩ f −m2(U2) 6= ∅
and V ∩ A∩ f −m2(V ) 6=∅. By induction, there exist m3, . . . ,mn ∈ N such that

U1 ∩ A∩
n⋂

i=2

f −mi (Ui ) 6=∅ and V ∩ A∩
n⋂

i=2

f −mi (V ) 6=∅.

And so there is a point y∈ A such that {y, f m2(y), . . . , f mn (y)}⊂V . By Lemma 2.6,
Tran(X, f ) ∩ A is a dense Gδ subset of A, and therefore we can choose x in
Tran(X, f ) ∩U1 ∩ A ∩

⋂n
i=2 f −mi (Ui ); that is, we choose an x ∈ U1 such that

f mi (x)∈Ui for i = 2, . . . , n. Since x is a transitive point in (X, f ) and the space X
is perfect, there exists a p ∈ N0 such that { f p(x), f p+m2(x), . . . , f p+mn (x)} ⊂ V
and a q > p+ k such that f q(x) ∈U1 and f q+mi (x) ∈Ui for i = 2, . . . , n. Define
r = q− p− k, y1 = f p+k(x) and yi = f p+k+mi (x) for i = 2, . . . , n. Then yi ∈U
and f r (yi ) ∈Ui for i = 1, 2, . . . , n, which implies that A is a sensitive set. Finally,
we have by Lemma 2.6 that

(
Orb(A, f ), f

)
is n-sensitive for every n ≥ 2. �

4. Xiong chaotic set of finite order

In this section, we study Xiong chaotic sets of finite order and their connection to
weakly mixing sets of finite order.

Definition 4.1. Let (X, f ) be a dynamical system with n ≥ 2. A subset K of X
with at least n points is called a Xiong chaotic set of order n if, for any subset E of K
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with cardinality n and for any map g : E→ K , there is an increasing subsequence
{qi }
∞

i=1 in N such that limi→∞ f qi (x)= g(x) for every x ∈ E .

The following result is straightforward by the definition.

Proposition 4.2. If K is a Xiong chaotic set of order n, then there exists a δ > 0
such that, for every n distinct points x1, x2, . . . , xn in K ,

lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0,

lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j )) > δ,

lim inf
k→∞

max
1≤i≤n

d( f k(xi ), xi )= 0.

In particular, K is n-scrambled with modular δ.

Theorem 4.3. Let (X, f ) be a dynamical system and A a perfect subset of X with
n ≥ 2. Then the following conditions are equivalent:

(4.3.1) A is a weakly mixing set of order n.

(4.3.2) There exists a dense Mycielski subset S of A which is Xiong chaotic of
order n.

(4.3.3) There exists a dense subset S of A which is Xiong chaotic of order n.

Proof. (4.3.1)⇒ (4.3.2) First note that A is perfect. Since An is a transitive set
in (Xn, f (n)), by Lemma 2.6 the relation R = An

∩Tran
(
Orb(An, f (n)), f (n)

)
is a

dense Gδ subset of An . By the Mycielski theorem, there exists a dense Mycielski
subset S of A such that, for every n distinct points x1, x2, . . . , xn ∈ S, we have
(x1, x2, . . . , xn) ∈ R. Fix a subset E of S with cardinality n and a map g : E→ A.
Enumerate E as {x1, x2, . . . , xn} and let yi = g(xi ) for i = 1, 2, . . . , n. Since
(x1, x2, . . . , xn) is a transitive point in

(
Orb(An, f (n)), f (n)

)
and (y1, y2, . . . , yn)

is in An , there is an increasing subsequence {qk}
∞

k=1 in N such that we have
limk→∞ f qk (xi )= g(xi ) for i = 1, 2, . . . , n; thus S is a Xiong chaotic set of order n.

(4.3.2)⇒ (4.3.3) The implication is trivial.
(4.3.3)⇒ (4.3.1) Fix any open subsets U1, V1,U2, V2, . . . ,Un, Vn of X intersect-

ing A. Choose n distinct points xi ∈Ui∩S and n points yi ∈Vi∩A for i=1, 2, . . . , n.
Define a map g : {x1, x2, . . . , xn} → A as g(xi ) = yi for i = 1, 2, . . . , n. Then
there exists a k ≥ 1 such that f k(xi ) ∈ Vi for i = 1, 2, . . . , n. In particular the set⋂n

i=1 N (Ui ∩ A, Vi ) is not empty, which completes the proof. �

Corollary 4.4. Let (X, f ) be a dynamical system with n ≥ 2. Then (X, f ) has a
weakly mixing set of order n if and only if it has an uncountable Xiong chaotic set
of order n.
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Proof. The necessity follows by Theorem 4.3, since a Mycielski set is uncountable.
Now we prove the sufficiency. Let S be an uncountable Xiong chaotic set of order n.
By compactness of X , we can divide the closure S of S into K1∪K2, where K1 is per-
fect and K2 is at most countable. It is easy to see that K1∩ S is also a Xiong chaotic
set which is dense in K1. By Theorem 4.3, K1 is a weakly mixing set of order n. �

Remark 4.5. It should be noticed that weakly mixing sets (of finite order n) are
perfect. Hence, they are more restrained than Xiong chaotic sets, because any
infinite subsets of Xiong chaotic sets (of finite order n) are also Xiong chaotic sets.

Let (X, f ) be a dynamical system with x0 ∈ X , n ≥ 2 and δ > 0. Define

Dδ
n(X, f )=

{
(x1, x2, . . . , xn) ∈ Xn

: lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j ))≥ δ
}
,

and

Dδ
n(X, f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1

: (x0, x1, . . . , xn−1) ∈ Dδ
n(X, f )}.

Proposition 4.6. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set
of order 2(n− 1) with n ≥ 2. Then there exists a δ > 0 such that, for every x0 ∈ A,
Dδ

n(X, f )(x0)∩ An−1 is residual in An−1.

Proof. Since A is perfect, we can choose a δ > 0 and 2(n − 1) distinct points
u1,1, u1,2, . . . , un−1,1, un−1,2 ∈ A so that d(ui1,i2, u j1, j2) > 4δ for (i1, i2) 6= ( j1, j2).
Fix x0 ∈ A. For every ε > 0, set

Dε=
{
(x1, . . . , xn−1)∈ Xn−1

: min
0≤i< j≤n−1

d( f k(xi ), f k(x j ))>δ−ε for some k> 1
ε

}
.

It is easy to verify that Dε is an open subset of Xn−1 and that

Dδ
n(X, f )(x0)=

∞⋂
m=1

D 1
m
.

Therefore it is sufficient to prove that Dε ∩ An−1 is dense in An−1 for every ε > 0.
Fix ε > 0 and n − 1 open subsets U1, . . . ,Un−1 of X intersecting A. By

Theorem 4.3, there is a Xiong chaotic set S of order 2(n− 1) which is dense in A.
Observing that A is perfect, for each i = 1, . . . , n−1 choose yi,1, yi,2 ∈Ui ∩ S with
yi,1 6= yi,2. Define a map g : {y1,1, y1,2, . . . , yn−1,1, yn−1,2} → A as g(yi, j )= ui, j

for i = 1, . . . , n−1 and j = 1, 2. Then there is an increasing subsequence {ql}
∞

l=1 in
N such that liml→∞ f ql (yi, j )= g(yi, j )= ui, j for i = 1, . . . , n−1 and j = 1, 2. Pick
k > 1/ε such that d( f k(yi, j ), ui, j ) < δ for i = 1, . . . , n− 1 and j = 1, 2. There is
at most one pair (i0, j0) such that d( f k(x0), ui0, j0) < 2δ. For each i = 1, . . . , n−1,
if i 6= i0, let xi = yi,1, and if i = i0, let xi = yi0, j0 , where j0 ∈ {1, 2} and j0 6= j0.
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Then xi ∈Ui for i = 1, . . . , n− 1 and

min
0≤i< j≤n−1

d( f k(xi ), f k(x j )) > δ,

which implies that Dε ∩ An−1 is dense in An−1. �

5. Weakly mixing sets

5A. Weakly mixing sets. By Proposition 3.6, we have the following result.

Lemma 5.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is weakly mixing for f if and only if it is weakly mixing
for f n .

A dynamical system (X, f ) is called an F-system if it is totally transitive and
has a dense set of periodic points [Furstenberg 1967]. It is shown in [Furstenberg
1967] that an F-system is disjoint from any minimal system. It is not hard to see
that every F-system is weakly mixing (see [Banks 1997, Theorem 1.1]). We say a
dynamical system (X, f ) has dense small periodic sets if for any nonempty open
subset U of X there exists a nonempty closed subset K of U and a k ∈ N such
that f k(K )⊂ K . A dynamical system (X, f ) is called an HY -system if it is totally
transitive and has dense small periodic sets. It is shown in [Huang and Ye 2005]
that an HY -system is weakly mixing and disjoint from any minimal system.

It is interesting when a totally transitive set or a weakly mixing set of finite order
is also a weakly mixing set. Recall that a point x ∈ X is distal provided that if
(x, y) is proximal and y ∈Orb(x, f ) then x = y. The following fact is Corollary 11
from [Oprocha and Zhang 2013].

Theorem 5.2. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. If the set of all distal points in A is dense in A, then A is weakly mixing
of all orders.

We show that Theorem 5.2 can be generalized in the following way.

Theorem 5.3. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order 2. If for every open subset U of X intersecting A there is a dynamical system
(Y, g) with a distal point y ∈ Y and an open neighborhood V ⊂ Y of y and a point
x ∈ A∩U such that N (y, V )⊂ N (x,U ), then A is weakly mixing of all orders.

Proof. By Theorem 3.1, it is sufficient to show that, for any n ≥ 2 and any n+ 1
open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.
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By assumption, for i = 2, . . . , n there are points xi ∈ Vi ∩ A and distal points
yi (in some dynamical systems) and their open neighborhoods Wi such that we
have N (yi ,Wi )⊂ N (xi , Vi ) and hence

⋂n
i=2 N (yi ,Wi )⊂

⋂n
i=2 N (xi , Vi ). But the

product of distal points is also distal, thus by [Furstenberg 1981] the following set
intersects every IP-set:

N ((y2, . . . , yn),W2× · · ·×Wn)⊂

n⋂
i=2

N (yi ,Wi )⊂

n⋂
i=2

N (xi , Vi ).

But, by Corollary 3.5, N (U1∩A, V1) contains an IP-set, which finishes the proof. �

We say that a subset A of X has dense small periodic sets if, for any open subset
U of X intersecting A, there exists a closed subset K of U intersecting A and a
k ∈ N such that f k(K )⊂ K . Then, observing that weak mixing of order 2 implies
total transitivity, we have the following theorem.

Theorem 5.4. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset. If A is totally transitive and has dense small periodic sets, then A is weakly
mixing.

Proof. First we show that A is weakly mixing of order 2. Let U1, V1, V2 be open
subsets of X intersecting A. Since A has dense small periodic sets, there exists
a closed subset K of V2 intersecting A and a k ∈ N such that f k(K )⊂ K . Since
A is transitive for f k , there is an m ∈ N such that m ∈ Nf k (U1 ∩ A, V1). Then
km ∈ N (U1 ∩ A, V1)∩ N (V2 ∩ A, V2), which implies that A is weakly mixing of
order 2 by Theorem 3.1.

Now we show that A satisfies the requirement of Theorem 5.3. Fix an open
subset U of X intersecting A. There exists a closed subset S of U intersecting A
and a k ∈ N such that f k(S) ⊂ S. Pick a point x ∈ S ∩ A. Then kN ⊂ N (x,U ).
Let Y = {0, 1, . . . , k − 1} and g : Y → Y , g(i) = i + 1 (mod k). Let y = 0 and
V = {0}. Then y is a distal point in (Y, g) and N (y, V )= kN⊂ N (x,U ). Hence
A is weakly mixing of all orders by Theorem 5.3. �

5B. Proximal relations. It is shown in [Akin and Kolyada 2003] that if (X, f )
is weakly mixing, then, for every x ∈ X , the set Prox2( f )(x) is residual in X . In
[Oprocha and Zhang 2013] it was proved that, for every weakly mixing set A and
every x ∈ A, the set Prox2( f )(x)∩ A is residual in A. We will show that the same is
true if we consider proximal tuples instead of pairs. First, we use a method of con-
struction from [Oprocha and Zhang 2013, Lemma 16] to prove the following result.

Lemma 5.5. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set with
x ∈ A. Then, for every n ≥ 2, any open subsets U1,U2, . . . ,Un of X intersecting A
and each ε > 0, there are a yi ∈Ui ∩ A for i = 1, 2, . . . , n and an m ∈ N such that
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(with y0 = x)
max

0≤i< j≤n
d( f m(yi ), f m(y j ))≤ ε.

Proof. Fix n ≥ 2, open subsets U1,U2, . . . ,Un of X intersecting A and ε > 0. Let
{V1, . . . , Vk} be a cover of X consisting of open sets with diameters less than ε/2.

There exists an s1 ∈ {1, 2, . . . , k} with x ∈ Vs1 . By weak mixing of A, there exist
an m1 > 0 and an open set U (1,1)

i ⊂Ui intersecting A such that f m1(U (1,1)
i )⊂ Vs1

for i = 1, 2, . . . , n.
For some q≥1, construct open sets U (q,1)

i ,U (q,2)
i , . . . ,U (q,q)

i ⊂Ui intersecting A
for i = 1, 2, . . . , n, pairwise distinct integers s1, s2, . . . , sq ⊂ {1, 2, . . . , k}, and an
integer mq > 0 such that

f mq (U (q,r)
i )⊂ Vsr for r = 1, 2, . . . , q, i = 1, 2, . . . , n.

If f mq (x) 6∈
⋃q

r=1 Vsr , then we can choose sq+1 ∈ {1, 2, . . . , k}\{s1, s2, . . . , sq} and
an open set U (q,q+1) containing x (and intersecting A) so that f mq (U (q,q+1))⊂Vsq+1 .
By weak mixing of A, there exist open sets U (q+1,1)

i ,U (q+1,2)
i , . . . ,U (q+1,q+1)

i ⊂Ui

intersecting A and a p> 0 such that, for r = 1, 2, . . . , q+1 and i = 1, 2, . . . , n, we
have f p(U (q+1,r)

i ) ⊂ U (q,r)
i , where U (q,q+1)

i = U (q,q+1) for i = 1, 2, . . . , n. Now
if we set mq+1 =mq + p, then for r = 1, 2, . . . , q+ 1 and i = 1, 2, . . . , n we have

f mq+1(U (q+1,r)
i )= f mq ( f p(U (q+1,r)

i ))⊂ f mq (U (q,r)
i )⊂ Vsr .

Obviously, since q ≤ k, we cannot extend the sequence s1, s2, . . . , sq any further
by the above procedure. Hence, we have that f mq (x) ∈

⋃q
r=1 Vsr , and in particular

f mq (x) ∈ Vs` for some ` ∈ {s1, . . . , sq}. But then by the construction we have
f mq (U (q,`)

i )⊂ Vs` for i = 1, 2, . . . , n, and so if we fix any yi ∈U (q,`)
i ∩ A⊂Ui ∩ A

then f mq (yi ) ∈ Vs` , finishing the proof. �

Theorem 5.6. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every x0 ∈ A and n ≥ 2, the set Proxn( f )(x0)∩ An−1 is residual in An−1.

Proof. Fix any x0 ∈ A and n ≥ 2. For every ε > 0, set

Pε =
{
(x1, . . . , xn−1) ∈ Xn−1

: max
0≤i< j≤n−1

d( f k(xi ), f k(x j )) < ε for some k ≥ 0
}
.

It is easy to verify that Pε is an open subset of Xn−1. By Lemma 5.5, Pε ∩ An−1 is
dense in An−1. This, by the fact that

Proxn( f )(x0)=

∞⋂
m=1

P 1
m
,

proves that Proxn( f )(x0)∩ An−1 is residual in An−1. �
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Let (X, f ) be a dynamical system with x0 ∈ X , n ≥ 2 and δ > 0. Define

LY δn (X, f )={(x1, x2, . . . , xn)∈ Xn
: (x1, . . . , xn) is n-scrambled with modular δ},

and

LY δn (X, f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1
: (x0, x1, . . . , xn−1) ∈ LY δn (X, f )}.

The following fact is a direct corollary of Proposition 4.6 and Theorem 5.6.

Theorem 5.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every n ≥ 2, there exists a δ > 0 such that, for every x0 ∈ A, it holds that
LY δn (X, f )(x0)∩ An−1 is residual in An−1.

5C. Local independent sets. Let (X, f ) be a dynamical system. Following [Kerr
and Li 2007], for a tuple A = (A1, A2, . . . , Ak) of subsets of X , we say that a
nonempty subset F ⊂ N0 is an independence set for A if, for any nonempty finite
subset J ⊂ F , we have ⋂

j∈J

f − j (As( j)) 6=∅

for any s ∈ {1, . . . , k}J . We shall denote the collection of all independence sets
for A by Ind(A1, A2, . . . , Ak) or Ind A. According to the best knowledge of the
authors, the above notion of independence sets was first presented in [Huang and
Ye 2006] under the name interpolating set (see also [Glasner and Weiss 1995])
and in [Huang 2006] when defining strong scrambled pairs. Later, the authors of
[Huang et al. 2012] systematically studied independence sets in topological and
measurable dynamics. In particular, they proved the following result (see [Huang
et al. 2012, Theorem 5.1]).

Theorem 5.8. For a dynamical system (X, f ), the following conditions are equiva-
lent:

(5.8.1) (X, f ) is weakly mixing.

(5.8.2) For any two nonempty open subsets U1,U2 of X, Ind(U1,U2) contains an
infinite set.

(5.8.3) For any n ∈ N and any nonempty open subsets U1,U2, . . . ,Un of X, there
is an IP-set in Ind(U1,U2, . . . ,Un).

In the spirit of [Huang et al. 2012] we introduce a local definition of independence
sets as follows.

Definition 5.9. Let (X, f ) be a dynamical system with ∅ 6= A ⊂ X , and let
U1,U2, . . . ,Un be open subsets of X intersecting A. We say that a nonempty
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subset F ⊂ N0 is an independence set for (U1,U2, . . . ,Un) with respect to A if,
for every nonempty finite subset J ⊂ F and s ∈ {1, 2, . . . , n}J ,⋂

j∈J

f − j (Us( j))

is a nonempty open subset of X intersecting A.

Now we can employ this definition to state a theorem analogous to Theorem 5.8.

Theorem 5.10. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
set. Then the following conditions are equivalent:

(5.10.1) A is a weakly mixing set.

(5.10.2) For every n ≥ 2 and any open subsets U1,U2, . . . ,Un of X intersect-
ing A, there exists a t ∈ N such that {0, t} is an independence set for
(U1,U2, . . . ,Un) with respect to A.

(5.10.3) For every n ≥ 2 and any open subsets U1,U2, . . . ,Un of X intersecting A,
there exists a sequence {t j }

∞

j=1 in N such that {0} ∪ FS
(
{t j }
∞

j=1

)
is an

independence set for (U1,U2, . . . ,Un) with respect to A.

Proof. (5.10.2) ⇒ (5.10.1) Fix n ≥ 2 and fix open subsets U1,U2, . . . ,Un,

V1, V2, . . . , Vn of X intersecting A. By assumption there exists a t ≥ 1 such
that {0, t} is an independence set for (U1,U2, . . . ,Un, V1, V2, . . . , Vn) with respect
to A. For i = 1, 2, . . . , n, we have that Ui ∩ f −t(Vi ) is a nonempty open subset
of X intersecting A. Therefore, t ∈

⋂n
i=1 N (Ui ∩ A, Vi ), which implies that A is

weakly mixing of order n.
(5.10.1) ⇒ (5.10.3) Let U1,U2, . . . ,Un be open subsets of X intersecting A.

First, there exists a t1 ∈ N such that

t1 ∈
⋂

i1,i2∈{1,2,...,n}

N (Ui1 ∩ A,Ui2).

That is, for every i1, i2 ∈ {1, 2, . . . , n}, we have that Ui1 ∩ f −t1(Ui2) is a nonempty
open set intersecting A. Therefore, there exists a t2 ∈ N such that

t2 ∈
⋂

i1,i2,i3,i4∈{1,2,...,n}

N (Ui1 ∩ f −t1(Ui2)∩ A,Ui3 ∩ f −t1(Ui4)).

That is, for every i1, i2, i3, i4 ∈ {1, 2, . . . , n},

Ui1 ∩ f −t1(Ui2)∩ f −t2Ui3 ∩ f −(t1+t2)(Ui4)

is a nonempty open set of X intersecting A. Then {0, t1, t2, t1+t2} is an independent
set of (U1,U2, . . . ,Un) with respect to A and the result follows by induction.

(5.10.3)⇒ (5.10.2) The implication is trivial. �
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Remark 5.11. Let A = (A1, . . . , Ak) be a tuple of subsets of X . If F is an
independence set for A, then for every m ∈ N0 the subset F − m defined by
{n −m : n ≥ m and n ∈ F} is also an independence set for A. So we may also
assume that an independence set of A contains 0. But in Theorem 5.10 we cannot
replace {0} ∪ FS

(
{t j }
∞

j=1

)
by FS

(
{t j }
∞

j=1

)
, as shown by the following example.

Example 5.12. Consider X =6+3 = {0, 1, 2}N0 and define

A = {1, 2}N0 ∪CX [00].

For any open subsets U1, . . . ,Un of X intersecting A, we can easily define words
w(1), . . . , w(n) of the same length, M ≥ 2, (with symbols in the alphabet {0, 1, 2})
such that C[w(i)]⊂ A for all i = 1, . . . , n. This implies that the set J ={k M : k ∈N}

is an independence set for (U1,U2, . . . ,Un) with respect to A. But A is not weakly
mixing of order 2, because, for example, N (A∩CX [1],CX [0])=∅.

Question. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set of
order 2. Is it true that for every two open subsets U1,U2 of X intersecting A, there
exists a t ∈N such that {0, t} is an independence set for (U1,U2) with respect to A?

6. Topological graphs

For any integer n ≥ 2, it is known that a weakly mixing set of order n does not
have to be weakly mixing of order n+1; even worse, it may happen that there is no
weakly mixing set of order n+ 1 in a system with weakly mixing sets of order n
[Oprocha and Zhang 2014]. Note that the examples in [Oprocha and Zhang 2014]
are subshifts, and for every dynamical system on the unit interval ([0, 1], f ) with
positive topological entropy there is an m > 0 and a closed set 3 invariant for f m

such that (3, f m) is conjugated with the full shift on two symbols. In particular,
in every interval map with weakly mixing sets we can find sets which are weakly
mixing of order n but not n+1. However, in [Oprocha and Zhang 2011] the authors
proved that on the unit interval every weakly mixing set of order 2 is arbitrarily
close (in the Hausdorff metric) to a weakly mixing set of all orders. So even if
these sets are not the same, they are arbitrarily close to each other. Theorem 6.1
completes our research on weakly mixing sets in dimension one, showing that the
above fact also holds for all topological graphs.

Theorem 6.1. Let (G, f ) be a dynamical system acting on the topological graph G
and let A ⊂ G be a weakly mixing subset of order 2. Then for every ε > 0 there is
a weakly mixing subset D ⊂ G such that Hd(A, D)≤ ε, where Hd(A, D) denotes
the Hausdorff distance between A and D.
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Proof. Let ε > 0. Pick nonempty open subsets U1, . . . ,Us of G with diameters at
most ε such that A ⊂

⋃s
i=1 Ui and A ∩Ui 6= ∅ for i = 1, . . . , s. By Lemma 2.5

the set A is perfect; therefore, for every i = 1, . . . , s it is possible to select an open
set Vi ⊂ Ui contained in the interior of an edge of G such that Vi ∩ A 6= ∅ and
V1, . . . , Vs are pairwise disjoint.

Claim. For every i = 1, . . . , s there is an interval Ii ⊂ Vi , its disjoint closed
subintervals K2i , K2i+1 and an integer ni > 0 such that

(6.1.1) K2i , K2i+1 form a strong 2-horseshoe for f ni ; that is, K p
f ni
H⇒ Kq for all

p, q ∈ {2i, 2i + 1}, and

(6.1.2) both sets int(K2i ), int(K2i+1) as well as every connected component of the
set Ii \ (K2i ∪ K2i+1) intersect A.

Proof of Claim. Let Ii be any closed interval contained in Vi such that int(Ii )∩A 6=∅.
Let us identify Ii with [0, 1]. Observe that A is a weakly mixing set of order 2, and
so it contains no isolated points. Thus there are points 0=a0<a1< · · ·<a6<a7=1
in Ii such that (a j , a j+1)∩A 6=∅ for all j = 0, . . . , 6. Define Ii, j =[a2 j , a2 j+1] for
j = 0, 1, 2, 3. Since A is weakly mixing of order 2, there are k > 0, r > 0 such that

f r (Ii,1)∩ (a1, a2) 6=∅, f k(Ii,2)∩ (a1, a2) 6=∅,
f r (Ii,1)∩ (a5, a6) 6=∅, f k(Ii,2)∩ (a5, a6) 6=∅.

If Ii,1
f r

H⇒ Ii,1, Ii,1
f r

H⇒ Ii,2 and Ii,2
f k

H⇒ Ii,1, Ii,2
f k

H⇒ Ii,2 then by Lemma 2.7
the intervals Ii,1 and Ii,2 form a 2-horseshoe for f k+r .

Otherwise there are p∈{1, 2} and j ∈{k, r} such that Ii,p
f j

H⇒ Ii,0 and Ii,p
f j

H⇒ Ii,3.
Next, if we consider Ii,0, then there is an l> 0 such that Ii,0

f l

H⇒ Ii,0 and Ii,0
f l

H⇒ Ii,3,
or we have the second possibility that Ii,0

f l

H⇒ Ii,1 and Ii,0
f l

H⇒ Ii,2 which implies
that Ii,0

f l+ j

H⇒ Ii,0 and Ii,0
f l+ j

H⇒ Ii,3 again by applying Lemma 2.7. We can repeat the
same arguments for Ii,3, and with the help of Lemma 2.7 finally obtain that Ii,0, Ii,3

form a 2-horseshoe for some iterate of f . �

Now for each i = 1, . . . , s let sets K2i , K2i+1 be provided for Vi by the claim,
and let Ji be the connected component of Ii \(K2i ∪K2i+1) such that K2i and K2i+1

are contained in different connected components of Ii \ Ji . We prove by induction
that for every m = 1, . . . , s intervals K2, . . . , K2m+1 form a horseshoe for some
iterate f h, h ∈ N; that is, K p

f h

H⇒ Kq for all p, q ∈ {2, . . . , 2m+ 1}.
By the construction we have proved the above statement for m = 1, so we may

assume that it holds for some 1 ≤ m < s. Therefore, there is a t1 > 0 such that
K p

f t1
H⇒ Kq for all p, q ∈ {2, . . . , 2m + 1} and a t2 > 0 such that K2m+2, K2m+3

form a 2-horseshoe for f t2 . If we set t = t1t2, then we have that K2, . . . , K2m+1

form a horseshoe for f t , and that K2m+2, K2m+3 form a 2-horseshoe for f t . Since
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A is weakly mixing of order 2, there are k, r > 0 such that

f r (K2)∩ J1 6=∅, f r (K2)∩ Jm+1 6=∅,

f k(K2m+3)∩ J1 6=∅, f k(K2m+3)∩ Jm+1 6=∅.

From the construction and the first two conditions we see that K2
f r

H⇒ K2 or
K2

f r

H⇒ K3 and at the same time K2
f r

H⇒ K2m+2 or K2
f r

H⇒ K2m+3, which implies
that K2

f r+t

H⇒ Kq for every q = 2, . . . , 2m + 3 by Lemma 2.7. By a symmetric
argument, we see that K2m+3

f k+t

H⇒ Kq for every q = 2, . . . , 2m+ 3. Now applying
Lemma 2.7 it is easy to verify that K p

f r+k+3t

H⇒ Kq for every p, q ∈ {2, . . . , 2m+ 3}.
This completes the induction.

Since Ki , i = 2, . . . , 2s+ 1, form a horseshoe, rewriting arguments in the proof
of [Moothathu 2011, Theorem 9] (stated there for horseshoes in interval maps)
we obtain that there is an n > 0, an f n-invariant closed subset 0 ⊂

⋃s
i=1 Vi and a

topological conjugacy π : (0, f n)→ (6s, σ ) between dynamical systems such that
0 ∩ Vi 6=∅ for each i = 1, . . . , s (and hence Hd(A, 0)≤ ε), where (6s, σ ) is the
full shift over the alphabet {1, . . . , s}. In particular f n is mixing on 0, so indeed 0
is a weakly mixing subset, which completes the proof. �
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Appendix

Proof of Example 3.2. Let us endow [0, 1] with the Euclidean metric. Take any
increasing sequences {ai }i∈Z, {bi }i∈Z⊂R\Q such that 1/2<a−1<a0<b0<b1<a1

and limi→∞ a−i = limi→∞ b−i = 0 and limi→∞ ai = limi→∞ bi = 1. Furthermore,
we assume that every interval (ai , ai+1) contains at most one element of the set
{2−k
: k ∈ N}.

We will define homeomorphisms Fi : [0, 1] → [0, 1] for i = 0, . . . , 8. Define
F0 = id and set Fi (0) = 0 and Fi (1) = 1 for every i . For each i ∈ Z we set
F1(ai ) = ai+1 and F3(bi ) = bi+1. On each interval [bi , bi+1] we define F3 as a
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linear map, which completes the definition of F3, since values of F3 at endpoints
of every such interval have already been set. For i ≥ 0 we define F1 on [ai , ai+1]

as a linear map. Now, fix any sequence of distinct points {ck}
∞

k=1 ⊂ (a0, a1) in
such a way that {ck : k ∈ N} = [a0, a1]. We are ready to define F1 on the intervals
[ai , ai+1] for i < 0. Suppose that F1|[a−n,1] is already defined for some n ≥ 0. If
{2−k
: k ∈N}∩[a−n−1, a−n] =∅ then we define F1 as a linear map on [a−n−1, a−n],

and as a result F1 is well-defined on the interval [a−n−1, 1]. Otherwise there is a
k > 0 such that 2−k

∈ (a−n−1, a−n) (hence n ≥ 1). Define

G : [a−n, a−n+1] 3 x 7→ F1|[a−1,a0] ◦ · · · ◦ F1|[a−n,a−n+1](x) ∈ [a0, a1]

and observe that there is a q ∈ [a−n, a−n+1] such that G(q) = ck . Now, we set
F1(2−k)= q and define F1 to be linear on each of the intervals [a−n−1, 2−k

] and
[2−k, a−n]. Then in this case F1 is also well-defined on [a−n−1, 1]. Induction
completes the construction. Define inverses F2 = F−1

1 and F4 = F−1
3 . Then for

every k there is an n > 0 such that Fn
2 (ck)= F−n

1 (ck)= 2−k .
We define F5(x)= 1/2+1/2(2x−1)3 and F6 = F−1

5 . Finally F7(2−k−1)= 2−k

for k ∈N, F7(1/2)= a1 and F7(ai )= ai+1 for i ∈N. Between any two consecutive
points in the set

⋃
k∈N{2

−k, ak} the map F7 is linear, which again gives a well-
defined homeomorphism. As the last map we take F8 = F−1

7 . Observe that for any
δ, ε ∈ (0, 1/2) there is an n > 0 such that Fn

6 ([1/2− δ, 1/2+ δ])⊃ (ε, 1− ε).
Let X =6+9 ×[0, 1] (endowed with the product metric given by the maximum

distance on each coordinate) where 6+9 = {0, 1, . . . , 8}N0 and let T : X → X be
defined by

T (ω, x)= (σ (ω), Fω0(x))

with σ the standard shift transformation on 6+9 . Thus X is compact and T is
continuous.

For any symbol a ∈ {0, 1, . . . , 8} and pairs (0, 0), (1, 2), (3, 4), (5, 6), (7, 8),
let a be the replacement of a by the second element of the respective pair. For
example, 8=7. We extend this definition to words, puttingw0 · · ·wn=wn · · ·w0. If,
for a finite sequencew of symbols in {0, 1, . . . , 8}, we denote by Fw the composition
Fw = Fw|w|−1 ◦ · · · ◦ Fw1 ◦ Fw0 , then Fww = Fw ◦ Fw = id.

Before proceeding with the construction of a set A, let us make a few observations
on these maps Fi . Fix any nonempty open sets U, V with U , V ⊂ (0, 1). First of
all U ∩ (bi , bi+1) 6=∅ for some i ∈ Z, and hence there is a word u consisting only
of symbols 0, 3 or 4 and such that

Fu(U )∩ (a0, a1)⊃ Fu(U )∩ (b0, b1) 6=∅.

In particular, there is a k ∈ N such that ck ∈ Fu(U ). But then there is also an s > 0
such that if we set v= 2s7k−1 (i.e., v is a concatenation of s repetitions of symbol 2
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and k−1 repetitions of symbol 7) then Fv(ck)= Fk−1
7 (F s

2 (ck))= Fk−1
7 (2−k)= 1/2.

In particular, there is a δ > 0 such that [1/2− δ, 1/2+ δ] ⊂ Fuv(U ), where as usual
uv = u0u1 · · · u|u|−1v0v1 · · · v|v|−1. But then there are an ε > 0 and m > 0 such that

Fw([1/2− δ, 1/2+ δ])⊃ (ε, 1− ε)⊃U ∪ V

if we set w = 6m . We have just shown that for any nonempty open sets U, V with
U , V ⊂ (0, 1) there are words u, v, w such that

(2) Fuvw(U )⊃U ∪ V .

Now we are ready to construct set A. Let {ωi }
∞

i=1 be any sequence containing
all possible words (finite sequences) over the symbols 0, 1, . . . , 8. Let

ξ = ω1ω1ω2ω2 · · ·ωnωn · · · ∈6
+

9 and A = {ξ}× [0, 1].

Take any nonempty open sets Ũ , Ṽ intersecting A. Then there are an i > 0 and
open intervals U, V such that U , V ⊂ (0, 1) and

C[ω1ω1 · · ·ωiωi ]×U ⊂ Ũ and C[ω1ω1 · · ·ωiωi ]× V ⊂ Ṽ .

Let words u, v, w be provided for U and V by (2). By the definition, there is a
j > 1 such that ω j = uvwω1ω1 · · ·ωiωi . Define t =

∑ j−1
r=1 2|ωr | and p= t+|uvw|.

Note that

T t({ξ}×U )= {σ t(ξ)}× Fω1ω1···ω j−1ω j−1(U )= {σ
t(ξ)}×U

= {ω jω j · · · } ×U = {uvwω1ω1ω2ω2 · · ·ωiωi · · · } ×U

and therefore

T p(Ũ ∩ A)⊃ T p({ξ}×U )⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(U )

⊃ {ω1ω1 · · ·ωiωi · · · } × (U ∪ V ).

We have just shown that p ∈ N (Ũ ∩ A, Ũ )∩ N (Ũ ∩ A, Ṽ ).
Similarly, if in the above calculations j was such that ω j = uvwω1ω1 · · ·ωiωi

then, since we have Fuvw(U ∪ V ) = F−1
uvw(U ∩ V ) ⊂ U by (2), we obtain that

p ∈ N (Ũ ∩ A, Ũ )∩ N (Ṽ ∩ A, Ũ ), as

T p(Ũ ∩ A)⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(U )⊂ Ũ ,

T p(Ṽ ∩ A)⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(V )⊂ Ũ .

Finally, observe that each map Fi preserves the ordering of [0, 1]. Set U = (a, b)
and V = (c, d) where b < c. If for some word w we have Fw(V )∩U 6=∅, then
Fw(U )⊂[0, b), and in particular Fw(U )∩V =∅. Therefore, if we set Ũ =6+9 ×U
and Ṽ = 6+9 × V , both intersecting A, then N (Ũ ∩ A, Ṽ ) ∩ N (Ṽ ∩ A, Ũ ) = ∅.
This shows that A is not a weakly mixing set of order 2, completing the proof. �
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REPRÉSENTATIONS DE STEINBERG MODULO p
POUR UN GROUPE RÉDUCTIF SUR UN CORPS LOCAL

TONY LY

Soient F un corps local non archimédien localement compact de caracté-
ristique résiduelle p et G un groupe réductif sur F. Soit R un corps de
coefficients de caractéristique p. Nous montrons l’irréductibilité et l’admis-
sibilité des représentations (lisses) de Steinberg généralisées de G(F) sur R.
Cela généralise les travaux de Grosse-Klönne et Herzig pour le cas où G est
un groupe réductif déployé sur F.

Let F be a locally compact non-Archimedean local field of residue char-
acteristic p and let G be a reductive group over F. Let R be a field of
characteristic p. We prove the admissibility and the irreducibility of the so-
called smooth generalized Steinberg representations of G(F) over R. This
generalizes previous works of Grosse-Klönne and Herzig for the case of G
a split reductive group.

1. Introduction

Au début des années 1950, Steinberg [1951] introduit de nouvelles représentations
(à coefficients complexes) pour le groupe général linéaire sur un corps fini. Quelques
années plus tard, Curtis [1966] donne une formule agréable pour leur caractère.
C’est dans l’esprit de cette dernière que sont aujourd’hui définies les représentations
de Steinberg généralisées.

Grosse-Klönne [2014] établit leur admissibilité et leur irréductibilité lorsque G
est un groupe classique déployé sur F et R est un corps de caractéristique p > 0.
Ensuite, Herzig [2011] utilise les résultats préliminaires de [Grosse-Klönne 2014] et
sa machinerie propre pour étendre ces propriétés à tout groupe réductif déployé G
sur F de caractéristique nulle (mais avec R algébriquement clos).

On notera de fait que le résultat principal de [Herzig 2011] pour G le groupe
général linéaire déployé met en emphase l’importance des représentations de
Steinberg généralisées puisqu’avec les représentations dites supersingulières, elles
représentent les « briques fondamentales » pour construire toutes les représentations
lisses admissibles irréductibles modulo p de G.

MSC2010 : 20C08, 22E50.
Mots-clefs : Steinberg representations, mod p representations, Hecke algebra.
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L’objet de cette note est d’étendre les résultats de [Grosse-Klönne 2014] et de
[Herzig 2011] sur les Steinberg généralisées pour G un groupe réductif quelconque.
On développe ainsi l’analogue des paragraphes 2 et 3 de [Grosse-Klönne 2014] et
du paragraphe 7 de [Herzig 2011] dans le cas non déployé.

2. Contexte général

Soient p un nombre premier et Fp une clôture algébrique fixée de Fp ; tout corps
fini de caractéristique p sera vu comme un sous-corps de Fp. Toute représentation
considérée ici sera lisse.

Soit F un corps local non archimédien localement compact à corps résiduel
fini kF de caractéristique p. Soient F sep une clôture séparable de F et Fun

⊆ F sep

la sous-extension maximale non ramifiée de F . On note I=Gal(F sep/Fun) le sous-
groupe d’inertie du groupe de Galois absolu de F et σ ∈Gal(Fun/F) le générateur
topologique correspondant à un Frobenius arithmétique.

Soit G un groupe réductif connexe sur F . Kottwitz [1997, paragraphe 7] définit
un morphisme fonctoriel et surjectif

κG : G(Fun)→ X∗(Z(Ĝ)I),

où Ĝ désigne le dual de Langlands connexe de G et Z(Ĝ) son centre. On note B

l’immeuble de Bruhat–Tits du groupe adjoint Gad(Fun). Un sous-groupe paraho-
rique de G est un groupe de la forme 1

ker κG ∩G(F)∩Fix F

pour une facette σ -invariante F de B (voir [Bruhat et Tits 1984, 5.2.6 ; Henniart et
Vignéras 2015, paragraphe 3.3 ; Haines 2009, paragraphe 8]). Si F est une chambre,
on parle de sous-groupe d’Iwahori.

Si H est un sous-groupe parahorique de G associé à une facette σ -invariante F

de B, on lui associe un groupe H ≤ H̃ ≤ G(F) défini par :

H̃ := {g ∈ G(F)∩Fix F | κG(g) est de torsion}.

Soient K un sous-groupe parahorique maximal spécial de G(F) et K (1) le pro-
p-radical de K (voir paragraphe 3.6 de [Henniart et Vignéras 2015]). Le quotient
K/K (1) est le groupe des kF -points d’un groupe réductif G.

Soient T un tore maximal parmi les tores F-déployés de G et A le centralisateur
de T dans G. Soient B un parabolique minimal de G de composante de Levi A et
U son radical unipotent. Lorsque Q est un parabolique contenant B, on notera Q−

son parabolique opposé au sens du Théorème 4.15 de [Borel et Tits 1965].

1. On a noté Fix F le fixateur point par point des simplexes de dimension 0 composant F.
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Pour tout sous-groupe H de G défini sur F , on note

H := (H(F)∩ K )/(H(F)∩ K (1))

le sous-groupe de G(kF ) correspondant.
On confondra par abus G et ses sous-groupes paraboliques (resp. composante

de Levi, radical unipotent de sous-groupes paraboliques) avec leurs F-points. De
même pour G et ses sous-groupes paraboliques (resp. composante de Levi, radical
unipotent de sous-groupes paraboliques) avec leurs kF -points.

3. Définitions et résultats

Soit R un anneau commutatif unitaire. Soit Q un sous-groupe parabolique
standard (c’est-à-dire qui contient 2 B) de G. On définit la G-représentation à
coefficients dans R suivante :

StQ R :=
IndG

Q id∑
Q′
Q IndG

Q′ id
.

Ici, comme dans toute la suite, on a noté Ind le foncteur d’induction lisse et on fait
agir G sur IndG

Q id par translation à droite.

Théorème 3.1. Soit R un corps de caractéristique p. La représentation de Stein-
berg généralisée StQ R est irréductible et admissible.

Remarque. Lorsque F est de caractéristique 0, l’admissibilité suit automatique-
ment de [Vignéras 2012b]. Par contre, lorsque F est de caractéristique p, à ma
connaissance on ne sait pas se passer de l’argument de cet article.

On va présenter une preuve de cet énoncé dans les paragraphes qui suivent.
Commençons par énoncer un corollaire (on dira un mot de la preuve dans le
paragraphe 9).

Corollaire 3.2. Les constituants de Jordan–Hölder de IndG
Q id sont les StQ′ R pour

les sous-groupes paraboliques 3 Q′ contenant Q. Ils sont deux à deux non iso-
morphes et de multiplicité 1.

On donnera aussi la filtration par les cosocles de IndG
Q id.

2. Cette hypothèse n’est en fait utile que lorsque l’on veut utiliser la comparaison parabolique-
compacte de [Henniart et Vignéras 2012].

3. Comme Q′ contient Q standard, il l’est automatiquement aussi.
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4. Sous-groupe d’Iwahori et sous-groupes radiciels

Soient8 le système de racines de G associé à T et8red le système réduit associé :

8red = {a ∈8 | a/2 /∈8}.

Le groupe parabolique minimal B nous fournit un sous-ensemble de racines positives
8+red ⊆8red et un système de racines simples 1. On note 8−red :=8redr8+red et,
pour α ∈8red, on appelle sα la réflexion correspondante. On note W le groupe de
Weyl fini (déterminé par T ) et l :W → N la longueur (déterminée par 1). Soit w0

l’élément le plus long de W .
Pour w ∈W , on notera encore w un relèvement (fixé une fois pour toutes) de w

dans le normalisateur NG(T )∩K de T dans K (ce qui est possible car K est spécial)
ou bien l’image de ce relèvement dans G.

On fait remarquer que le paragraphe 1 de [Grosse-Klönne 2014] ne concerne
que des groupes de réflexions cristallographiques avec système de racines réduit.
Il est donc valable lorsque l’on travaille avec 8red et le lecteur ne devra pas être
surpris quand on y fera référence.

Soit I le sous-groupe d’Iwahori de G suivant : si x0 est le point spécial de
l’immeuble de Gad(Fun) fixe par K , et si C est la chambre de sommet x0 et fixe
par B, alors I est le parahorique fixant C (voir paragraphe 2). On dispose alors de
la décomposition d’Iwasawa (voir [Bruhat et Tits 1972, Proposition 7.3.1]) : 4

G =
⊔
w∈W

Bw Ĩ .

Aussi, on a des injections naturelles

A∩ K̃/A∩ K ↪→ Ĩ/I ↪→ K̃/K .

La composée est un isomorphisme par [Henniart et Vignéras 2015, Lemma 6.2(iii)] ;
la première flèche est donc un isomorphisme

A∩ K̃/A∩ K −→∼ Ĩ/I.

On a donc finalement

(1) G =
⊔
w∈W

Bw(A∩ K̃ )I =
⊔
w∈W

Bw I,

4. Ici, comme dans tout ce qui suit, l’appel à [Bruhat et Tits 1972] nécessite de faire attention que
cela est bien loisible : c’est l’objet du Théorème 5.1.20 de [Bruhat et Tits 1984], comme expliqué
dans son introduction. Par la suite, on gardera cet énoncé en tête sans le rappeler à chaque fois, mais
on se permet d’insister que son importance est cruciale.
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où la seconde égalité vient de l’inclusion w(A∩ K )w−1
⊆ A∩ K ⊆ B. Pour tout

sous-groupe H de G, on pose H 0
:= H ∩ I .

Pour α ∈ 8, on note Uα le sous-groupe radiciel associé. Comme on a l’inclu-
sion U2α ( Uα si {α, 2α} ⊆ 8, il convient de remarquer aussi U 0

2α ⊆ U 0
α . Par la

Proposition 6.1.6 de [Bruhat et Tits 1972], on a donc∏
α∈8+red

Uα =U,
∏
α∈8+red

U 0
α =U 0,

quel que soit l’ordre choisi sur 8+red.

Soit J un sous-ensemble de1. Les sα pour α ∈ J engendrent un sous-groupe WJ

de W . On note aussi

W J
:= {w ∈W | ∀α ∈ J, l(wsα) > l(w)}.

On a, par [Humphreys 1992, Lemma 1.6 et Corollary 1.7],

(2) W J
= {w ∈W | w(J )⊆8+red}.

Aussi, grâce à [Humphreys 1992, Proposition 1.10 et paragraphe 5.12], on a le
fait important suivant : l’ensemble W J est un système de représentants de W/WJ

contenant l’élément le plus court de chaque classe.
On note le sous-ensemble de W J constitué des éléments primitifs

W J
pr :=W J r

⋃
α∈1rJ

W J∪{α}
= {w ∈W J

| w(1r J )⊆8−red},

de sorte que l’on a W =
⊔

W J
pr, lorsque J parcourt les sous-ensembles de 1.

On définit aussi le sous-ensemble suivant de 8red :

WJ .J := {wα | w ∈WJ , α ∈ J }.

5. Détermination de (St Q R)I

Soit R un anneau commutatif unitaire.
Soit J un sous-ensemble propre de 1. Pour w ∈W J∪{α} et α ∈1r J , on définit

∂(w) :=
∑
w′∈W J

w′WJ⊆wWJ∪{α}

w′ ∈ R[W J
],

où R[W J
] désigne le R-module libre de base les éléments de W J . En prolongeant

par R-linéarité, on a la suite exacte

(3)
⊕

α∈1rJ

R[W J∪{α}
]
∂
−→ R[W J

]
∇
−→MJ (R)→ 0,
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qui définit l’application linéaire ∇ et le R-module MJ (R). Ce dernier module est
un objet essentiel pour la compréhension du module des I -invariants de StJ R.
Et Grosse-Klönne [2014, Proposition 1.3(a)] a démontré que MJ (R) est libre de
rang |W J

pr|.
Par la Proposition 2.4 de [Bushnell et Henniart 2006] appliqué 5 à H = {1} et

au groupe profini I , le foncteur des fonctions localement constantes C∞(I, · ) est
exact. En appliquant C∞(I, · ) à (3), on obtient la suite exacte

C∞
(

I,
⊕

α∈1rJ

R[W J∪{α}
]

)
→ C∞(I, R[W J

])→ C∞(I,MJ (R))→ 0.

Par abus, on note encore ces flèches ∂ et ∇ respectivement.
Notons, pour J ⊆1 et w ∈W :

(4) PJ := BWJ B, wPJ := wPJw
−1.

On remarque que wPJ ne dépend que de la classe de w dans W/WJ . Par définition
de PJ son radical unipotent est égal à

NJ =
∏

α∈8+redr(8
+

red∩WJ .J )

Uα.

On fixe aussi un sous-groupe de Levi MJ de PJ contenant A et WJ . Énonçons tout
de suite une inclusion entre les wPJ qui nous sera utile dans très peu de temps.

Lemme 5.1. Soit α ∈1r J . Soient w et w′ des éléments de W vérifiant w′WJ ⊆

wWJ∪{α}. On a les inclusions 6

w′PJ ⊆
wPJ∪{α};

w′P0
J ⊆

wP0
J∪{α}.

Démonstration. Par hypothèse, il existe un élément σ ∈WJ∪{α} vérifiant w′ = wσ .
La première inclusion vient immédiatement :

w′PJ = wσ PJσ
−1w−1

⊆
wPJ∪{α}.

La seconde suit par intersection avec I . �

Pour α ∈ 1 r J , en notant C∞(wP0
J∪{α}\I, R) le sous-espace de C∞(I, R)

constitué des fonctions wP0
J∪{α}-invariantes à gauche, on a une injection⊕

w∈W J∪{α}

C∞(wP0
J∪{α}\I, R) ↪→ C∞(I, R[W J∪{α}

])

5. Dans cette référence toutes les représentations sont à coefficients complexes mais cela n’influe
pas sur la preuve de la proposition en question.

6. On omet les parenthèses pour alléger les notations, mais wP0
J doit se lire (wPJ )

0.
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donnée par la flèche

( fα,w)w 7→
∑
w

fα,ww.

On a de même une injection⊕
w∈W J

C∞(wP0
J \I, R) ↪→ C∞(I, R[W J

]).

On verra dorénavant les injections précédentes comme des inclusions. On a alors le
diagramme commutatif suivant :

(5)

C∞(I,
⊕

α∈1rJ
R[W J∪{α}

])
∂ // C∞(I, R[W J

])
∇ // C∞(I,MJ (R)) // 0

⊕
α∈1rJ
w∈W J∪{α}

C∞(wP0
J∪{α}\I, R) ∂ //

?�

OO

// ⊕
w∈W J

C∞(wP0
J \I, R) ∇ //

?�

OO

C∞(I,MJ (R))

Vérifions que l’image de
⊕

α,w C∞(wP0
J∪{α}\I, R) par ∂ est bien incluse dans⊕

W J C∞(wP0
J \I, R). Fixons pour cela α ∈1r J . On a

(6) ∂

( ∑
w∈W J∪{α}

fα,ww
)
=

∑
w′∈W J

( ∑
w∈W J∪{α}

w′WJ⊆wWJ∪{α}

fα,w

)
w′;

il s’agit donc de voir que
∑

w′WJ⊆wWJ∪{α}
fα,w est w

′

P0
J -invariante à gauche. En

fait, chacun des termes de cette somme l’est. En effet, chaque fα,w est wP0
J∪{α}-

invariant à gauche ; par le lemme 5.1, il est aussi w
′

P0
J -invariant et ∂ envoie bien⊕

α,w C∞(wP0
J∪{α}\I, R) dans

⊕
W J C∞(wP0

J \I, R).

Proposition 5.2. La ligne du bas du diagramme (5) est exacte.

L’introduction de quelques objets est nécessaire avant d’aborder la preuve de
cette proposition. Remarquons que, par [Humphreys 1992, Corollary 1.5], le sous-
système 8J ⊆8red engendré par J vérifie

8−J =8
−

red ∩WJ .J.

On dit que D ( 8red est J -quasi-parabolique s’il est l’intersection de certains
w(8−redr8

−

J ).
Énonçons maintenant un lemme/définition particulièrement utile.

Lemme 5.3. Soit D ( 8red une partie J -quasi-parabolique. Le produit
∏

D U 0
α

est indépendant de l’ordre choisi sur D : il forme un sous-groupe de G que l’on
notera U 0

D .
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Démonstration. Comme D est J -quasi-parabolique, on voit qu’il est suffisant de
prouver que

∏
w(8−redr8

−

J )
U 0
α est indépendant de l’ordre sur w(8−redr8

−

J ) pour un
w ∈ W tel que D est contenu dans w(8−red r8

−

J ). Quitte à conjuguer par w, on
suppose à présent w = 1.

Il reste donc à voir la condition de commutateurs sur la partie 8−redr8
−

J ⊆8
−

red
pour pouvoir appliquer la Proposition 7 6.1.6 de [Bruhat et Tits 1972]. Il s’agit de
voir dans un premier temps que si α et β sont des éléments de 8−redr8

−

J alors on a

(7) (Uα,Uβ)⊆ 〈Unα+mβ | nα+mβ ∈8−redr8
−

J , m, n ∈ N∗〉.

On sait déjà par l’axiomatique de Bruhat–Tits que (Uα,Uβ) est inclus dans 〈Unα+mβ |

nα+mβ ∈8−red, m, n ∈N∗〉. Puis on remarque que, comme on a α, β /∈8−J , aucune
des sommes nα+mβ n’appartient à 8−J non plus.

En prenant les intersections avec I , parce que I∩
∏
α∈8−red

Uα est égal à
∏
α∈8−red

U 0
α

par la Proposition 8 5.2.32 de [Bruhat et Tits 1972], (7) devient

(U 0
α ,U

0
β)⊆ 〈U

0
nα+mβ | nα+mβ ∈8−redr8

−

J , m, n ∈ N∗〉.

Le lemme en découle. �

Pour w ∈W , on pose
Dw = w(8

−

redr8
−

J ) :

le groupe U 0
Dw

est l’intersection de I avec le radical unipotent de wP−J (défini en (4))
(voir [Demazure 2011b, Proposition 1.12]). On remarque que Dw ne dépend que de
la classe de w dans W/WJ , et que, pour tout α ∈1r J , on a w(8−redr8

−

J∪{α})⊆

w(8−redr8
−

J ).
L’introduction des ensembles J -quasi-paraboliques s’explique alors par le fait

que l’on va s’intéresser à l’intersection de tels U 0
Dw

pour différents w ∈W et à la
décomposition d’Iwahori qui suit.

Lemme 5.4. Soient J ⊆ 1 et w ∈ W . Le produit wP0
J ×U 0

Dw
→ I est un homéo-

morphisme.

Démonstration. Par la Proposition 5.2.32 de [Bruhat et Tits 1972], on a la décom-
position d’Iwahori

Ĩ =
( ∏
β∈w8+red

U 0
β

)
(A∩ K̃ )

( ∏
β∈w8−red

U 0
β

)
,

où les produits sur w8+red et w8−red sont indépendants de l’ordre par la Proposi-
tion 6.1.6 de [Bruhat et Tits 1972]. En l’intersectant avec le noyau du morphisme

7. On l’applique à Yα =Uα ∩ I ⊇ Y2α =U2α ∩ I et Xα =Uα ∩ I .
8. Cette dernière s’occupe de U ∩ Ĩ , mais en prenant l’intersection avec le noyau du morphisme

de Kottwitz, on voit l’égalité U ∩ Ĩ =U ∩ I .
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de Kottwitz κG , parce que l’on a A0
= A∩ K , cela permet d’écrire

I =
( ∏
β∈w8+red

U 0
β

)
A0
( ∏
β∈w8−red

U 0
β

)
=: I+A0 I−.

La décomposition

(8) wP0
J =

( ∏
β∈w8+red

U 0
β

)
A0
( ∏
β∈w8−J

U 0
β

)

suit par intersection avec wPJ : I+ et A0 sont inclus dans wPJ et donc wP0
J est égal

à I+A0(I− ∩ wPJ ). Il en résulte la bijection

(9) U 0
Dw
=
wU 0

8−redr8
−

J
−→∼

wP0
J \I.

On en déduit que le produit wP0
J × U 0

Dw
→ I est un homéomorphisme : c’est

une bijection par (9), le produit est continu et une bijection continue d’un espace
compact vers un espace séparé est un homéomorphisme. �

Pour un sous-ensemble D de 8red, on note

(10) W J (D) := {w ∈W J
| D ⊆ w(8−redr8

−

J )}.

Lemme 5.5. Soient D, D′ ⊆ 8red deux ensembles J -quasi-paraboliques. Soient
α ∈1r J et w ∈W J∪{α}(D). On a l’égalité d’ensembles

(11) wP0
J∪{α}U

0
D ∩

wP0
J∪{α}U

0
D′ =

wP0
J∪{α}(U

0
D ∩U 0

D′).

Démonstration. L’inclusion⊇ est évidente ; prouvons⊆. En appliquant le lemme 5.3,
le produit

∏
β∈D U 0

β est indépendant de l’ordre. Choisissons un ordre sur D tel que
tout élément de Dr (D∩D′) soit placé avant tout élément de D∩D′. On forme le
produit

∏
β∈Dr(D∩D′) U 0

β suivant cet ordre et on le note U 0
DrD′ , de sorte que l’on a

U 0
D =U 0

DrD′U
0
D∩D′

(D ∩ D′ est J -quasi-parabolique et la notation est celle du lemme 5.3). Il est
équivalent de voir ⊆ dans (11) et

wP0
J∪{α}U

0
DrD′ ∩U 0

D′ ⊆
wP0

J∪{α}(U
0
D ∩U 0

D′).

On va même montrer que wP0
J∪{α}U

0
DrD′ ∩U 0

D′ est inclus dans wP0
J∪{α}. Notons

(12) 8′ =8redrw(8−redr8
−

J∪{α})= {β ∈8red |Uβ ⊆
wP0

J∪{α}}.

Puisque w est dans W J∪{α}(D), l’intersection de D et de 8′ est vide ; ou autrement
dit, la partie (J ∪ {α})-quasi-parabolique

Dα,w = w(8
−

redr8
−

J∪{α})
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contient D. Par le lemme 5.3 pour Dα,w, le produit
∏
β∈Dα,w

U 0
β est indépendant de

l’ordre : on choisit un ordre sur Dα,w tel que sa restriction à D coïncide avec l’ordre
précédemment choisi sur D et tel que tout élément de D précède tout élément
de Dα,w r D. On forme le produit

∏
β∈Dα,wrD U 0

β suivant cet ordre et on le note
U 0

Dα,wrD , de sorte que l’on a

U 0
Dα,w
=U 0

DU 0
Dα,wrD.

Par (9), on a alors la décomposition en produit direct d’ensembles

(13) I = wP0
J∪{α}U

0
DrD′U

0
D∩D′U

0
Dα,wrD.

Par le (8) dans la preuve du lemme 5.4, on a la décomposition d’Iwahori

(14) wP0
J∪{α} =

( ∏
β∈w8+red

U 0
β

)
A0
( ∏
β∈w8−J∪{α}

U 0
β

)
.

Parce que w8+red vérifie la condition des commutateurs, on peut appliquer la Propo-
sition 9 6.1.6 de [Bruhat et Tits 1972] et dire que

∏
β∈w8+red

U 0
β est un produit indé-

pendant de l’ordre sur w8+red, que l’on notera U 0
w8+red

. On choisit un ordre sur w8+red
tel que tout élément de w8+red ∩ D′ précède tout élément de w8+redr (D

′
∩w8+red).

On forme

U 0
w8+red∩D′ =

∏
β∈w8+red∩D′

U 0
β , U 0

w8+redrD′ =
∏

β∈w8+redr(D′∩w8
+

red)

U 0
β ,

et on a
U 0
w8+red
=U 0

w8+red∩D′U
0
w8+redrD′ .

De la même manière, on choisit un ordre sur w8−J∪{α} tel que tout élément de
w8−J∪{α} qui appartient à D′ précède tout élément qui n’y appartient pas : on
obtient U 0

w8−J∪{α}
=U 0

w8−J∪{α}∩D′
U 0
w8−J∪{α}rD′

. L’identité (14) devient

wP0
J∪{α} =U 0

w8+red∩D′U
0
w8+redrD′ A

0U 0
w8−J∪{α}∩D′U

0
w8−J∪{α}rD′;

et (13) devient le produit direct

(15) I =U 0
w8+red∩D′U

0
w8+redrD′ A

0U 0
w8−J∪{α}∩D′U

0
w8−J∪{α}rD′U

0
DrD′U

0
D∩D′U

0
Dα,wrD.

Grâce à (15), un élément de U 0
D′ ∩

wP0
J∪{α}U

0
DrD′ est dans le produit

U 0
w8+red∩D′U

0
w8−J∪{α}∩D′ ⊆

wP0
J∪{α}

et le lemme est prouvé. �

9. Ici encore, on prend Ya =Ua ∩ I ⊇ Y2a =U2a ∩ I et Xa =Ua ∩ I .
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Démonstration de la proposition 5.2. On commence par numéroter tous les sous-
ensembles J -quasi-paraboliques de 8red : D0, D1, D2, . . . par ordre croissant de
taille, c’est-à-dire avec

n < m =⇒ |Dn| ≤ |Dm |.

Soit f ∈ C∞(I, R[W J
]), image de

( fw)w∈W J ∈

⊕
w∈W J

C∞(wP0
J \I, R)

par la flèche verticale du diagramme (5), tel que l’on a ∇ f = 0, c’est-à-dire
∇( f (x))=0 pour tout x ∈ I . On cherche g∈C∞(I,

⊕
α∈1rJ R[W J∪{α}

]), image de

(gα,w)α,w ∈
⊕

α∈1rJ
w∈W J∪{α}

C∞(wP0
J∪{α}\I, R),

vérifiant f = ∂g.
On va montrer par récurrence l’existence d’une telle fonction g satisfaisant

f = ∂g sur
⋃

n≥0 U 0
Dn

. Ceci implique f = ∂g car f et ∂g proviennent de la ligne
du bas du diagramme (5) et que l’on a wP0

J

(⋃
n≥0 U 0

Dn

)
= I pour tout w ∈W J par

le lemme 5.4. La démonstration se fera en deux étapes :
— il existe g telle que f est égale à ∂g sur U 0

D0
;

— si f est nulle sur
⋃

n<m
U 0

Dn
, alors il existe g vérifiant f = ∂g sur

⋃
n≤m

U 0
Dn

(m ≥ 1).
La situation de l’étape d’initiation est la suivante : on a

D0 =∅= (8−redr8
−

J )∩w0(8
−

redr8
−

J ), U 0
D0
= {1}.

La fonction f vérifie (∇ f )(1)= ∇( f (1))= 0. Comme la suite (3) est exacte, on
choisit, une famille d’éléments

(g(1)α,w)α,w ∈
⊕

α∈1rJ

R[W J∪{α}
]

telle que l’on a ∂((g(1)α,w)α,w)= f (1). Soit, pour tout α ∈1r J et tout w ∈W J∪{α},
gα,w une fonction de C∞(wP0

J∪{α}\I, R) valant g(1)α,w sur wP0
J∪{α}. Alors l’image g

de
(gα,w)α,w ∈

⊕
α∈1rJ
w∈W J∪{α}

C∞(wP0
J∪{α}\I, R)

dans C∞(I,
⊕

α∈1rJ R[W J∪{α}
]) vérifie ∂g= f sur U 0

D0
={1}. L’étape d’initiation

est terminée.
Montrons maintenant la propriété de propagation de la récurrence. Soit, pour

tout w ∈W J , fw ∈ C∞(wP0
J \I, R) nulle sur

⋃
n<m U 0

Dn
.
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Si w est un élément de W J rW J (Dm), fw est nulle sur U 0
Dm

puisque l’on a
wP0

J U 0
Dm
=
wP0

J U 0
Dn

pour n < m vérifiant

Dm ∩w(8
−

redr8
−

J )= Dn.

En effet, il suffit de remarquer qu’un tel n < m existe par définition de W J (Dm)

(voir (10)) et que l’on a alors U 0
Dm
= (U 0

Dm
∩
wP0

J )U
0
Dn

.
Nous allons trouver la fonction g comme image de

(gα,w)α,w ∈
⊕

α∈1rJ
w∈W J∪{α}(Dm)

C∞(wP0
J∪{α}\I, R)

telle que ( f − ∂g)w′ est nulle sur
⋃

n≤m U 0
Dn

pour tout w′ ∈ W J (Dm). Comme
(∂g)w′ est nulle 10 pour w′ ∈W J rW J (Dm), ( f − ∂g)w′ sera nulle sur

⋃
n≤m U 0

Dn

pour tout w′ ∈W J .
La fonction f est localement constante sur le compact

⋃
n≤m U 0

Dn
et nulle sur⋃

n<mU 0
Dn

. Soient (Ci )0≤i≤r les ouverts disjoints de
⋃

n≤mU 0
Dn

vérifiant⋃
i

Ci =
⋃
n≤m

U 0
Dn

et tels que fw est constant sur Ci , égal à f (i)w , et f (0)w = 0 pour tout w ∈W J (Dm)

et ( f (i)w )w∈W J (Dm) 6= ( f (i
′)

w )w∈W J (Dm) si i 6= i ′. En particulier, on notera que C0

contient
⋃

n<m U 0
Dn

et que U 0
Dm

est l’union disjointe de C0 ∩U 0
Dm

et des Ci pour
1≤ i ≤ r .

La suite extraite de (3)

(16)
⊕

α∈1rJ

R[W J∪{α}(Dm)]
∂
−→ R[W J (Dm)]

∇
−→MJ (R)

est encore exacte (voir [Grosse-Klönne 2014, Proposition 1.3(b)]). Par ailleurs,
( f (i)w )w∈W J (Dm) appartient au noyau de ∇ dans (16) car on a ∇ f = 0 et fw = 0 pour
w ∈W J rW J (Dm). Il existe alors, pour tout 0≤ i ≤ r ,

g(i) = (g(i)α,w)α∈1rJ,w∈W J∪{α}(Dm) ∈

⊕
α∈1rJ

R[W J∪{α}(Dm)]

tel que l’on a g(0) = 0 et

(17) ∂(g(i))= ( f (i)w )w∈W J (Dm) ∈ R[W J (Dm)].

10. En (6), la somme sur les w vérifiant w′WJ ⊆ wWJ∪{α} ne fait intervenir que des w /∈

W J∪{α}(Dm) car w′WJ ⊆ wWJ∪{α} implique w′PJ ⊆
wPJ∪{α} par le lemme 5.1, et donc

w(8−redr8
−

J∪{α})⊆ w
′(8−redr8

−

J ) par (12) (voir définition (10) aussi).
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Posons Dα,w = w(8
−

redr8
−

J∪{α}) pour α ∈1r J et w ∈W . Pour tout w ∈W , le
produit wP0

J∪{α}×U 0
Dα,w
→ I est un homéomorphisme par le lemme 5.4, donc on a

C∞(wP0
J∪{α}\I, R)' C∞(U 0

Dα,w
, R).

Soient α ∈ 1r J et w ∈ W J∪{α}(Dm). Notons U ′ la projection 11 de
⋃

n<m U 0
Dn

sur U 0
Dα,w

: c’est le sous-espace de U 0
Dα,w

vérifiant

wP0
J∪{α}U

′
=
wP0

J∪{α}

(⋃
n<m

U 0
Dn

)
.

Supposons qu’il existe, pour α ∈1r J et w ∈W J∪{α}(Dm), une fonction gα,w ∈
C∞(U 0

Dα,w
, R) nulle sur U ′ ∪ (C0 ∩U 0

Dm
) et constante, égale à g(i)α,w, sur Ci pour

1≤ i ≤ r . Soit alors g ∈ C∞(I,
⊕

α∈1rJ R[W J∪{α}
]) l’image de

(gα,w)α,w ∈
⊕

α∈1rJ
w∈W J∪{α}(Dm)

C∞(wP0
J∪{α}\I, R).

Soit w′ ∈W J (Dm). Grâce à (17), on a alors

(∂g)w′ =
∑

α∈1rJ

∑
w∈W J∪{α}(Dm)
w′WJ⊆wWJ∪{α}

g(i)α,w = f (i)w′ = fw′

sur chaque Ci pour 1≤ i ≤ r ; la même égalité est vraie sur C0∩U 0
Dm

, de sorte que
l’on a (∂g)w′ = fw′ sur tout U 0

Dm
. Pour x ∈

⋃
n≤m U 0

Dn
rU 0

Dm
, pour tout α ∈1r J et

tout w ∈W J∪{α}(Dm), il existe pα,w ∈ wP0
J∪{α} et uα,w ∈U ′ vérifiant x = pα,wuα,w.

On a alors
(∂g)w′(x)=

∑
α∈1rJ

∑
w∈W J∪{α}(Dm)
w′WJ⊆wWJ∪{α}

gα,w(uα,w)= 0.

Il nous reste à vérifier l’existence des fonctions gα,w. Soient α ∈ 1r J et w ∈
W J∪{α}(Dm). Par définition de U ′, on a

wP0
J∪{α}U

′
∩
wP0

J∪{α}U
0
Dm
=
wP0

J∪{α}

(⋃
n<m

U 0
Dn

)
∩
wP0

J∪{α}U
0
Dm
,

et par le lemme 5.5, on a

wP0
J∪{α}

(⋃
n<m

U 0
Dn

)
∩
wP0

J∪{α}U
0
Dm
=
wP0

J∪{α}

((⋃
n<m

U 0
Dn

)
∩U 0

Dm

)
.

On sait alors que U ′ ∩U 0
Dm

est inclus dans C0 ∩U 0
Dm

: comme g(0)α,w est nul, les
conditions imposées sur les valeurs de gα,w sont compatibles. L’espace U ′ ∪U 0

Dm

est une union disjointe de U ′ ∪ (C0 ∩U 0
Dm
) et des Ci pour 1≤ i ≤ r . Les Ci , pour

11. Remarquons que U ′ dépend de α et de w.
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1≤ i ≤ r , sont ouverts compacts dans U 0
Dm

et U ′ est compact. Le complémentaire
de U ′ dans U ′ ∪U 0

Dm
contient Ci , donc Ci est ouvert dans U ′ ∪U 0

Dm
pour tout

1≤ i ≤ r . Comme
⋃

1≤i≤r Ci est compact, son complémentaire U ′ ∪ (C0 ∩U 0
Dm
)

dans U ′ ∪U 0
Dm

est ouvert.
Il existe donc une fonction g′α,w ∈ C∞(U ′ ∪U 0

Dm
, R) nulle sur U ′ ∪ (C0 ∩U 0

Dm
)

et constante, égale à g(i)α,w, sur Ci pour 1 ≤ i ≤ r . Comme U ′ ∪U 0
Dm

est fermé
dans U 0

Dα,w
, le morphisme de restriction

C∞(U 0
Dα,w

, R)→ C∞(U ′ ∪U 0
Dm
, R)

est surjectif : il existe une fonction gα,w sur U 0
Dα,w

prolongeant g′α,w comme voulue.
La récurrence est donc terminée et la proposition prouvée. �

Pour J ⊆1, on définit la G-représentation de Steinberg généralisée StJ R par la
suite exacte

(18)
⊕

α∈1rJ

C∞(PJ∪{α}\G, R)
∂
−→ C∞(PJ\G, R)→ StJ R→ 0.

On observe que cela coïncide avec la définition de StQ R lorsque Q = PJ .

Corollaire 5.6. Le R-module StJ R est libre. Et il existe une injection I -équivariante

ιR : StJ R ↪→ C∞(I,MJ (R))

dont la formation commute aux changements de base.

Démonstration. La flèche i 7→ PJw
−1i induit une bijection ensembliste

wP0
J \I −→∼ PJ\PJw

−1 I.

De plus, toute inclusion w′WJ ⊆ wWJ∪{α} donne alors lieu à un diagramme com-
mutatif comme suit (par le lemme 5.1) :

wP0
J \I //

∼

��

w′P0
J∪{α}\I

∼

��
PJ\PJw

−1 I // PJ∪{α}\PJ∪{α}(w
′)−1 I

Les w−1 pour w ∈ W J (resp. w′ ∈ W J∪{α}) forment un système de représentants
de WJ\W (resp. WJ∪{α}\W ). On a les décompositions d’Iwasawa suivantes (consé-
quences directes de (1) et du Corollaire 4.2.2 de [Bruhat et Tits 1972]) :

PJ\G =
⊔
w∈W J

PJ\PJw
−1 I, PJ∪{α}\G =

⊔
w′∈W J∪{α}

PJ∪{α}\PJ∪{α}(w
′)−1 I.
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On en déduit les sommes directes

C∞(PJ\G, R)=
⊕
w∈W J

C∞(PJ\PJw
−1 I, R),

C∞(PJ∪{α}\G, R)=
⊕

w′∈W J∪{α}

C∞(PJ∪{α}\PJ∪{α}(w
′)−1 I, R).

Il en découle le diagramme commutatif suivant :

(19)

⊕
α∈1rJ

C∞(PJ∪{α}\G, R) //

∼

��

C∞(PJ\G, R) //

∼

��

StJ R //

��

0

⊕
α∈1rJ

w′∈W J∪{α}

C∞(w
′

P0
J∪{α}\I, R) // ⊕

w∈W J
C∞(wP0

J \I, R) // C∞(I,MJ (R))

La première ligne est exacte par définition de StJ R (voir (18)) et la seconde l’est
par la proposition 5.2. On en déduit que l’application

ιR : StJ R ↪→ C∞(I,MJ (R))

est injective ; elle est aussi I -équivariante car toutes les flèches pleines du diagramme
le sont.

Étudions d’abord le cas R = Z : parce que l’on a

MJ (R)=MJ (Z)⊗Z R,

on a la propriété de changement de base voulue. Grâce à la Proposition 1.3(a) de
[Grosse-Klönne 2014] et au lemme A.1, le Z-module C∞(I,MJ (Z)) est libre. Or
un sous-module d’un module libre sur un anneau principal est libre. Ainsi StJ Z est
libre, et StJ R est libre sur R par changement de base. 12 �

Avant de déterminer à proprement parler (StJ R)I , on commence par déterminer
C∞(PJ\G, R)I .

Lemme 5.7. Le R-module C∞(PJ\G, R)I est libre de rang |W J
|.

Démonstration. La décomposition d’Iwasawa (voir (1)) fournit

G =
⊔
W J

PJw
−1 I.

12. On a bien StJ Z⊗Z R = StJ R comme la suite exacte

0→
∑

α∈1rJ

C∞(PJ∪{α}\G,Z)→ C∞(PJ \G,Z)→ StJ Z→ 0

reste exacte après tensorisation par R, les deux Z-modules à gauche étant libres par l’appendice A.
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Grâce à cette décomposition, on définit, pour chaque w ∈ W J , la fonction fw
de C∞(PJ\G, R)I par fw(w−1) = 1 et fw(w′) = 0 si w′ ∈ (W J )−1r {w−1

}. Le
R-module C∞(PJ\G, R)I est alors libre et engendré par ( fw)w∈W J . �

Proposition 5.8. L’espace des I -invariants (StJ R)I est un R-module libre de
rang |W J

pr|.
De plus, les images f w dans StJ R des fonctions fw (pour w ∈ W J

pr) définies
dans la preuve du lemme 5.7 forment une base explicite de (StJ R)I .

Démonstration. Appliquons le foncteur des I -invariants au carré commutatif du
diagramme (19). On obtient les applications de R-modules :

(20) R[W J
]=

⊕
w∈W J

C∞(wP0
J \I, R)I

→ (StJ R)I
→C∞(I,MJ (R))I

=MJ (R).

Parce que ιR est injective et que le foncteur des I -invariants est exact à gauche,
la flèche de droite de (20) est injective. Enfin la composée (20) est surjective par
définition de MJ (R). Alors on a un isomorphisme

(StJ R)I
−→∼ MJ (R)

de R-modules, ce qui fait de (StJ R)I un R-module libre de rang |W J
pr| (par [Grosse-

Klönne 2014, Proposition 1.2(a)]).
En prenant les I -invariants du diagramme commutatif (19), on obtient le dia-

gramme suivant, où les carrés du haut sont commutatifs.⊕
α∈1rJ

C∞(PJ∪{α}\G, R)I //

∼

��

C∞(PJ\G, R)I //

∼

��

(StJ R)I

∼

��⊕
α∈1rJ

w′∈W J∪{α}

C∞(w
′

P0
J∪{α}\I, R)I ∂ // ⊕

w∈W J
C∞(wP0

J \I, R)I // C∞(I,MJ (R))I

⊕
α∈1rJ

w′∈W J∪{α}

R[W J∪{α}
]

∼

OO

∂ // R[W J
] //

∼

OO

MJ (R) //

∼

OO

0

On remarque que l’on a utilisé la preuve du premier point pour affirmer l’isomor-
phisme de R-modules libres que constitue la flèche verticale en haut à droite. Les
carrés du bas du diagramme sont commutatifs en vertu de ce que la description des
fonctions du lemme 5.7 est compatible avec la discussion d’avant la proposition 5.2.
Le résultat suit. �

Une conséquence importante est l’assertion de l’admissibilité dans le théorème 3.1.

Corollaire 5.9. Supposons que R soit un corps de caractéristique p. Alors StJ R
est admissible.
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Démonstration. En regardant le diagramme commutatif (19), on voit que StJ R
est l’image de

⊕
w∈W J C∞(wP0

J \I, R) dans C∞(I,MJ (R)). Comme chaque wP0
J

contient A ∩ I , cette image est en fait incluse dans C∞(A ∩ I\I,MJ (R)) ⊆
C∞(I,MJ (R)). Si I (1) désigne le pro-p-Sylow de I , on a (A ∩ I )I (1) = I ;
il suit les égalités C∞(A ∩ I\I,MJ (R))I

= C∞(A ∩ I\I,MJ (R))I (1), et donc
(StJ R)I

= (StJ R)I (1).
Traitons d’abord le cas R = Fp : le Fp-espace vectoriel (StJ Fp)

I (1)
= (StJ Fp)

I

est de dimension finie par la proposition 5.8. Comme I (1) contient K (1), il est
ouvert et on peut appliquer [Paskunas 2004, Theorem 6.3.2], et StJ Fp est admissible.

Dans le cas R = Fp, on remarque que l’on a (StJ Fp)
H
= (StJ Fp)

H
⊗Fp Fp pour

tout sous-groupe ouvert H de G. L’admissibilité de StJ Fp implique alors celle
de StJ Fp. Enfin, pour R un corps de caractéristique p, Fp est naturellement un
sous-corps de R. On a alors (StJ R)H

= (StJ Fp)
H
⊗Fp R pour tout H ≤ G ouvert.

Le résultat en découle. �

Remarque. Marie-France Vignéras nous fait remarquer que l’on peut aussi prou-
ver ce fait en se servant du corollaire 5.6. Alors, pour tout sous-groupe compact
ouvert H de I , l’espace d’invariants (StJ R)H s’injecte dans le R-espace vectoriel
de dimension finie C(I/H,MJ (R)). Par ailleurs, un tel argument reste tout à fait
valable pour R un anneau principal (sans hypothèse sur la caractéristique).

6. Comparaison avec le cas fini

On retourne à R un anneau commutatif unitaire. On cherche à comparer les
représentations de Steinberg généralisées avec leur analogue dans le cas fini.

On remarque d’abord que comme on a choisi K comme étant le parahorique
associé à un sommet spécial, le groupe de Weyl associé à l’adhérence schématique T̃
de T est encore W (voir [Bruhat et Tits 1984, Propositions 4.4.5 et 4.6.4 ; Haines et
Rapoport 2008, Proposition 12]). Le système de racines 8 associé à la paire (B, T̃ )
est un sous-système de 8 et il n’est pas nécessairement réduit ; on considère alors
son réduit 8red. Parce que 8red et 8red sont tous deux des sous-systèmes réduits de
8 qui contiennent une R-base de X∗(T )⊗Z R, on a une correspondance bijective

8red −→
∼ 8red, α 7→ α ou 2α.

Cette bijection exhibe un sous-ensemble de racines simples 1 de 8 en correspon-
dance avec 1 de la même manière :

1 :=
⋃
α∈1

{α, 2α} ∩8red.

Pour J un sous-ensemble de 1, on associe alors de cette manière J ⊆1.
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De même que pour le paragraphe précédent, le lecteur ne s’étonnera pas des invo-
cations du paragraphe 1 de [Grosse-Klönne 2014] pour des résultats concernant8red.

Lemme 6.1. Soit J un sous-ensemble de 1. La réduction P J de PJ est PJ , le
parabolique de G associé à J .

Remarque. On peut aussi se reporter au Corollaire 4.6.4 de [Bruhat et Tits 1984].

Démonstration. La réduction de PJ est

P J = PJ ∩ K/PJ ∩ K (1)

et on affirme qu’elle est engendrée par les images dans G de A∩ K et des Uα ∩ K
pour α ∈8+red ∪WJ .J . En effet, par décomposition de Bruhat, il suffit de voir que
B ∩ K et WJ ⊆ K sont inclus dans le sous-groupe de K engendré par A∩ K et les
Uα∩K pour α ∈8+red∪WJ .J . Pour B∩K , cela suit de [Henniart et Vignéras 2015,
Theorem 6.5], qui affirme B ∩ K = (A∩ K )(U ∩ K ) ; et donc B ∩ K est engendré
par A ∩ K et les Uα ∩ K pour α ∈ 8+red. Soient β ∈ J et u ∈ U−β ∩ K d’image
non nulle dans U−β . Par [Carter 1985, Corollary 2.6.2], il existe alors b1, b2 ∈ B
tels que l’on ait u = b1sb2 où s est la réflexion dans WJ ⊆ K correspondant à β.
En relevant b1 et b2 respectivement en b1 et b2 dans B ∩ K , on voit que s est bien
dans le groupe engendré par A∩ K et les Uα ∩ K pour α ∈8+red∪WJ .J . Les tels s
formant un système de générateurs de WJ , on a bien l’affirmation voulue sur P J .

Le groupe PJ est quant à lui engendré par A = ZG(T ) et les Uα pour α ∈
8+∪WJ .J . Ce sont bien là les mêmes groupes radiciels par la remarque suivant le
Lemma 6.12 de [Henniart et Vignéras 2015]. �

Pour J ⊆1 (correspondant à J ⊆1), on garde la même définition de la représenta-
tion de Steinberg généralisée StJ R ; on rappelle la suite exacte de G-représentations
qui la définit :⊕

α∈1rJ

C(P J∪{α}\G, R)→ C(P J\G, R)→ StJ R→ 0.

Commençons par exhiber des éléments particuliers de (StJ R)B : pour w un élément
de W J

pr, notons gw ∈ StJ R l’image de la fonction caractéristique gw de

P Jw
−1 B = P Jw

−1(U ∩wU−w−1)

dans IndG
P J

id.
Soit w ∈W . On va commencer par prouver l’affirmation

P Jw
−1 B = P Jw

−1(U ∩wU−w−1).

On a d’abord

(21) Bw−1 B = Bw−1 AU = Bw−1U .
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Ensuite, par la Proposition 6.1.6 de [Bruhat et Tits 1972], on a

(22) U = (U ∩wUw−1)(U ∩wU−w−1).

Il s’ensuit
Bw−1U = Bw−1(U ∩wU−w−1).

La même égalité subsiste alors avec P J ≥ B à gauche plutôt que B, et l’égalité
voulue est prouvée.

Si on fait subir à (G,8red, J ) le raisonnement du paragraphe précédent, on
trouve alors que (StJ R)B est un R-module libre, de base (gw)w∈W J

pr
. Cependant,

savoir ce fait n’est pas nécessaire tout de suite, et la preuve de la proposition 6.2
nous le redonnera à moindres frais.

On a une décomposition d’Iwasawa G = PJ K (voir [Haines et Rostami 2010,
Corollary 9.1.2]). L’application PJ\G→ P J\G est continue (car PJ K (1) est fermé
dans G) et surjective. On a donc l’injection naturelle (k désigne ici un représentant
de k dans K ) :

C(P J\G, R)→ C∞(PJ\G, R), f 7→ (PJ k 7→ f (P J k)).

Dès lors, on a le diagramme suivant de K -représentations.⊕
α∈1rJ

C(P J∪{α}\G, R)
ϕ1 //

� _

��

C(P J\G, R) //
� _

��

StJ R //

ι

��

0

⊕
α∈1rJ

C∞(PJ∪{α}\G, R)
ϕ2 // C∞(PJ\G, R) // StJ R // 0

Comme les deux flèches verticales de gauche sont des injections et parce que l’on
a l’égalité

ϕ2

( ⊕
α∈1rJ

C∞(PJ∪{α}\G, R)
)
∩C(P J\G, R)= ϕ1

( ⊕
α∈1rJ

C(P J∪{α}\G, R)
)
,

la flèche de droite est aussi injective. Dans l’égalité précédente, l’inclusion ⊇ est
évidente. Pour obtenir l’inclusion inverse ⊆, soit f une fonction de

ϕ2

( ⊕
α∈1rJ

C∞(PJ∪{α}\G, R)
)
∩C(P J\G, R),

que l’on voit comme une fonction sur K . Elle s’écrit f =
∑

α∈1rJ ϕ2( fα) avec
fα ∈ C∞(PJ∪{α}\G, R) pour tout α ∈1r J . Fixons, pour tout α ∈1r J , Kα un
ensemble fini de représentants de P J∪{α}\G dans PJ∪{α}\G. On définit alors, pour
tout α ∈1r J , f ′α ∈C(P J∪{α}\G, R) par f ′α(k)= fα(k) pour tout k ∈Kα d’image



444 TONY LY

k ∈ P J∪{α}\G. Parce que le diagramme ci-dessus est commutatif et que f est dans
C(P J\G, R), on obtient ∑

α

ϕ1( f ′α)=
∑
α

ϕ2( fα)= f

et l’inclusion ⊆ voulue.

Proposition 6.2. L’injection K -équivariante

ι : StJ R ↪→ StJ R

induit l’isomorphisme de R-modules

(StJ R)B
−→∼ (StJ R)I .

Démonstration. L’injection ι : StJ R ↪→ StJ R étant K -équivariante, on en déduit
l’injection

(StJ R)B ↪→ (StJ R)I ,

que l’on notera encore ι. Par la proposition 5.8, le R-module (StJ R)I est libre de
rang |W J

pr|.
Commençons par considérer le cas R = Z. En tant que sous-module de (StJ Z)I ,

(StJ Z)B est un Z-module libre de rang majoré par |W J
pr| = |W

J
pr| (on a |WJ | = |WJ |

pour tout J ⊆1). Pour prouver l’isomorphisme voulu, il suffit d’exhiber une base
de (StJ Z)B qui s’envoie sur la base ( f w)w∈W J

pr
de (StJ Z)I , où f w est l’image de

fw ∈ C∞(PJ\G,Z) (voir proposition 5.8) dans StJ Z. Il reste à remarquer que, par
le lemme 6.1, la famille (gw)w∈W J

pr
s’envoie par ι sur ( f w)w∈W J

pr
.

Revenons à R général : on a la situation suivante

η : (StJ Z)B
⊗Z R ↪→ (StJ R)B ι

↪→(StJ R)I .

Parce que la famille (gw⊗ 1)
w∈W J

pr
d’éléments de (StJ Z)B

⊗Z R s’envoie par η sur
( f w)w∈W J

pr
, η est un isomorphisme et 13 ι induit l’isomorphisme

(StJ R)B
−→∼ (StJ R)I . �

Corollaire 6.3. La famille (gw)w∈W J
pr

forme une base du R-module libre (StJ R)B .

7. Représentations de Steinberg généralisées dans le cas fini

Dans toute cette section, G désignera un groupe réductif fini : cela permettra
d’alléger les notations et d’éviter de surligner un nombre déraisonnable de symboles.
Aussi, quand on fera référence à l’« axiomatique des systèmes de Tits » ou « des
BN-paires », on pensera au cadre des « strongly split BN-pairs of characteristic p »

13. Cela garantit au passage que la formation de
(
StJ ·

)B commute au changement de base.
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du chapitre I.2 de [Cabanes et Enguehard 2004], ce qui est loisible grâce au para-
graphe 5.2 de [Henniart et Vignéras 2015].

Soit S = {sα | α ∈1}. Comme pour les autres éléments de W , on ne fera pas de
distinction entre un élément s ∈ S et son relèvement fixé dans NG(T ).

Supposons à partir de maintenant que R est un anneau commutatif unitaire de
caractéristique p. On cherche à comprendre un peu mieux la structure de (StJ R)B ,
notamment grâce à une structure de HR(G, B)-module héritée comme suit. Si π
est une G-représentation, la réciprocité de Frobenius confère à son espace de
B-invariants

π B
' HomB(id, π)' HomG(IndG

B id, π)

une structure de module à droite sur

HR(G, B) := EndG(IndG
B id).

A tout w ∈W , on peut associer l’opérateur de Hecke Tw défini sur π B par

v 7→ vTw =
∑

γ∈B\BwB

γ−1v =
∑

u∈(B∩w−1 Bw)\B

u−1w−1v.

Pour w ∈W , on note 14

Uw :=U ∩wU−w−1
=

∏
α∈8+red

w−1(α)∈8−red

Uα.

Par la première étape de la preuve de la proposition 6.2 (notamment l’équation (22)),
pour s∈ S, on peut voir Us comme un ensemble de représentants de (B∩s−1 Bs)\B=
(B ∩ s Bs−1)\B (car s2 est un élément de T ). Pour π = IndG

PJ
id, w ∈W J et s ∈ S,

la formule d’action se réécrit

(23) gwTs =
∑
u∈Us

u−1s−1gw =
∑
u∈Us

idPJw−1Uwsu .

C’est cette action qu’on va investiguer à travers les deux résultats techniques
suivants.

Pour w ∈W , on note w J le représentant de wWJ dans W J (on rappelle que W J

est un système de représentants de W/WJ ).

Lemme 7.1. Soient w ∈W J et s ∈ S.

(a) Si (sw)J
= w, alors on a

PJw
−1Uwsu = PJw

−1Uw si u ∈Us .

14. Par [Carter 1985, paragraphe 1.18, Corollary 2.5.17 et discussion suivant Proposition 2.6.3],
l’ordre n’a pas d’importance.
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(b) Si l((sw)J ) > l(w), alors on a

PJw
−1UwsUs = PJw

−1sUsw.

(c) Si l((sw)J ) < l(w), alors on a s = sβ avec β ∈1 et w−1(β) ∈8−red. Posons

U ′ =
∏

α∈8+redr{β}
w−1(α)∈8−red

Uα;

c’est un sous-groupe de Uw. On a

PJw
−1U ′usUs = PJw

−1Uw si u ∈Us r {1},

PJw
−1U ′su = PJw

−1sUsw si u ∈Us .

De plus, toutes ces relations sont des égalités entre produits directs d’ensembles.

Remarque. Ce sont des raffinements dans l’axiomatique des systèmes de Tits que
l’on peut déjà trouver dans [Grosse-Klönne 2014] pour le cas déployé (Lemma 3.1) :
on se permet de reproduire sa preuve ici en rajoutant quelques commentaires,
notamment pour le fait que les produits d’ensembles sont directs.

Démonstration. Commençons par le fait que les produits sont directs : il s’agit tout
d’abord de voir que le produit PJw

−1Uw est direct. Supposons pour cela

q1w
−1u1 = q2w

−1u2 avec q1, q2 ∈ PJ , u1, u2 ∈Uw.

On a alors
u1u−1

2 ∈ wPJw
−1
∩wU−w−1

∩U.

Regardons à quoi ressemblent les éléments dew−1Uw∩U−∩PJ . Ils sont inclus dans

U− ∩w−1Uw =
∏
α∈8−red

w(α)∈8+red

Uα.

De plus, par définition de w ∈W J (voir (2)), pour tout α négativement engendré
par J , on a w(α) ∈ 8−red. Dès lors, comme PJ ne contient que les sous-groupes
radiciels associés à la partie quasi-close (au sens du 3.8 de [Borel et Tits 1965])
8+red ∪ (8

−

red ∩WJ .J ), l’intersection w−1Uw ∩U− ∩ PJ est réduite à l’élément
neutre et le produit PJw

−1Uw est direct.
Une fois que toutes les égalités seront prouvées, le fait que les autres produits

sont directs se ramène à chaque fois au cas précédent. Par exemple, regardons le
terme de gauche de la première égalité de (c). L’ensemble PJw

−1U ′usUs est de
cardinal majoré par |PJ | · |U ′| · |Us | = |PJ | · |Uw|. Or l’égalité avec PJw

−1Uw, qui
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est un produit direct, nous dit que le cardinal de PJw
−1U ′usUs est exactement

|PJ |·|Uw|. C’est donc que le produit est aussi direct et cela prouve bien le fait voulu.
Montrons (a). On a d’abord

(24) PJw
−1Uws = PJw

−1 Bs ⊆ PJw
−1 B ∪ PJw

−1s B

par les équations (21) et (22) et l’axiomatique des BN-paires. Parce que l’on a
(sw)J

= w, ces deux dernières doubles classes sont égales et leur union vaut
simplement

PJw
−1 B = PJw

−1Uw.

L’inclusion (24) devient une égalité puisqu’en rappliquant s on obtient :

PJw
−1Uw = PJw

−1Uws2
⊆ PJw

−1Uws ⊆ PJw
−1Uw.

Pour finir, PJw
−1 B est bien entendu invariant par translation à droite par Us .

Attaquons nous à (b). On a dans un premier temps

PJw
−1UwsUs = PJw

−1 BsUs = PJw
−1 Bs B.

Par définition de PJ , on obtient

PJw
−1 Bs B =

⋃
v∈WJ

BvBw−1 Bs B.

L’axiomatique des systèmes de Tits nous dit que Bw−1 Bs B est exactement Bw−1s B
car on a

l(w−1s)= l(sw) > l(w)= l(w−1)

par [Grosse-Klönne 2014, Lemma 1.3(a)]. On termine alors :

PJw
−1 Bs B =

⋃
v∈WJ

BvBw−1s B = PJw
−1s B = PJw

−1sUsw.

Enfin pour (c), on remarque d’abord que l’on a

(s(sw)J )J
= w J

= w et l((sw)J ) < l(w).

Par [Grosse-Klönne 2014, Lemma 1.4(c)], on a l(sw)< l(w) et doncw−1(β)∈8−red.
On observe aussi

s−1Usws = s−1Us ∩wU−w−1
=

∏
s(α)∈8+red
w−1(α)∈8−red

Uα.

Or on a (voir Proposition 1.4 de [Humphreys 1992])

s(8+red)= (8
+

redr {β})∪ {−β}, w−1(−β) ∈8+red.
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Il en résulte que la condition sur les indices du produit se réécrit

α ∈8+redr {β}, w−1(α) ∈8−red;

et on en déduit s−1Usws=U ′. Cela implique directement U ′s= sUsw et comme on a

u ∈Us ⊆ B, PJw
−1sUsw = PJw

−1s B,

la dernière égalité en découle. Pour la première égalité, écrivons l’inclusion (le
détail est identique au (b))

PJw
−1Uws ⊆ PJw

−1Uw ∪ PJw
−1sUsw;

cette union est disjointe car on a swWJ 6= wWJ . De l’égalité PJw
−1U ′s =

PJw
−1sUsw que l’on vient de prouver, et parce que le produit PJw

−1Uw est direct,
on déduit

PJw
−1(Uw rU ′)s ⊆ PJw

−1Uw.

Lorsque u est un élément de Us r {1} = Uβ r {1} ⊆ Uw, on a l’inclusion U ′u ⊆
Uw rU ′ ; il s’ensuit

PJw
−1U ′usUs ⊆ PJw

−1(Uw rU ′)sUs ⊆ PJw
−1UwUs = PJw

−1Uw.

Voyons l’inclusion inverse : par [Carter 1985, Corollary 2.6.2], il existe u1 ∈ Us

et b ∈Us T ⊆ B tel que l’on ait la décomposition sus = bsu1. On a alors

PJw
−1s BsusUs = PJw

−1s BsUs = PJw
−1s Bs B.

Il s’ensuit que
PJw

−1U ′ = PJw
−1sUsws = PJw

−1s Bs

est inclus dans

PJw
−1s BsusUs = PJw

−1sUswsusUs = PJw
−1U ′usUs .

Au final, on a bien l’égalité voulue (grâce à Uw =U ′Us) �

Le cas fini peut se voir de manière similaire au cas p-adique traité dans le
lemme 5.7 : le R-module C(PJ\G, R) est libre et une base est donnée par les
fonctions gw pour w parcourant W J . On tâche d’investiguer sa structure en tant
que HR(G, B)-module à droite lorsque R est de caractéristique p.

Lemme 7.2. Soient w ∈W J et s ∈ S.

(a) Si (sw)J
= w, alors on a gwTs = 0.

(b) Si l((sw)J ) > l(w), alors on a gwTs = g(sw)J .

(c) Si l((sw)J ) < l(w), alors on a gwTs =−gw.
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Démonstration. Le (a) est conséquence immédiate de (23), du lemme 7.1(a) et de
l’égalité |Us | = 0 dans R de caractéristique p (voir [Carter 1985, page 74]). Le (b)
suit de (23) et de la décomposition en produit direct du lemme 7.1(b) aussi.

Intéressons nous au (c) : on utilise la décomposition en produit direct Uw =U ′Us .
On a alors

gwTs =
∑
u∈Us

∑
u′∈Us

idPJw−1U ′u′su =
∑
u∈Us

idPJw−1U ′su +
∑
u∈Us

∑
u′ 6=1

idPJw−1U ′u′su .

Par le lemme 7.1(c) et |Us | = 0 dans R, le premier terme vaut 0 et le second∑
u′∈Usr{1}

idPJw−1Uw
=−gw.

Le lemme en découle. �

Les actions précédemment étudiées dans (IndG
B id)B sont compatibles à celles

du quotient (StJ R)B .

Proposition 7.3. Supposons R de caractéristique p. Tout sous-HR(G, B)-module
non nul de (StJ R)B contient l’élément gz J de StJ R, où z J désigne l’élément de
longueur maximale 15 de W J .

Démonstration. Soit E un sous-HR(G, B)-module non nul de (StJ R)B . Par la
proposition 6.2, E contient un élément non nul

h =
∑
w∈W J

pr

αw(h)gw avec αw(h) ∈ R.

On fixe une énumération w1, w2, . . . des éléments de W J
pr vérifiant w j <J wi ⇒

i < j : en particulier, on a w1 = z J . On veut montrer qu’il existe h ∈ E non nul
tel que

t (h) :=min{i ≥ 1 | ∀ j > i, αw j (h)= 0}

soit égal à 1, c’est-à-dire gz J ∈ E . Supposons le contraire et donc on a

t :=min{t (h) | h ∈ E r {0}} ≥ 2.

Par [Grosse-Klönne 2014, Lemma 1.5], il existe w′ ∈W J
pr et s ∈ S tel que wt <J w

′,
l((swt)

J ) < l(wt) et l(w′) ≤ l((sw′)J ). Par définition de <J (voir appendice B),
il existe s1, . . . , sr dans S tels que w(i) = (si · · · s1wt)

J vérifie l(w(i)) > l(w(i−1))

pour tout 1≤ i ≤ r et w(r) = w′.
Soit h ∈ E r {0} avec t (h) = t . Commençons par remarquer que, grâce au

lemme 7.2, on a αw(r)(hTs)= 0. On peut donc considérer h ∈ Er {0} avec t (h)= t

15. Un élément de longueur maximale est aussi maximal pour <J (voir l’appendice B pour
la définition de <J ) par [Grosse-Klönne 2014, Lemma 1.4(d)]; l’existence d’un unique élément
<J -maximal est ensuite donnée par [Grosse-Klönne 2014, Lemma 1.4(e)].
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et tel que k(h)≥ 0 est minimal, égal à k, où k(h) est l’entier minimal de [0, r ] défini
par αw(k(h))(h)= 0. Si on a k(h)= 0, alors αwt (h) est nul, ce qui est contradictoire. On
suppose ainsi k > 0, et on va le faire diminuer : considérons h′ = hTsk , et observons

αw(k−1)(h′)=−αw(k)(h)= 0, αw(k)(h
′)= αw(k−1)(h) 6= 0.

Ceci nous assure h′ 6= 0 et k(h′) < k. Cela contredit la minimalité de k et donc
l’hypothèse initiale : on vient donc de montrer l’existence de h ∈ E r {0} avec
t (h)= 1. C’est le résultat voulu. �

8. Paramètres de Hecke–Satake et preuve du théorème 3.1

Soit R un corps de caractéristique p. On commence par étudier le K -socle d’une
représentation de Steinberg généralisée.

Proposition 8.1. Soit J ⊆ 1. Le K -socle de la Steinberg généralisée StJ R est
irréductible.

Démonstration. Soit V une sous-K -représentation irréductible de StJ R. L’injection
de la proposition 6.2 nous permet de voir V U∩K comme un sous-espace de

(StJ R)I (1)
= (StJ R)I

' (StJ R)B

(voir début de preuve du corollaire 5.9) ; de cette manière, V U∩K
= V B∩K est

une droite stable par l’action de HR(G, B). Or, par la proposition 7.3, tout sous-
HR(G, B)-module non nul de (StJ R)B contient l’image g J de l’élément

gJ := idP J z J B ∈ IndG
P J

id

dans StJ R. Ainsi V est généré par g J en tant que K -représentation, et le K -socle
de StJ R est irréductible. �

Soit V une K -représentation irréductible. On va noter HR(G, K , V ) l’algèbre de
Hecke–Satake EndG(indG

K V ). Les éléments de HR(G, K , V ) sont des opérateurs
à support fini parmi les doubles classes K\G/K , donc on va fixer un système de
représentants dominants dans A (au sens qu’ils contractent B) que l’on notera 6+.

La transformée de Satake (voir [Henniart et Vignéras 2015, paragraphe 7.3]) est
un isomorphisme de R-algèbres

(25) S :HR(G, K , V )−→∼ H+R(A, A∩ K , VU∩K )

où H+R(A, A∩K , VU∩K ) désigne la sous-algèbre de HR(A, A∩K , VU∩K ) engendrée
par les opérateurs portés par la classe z(A∩ K ) pour z ∈6+ quand ils existent.
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Soit J un sous-ensemble de 1. On va particulièrement s’intéresser au cas où V
est VJ , l’unique K -représentation irréductible MJ -corégulière 16 telle que l’action
de MJ sur la droite (VJ )NJ∩K est triviale (par la Proposition 3.11 de [Henniart et
Vignéras 2012]). Dans ce cas-là, en particulier, VU∩K est la représentation triviale id
de A∩K et toute classe z(A∩K ) pour z ∈6+ porte un unique opérateur de Hecke
τz de H+R(A, A∩K , VU∩K ), envoyant z sur idVU∩K (voir [Henniart et Vignéras 2015,
paragraphe 7.3]) ; et ils en constituent une base en tant que R-espace vectoriel. De
plus, l’algèbre H+R(A, A∩K , id) est alors commutative et de type fini sur R (voir pa-
ragraphe 7.2 de [Henniart et Vignéras 2015]). On en déduit alors que HR(G, K , VJ )

est aussi commutative et de type fini par l’isomorphisme de Satake (25).

Soit π une G-représentation admissible à coefficients dans R. Alors, comme
K (1) est un pro-p-groupe ouvert, le sous-espace des K (1)-invariants πK (1) est
non nul et de dimension finie sur R. Il possède donc une sous-K -représentation
irréductible V . En particulier, HomK (V, π) est non trivial et de dimension finie.
De plus, c’est un module à droite sur l’algèbre HR(G, K , V ).

On suppose à présent que V est un VJ pour un certain sous-ensemble J de 1,
et que R est algébriquement clos. Alors HR(G, K , VJ ) étant commutative, elle
possède un sous-espace propre associé à un caractère χ : HR(G, K , VJ ) → R
dans son action sur HomK (VJ , π). Dit autrement, on a un morphisme non nul de
G-représentations

indG
K VJ ⊗H,χ R→ π.

On tâche de déterminer les caractéristiques d’un tel caractère χ lorsque π est StJ R.
Pour être précis, notons χ (A) la composée

H+R(A, A∩ K , (VJ )U∩K )
S−1

∼
−→HR(G, K , VJ )

χ
−→ R;

c’est χ (A) que l’on va expliciter.

Proposition 8.2. Soit R un corps algébriquement clos de caractéristique p. Soit J
un sous-ensemble de 1.

(i) Le K -socle de StJ R s’identifie à VJ .

(ii) Il existe un morphisme non nul de G-représentations

indG
K VJ ⊗H,χ R→ StJ R

si et seulement si χ (A) est le caractère envoyant τz sur 1 pour tout z ∈6+.

Remarque. En particulier, StJ R n’est pas supersingulier au sens de [Henniart et
Vignéras 2012].

16. Cela veut dire que le stabilisateur dans K de la représentation associée à V U−∩K
J est inclus

dans (P−J ∩ K )K (1).
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Démonstration. On note H=HR(G, K , VJ ) et HM =HR(MJ ,MJ ∩K , id). Soient
χ : H→ R et χM : HM → R les caractères d’algèbres associés à χ (A), caractère
envoyant tout τz sur 1 (pour z ∈6+). Par [Henniart et Vignéras 2012, Theorem 1.2],
parce que VJ est MJ -corégulière et que (VJ )NJ∩K est la (MJ ∩ K )-représentation
triviale, on a un morphisme surjectif de G-représentations

(26) indG
K VJ ⊗χ R −→∼ IndG

PJ
(indMJ

MJ∩K id⊗χM R)� IndG
PJ

id .

On en déduit 17 l’existence d’un morphisme surjectif (en particulier non nul) de
G-représentations indG

K VJ ⊗χ R→ StJ R. Il s’ensuit que VJ génère StJ R en tant
que G-représentation. Parce que StJ R est de K -socle irréductible, VJ est l’unique
K -représentation irréductible contenue dans StJ R. Cela prouve (i) et le sens indirect
de (ii).

Prouvons maintenant la seconde implication de (ii). Comme K ∩PJ\K→ PJ\G
est un homéomorphisme, on a par réciprocité de Frobenius

HomK (VJ , IndG
PJ

id)= HomK∩PJ (VJ , id)

et donc, puisque l’on a (VJ )NJ∩K = id, on déduit

HomK (VJ , IndG
PJ

id)= HomK∩MJ (id, id).

Ce dernier espace est donc un R-espace vectoriel de dimension 1. Le morphisme
surjectif IndG

PJ
id � StJ R de G-représentations induit le morphisme

ψ : HomK (VJ , IndG
PJ

id)→ HomK (VJ ,StJ R)

de R-espaces vectoriels. On vient de voir que HomK (VJ , IndG
PJ

id) est de dimen-
sion 1, et HomK (VJ ,StJ R) est aussi de dimension 1 par (i) et lemme de Schur.
De ce fait, ψ est un isomorphisme si et seulement si il est non nul. Or le fait
que (26) induise indG

K VJ ⊗χ R � StJ R implique la non nullité de ψ : ψ est un
isomorphisme.

Après application de la réciprocité de Frobenius, on a un isomorphisme

HomG(indG
K VJ , IndG

PJ
id)−→∼ HomG(indG

K VJ ,StJ R)

de R-espaces vectoriels. Ce dernier est HR(G, K , VJ )-équivariant car ψ est juste in-
duit par la projection définissant StJ R. De ce fait, toute flèche non nulle indG

K VJ⊗H,χ

R→ StJ R pour un certain χ se factorise à travers indG
K VJ ⊗H,χ R→ IndG

PJ
id. Et

17. Jusqu’à présent, hormis dans l’introduction, on a défini StJ R à partir des C∞(PJ \G, R).
Remarquons que la définition peut se faire de manière équivalente à partir d’induites paraboliques :
l’application R-linéaire C∞(PJ \G, R)→ IndG

PJ
id est un isomorphisme car la projection canonique

G→ PJ \G possède une section continue.
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par le diagramme (4) de [Henniart et Vignéras 2012], l’isomorphisme de réciprocité
de Frobenius

HomG(indG
K VJ , IndG

PJ
id)−→∼ HomMJ (indMJ

MJ∩K id, id)

est HR(G, K , VJ )-équivariant, où l’action au but se fait à travers la transformée de
Satake partielle

SMJ
G :HR(G, K , VJ ) ↪→HR(MJ ,MJ ∩ K , id).

Il s’agit donc de déterminer les valeurs propres de Hecke possibles pour l’action de
HR(MJ ,MJ ∩ K , id) sur HomMJ (indMJ

MJ∩K id, id). Cet espace est unidimensionnel
puisqu’il est isomorphe à

HomMJ∩K (id, id)= HomA∩K (id, id)= HomA(indA
A∩K id, id),

et c’est à travers ce dernier que l’action de HR(A, A∩ K , id) se lit naturellement.
On conclut donc qu’elle se fait à travers le caractère χ (A) envoyant chaque τz sur 1,
d’où l’implication qu’il restait à prouver pour (ii). �

On exhibe de la preuve précédente le fait plus précis suivant, qui va facilement
impliquer le théorème 3.1.

Corollaire 8.3. Soient R un corps algébriquement clos de caractéristique p et
J un sous-ensemble de 1. Le K -socle VJ de StJ R l’engendre en tant que G-
représentation.

On a alors l’irréductibilité de StJ R dans le cas R algébriquement clos de carac-
téristique p comme suit. Soit π ⊆ StJ R une sous-représentation non nulle. Alors π
contient une sous-K -représentation irréductible qui, par l’argument précédent, est
donc VJ . Mais on sait que VJ génère StJ R ; donc on a π = StJ R et l’irréductibilité
voulue.

Le théorème 3.1 en découle par le corollaire 5.9 et le fait tout à fait général que,
si une représentation définie sur R est irréductible sur une clôture algébrique Ralg,
alors elle l’est aussi sur R.

9. Induites paraboliques de Steinberg généralisées

Commençons par un mot sur la preuve du corollaire 3.2, notamment sur le fait
que deux J, J ′ ⊆1 distincts engendrent des StJ R et StJ ′ R non isomorphes. Cela
suit immédiatement de ce que l’on vient de faire puisque l’on a alors VJ 6= VJ ′ .

Définissons la filtration suivante sur IndG
PJ

id :

Fili =
{∑

J ′⊇J, |J ′rJ |≥i IndG
PJ ′

id pour 0≤ i ≤ |1r J |,
0 pour i > |1r J |.
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Et montrons que c’est la filtration par les cosocles de IndG
PJ

id, c’est-à-dire la filtration
descendante définie par Fil0 = IndG

PJ
id et Fili est telle que gri−1

:= Fili−1 /Fili est
le cosocle de Fili−1 pour i ≥ 1. On a le diagramme commutatif suivant, pour i ≥ 0
et J ′ ⊇ J avec |J ′r J | = i (en particulier i ≤ |1r J |) :∑

J ′′)J ′
IndG

PJ ′′
id //

� _

��

IndG
PJ ′

//
� _

��

StJ ′ R //

��

0

0 // Fili+1 // Fili // gri // 0

Si la flèche StJ ′ R→ gri était triviale, cela voudrait dire que l’image de IndG
PJ ′

id ↪→
Fili serait incluse dans Fili+1, ce qui serait absurde par le lemme 9.1 ultérieur. De
ce fait, et parce que l’on a StJ1 R � StJ2 R pour J1 6= J2, on a une injection⊕

J ′⊇J
|J ′rJ |=i

StJ ′ R ↪→ gri .

Pour voir que c’est bien le cosocle de Fili , comme on connaît les composantes de
Jordan–Hölder de IndG

PJ
id (ce sont les StJ ′ R pour J ′ ⊇ J , avec 18 multiplicité 1),

il suffit de voir que toute flèche IndG
PJ ′

id → StJ ′′ R est triviale dès que l’on a
J ′′ ) J ′ ou J ′′ + J ′. Le second cas est clair et on veut montrer que tout morphisme
f : IndG

PJ ′
id→ StJ ′′ R de G-représentations est trivial si J ′′) J ′. Si ce n’était pas le

cas, f serait surjectif par irréductibilité de StJ ′′ R, de noyau contenant StJ ′ R. Mais
comme VJ ′⊆ (StJ ′ R)|K génère IndG

PJ ′
id par (26), toute injection StJ ′ R ↪→ IndG

PJ ′
id

se doit d’être un isomorphisme. C’est absurde, donc f est nul et StJ ′ R est bien
le plus gros quotient semi-simple de IndG

PJ ′
id. Il en résulte que (Fili )i est bien la

filtration par les cosocles comme annoncé.

Lemme 9.1. Soient J ⊆ 1 un ensemble, i ∈ [0, |1r J |] un entier et J ′ ⊇ J un
sous-ensemble de 1 avec |J ′r J | = i . Alors l’image de IndG

PJ ′
id ↪→ Fili n’est pas

incluse dans Fili+1.

Démonstration. Le cas i = 0 résulte de ce que StJ R est non triviale. On suppose
donc à présent i ≥ 1.

18. Ce sont les telles représentations de Steinberg comme on peut le voir par récurrence descendante
sur |J | à partir de la définition des StJ ′ R. La décomposition G =

⊔
w∈W J PJw

−1 B fait que les
restrictions respectives de C∞(PJ \G, R) et StJ R à B possèdent des filtrations telles que

⊕
i gri

sont respectivement égales à⊕
w∈W J

C∞(PJ \PJw
−1 B, R) et

⊕
w∈W J

pr

C∞(PJ \PJw
−1 B, R).

Comme on a de plus W J
=
⊔

J ′⊇J W J ′
pr , les StJ ′ R apparaissent avec multiplicité 1 comme voulu.
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Supposons par l’absurde que IndG
PJ ′

id est incluse dans Fili+ j pour un j ≥ 1
maximal, c’est-à-dire avec IndG

PJ ′
id * Fili+ j+1 (un tel j existe bien puisque la

filtration devient nulle au bout d’un certain rang). On commence par établir

(27) IndG
PJ ′

id= (IndG
PJ ′

id∩Fili+ j+1)+
∑

J ′′)J ′
IndG

PJ ′′
id .

Soit f un élément de

IndG
PJ ′

id
/(
(IndG

PJ ′
id∩Fili+ j+1)+

∑
J ′′)J ′

IndG
PJ ′′

id
)
,

que l’on voit dans

F= Fili+ j/((IndG
PJ ′

id∩Fili+ j+1)+
∑

J ′′)J ′
IndG

PJ ′′
id
)
.

Alors f s’écrit
∑

J ′′ f J ′′ où les J ′′ parcourent les J ′′ ⊇ J avec |J ′′ r J | ≥ i + j ,
J ′′ + J ′ et f J ′′ appartient à l’image de IndG

PJ ′′
id dans F. On prend ensuite un

α ∈ J ′r J (cet ensemble est non vide car i est non nul) et s ∈WJ ′ la réflexion corres-
pondante. Parce que l’on a J ′ * J ′′, et que l’on a quotienté par IndG

PJ ′
id∩Fili+ j+1,

l’écriture f =
∑

f J ′′ est en fait invariante à gauche par s. En effectuant de même
pour toute racine de J ′r J , on voit que chaque f J ′′ est en fait nulle dans F (car
j ≥ 1), ce qui donne la nullité de f . Et donc (27) comme annoncé : mais cela
implique que l’on a une surjection naturelle IndG

PJ ′
id∩Fili+ j+1 � StJ ′ R. De ce

fait, ou bien il existe un J ′′ ) J ′ avec IndG
PJ ′′

id * Fili+ j+1, ce qui est exclu par
l’inclusion IndG

PJ ′
id⊆ Fili+ j . Ou bien IndG

PJ ′
id∩Fili+ j+1 est tout IndG

PJ ′
id, c’est-

à-dire que IndG
PJ ′

id est inclus dans Fili+ j+1, ce qui contredit la maximalité de j ≥ 1.
Toutes les possibilités amènent à des contradictions : le lemme est prouvé. �

Corollaire 9.2. Soient J ′ ⊆ J des sous-ensembles de 1. Alors la représentation 19

IndG
PJ
(StMJ

J ′ R) est de longueur finie, de constituants de Jordan–Hölder les StJ ′′ R
avec J ′′ ⊆1 vérifiant J ∩ J ′′ = J ′, chacun apparaissant avec multiplicité 1.

Démonstration. Commençons tout d’abord par remarquer que, puisque l’on a J ′⊆ J ,
la condition J ∩ J ′′ = J ′ est équivalente à J ′′ ⊇ J ′ et J r J ′ ⊆1r J ′′. C’est sous
cette seconde forme que nous allons l’utiliser au cours du raisonnement qui suit.

Prouvons-le par récurrence descendante sur J ′⊆ J . L’étape d’initiation J ′= J est
juste le corollaire 3.2. Soit J ′ 6= J et supposons le résultat vrai pour tout parabolique
J0 ⊆ J contenant strictement J ′. Par définition de la représentation de Steinberg
généralisée, on a une suite exacte de MJ -représentations

(28) 0→ Ker→ IndMJ
PJ ′

id→ StMJ
J ′ R→ 0,

19. Où on note StMJ
J ′ R une représentation de Steinberg généralisée du groupe réductif MJ .
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où Ker est par là-même définie et a constituants de Jordan–Hölder les StJ0 id pour
J ′( J0⊆ J par le corollaire 3.2. Appliquons le foncteur exact IndG

PJ
(voir [Vignéras

2012a, Proposition 1.1]) à (28) pour obtenir :

0→ IndG
PJ
(Ker)→ IndG

PJ
(IndMJ

PJ ′
id)→ IndG

PJ
(StMJ

J ′ R)→ 0.

Comme on a

MJ/(MJ ∩ PJ ′)−→
∼ MJ B/(MJ ∩ PJ ′)B = PJ/(MJ ∩ PJ ′)B = PJ/PJ ′

par décomposition de Levi, le terme central est IndG
PJ ′

id, de constituants de Jordan–
Hölder les StJ ′′ R avec J ′′ ⊇ J ′ par le corollaire 3.2. Par hypothèse de récurrence,
les constituants de IndG

PJ
(Ker) sont les StJ ′′ R avec J ′′ ⊆ 1 vérifiant J ′′ ⊇ J0 et

J r J0 ⊆1r J ′′ pour un certain J ′ ( J0 ⊆ J .
Mais alors, soit J ′′ tel que StJ ′′ R est un constituant de Jordan–Hölder de

IndG
PJ
(StMJ

J ′ R). On a J ′′ ) J ′, et aussi, J r J ′ ⊆1r J ′′. En effet, supposons cette
seconde inclusion fausse, c’est-à-dire J ′′∩(Jr J ′) 6=∅ : on considère J0⊆1 avec

J0 := J ′ ∪
(
J ′′ ∩ (J r J ′)

)
) J ′

et on a J0 ⊆ J ′′, J r J0 ⊆ 1r J ′′, donc StJ ′′ R apparaît déjà dans IndG
PJ
(Ker)

par l’assertion de multiplicité 1 dans le corollaire 3.2. C’est absurde. Enfin, la
décomposition disjointe (qu’il est plus facile de voir avec la condition équivalente
J ∩ J ′′ = J ′ dans le terme de droite)

{J ′′ ⊇ J ′} =
⊔

J0⊇J ′
{J ′′ ⊇ J0 | J r J0 ⊆1r J ′′}

nous permet de dire que ce sont les seuls constituants qui interviennent. La récur-
rence est terminée. �

Appendice A: De la liberté de C∞(X, Z)

Parce qu’on se sert constamment du fait suivant, on se permet de rappeler sa
preuve probablement bien connue.

Pour X un espace topologique, on note U la famille des recouvrements de X par
un nombre fini d’ouverts disjoints. On remarque que U un ensemble ordonné par
U ≤ V si pour tout A ∈U il existe des Bi ∈ V vérifiant A =

⋃
Bi .

Lemme A.1. Soit X un espace topologique compact et totalement discontinu. Sup-
posons que U possède un sous-ensemble V dénombrable et cofinal. Alors l’espace
C∞(X,Z) des fonctions localement constantes sur X à valeurs dans Z est un
Z-module libre.

Remarque. Par changement de base Z→ R, si R est un anneau commutatif unitaire,
C∞(X, R) est alors aussi un R-module libre.
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Démonstration. Que C∞(X,Z) est un Z-module est évident ; il s’agit de voir qu’il
est libre. Soit f un élément de C∞(X,Z). Pour tout x ∈ X , on fixe un ouvert Vx

contenant x tel que f est constant sur Vx . Le compact X est alors recouvert par
les Vx pour x parcourant X . Par compacité, on peut en extraire un recouvrement
fini X =

⋃
X i par des ouverts X i sur lesquels f est constant. Si X i et X j sont non

disjoints, on peut les remplacer par X i ∩ X j , X i r X i ∩ X j et X j r X i ∩ X j , qui
sont trois ouverts deux à deux disjoints d’union X i ∪ X j . En répétant le procédé,
on peut supposer que l’union X =

⋃
X i est une union finie disjointe.

On note que U est filtrant puisque si U, V ∈ U, on peut, à partir du procédé
précédent appliqué à U ∪ V , obtenir un recouvrement W vérifiant U ≤ W et
V ≤W . Pour tout U = {X i } élément de U, on note C(U )(X,Z) le sous-Z-module
de C∞(X,Z) constitué des fonctions constantes sur chaque X i . On vient de voir
que tout élément de C∞(X,Z) vit dans un C(U )(X,Z) pour un U ∈U convenable.
Et si on considère les flèches d’inclusion C(U )(X,Z)→ C(V )(X,Z) pour U ≤ V ,
on obtient un système inductif et on écrit C∞(X,Z) comme limite inductive de
modules libres :

C∞(X,Z)= lim
−−→
U∈U

C(U )(X,Z)' lim
−−→
U∈U

Z|U |.

On se sert de l’hypothèse sur U et on peut numéroter un sous-ensemble cofinal V de
U (quitte à enlever des éléments du V de l’énoncé) V= {Vn | n ∈ N} en respectant
l’ordre : on demande Vi ≤ V j ⇒ i ≤ j . On réécrit alors

C∞(X,Z)= lim
−−→
V∈V

C(V )(X,Z)= lim
−−→

n

∑
k≤n

C(Vk)(X,Z).

On construit par récurrence sur n ∈N une base de Cn :=
∑

k≤n C(Vk)(X,Z). L’étape
d’initiation n= 0 consiste simplement à choisir une base (b0, . . . , bi0) du Z-module
libre C(V0)(X,Z). Supposons que l’on a construit une base (b0, . . . , bin ) de Cn .
Parce que Cn ∩ C(Vn+1)(X,Z) est un C(V ′n+1)

(X,Z) pour un certain V ′n+1 ≤ Vn+1

(V ′n+1 non nécessairement dans V), C(Vn+1)(X,Z)/
(
Cn ∩ C(Vn+1)(X,Z)

)
est sans

torsion. Alors Cn est un facteur direct du Z-module libre Cn+1. On peut alors
compléter (b0, . . . , bin ) en une base (b0, . . . , bin+1) de Cn+1. La récurrence est alors
prouvée et le résultat suit. �

Appendice B: Sur l’ordre <J

On rappelle la définition de <J introduit dans [Grosse-Klönne 2014] : pour
w,w′∈W J , on notew<Jw

′ s’il existe s1, . . . , sr∈S tels quew(i)=(si si−1 · · · s1w)
J

vérifie l(w(i)) > l(w(i−1)) pour tout 1≤ i ≤ r et w(r) = w′.
On établit la caractérisation suivante de <J , qui dit en particulier que <J est un

raffinement de la restriction à W J de l’ordre fort dans un groupe de Coxeter fini.
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Proposition B.1. Soient w,w′ ∈ W J . On a w <J w
′ si et seulement si il existe

s1, . . . , sr ∈ S tels que w(i)= si · · · s1w soit un élément de W J de longueur l(w)+ i
pour tout 1≤ i ≤ r et w(r) = w′.

Remarque. Le cas r=1 est déjà présent dans [Grosse-Klönne 2014, Lemma 1.4(b)].

Démonstration. Le sens (⇐) est immédiat puisque w ∈ W J implique w J
= w.

Supposons donc w <J w
′ et prenons s1, . . . , sr comme dans la définition de <J .

Prouvons d’abord s1w ∈W J avec l(s1w)= l(w)+ 1. On a

l(w) < l((s1w)
J )≤ l(s1w)≤ l(w)+ 1,

où la première inégalité suite de la définition de <J et la deuxième de celle de W J .
Mais alors, on a l((s1w)

J )= l(s1w)= l(w)+ 1. Cela dit en particulier que s1w est
de longueur minimale dans s1wWJ et on a (s1w)

J
= s1w ∈W J . Par une récurrence

immédiate, w(i) = si · · · s1w est un élément de W J de longueur l(w)+ i pour tout
1≤ i ≤ r . Le résultat est prouvé. �

Appendice C: De l’irréductibilité de la Steinberg généralisée dans le cas fini

Soit R un corps algébriquement clos de caractéristique p. Le travail effectué nous
permet de découvrir ou redécouvrir quelques résultats sur les Steinberg généralisées
pour un groupe réductif fini G.

Proposition C.1. La plus grande sous-G-représentation irréductible de StJ R
est VJ .

Remarque. En particulier, si StJ R est irréductible, alors on a VJ = StJ R.

Démonstration. On a une inclusion StJ R ⊆ StJ R, et on sait que le K -socle de
StJ R est irréductible, égal à VJ : VJ est donc aussi le K -socle de StJ R. Comme
K (1) agit trivialement sur VJ ⊆ StJ R et StJ R, le résultat se traduit en termes de
G-représentations. �

Proposition C.2. Supposons 8red irréductible et J /∈ {∅,1}. Alors StJ R n’est pas
irréductible.

Remarque. St1 R= id est bien sûr irréductible ; quant à la Steinberg St∅ R, en uti-
lisant [Cabanes et Enguehard 2004, Theorem 6.10, Theorem 6.12 et Definition 6.13],
on voit qu’elle est aussi irréductible.

Démonstration. Par [Cabanes et Enguehard 2004, Theorem 6.12], si V est une G-
représentation irréductible alors son espace de U -invariants est de dimension 1. De
ce fait, si V est une représentation avec dim V U

≥ 2, alors V n’est pas irréductible.
Par les propositions 5.8 et 6.2, et le début de la preuve du corollaire 5.9, (StJ R)U =
(StJ R)B est un R-espace vectoriel de dimension |W J

pr|. Il s’agit d’examiner la
cardinalité de W J

pr et le résultat suit par le lemme C.3. �
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Lemme C.3. Supposons 8red irréductible. Alors on a |W J
pr| ≥ 1, avec égalité si et

seulement si J est ∅ ou 1.

Démonstration. Rappelons la définition suivante de W J
pr :

W J
pr = {w ∈W | ∀α ∈ J, l(wsα) > l(w) ; ∀β ∈1r J, l(wsβ) < l(w)}.

Notons w1rJ l’élément le plus long de W1rJ . C’est un élément de W J
pr, et de ce

fait on a la minoration voulue. Il reste à déterminer le cas d’égalité. D’abord, on
remarque W∅

pr = {w1} et W1
pr = {1}, de sorte qu’on veut maintenant montrer que si

J n’est pas ∅ ou 1, alors W J
pr contient un autre élément que w1rJ .

Supposons J 6=∅,1. On cherche un élément w ∈WJ r {1} vérifiant

l(ww1rJ sα) > l(ww1rJ )

pour tout α ∈ J . Parce que 8red est irréductible, on peut choisir β ∈ J tel que
(1r J )∪{β} engendre un sous-système de8red avec au plus autant de composantes
irréductibles que celui engendré par 1r J . Montrons que sβ est l’élément w ∈
W J r {1} cherché.

En effet, remarquons d’abord que l’on a

l(w1rJ )= l(sβw1rJ sα) < l(sβw1rJ )

pour tout α ∈ 1 r J . Ensuite, supposons qu’il existe un élément γ ∈ J avec
l(sβw1rJ sγ ) < l(sβw1rJ ), alors cela veut dire que sβw1rJ possède une écriture
qui se termine par sγ , disons w′sγ avec l(w′)= l(w1rJ ) et w′ ne se terminant pas
par sγ . Maintenant on a WJw1rJ WJ =WJw

′WJ , ce qui force w′ = w1rJ . Cela
implique sγ = w1rJ sβw1rJ ∈W(1rJ )∪{β} et donc γ = β. Mais dans ce cas-là,
c’est que sβw1rJ est l’élément le plus long de W(1rJ )∪{β}. Mais on sait aussi que
la longueur de w(1rJ )∪{β} est égale à |8+(1rJ )∪{β}| [Humphreys 1992, I.4.8], et on
a alors

|8+(1rJ )∪{β}| = |8
+

(1rJ )| + 1.

Il s’ensuit
8+(1rJ )∪{β} =8

+

(1rJ ) t {β}

et cela contredit le fait que 8(1rJ )∪{β} a moins (éventuellement le même nombre)
de composantes irréductibles que 81rJ . C’est absurde, et le résultat est prouvé. �

Remarque. Marie-France Vignéras nous fait remarquer que l’élément z J
=w1wJ ∈

W J de la proposition 7.3 convient aussi en tant qu’élément distinct de w1rJ dans
W J

pr (voir aussi [Grosse-Klönne 2014, Lemma 1.4(e)]). En effet, il est de longueur
maximale |8+| − |8+J | 6= |8

+

1rJ | et est donc différent de w1rJ . Et sa longueur
excède aussi celle de tout élément de W J ′ pour J ′ ) J et il est donc primitif.
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Appendice D: Représentations de Steinberg généralisées
pour le groupe dérivé

Dans cette section uniquement, on distinguera le groupe réductif G défini sur F
de ses F-points G = G(F). De même, B et P seront respectivement les F-points
de B et P .

On note D(G) le groupe dérivé de G, c’est-à-dire le faisceau fppf des com-
mutateurs de G. C’est un groupe semi-simple (voir [Demazure 2011a, Théo-
rème 6.2.1(iv)]) et on notera D(G) pour son groupe des F-points. Le but de ce
paragraphe est de comparer les représentations de Steinberg généralisées pour G et
pour D(G).

Soient R un corps de caractéristique p et J ⊆1. Pour les distinguer, on notera
St(G)J R et St(D(G))J R la représentation de Steinberg généralisée respectivement pour
G et D(G), par rapport à J .

Proposition D.1. La restriction de St(G)J R à D(G) est isomorphe à St(D(G))J R.

A partir de là, on peut utiliser tout la machinerie de cet article pour D(G)
et en déduire l’irréductibilité de St(D(G))J R ; automatiquement St(G)J R est aussi
irréductible.

Démonstration de la proposition D.1. Le groupe B ∩ D(G) est un parabolique
minimal de D(G) (voir [Demazure 2011a, Proposition 6.2.8(ii)]), et on appelle
standard un parabolique de D(G) contenant B ∩ D(G). La flèche P 7→ P ∩ D(G)
est une bijection entre l’ensemble des paraboliques standards de G et celui des
paraboliques standards de D(G). Soient P un parabolique standard de G et J ⊆1
l’ensemble vérifiant P= P J . On veut voir que l’injection P∩D(G)\D(G) ↪→ P\G
est une bijection. Pour cela, utilisons la décomposition de Bruhat pour D(G) :

P ∩ D(G)\D(G)=
⊔
w∈W J

P ∩ D(G)\(P ∩ D(G))w−1(B ∩ D(G)),

où on a relevé chaque w ∈ W J en un élément de D(G). En notant que Uw =

U ∩wU−w−1 est inclus dans D(G), elle se réécrit encore

(29) P ∩ D(G)\D(G)=
⊔
w∈W J

P ∩ D(G)\(P ∩ D(G))w−1Uw.

De même, pour G on écrit (en gardant les mêmes relèvements pour W J )

(30) P\G =
⊔
w∈W J

P\Pw−1 B =
⊔
w∈W J

P\Pw−1Uw.

La comparaison de (30) et de (29) nous donne que P ∩ D(G)\D(G) ↪→ P\G est
surjective, et donc bijective.
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De ce fait, la restriction à D(G) de l’induite IndG
P id est IndD(G)

P∩D(G) id. Par défini-
tion (18), la restriction à D(G) de St(G)J R s’identifie à St(D(G))J R. �
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CALCULATING TWO-STRAND JELLYFISH RELATIONS

DAVID PENNEYS AND EMILY PETERS

We construct a 3Z/4 subfactor using an algorithm which, given generators in
a spoke graph planar algebra, computes two-strand jellyfish relations. This
subfactor was known to Izumi, but has not previously appeared in the liter-
ature. We systematically analyze the space of second annular consequences,
adapting Jones’ treatment of the space of first annular consequences in his
quadratic tangles article.

This article is the natural followup to two recent articles on spoke subfac-
tor planar algebras and the jellyfish algorithm. Work of Bigelow and Pen-
neys explains the connection between spoke subfactor planar algebras and
the jellyfish algorithm, and work of Morrison and Penneys automates the
construction of subfactors where both principal graphs are spoke graphs
using one-strand jellyfish. This is the published version of arXiv:1308.5197.

1. Introduction

Jones’ program for constructing subfactor planar algebras starts with the observation
that every subfactor planar algebra embeds in the graph planar algebra (first defined
in [Jones 2000]) of its principal graph [Jones and Penneys 2011; Morrison and
Walker 2010]. Following this program, one constructs a subfactor planar algebra
by finding candidate generators in an appropriate graph planar algebra, and then
showing they generate a subfactor planar algebra with the correct principal graph.

These methods have been used to construct a large handful of examples, some
new and some well known, including the E6 and E8 subfactors [Jones 2001],
group-subgroup subfactors [Gupta 2008], the Haagerup subfactor [Peters 2010], the
extended Haagerup subfactor [BMPS 2012], the Izumi–Xu 2221 subfactor [Han
2010], certain spoke subfactors, e.g., 4442 [Morrison and Penneys 2015b], and
examples related to quantum groups [LMP 2015]. These techniques have also
been used to prove uniqueness results [BMPS 2012; Han 2010; Liu 2015] and
obstructions to possible principal graphs [Peters 2010; Morrison 2014; Liu 2015].

Early applications of the embedding theorem to construct or obstruct subfactors
were mostly ad hoc. Recent work of Bigelow and Penneys [2014], based on [Popa
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1995], has explained why some of the previous constructions work and how they fit
into the same family of examples. If the principal graph of a subfactor is a spoke
graph with simple arms connected to one central vertex, the planar algebra can be
constructed using two-strand jellyfish relations. If both graphs are spokes, one can
use one-strand relations, which are easier to compute. Recent work of Morrison
and Penneys [2015b] found an algorithm to compute these one-strand relations,
provided one has the generators in the graph planar algebra.

Given a set of generators in a graph planar algebra together with some local
relations, we want to show evaluability, i.e., the relations can evaluate any closed
diagram. The utility of the jellyfish algorithm is that for spoke graphs, it gives a
systematic way to show evaluability. The key idea of the jellyfish algorithm is that
given our generators, and relatively few evaluations of closed diagrams involving
these generators, we can derive a collection of local relations sufficient to evaluate
all closed diagrams.

This article is the natural followup to [Bigelow and Penneys 2014; Morrison
and Penneys 2015b]. Our main result is an algorithm to find two-strand jellyfish
relations for a subfactor planar algebra for which one of the principal graphs is
a spoke graph. This algorithm requires as input the generators in a graph planar
algebra. The main application of our algorithm is the construction of a subfactor
known to Izumi, which has not previously appeared in the literature.

Theorem 1.1. There exists a 3Z/4 subfactor with principal graphs(
,

)
.

We describe our algorithm for the reader who is willing to take our computations
on faith.

• Acquire the generators in an appropriate graph planar algebra. These generators
are an assignment of numbers in a finite extension of Q to certain loops on a
graph.

• Use a computer to evaluate certain closed diagrams with at most 4 generators.
This amounts to multiplying rather large matrices, and taking the trace.

• Turn these evaluations of closed diagrams into information about inner products,
and then use a computer to derive jellyfish relations for our generators. The
use of the computer is limited to basic linear algebra.

• We now have an evaluable planar subalgebra of a graph planar algebra, which
is necessarily a subfactor planar algebra. Compute the principal graph by a
process of elimination.
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By a deep theorem of Popa [1995], from a subfactor planar algebra P• we can
always get a subfactor whose stand invariant is P•. When P• is finite depth, it is a
complete invariant of the associated hyperfinite subfactor [Popa 1990].

Remark 1.2. Interestingly, we construct the 3Z/4 subfactor planar algebra in a
graph planar algebra not associated to either of its principal graphs (see Appendix
AA)! Of course, by the embedding theorem, it is also a planar subalgebra of the
3Z/4 graph planar algebra, but we found the computational issues related to finding
the generators easier to deal with in the other graph.

The motivation for this article is to systematically study a conjectural infinite
family of 3G spoke subfactors for certain finite abelian groups G, first studied by
Izumi [2001], and later by Evans and Gannon [2011]. A 3G subfactor has principal
graph consisting of |G| spokes of length 3, and the dual data is determined by the
inverse law of the group G. In fact, Izumi has an unpublished construction of a
3Z/4 subfactor using Cuntz algebras, analogous to his treatment for odd order G
in [Izumi 2001]. Moreover, he can show such a subfactor is unique, which our
approach does not attempt. In theory, all 3G subfactors can be constructed using
two-strand jellyfish [Bigelow and Penneys 2014]. The major hurdle is finding the
generators in the graph planar algebra. Once given the generators, the machinery
of this article produces the two-strand relations.

The foundation for this article, which underlies the previously discussed construc-
tions and obstructions, is Jones’ annular tangles point of view. Each unitary planar
algebra can be orthogonally decomposed into irreducible annular Temperley–Lieb
modules. In doing so, we seem to lose a lot of information, namely the action
of higher genus tangles. However, we find ourselves in the simpler situation of
analyzing irreducible annular Temperley–Lieb modules, which have been completely
classified [Graham and Lehrer 1998; Jones 2001]. Such a module is generated by a
single low-weight rotational eigenvector. This perspective is particularly useful for
small index subfactors, which can only have a few small low-weight vectors.

This article is also a natural followup to Jones’ exploration of quadratic tangles
[2012]. There are necessarily strong quadratic relations among the few smallest
low-weight generators of a subfactor planar algebra of small modulus. Jones [2012]
studies the space of first annular consequences of the low-weight vectors to find
explicit formulas for these relations. We provide an analogous systematic treatment
of the space of second annular consequences of a set of low-weight generators of a
subfactor planar algebra. Studying this space was fruitful in Peters’ [2010] planar
algebra construction of the Haagerup subfactor.

1A. Outline. In Section 2, we give the necessary background for this article, in-
cluding conventions for graph planar algebras, tetrahedral structure constants, the
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jellyfish algorithm, and reduced trains. In Section 2D, we give a basis for the second
annular consequences of a low-weight element when δ > 2.

In Section 3, we analyze the space of reduced trains, in particular their projections
to Temperley–Lieb and annular consequences. We then calculate many pairwise
inner products of such trains and their projections. In Section 4, we provide the
algorithm for computing two-strand jellyfish relations given generators in our graph
planar algebras.

In Section 5, we provide the results of applying the algorithm from Section 4 to
construct the 3Z/4 subfactor planar algebra. We compute the principal graphs of
our example in Section 6.

Finally, we have two appendices where we record the data necessary for the
above computations. The generators are specified in Appendix A via their values
on collapsed loops, and we give the moments and tetrahedral structure constants
for our generators in Appendix B.

1B. The FusionAtlas (adapted from [Morrison and Penneys 2015b]). This article
relies on some substantial calculations. In particular, our efforts to find the generators
in the various graph planar algebras made use of a variety of techniques, some
ad hoc, some approximate, and some computationally expensive. This article
essentially does not address that work. Instead, we merely present the discovered
generators and verify some relatively easy facts about them. In particular, the proofs
presented in this article rely on the computer in a much weaker sense. We need
to calculate certain numbers of the form Tr(PQ RS), where P, Q, R, S are rather
large martrices, and the computer does this for us. We also entered all the formulas
derived in this article into Mathematica in order to evaluate the various quantities
which appear in our derivation of jellyfish relations. As a reader may be interested
in seeing these programs, we include a brief instruction on finding and running
these programs.

The arXiv sources of this article contain a number of files in the code subdirectory,
including:

• Generators.nb, which reconstructs the generators from our terse descriptions
in Appendix A.

• TwoStrandJellyfish.nb, which calculates the requisite moments and tetra-
hedral structure constants of these generators, and performs the linear algebra
necessary to derive the jellyfish relations.

• GenerateLaTeX.nb, which typesets each subsection of Section 5 for each
planar algebra, and many mathematical expressions in Appendices A and B.

The Mathematica notebook Generators.nb can be run by itself. The final cells
of that notebook write the full generators to the disk; this must be done before



CALCULATING TWO-STRAND JELLYFISH RELATIONS 467

running TwoStrandJellyfish.nb. The latter notebook relies on the FusionAtlas,
a substantial body of code the authors have developed along with Narjess Afzaly,
Scott Morrison, Noah Snyder, and James Tener to perform calculations with subfac-
tors and fusion categories. To obtain a local copy, you first need to ensure that you
have Mercurial, the distributed version control system, installed on your machine.
With that, the command

hg clone https://bitbucket.org/fusionatlas/fusionatlas

will create a local directory called fusionatlas containing the latest version. In
the TwoStrandJellyfish.nb notebook, you will then need to adjust the paths
appearing in the first input cell to ensure that your local copy is included. After
that, running the entire notebook reproduces all the calculations described below.

We invite any interested readers to contact us with questions or queries about
the use of these notebooks or the FusionAtlas package.

2. Background

We now give the background material for the calculations that occur in the later
sections. We refer the reader to [Peters 2010; BMPS 2012; Jones 2012; 2011] for
the definition of a (subfactor) planar algebra.

Notation 2.1. When we draw planar diagrams, we often suppress the external
boundary disk. In this case, the external boundary is assumed to be a large rectangle
whose distinguished interval contains the upper left corner. We draw one string with
a number next to it instead of drawing that number of parallel strings. We shade the
diagrams as much as possible, but if the parity is unknown, we often cannot know
how to shade them. Finally, projections are usually drawn as rectangles with the
same number of strands emanating from the top and bottom, while other elements
may be drawn as circles.

Some parts of this introduction are adapted from [Morrison and Penneys 2015b;
Bigelow and Penneys 2014].

2A. Working in graph planar algebras. Graph planar algebras, defined in [Jones
2000], have proven to be a fruitful place to work because of the following theorem.
Strictly speaking, our constructions do not rely on this theorem. However, it
motivates our search for generators in the appropriate graph planar algebra.

Theorem 2.2 [Jones and Penneys 2011; Morrison and Walker 2010]. Every sub-
factor planar algebra embeds in the graph planar algebra of its principal graph.

In [Morrison and Penneys 2015b, Section 2.2], it was observed that many of
Jones’ [2012] quadratic tangles formulas for subfactor planar algebras hold for
certain collections of elements in unitary, spherical, shaded ∗-planar algebras which
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are not necessarily evaluable (see Theorem 2.8). The main example of such a planar
algebra is the graph planar algebra of a finite bipartite graph. We give the necessary
definitions and discuss our conventions for working in such planar algebras in this
subsection.

Definition 2.3. A shaded planar ∗-algebra is evaluable if dim(Pn,±) <∞ for all
n ≥ 0, and P0,± ∼= C as ∗-algebras. In this case, this isomorphism must send the
empty diagram to 1.

Suppose P• is a shaded planar ∗-algebra which is not necessarily evaluable. We
call P• unitary if for all n ≥ 0, the P0,±-valued sesquilinear form on Pn,± given by
〈x, y〉 = Tr(y∗x) is positive definite (in the operator-valued sense).

We call such a planar algebra spherical if, for any closed diagram in P• which
equals a scalar multiple of the empty diagram, performing isotopy on a sphere still
gives us the same scalar multiple of the appropriate empty diagram.

Remark 2.4. The above is only one possible definition of unitarity for a planar
∗-algebra. One might also want to require the existence of a faithful state on
P0,± which induces a C∗-algebra structure on the algebras Pn,± in the usual GNS
way. However, the above frugal definition is sufficient for our purposes, since the
following theorem holds.

Theorem 2.5. Suppose P• is a spherical, unitary, shaded planar ∗-algebra which
is not necessarily evaluable. If Q• ⊂P• is an evaluable planar ∗-subalgebra, then
Q• is a subfactor planar algebra.

Proof. Since Q• is evaluable, sphericality of Q• follows from sphericality of P•.
Now, the sesquilinear form 〈x, y〉 = Tr(y∗x) on Qn,± is operator-valued positive
definite. Since Q• is evaluable, by identifying the appropriate empty diagram with
1 ∈ C, we get a positive definite inner product. �

Notation 2.6. Recall that the Fourier transform F is given by

F=
??

· · ·

.

For a rotational eigenvector S ∈ Pn,± corresponding to an eigenvalue ωS = σ
2
S ,

we define another rotational eigenvector Š ∈ Pn,∓ by Š = σ−1
S F(S). Note that

F(Š)= σS S, so ˇ̌S = S.

Definition 2.7. Suppose P• is a unitary, spherical, shaded planar ∗-algebra with
modulus δ>2 which is not necessarily evaluable. A finite setB⊂Pn,+ is called a set
of minimal generators for Q• if the elements of B generate the planar ∗-subalgebra
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Q• ⊂ P• and are linearly independent, self-adjoint, low-weight eigenvectors for the
rotation, i.e, for all S ∈B,

• S = S∗,

• S is uncappable, and

• ρ(S)= ωS S for some n-th root of unity ωS .

In the sequel, when we refer to a set of minimal generators without mentioning Q•,
assume that Q• is the planar ∗-subalgebra generated by B.

Given a set of minimal generators B, we get a set of dual minimal generators
B̌ = {Š | S ∈B}. We say a set of minimal generators B has scalar moments if
Tr(R),Tr(RS),Tr(RST ) and Tr(Ř),Tr(ŘŠ),Tr(ŘŠŤ ) are scalar multiples of the
empty diagram in P0,+ and P0,− respectively for each R, S, T ∈B.

If a set of minimal generators B has scalar moments, we say B is

• orthogonal if 〈S, T 〉 = Tr(ST )= 0 if S 6= T for all S, T ∈B, and

• orthonormal if B is orthogonal and Tr(S2)= 〈S, S〉 = 1 for all S ∈B.

The point of working with sets of minimal generators is the following theorem.

Theorem 2.8 [Morrison and Penneys 2015b, Theorem 2.5]. All the formulas of
Section 4 of [Jones 2012] hold in any unitary, spherical, shaded planar ∗-algebra
with modulus δ > 2 for any orthonormal set of minimal generators B with scalar
moments.

Assumption 2.9. For the rest of the article, unless otherwise specified, we assume
P• is a unitary, spherical, shaded ∗-planar algebra with modulus δ > 2 which is not
necessarily evaluable, and B ⊂ Pn,+ is an orthogonal set of minimal generators
with scalar moments.

Since we do not assume our generators in B are orthonormal, our formulas will
differ slightly in appearance from those of [Jones 2012] and [Morrison and Penneys
2015b].

Remark 2.10. For diagram evaluation, it is useful to have our standard equations
for our set of minimal generators in one place. For S ∈B,

S = S∗ F2
= ρ ρ(S)= ωS S F(S)= σS Š

Š = Š∗ σ 2
S = ωS ρ(Š)= ωS Š F(Š)= σS S.

When moving ? on the distinguished interval of a generator, the resulting diagram
is multiplied by some exponent of σS:
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• If you shift ? counterclockwise by one strand, multiply by σS and switch ˇ:

?

· · ·

S

?

= σS
?

· · ·

Š

?

• If you shift ? clockwise by one strand, multiply by σ−1
S and switch ˇ:

?

· · ·

S

?

= σ−1
S

?

· · ·

Š

?

Using notation from [Jones 2012], for P, Q, R ∈B, we set a PQ
R = Tr(PQ R)

and bPQ
R = Tr(P̌Q̌ Ř).

Remark 2.11. Once we have determined our set of minimal generators B has scalar
moments, the next thing to do is to verify that the complex spans of B∪ { f (n)}
and B̌∪ { f (n)} form algebras under the usual multiplication. If this is the case, for
P, Q ∈B, we necessarily have

(1) PQ =
Tr(PQ)
[n+ 1]

f (n)+
∑
R∈B

a PQ
R

‖R‖2
R.

Immediately, we get that all higher moments of B, B̌ are scalars, as are certain
tetrahedral structure constants (see Remark 2.15 and Example 2.17). For example,
we have that

(2) Tr(PQ RS)=
Tr(PQ)Tr(RS)
[n+ 1]

+

∑
T∈B

a PQ
T

‖T ‖2
aRS

T .

for P, Q, R, S ∈B.

Assumption 2.12. We now assume the complex spans of B∪{ f (n)} and B̌∪{ f (n)}
form algebras under the usual multiplication.

Remark 2.13. The assumptions of this subsection are significant. A randomly
chosen subset of a graph planar algebra will not satisfy Assumption 2.9. Given an
orthogonal set of minimal generators B with scalar moments, it is still possible
it will not satisfy Assumption 2.12. For example, if we start with a B satisfying
Assumptions 2.9 and 2.12 and we discard one element, the resulting set together
with f (n) may not span an algebra.
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2B. Tetrahedral structure constants. We will also need the tetrahedral structure
constants defined in [Jones 2003, Section 3.3].

Definition 2.14. For P, Q, R, S ∈B, we define

1a,b(P, Q, R | S) =

Q

S∨b

P R
b

c

a

a

c

b

?

?
? ?

where c = 2n− a− b, and

S∨b
=

{
S if b is even,
Š if b is odd.

Note that the 1a,b(P, Q, R | S) for P, Q, R, S ∈B determine all the tetrahedral
structure constants by [Jones 2003, Section 3.3].

Remark 2.15. For this article, we only need the following tetrahedral structure
constants:

• 1n−1,2(P, Q, R | S)

• 1n,1(P, Q, R | S)

• 1n−1,1(P, Q, R | S)=1n,1(R, Q, P | S).

By Assumption 2.12, we can express the second and third tetrahedral structure
constants above in terms of the moments and chiralities of B and B̌, since one of
a, b, c ≥ n. We do this computation in Example 2.17. Thus for convenience, we
will just write 1(P, Q, R | S) instead of 1n−1,2(P, Q, R | S), and we will only
write subscripts a, b if a 6= n− 1 or b 6= 2. For each of our planar algebras in this
article, we give the tetrahedral structure constants 1(P, Q, R | S) in Appendix B.

Since we will use it repeatedly, we reproduce the following well-known fact for
convenience.

Fact 2.16 [Morrison 2015; Reznikoff 2007]. The coefficient of the below Temperley–
Lieb diagram in the Jones–Wenzl idempotent f (k) is given by

coeff
∈ f (k)

(
a b c

)
= (−1)b+1 [a+1][c+1]

[k]
.

Example 2.17. In the following calculation, we use (1) for the third equality and
2.16 for the coefficient in the Jones–Wenzl idempotent appearing in the third line.
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1n,1(P, Q, R | S)

=

Q

Š

P R
1

n− 1

n

n

n− 1

1

?

?

? ?

= σ−1
R PQ Š Řn n

1

n− 1

?

?
?

= σ−1
R

Tr(PQ)Tr(Ř Š)
[n+ 1]

coeff
∈ f (n)

(
n− 2

)
+

∑
T∈B

σ−1
R

a PQ
T

‖T ‖2
T ŘŠ

n

1

n− 1

?
?

= (−1)n−1σ−1
R

Tr(PQ)Tr(Ř Š)
[n][n+ 1]

+

∑
T∈B

σTσ
−1
R

a PQ
T bRS

T

‖T ‖2
.

By symmetry, we get

1n−1,1(P, Q, R | S)=1n,1(R, Q, P | S)

= (−1)n−1σP
Tr(Q R)Tr(P̌Š)
[n][n+ 1]

+

∑
T∈B

σ−1
T σP

aQ R
T bS P

T

‖T ‖2
.

Lemma 2.18. We have the following symmetries:

1(P, Q, R | S)=1(R, Q, P | S)

= ωPω
−1
R 1(R, S, P | Q)

= ωPω
−1
R 1(P, S, R | Q)

= σ 1−n
P σ n−1

Q σ n−1
R σ 1−n

S 1(Q∨(n−1), P∨(n−1), S∨(n−1)
| R∨(n−1))

= σ 1−n
P σ n−1

Q σ n−1
R σ 1−n

S 1(S∨(n−1), P∨(n−1), Q∨(n−1) | R∨(n−1))

= σ 1−n
P σ n+1

Q σ n−1
R σ−1−n

S 1(S∨(n−1), R∨(n−1), Q∨(n−1)
| P∨(n−1))

= σ 1−n
P σ n+1

Q σ n−1
R σ−1−n

S 1(Q∨(n−1), R∨(n−1), S∨(n−1) | P∨(n−1))

Proof. Immediate from drawing diagrams using unitarity and sphericality of P•. �

Remark 2.19. As in [Morrison and Peters 2014; Morrison and Penneys 2015b],
when doing calculations in the graph planar algebra, we work with the lopsided
convention rather than the spherical convention (see [Morrison and Peters 2014]).
The lopsided convention treats shaded and unshaded contractible loops differently,
which has the advantage that there are fewer square roots, so arithmetic is easier.
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The translation map \ : Pspherical
•

→ Plopsided
•

between the conventions from
[Morrison and Peters 2014] is not a planar algebra map, but it commutes with
the action of the planar operad up to a scalar. We determine the scalar by first
drawing the tangle in a standard rectangular form where each box has the same
number of strings attached to the top and bottom. We then get one factor of δ±1 for
each critical point which is shaded above, and the power of δ corresponds to the
sign of the critical point:

←→ δ, ←→ δ−1.

Correction factors for the lopsided convention for the Fourier transform and the
trace were worked out in [Morrison and Penneys 2015b, Examples 2.6 and 2.7],
and we derive another correction factor in the next example.

Example 2.20. We find the correction factors for the lopsided convention when
calculating 1(P, Q, R | S). We have

1(P, Q, R | S)= Tr



S

R

Q

P

2

n− 1

n− 1

2
n− 2

n− 2

n− 2



,

where the shading assumes n is even. The above diagram contributes a factor of
δ−1, and the trace tangle contributes no factors of δ. When n is odd, the above
diagram contributes a factor of δ, and the trace tangle contributes a factor of δ. (See
[Morrison and Penneys 2015b, Example 2.6] as well.) Hence we have the formula

1(P, Q, R | S)= \1(P, Q, R | S)=
{
δ−11(\P, \Q, \R | \S) if n is even,
δ21(\P, \Q, \R | \S) if n is odd.

Assumption 2.21. For the rest of the article, we assume that for all P, Q, R, S ∈B,
the tetrahedral structure constants 1(P, Q, R | S) are scalar multiples of the empty
diagram.
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2C. The jellyfish algorithm and reduced trains. The jellyfish algorithm was in-
vented in [BMPS 2012] to construct the extended Haagerup subfactor planar algebra
with principal graphs(

,
)
.

One uses the jellyfish algorithm to evaluate closed diagrams on a set of minimal
generators. There are two ingredients:

(i) The generators in B⊂ Pn,+ satisfy jellyfish relations, i.e., for each generator
S, T ,

j (Š)=
2n

Š
?

, j2(T )=
2n

T
?

can be written as linear combinations of trains. Trains are diagrams where any
region meeting the distinguished interval of a generator meets the distinguished
interval of the external disk, i.e.,

?

? ? ?

· · ·

T

S1 S2 S`

k k

2n 2n 2n

where S1, . . . , S` ∈B, and T is a single Temperley–Lieb diagram.

(ii) The generators in B are uncappable and together with the Jones–Wenzl pro-
jection f (n) form an algebra under the usual multiplication

ST =
T?

S?

n

n

n

=

∑
R

αR
S,T R?

n

n

.

(Note that the Mathematica package FusionAtlas also multiplies in this order;
reading from left to right in products corresponds to reading from bottom to
top in planar composites.)

Given these two ingredients, one can evaluate any closed diagram using the following
two step process.

(i) Pull all generators S to the outside of the diagram using the jellyfish relations,
possibly getting diagrams with more S’s.
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(ii) Use uncappability and the algebra property to iteratively reduce the number of
generators. Any nonzero train which is a closed diagram is either a Temperley–
Lieb diagram, has a capped generator, or has two generators S, T connected
by at least n strings, giving ST . Each of these cases can be simplified using
the relations, still giving a linear combination of trains.

Section 4 is devoted to our procedure for computing the jellyfish relations
necessary for the first part of the jellyfish algorithm. The second part is rather easy,
and amounts to verifying equation (1) (see the beginning of Section 5).

Definition 2.22. A B-train is called reduced if no two generators are connected by
more than n− 1 strands, and no generator is connected to itself.

Example 2.23. In Pn+1,+, the set of reduced trains is given by{
P ◦

n−1
Q =

n− 1

n+ 1 n+ 1

P Q
?? ∣∣∣∣ P, Q ∈B

}
.

To describe the reduced trains in Pn+2,+, we introduce the following notation.

Definition 2.24. Let Ci [P ◦n−1 Q] ∈Pn+2,+ for i = 1, . . . , 2n+ 3 be the reduced
train obtained from P ◦n−1 Q by putting Ci underneath, where Ci is the diagram
given by

Ci =

i

i − 1

.

This can be thought of as multiplying Ci by P ◦n−1 Q for a fixed arrangement of
boundary strings. For example, we have, for P, Q ∈B,

C1
[
P ◦

n−1
Q
]
=

n− 1

n+ 1 n+ 1

P Q
??

and Cn+2
[
P ◦

n−1
Q
]
=

n− 1

n+ 1 n+ 1

P Q
??

.

Example 2.25. In Pn+2,+, we have many more reduced trains. First, we have those
annular consequences of the P ◦n−1 Q’s which are still trains in Pn+2,+. These are
exactly the Ci [P ◦n−1 Q] for i = 1, . . . , 2n+ 3.

Now the only reduced trains which are nonzero when we put a copy of f (2n+4)

underneath, for P, Q, R ∈B, are

P ◦
n−2

Q =
n− 2

n+ 2 n+ 2

P Q
??

and P ◦
n−1

Q ◦
n−1

R =
n− 1 n− 1

n+ 1 2 n+ 1

P

?

Q
?

R .
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2D. The second annular basis. Given a nonzero low-weight rotational eigenvector
R ∈ Pn,+, the space An+2(R) ⊂ Pn+2,+ of second annular consequences of R is
spanned by diagrams with two cups on the outer boundary. We now describe a
distinguished basis of An+2(R) when δ > 2 along the lines of [Jones 2001; 2012].

Definition 2.26. The element ∪i, j (R) ∈ An+2(R) is the annular consequence of R
given in the following diagrams, where each row consists of 2n+ 4 elements.

?
?

· · ·

R

∪−1,−1(R)

,
?

?

· · ·

Ř

∪−1,0(R)

,
??

· · ·

R

∪−1,1(R)

, . . . ,
?
?

· · ·

Ř

∪−1,2n+2(R)

,

?
?

· · ·

Ř

∪0,0(R)

,
?

?

· · ·

R

∪0,1(R)

,
??

· · ·

Ř

∪0,2(R)

, . . . ,
?
?

· · ·

R

∪0,2n+3(R)

,

?
?

· · ·

Ř

∪1,0(R)

,
?

?

· · ·

R

∪1,1(R)

,
??

· · ·

Ř

∪1,2(R)

, . . . ,
?
?

· · ·

R

∪1,2n+3(R)

,

...
...

...
...

The index i specifies the number of through strings separating the two cups (counting
clockwise from the cup at 12 o’clock in the above diagrams). Here i =−1 denotes
two nested cups. The j refers to the number of strings separating the external
boundary interval at 12 o’clock from the interval for the external ?, counting
counterclockwise (and subtract 1 for nested cups). Note that n+k strings separating
the cups is the same as a rotation (up to switching the shading) of n − k strings
separating the cups.

The second annular basis of An+2(R) the set of ∪i, j (R) such that −1≤ i ≤ n,
and

j ∈


{−1, 0, . . . , 2n+ 2} if i =−1,
{0, . . . , 2n+ 3} if − 1< i < n,
{0, . . . , n+ 1} if i = n.

If i = n, the n + 2 elements corresponding to j = 0, . . . , n + 1 are given below.
Here the shading on the bottom in the first three pictures depends on the parity of
n, while the shading on the top of the final picture depends on the parity of n and
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whether R′ is R or Ř.

?
?

...
... Ř

∪n,0(R)

,
?

?

...
... R

∪n,1(R)

,
??

...
... Ř

∪n,2(R)

, . . . ,
?

?

...
... R′

∪n,n+1(R)

Remark 2.27. Note that

∪−1,−1(R)= j2(R)=
2n

R
?

.

Recall that the inner product is defined by 〈x, y〉 =Tr(x∗y), which is the same as
connecting all strings of x∗ and y. Computing inner products amongst the ∪i, j (R)’s
amounts to examining the relative positions of caps along the interface between the
two diagrams. Since R is uncappable, the entire diagram is zero if a cap from one
of the ∪i, j (R)’s reaches the other copy of R.

It is easy to see that pairing ∪i, j (R) with ∪i ′,k(R) is nonzero only if |i − i ′|< 3.
When the scalar is nonzero differs for the cases i = −1 and i ≥ 0, and there are
some exceptional cases when i = n− 1, n.

• When i =−1, there are exactly 5, 3, and 2 ways of getting a nonzero scalar
when pairing ∪−1, j (R) with ∪i ′,k(R) for i ′ =−1, 0, and 1 respectively. They
correspond to the following relative positions of caps along the interface.

, , , , i ′ =−1,

, , i ′ = 0,

, i ′ = 1.

• For 0≤ i ≤ n−2, there are exactly 3, 2, and 1 ways of getting a nonzero scalar
when pairing ∪i, j (R) with ∪i ′,k(R) for i ′ = i , i + 1, and i + 2 respectively.
The relative positions of caps corresponding to the case i = 0 are.

, , i ′ = 0,

, i ′ = 1,

i ′ = 2.

• For i = n − 1, there is an additional way of getting a nonzero scalar when
pairing ∪n−1, j (R) with ∪n−1,k(R), which makes up for the fact that there is
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no ∪n+1,k(R). The relative position of caps given by

n− 1

can be interpreted as ( j − k)≡−1 or n+ 2 mod (2n+ 4), depending on the
location of the ? above the line. In the former case, the diagram contributes
σ−1, and in the latter, σ n .

• The case i = n is more subtle. When i ′ = n− 2, there are two ways of pairing
∪n, j (R) with ∪n−2,k(R) to get a nonzero scalar, which correspond to the ?
placement of

n

,

i.e., ( j − k) ≡ −1 or n + 1 mod (2n + 4). In the former case, the diagram
contributes a scalar of σ−1, and in the latter, σ nσ−1.

When i ′ = n− 1, there are four ways to get a nonzero scalar, which corre-
spond to the ? placement of

n

,

n

.

Finally, when i ′ = n, there are three ways to get a nonzero scalar, corre-
sponding to

n− 1

,

n

,

n− 1

.

(Note that the ? placement is determined.)

The following proposition now follows from the above discussion.

Proposition 2.28. Assuming R= R∗ and ‖R‖2=Tr(R2)=1, we have the following
inner products (linear on the right):

〈∪i ′,k(R),∪−1, j (R)〉 =

( j − k) mod (2n+ 4)

−2 −1 0 1 2

−1 ω−1
R σ−1

R [2]2 σR ωR

i ′ 0 0 [2]σ−1
R [2] [2]σR 0

1 0 0 1 σR 0

and is zero otherwise.
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For 0≤ i ′, i ≤ n− 1, we have

〈∪i ′,k(R),∪i, j (R)〉 =

( j−k) mod (2n+4)

−1 0 1

−2 σ−1
R 0 0

−1 [2]σ−1
R [2] 0

i ′−i 0 σ−1
R [2]2 σR

1 0 [2] [2]σR

2 0 0 σR

and is zero otherwise, with the exception that

〈∪n−1,k(R),∪n−1, j 〉 = σ
n
R if j − k ≡ n+ 2 mod 2n+ 4.

For i = n and i ′ < n, we have

〈∪i ′,k(R),∪n−1, j (R)〉 =

( j − k) mod (2n+ 4)

−1 0 n+ 1 n+ 2

i ′
n− 2 σ−1

R 0 σ n
Rσ
−1
R 0

n− 1 [2]σ−1
R [2] [2]σ n

Rσ
−1
R [2]σ n

R

and is zero otherwise.
Finally, if i = i ′ = n, then we have

〈∪n,k(R),∪n, j (R)〉 =



σ N
R σ
−1
R if ( j − k)≡−1 mod (n+ 2) and j = n+ 1,

σ−1
R if ( j − k)≡−1 mod (n+ 2) and j < n+ 1,
[2]2 if ( j − k)≡ 0 mod (n+ 2),
σR if ( j − k)≡ 1 mod (n+ 2) and j > 0,
σ n

RσR if ( j − k)≡−1 mod (n+ 2) and j = 0,
0 else.

Remark 2.29. The concerned reader may wonder if we have missed a case or
two amidst this muddle of indices. Be reassured that we have checked these inner
products numerically for the generators of our example directly in the graph planar
algebra. See Section 4D for more details.

Remark 2.30. In this article, we do not give a formula for the dual basis ∪̂i, j (R)
in terms of the ∪i, j (R)’s, i.e., the change of basis matrix from the annular basis to
the dual annular basis. Instead, we find the dual annular basis for our examples by
inverting the matrix of inner products given by Proposition 2.28.

As in [Morrison and Penneys 2015b, Remark 3.7], if W is the matrix of inner
products of the ∪i, j (R)’s, then the change of basis matrix from the column vectors
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representing the annular basis U to the column vectors representing the dual basis Û
is W−1, i.e., W−1U = Û . (The inner product is linear on the right.) If ĉ is the row
vector of coefficients in the dual basis for an annular consequence x , i.e., x = ĉ · Û ,
then the row vector of coefficients in the annular basis is given by c = ĉ W−1.

It would certainly be useful to have a general formula for the dual annular basis
in terms of the annular basis. While such a computation is routine, it would be
demanding, and we leave it for another time.

3. Projections and inner products of trains

As in the previous section, we continue to use Assumptions 2.9, 2.12, and 2.21.
To derive two-strand jellyfish relations, we need to analyze all reduced B-trains

in Pn+2,+, in particular their projections to TLn+2,+, their projections to the space
of second annular consequence of B, and their pairwise inner products.

We express some projections to Temperley–Lieb and annular consequences in
terms of dual bases. We will use the following formula repeatedly.

Remark 3.1. Suppose {v1, . . . , vk} ⊂ V is a basis for the finite dimensional Hilbert
space V . Let {v̂1, . . . , v̂k} be the dual basis V , defined by 〈v̂i , v j 〉 = δi, j , where the
inner product is linear on the right. If x ∈ V , we have x =

∑k
i=1〈vi , x〉v̂i .

In what follows, P, Q, R, S, T are always elements of B. We will first need a
few results about certain Temperley–Lieb dual basis elements.

3A. Some Temperley–Lieb dual basis elements. We now discuss certain elements
of the basis which is dual to the usual diagrammatic basis of TLk .

Lemma 3.2. If a, b ≥ 0 and a+ b = n, then [a+ 2][b+ 1] − [a+ 1][b] = [n+ 2].

Proof. Immediate from the formula

[k][`] =
∑

|k−`|< j<k+`
j≡|k−`|+1 mod 2

[ j]. �

Lemma 3.3. The element dual to a b ∈ TLn+2,+ is given by

a b =̂
[a+1][b+1]
[n+2]2

n+ 1

a+ 1 b+ 1

a b

f (n+1)

f (a+1) f (b+1)

︸ ︷︷ ︸
D

−
(−1)b[a+1]
[n+2][n+3]

n+ 2

n+ 2

f (n+2) .
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To find the element dual to

a b ∈ TLn+2,+,

maintain the coefficients and vertically reflect the diagrams in the above formula.

Proof. Note that the middle diagram D in the above equation has nonzero inner
product only with 1n+2 and

a b .

We already know that 1̂n+2 = f (n+2)/[n+ 3], so we have

a b =̂
1〈

D, a b
〉(D−〈D, 1n+2〉

f (n+2)

[n+3]

)
.

A routine calculation computes the necessary inner products. First,

〈D, 1n+2〉 = b
a b

f (n+1)

f (b+1)

=
(−1)b[n+2]
[b+1]

,

since the only diagram in the top f (b+1) which contributes to the closed diagram is

b− 1

(the coefficient of this diagram in f (b+1) is given in Fact 2.16). Next, we calculate

〈
D, a b

〉
= aa

b b

f (n+1)

f (a+1) f (b+1)

(3)

= [n+ 2]
(
[a+2]
[a+1]

−
[b]
[b+1]

)
(4)

=
[n+2]2

[a+1][b+1]
,(5)
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where (4) follows since the only two terms in the top f (a+1) which contribute to
the closed diagram are 1a+1 and

a− 1 .

Equation (5) now follows by Lemma 3.2.
(Note that the value of the diagram that appears in (3) must be symmetric in a

and b, but the quantity in (4) does not appear symmetric in a and b. This gave a
hint that some quantum number identity should hold, which motivated Lemma 3.2.)

The last claim is now immediate. �

Lemma 3.4. Suppose a, b ≥ 0 with a+b= n. Let Da, D∗a , 1̂n+2 be the Temperley–
Lieb dual basis elements

Da = a b
̂
, D∗a = a b

̂
, and 1̂n+2 =

f (n+2)

[n+3]
.

(i) 〈Ci [P ◦ Q], 1̂n+2〉 =

{
Tr(PQ)[n+ 2]−1 if i = n+ 2,
0 else.

(ii) 〈Ci [P ◦ Q], Da〉 =


Tr(PQ)[n+ 2]−1 if i − 1= a,
0 if i = n+ 2,
(−1)b[a+1]
[n+1][n+2]

Tr(PQ) if i = n+ 3,

0 else.

(iii) 〈Ci [P ◦ Q], D∗a〉 = 〈Da,C2n+4−i [Q ◦ P]〉 = 〈C2n+4−i [P ◦ Q], Da〉.

Proof. (i) We have

〈Ci [P ◦ Q], 1̂n+2〉 =
1
[n+3]

〈Ci [P ◦ Q], f (n+2)
〉,

which is clearly zero if i 6= n+2. When i = n+2, it is easy to see we get Tr(PQ)
[n+2]

.

(ii) First, suppose 1≤ i ≤ n+ 1. Then the inner product in question is given by

[a+1][b+1]
[n+2]2

〈Ci [P ◦ Q], D〉,

where D is the diagram in Lemma 3.3. If i − 1 6= a, then the resulting closed
diagram is clearly zero. If i − 1= a, then we have
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[a+1][b+1]
[n+2]2

〈Ci [P ◦ Q], D〉 =

f (a+1) f (b+1) f (n+1)

P Qn− 1

a

b

a b n+ 1

? ?

and the only terms in the f (a+1) which contribute to the value are 1a+1 and

a− 1 .

This yields, using Lemma 3.2 and Fact 2.16,

[a+1][b+1]
[n+2]2

(
[b+2]
[b+1]

−
[a]
[a+1]

)
Tr(PQ)= Tr(PQ)

[n+2]
.

Second, if i = n+ 2, then both diagrams in the formula for Da from Lemma 3.3
contribute to the inner product, and we have

〈Cn+2[P ◦ Q], Da〉

=
[a+1][b+1]
[n+2]2

〈Cn+2[P ◦ Q], D〉− (−1)b[a+1]
[n+2][n+3]

〈Cn+2[P ◦ Q], f (n+2)
〉

=
[a+1][b+1]
[n+2]2

〈Cn+2[P ◦ Q], D〉− (−1)b[a+1]
[n+2]2

Tr(PQ)

by part (i) of this lemma. Now by drawing diagrams, we get

〈Cn+2[P ◦ Q], D〉 =

f (a+1) f (b+1) f (n+1)

P Qn− 1

a

b

a+ 1 b n+ 1

? ?

.

The only diagram in f (b+1) which contributes is b− 1 , which yields

(−1)b

[b+ 1]
Tr(PQ).

The inner product in question is thus zero.
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Third, if i = n+ 3, then as in the case 1≤ i ≤ n+ 1, we have

[a+1][b+1]
[n+2]2

〈Cn+3[P ◦ Q], D〉 =

f (a+1) f (b+1) f (n+1)

P Qn− 1

a

b

a+ 1 b n

? ?

.

Again, the only diagram in f (b+1) which contributes is b− 1 , which yields

[a+1][b+1]
[n+1][n+2]

(
(−1)b

[b+1]

)
=
(−1)b[a+1]
[n+1][n+2]

.

Finally, if i > n+ 3, the result is once again zero, since both diagrams in the
formula for Da from Lemma 3.3 have zero inner product with Ci [P ◦ Q].

(iii) The first equality follows since both sides give the same closed diagram. Note
that the quantity in the middle is equal to its conjugate by part (ii) of this lemma.
The second equality now follows since Tr(Q P)= Tr(PQ). �

3B. Projections to Temperley–Lieb. The first lemma below is similar to [Jones
2012, Proposition 4.5.2].

Lemma 3.5. (i) If k = 0, . . . , 2n, then

PTLk,+



k

k

2n− k

Q?

P?

=
Tr(PQ)
[k+1]

f (k).

(ii) If k = 0, . . . , n− 1, then

k

k

2n− k

Q?

P?

=
Tr(PQ)
[k+1]

f (k).
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Proof. For (i), notice that adding a cap to the top or bottom of

k

k

2n− k

Q?

P?

gives zero, so its projection to TLk,+ must be a constant times f (k). Taking traces
gives the constant.

For (ii), notice that the diagram is already in Temperley–Lieb since B∪ { f (n)}
spans an algebra. �

Proposition 3.6. (i) PTLn+2,+

(
P ◦

n−2
Q
)
=

Tr(PQ)
[n+3]

f (n+2).

(ii) PTLn+2,+

(
P ◦

n−1
Q ◦

n−1
R
)

= a PQ
R


[n+1]
[n+2]2

n+ 1

n+ 1

n

f (n+1)

f (n+1)

−
[n+1]

[n+2][n+3]

n+ 2

n+ 2

f (n+2)


.

Proof. Part (i) is immediate from Lemma 3.5. For (ii), for T a diagrammatic basis
element of TLn+2,+, it is clear that

〈
T, PTLn+2,+

(
P ◦

n−1
Q ◦

n−1
R
)〉
=

{
a PQ

R if T = En+1 = n ,

0 else.

Hence PTLn+2,+(P ◦n−1 Q ◦n−1 R)=a PQ
R Ên+1, where Ên+1 is the dual basis element

of En+1 in TLn+2,+. The result now follows by Lemma 3.3, using b = 0, a = n.
(In particular [b] = 0 and [b+ 1] = 1.) �

Proposition 3.7. PTLn+2,+(Ci [P ◦n−1 Q])= Tr(PQ)X where X is a linear combi-
nation of Temperley–Lieb dual basis elements Da, D∗a , 1̂n+2 (as in Lemma 3.4). The
exact linear combination is given in the table below.
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i X

1 [2]D0+ D1
1< i < n+ 1 Di−2+ [2]Di−1+ Di

n+ 1 Dn−1+ [2]Dn + 1̂n+2
n+ 2 Dn + [2]1̂n+2
n+ 3 1̂n+2+ [2]D

∗
n + D∗n−1

n+ 3< i < 2n+ 3 D∗2n+2−i + [2]D
∗

2n+3−i + D∗2n+4−i
2n+ 3 [2]D∗0 + D∗1

Proof. The only diagrammatic basis elements T in Temperley–Lieb which pair
nontrivially with Ci [P ◦n−1 Q] are those whose dual basis elements T̂ appear in
the linear combination. The coefficients are given by 〈T,Ci [P ◦n−1 Q]〉. �

3C. Projections to annular consequences.

Definition 3.8. Let An+2 denote the space of second annular consequences of B
in Pn+2,+.

The proofs of the following propositions are parallel to the proof of [Jones 2012,
Proposition 4.4.1]. The inner products are only nonzero for the given annular
consequences, and they are easily worked out by drawing pictures and using
Lemma 3.5.

Proposition 3.9.

(i) P
An+2

(
P ◦

n−2
Q
)

=

∑
R∈B

a PQ
R ωPω

−1
Q ∪̂−1,−1(R)+ a PQ

R σ n
R∪̂−1,n+1(R)+ bPQ

R σPσ
−1
Q ∪̂n,0(R)

where the coefficients of the ∪̂i, j (R) are given by 〈∪i, j (R), P ◦n−2 Q〉.

(ii) P
An+2

(
P ◦

n−1
Q ◦

n−1
R
)

=

∑
S∈B

1n−1,2(P, Q, R | S)∪̂
−1,−1(S)+

σ n+1
S

[n]
Tr(S P)Tr(Q R)∪̂

−1,n(S)

+
σ n−1

S

[n]
Tr(PQ)Tr(RS)∪̂

−1,n+2(S)+ σ
n
S Tr(PQ RS)∪̂0,n+1(S)

+1n−1,1(P, Q, R | S)∪̂n−1,0(S)+ σ
n−1
S 1n,1(P, Q, R | S)∪̂n−1,n+3(S),

where the coefficients of the ∪̂i, j (S) are given by 〈∪i, j (S), P ◦n−1 Q ◦n−1 R〉.
Note that in the above formula, the quartic moment and two of the three

tetrahedral constants were computed in terms of the moments and chiralities
of B in Remark 2.11 and Example 2.17.
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Proposition 3.10. P
An+2

(Ci [P ◦n−1 Q]) =
∑

R∈B X R where X R is given in the

table below. Here we denote α = σ n
Ra PQ

R , β = σ−1
Q σPbPQ

R , and ∪̂i, j = ∪̂i, j (R).

i X R ∈An+2

1
β∪̂0,2n+2+α∪̂n−1,n+1+ [2]β∪̂−1,2n+2

+ [2]α∪̂n,n+1+ σ
−1
R a PQ

R ∪̂n−1,0

2
σRβ∪̂1,2n+1+α∪̂n−2,n+1+ [2]β∪̂0,2n+2+ [2]α∪̂n−1,n+1

+β∪̂−1,2n+2+α∪̂n,n+1+ σ
−1
R β∪̂−1,−1

2< i < n+ 1
σ i−1

R β∪̂i−1,2n−i+3+α∪̂n−i,n+1+ [2]σ i−2
R β∪̂i−2,2n−i+4

+ [2]α∪̂n−i+1,n+1+ σ
i−3
R β∪̂i−3,2n−i+5+α∪̂n−i+2,n+1

n+ 1
β∪̂n,0+α∪̂−1,n+1+ [2]σ n−1

R β∪̂n−1,n+3+ [2]α∪̂0,n+1

+σ n−2
R β∪̂n−2,n+4+α∪̂1,n+1+ σ

n+1
R a PQ

R ∪̂−1,n

n+ 2 β∪̂n−1,0+α∪̂0,n+1+ [2]β∪̂n,0+ [2]α∪̂−1,n+1+ σ
n−1
R β∪̂n−1,n+3

n+ 3
β∪̂n−2,0+ σ

n+1
R a PQ

R ∪̂1,n + [2]β∪̂n−1,0+ [2]α∪̂0,n+1

+β∪̂n,0+α∪̂−1,n+1+ σ
n−1
R a PQ

R ∪̂−1,n+2

n+3< i<2n+2
β∪̂2n+1−i,0+ σ

i−2
R a PQ

R ∪̂i−n−2,2n+3−i + [2]β∪̂2n+2−i,0

+ [2]σ i−3
R a PQ

R ∪̂i−n−3,2n+4−i +β∪̂2n+3−i,0+ σ
i−4
R a PQ

R ∪̂i−n−4,2n+5−i

2n+ 2
β∪̂−1,0+ a PQ

R ∪̂n,1+ [2]β∪̂0,0+ [2]σ−1
R a PQ

R ∪̂n−1,2

+β∪̂1,0+ σ
−2
R a PQ

R ∪̂n−2,3+ σRβ∪̂−1,−1

2n+ 3 α∪̂n−1,n+3+ [2]β∪̂−1,0+ [2]a
PQ
R ∪̂n,1+β∪̂0,0+ σ

−1
R a PQ

R ∪̂n−1,2

Remark 3.11. We check the formulas given in Propositions 3.9 and 3.10 by taking
inner products directly in the graph planar algebra. See Section 4D for more details.

However, the best evidence that these formulas are correct is the fact that we can
actually compute the two-strand jellyfish relations for the 3Z/4Z subfactor planar
algebra!

3D. Inner products amongst trains and their projections.

Proposition 3.12.

(i)
〈
P ◦

n−2
Q, R ◦

n−2
S
〉
=

Tr(PR)Tr(SQ)
[n−1]

.

(ii)
〈
P ◦

n−1
Q ◦

n−1
R, P ′ ◦

n−1
Q′ ◦

n−1
R′
〉
=

Tr(PP ′)Tr(Q Q′)Tr(R R′)
[n]2

.

(iii)
〈
P ◦

n−1
Q ◦

n−1
R, S ◦

n−2
T
〉
= 0.
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Proof. For (i), the left-hand side equals

n+ 2 n+ 2

R?

P?

S ?

Q ?

.

The result now follows by Lemma 3.5 (ii).
We omit the proof of (ii), which is similar to the proof of (i). For (iii), again

using Lemma 3.5 (ii), we see that the left-hand side is equal to

n− 1 n− 1

n+ 1 n+ 1
n− 2

P
?

Q
?

R
?

S

?

T

?

=
Tr(PS)Tr(RT )

[n]2 n n

n− 2

Q
?

f
?

f
?

where f = f (n−1). The right-hand side of the above equation is zero, since it is a
linear combination of closed diagrams containing only one generator. �

Proposition 3.13.

(i)
〈
Ci
[
P ◦

n−1
Q
]
,C j

[
R ◦

n−1
S
]〉

=


Tr(PR)Tr(SQ)[2][n]−1 if i = j,
Tr(PR)Tr(SQ)[n]−1 if |i − j | = 1,
Tr(PRSQ) if (i, j) ∈ {(n+1, n+3), (n+3, n+1)},
0 else.

(ii)
〈
Ci
[
P ◦

n−1
Q
]
, R ◦

n−2
S
〉
=

{
Tr(PR)Tr(SQ)[n]−1 if i = n+ 2,
0 else.

(iii)
〈
Ci
[
P ◦

n−1
Q
]
, R ◦

n−1
S ◦

n−1
T
〉
=


a PR

S Tr(QT )[n]−1 if i = n+ 1,
aST

Q Tr(R P)[n]−1 if i = n+ 3,
0 else.

Proof. The proofs are all relatively straightforward drawing the necessary diagrams.
The case in (i) which is easiest to miss is when (i, j)∈ {(n+1, n+3), (n+3, n+1)}.
In this case we get the following diagrams:

n n

n− 1

n− 1

R?

P?

S ?

Q ?

= n n

n− 1

n− 1

R?

P?

S ?

Q ?

= Tr(PRSQ). �

Proposition 3.14. (i)
〈
P ◦

n−2
Q, PTLn+2,+

(
R ◦

n−2
S
)〉
=

Tr(PQ)Tr(RS)
[n+3]

.
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(ii)
〈
P ◦

n−1
Q ◦

n−1
R, PTLn+2,+

(
P ′ ◦

n−1
Q′ ◦

n−1
R′
)〉
= aQ P

R a P ′Q′
R′

[2][n+1]
[n+2][n+3]

.

(iii)
〈
P ◦

n−1
Q ◦

n−1
R, PTLn+2,+

(
S ◦

n−2
T
)〉
=−

Tr(ST )aQ P
R [n+1]

[n+2][n+3]
.

Proof. This follows quickly from Proposition 3.6. For part (ii), using Proposition 3.6,
the inner product in question is equal to

aQ P
R a P ′Q′

R′

(
[n+1]2

[n+2]2[n+3]
+
[n+1]
[n+2]2

)
= aQ P

R a P ′Q′
R′
[n+1]
[n+2]2

(
[n+1]+[n+3]
[n+3]

)
= aQ P

R a P ′Q′
R′

[2][n+1]
[n+2][n+3]

. �

Proposition 3.15.

(i)
〈
Ci
[
P ◦

n−1
Q
]
, PTLn+2,+

(
C j
[
R ◦

n−1
S
])〉

=


Tr(PQ)Tr(RS)[2][n+ 2]−1 if i = j,
Tr(PQ)Tr(RS)[n+ 2]−1 if |i − j | = 1,
Tr(PQ)Tr(RS)[n+ 1]−1 if (i, j) ∈ {(n+1, n+3), (n+3, n+1)},
0 else.

(ii)
〈
Ci
[
P ◦

n−2
Q
]
, PTLn+2,+

(
R ◦

n−2
S
)〉
=

{
Tr(PQ)Tr(RS)[n+ 2]−1 if i = n+ 2,
0 else.

(iii)
〈
Ci
[
P ◦

n−2
Q
]
, PTLn+2,+

(
R ◦

n−1
S ◦

n−1
T
)〉

=

{
Tr(PQ)aRS

T [n+ 2]−1 if i = n+ 1, n+ 3,
0 else.

Proof. (i) The formulas can be obtained easily from Lemma 3.4 and Proposition 3.7.
We work out a few interesting cases.

If i = n+ 1 and j = n+ 3, then〈
Ci
[
P ◦

n−1
Q
]
, PTLn+2,+

(
C j
[
R ◦

n−1
S
])〉

=
〈
Cn+1

[
P ◦

n−1
Q
]
, 1̂n+2+ [2]D∗n + D∗n−1

〉
Tr(RS)

=
〈
Cn+3

[
P ◦

n−1
Q
]
, [2]Dn + Dn−1

〉
Tr(RS)

=
( [2]
[n+2]

−
[n]

[n+1][n+2]
)

Tr(PQ)Tr(RS)

=
Tr(PQ)Tr(RS)
[n+1]

.
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If i = n+ 1 and n+ 3< j < 2n+ 3, then〈
Ci
[
P ◦

n−1
Q
]
, PTLn+2,+

(
C j
[
R ◦

n−1
S
])〉

=
〈
Cn+1

[
P ◦

n−1
Q
]
, D∗2n+2− j + [2]D

∗

2n+3− j + D∗2n+4− j
〉
Tr(RS)

=
〈
Cn+3

[
P ◦

n−1
Q
]
, D j + [2]D j+1+ D j+2

〉
Tr(RS)

=
(−1)n− j

[n+1][n+2]
(
[ j + 1] − [2][ j + 2] + [ j + 3]

)
Tr(PQ)Tr(RS)

= 0.

(ii) By Proposition 3.6, we have〈
Ci
[
P ◦

n−1
Q
]
, PTLn+2,+

(
R ◦

n−2
S
)〉
=

Tr(RS)
[n+3]

〈
Ci
[
P ◦

n−1
Q
]
, f (n+2)〉,

which is zero unless i = n + 2. Now by Lemma 3.3 and Proposition 3.7, the
right-hand side is equal to

Tr(RS)Tr(PQ)
[n+3]

〈Dn + [2]1̂n+2, f (n+2)
〉 =

Tr(PQ)Tr(RS)
[n+3]

(
[2] − [n+1]

[n+2]

)
=

Tr(PQ)Tr(RS)
[n+2]

.

(iii) By Proposition 3.6, we have〈
Ci
[
P ◦

n−1
Q
]
, PTLn+2,+

(
R ◦

n−2
S ◦

n−1
T
)〉
= aRS

T
〈
Ci
[
P ◦

n−1
Q
]
, Ên+1

〉
,

which is clearly zero unless n+ 1≤ i ≤ n+ 3 (use the formula for Ên+1).
If i = n + 1 (and similarly for i = n + 3), then only the first diagram in

Proposition 3.6 (ii) contributes to the inner product, and the value is given by

aRS
T
[n+1]
[n+2]2

f (n+1) f (n+1)

P Q
? ?

n− 1

n

nn =
Tr(PQ)aRS

T

[n+ 2]
.

If i = n+ 2, by drawing similar diagrams, we see the inner product in question is
equal to

aRS
T

(
[n+1]
[n+2]2

−
[n+3][n+1]

[n+2][n+2][n+3]

)
Tr(PQ)= 0. �

Remark 3.16. We now explain how to obtain the inner products
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•

〈
P ◦

n−2
Q, P

An+2

(
R ◦

n−2
S
)〉

,

•

〈
P ◦

n−1
Q ◦

n−1
R, P
An+2

(
P ′ ◦

n−1
Q′ ◦

n−1
R′
)〉

,

•

〈
P ◦

n−1
Q ◦

n−1
R, P
An+2

(
S ◦

n−2
T
)〉

,

•

〈
Ci
[
P ◦

n−2
Q
]
, P
An+2

(
C j [R ◦

n−2
S]
)〉

,

•

〈
Ci
[
P ◦

n−2
Q
]
, P
An+2

(
R ◦

n−1
S ◦

n−1
T
)〉

,

•

〈
Ci
[
P ◦

n−2
Q
]
, P
An+2

(
R ◦

n−2
S
)〉

.

First, we use the formulas for

P
An+2

(
P ◦

n−2
Q
)
, P

An+2

(
P ◦

n−1
Q ◦

n−1
R
)
, and P

An+2

(
Ci
[
P ◦

n−2
Q
])

obtained in Propositions 3.9 and 3.10 to express each side as a linear combination of
the ∪̂i, j (S)’s. Next, we use the change of basis matrix discussed in Remark 2.30 to
write the ∪̂i, j (S) on the right-hand side in terms of the ∪i, j (S). Finally, we expand
the inner product in the usual way to obtain the answer.

4. Deriving formulas for two-strand box jellyfish relations

As in the previous sections, we continue Assumptions 2.9, 2.12, and 2.21.
We now go through our algorithm for determining two-strand jellyfish relations.

We follow the method of [Morrison and Penneys 2015b, Section 3], which consists
of three parts:

(i) Find the quadratic tangles in annular consequences.

(ii) Find the jellyfish matrix.

(iii) Invert the jellyfish matrix.

The steps in our algorithm will be clearly marked in the following three subsections.

4A. Reduced trains in annular consequences. In [Morrison and Penneys 2015b],
the first step was to obtain a basis for the quadratic tangles in annular consequences.
Since we have quadratic and cubic trains, we call this step obtaining a basis for the
reduced trains in annular consequences.

Definition 4.1. Recall from Definition 2.22 that a “reduced train” is one where no
generator connects to itself, and no pair are connected by more than n− 1 strands.
Starting with our set of minimal generators B satisfying Assumptions 2.9, 2.12,
and 2.21, we have the reduced trains{

Ci
[
P ◦

n−1
Q
] ∣∣ P, Q ∈B and i = 1, . . . , 2n+ 3

}
⊂ Pn+2,+
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which are annular consequences of trains in Pn+1,+, and we have the reduced trains{
n− 2

n+ 2 n+ 2

P Q
??

,
n− 1 n− 1

n+ 1 2 n+ 1

P

?

Q
?

R
∣∣∣∣ P, Q, R ∈B

}
⊂ Pn+2,+

which are nonzero when placing a Jones–Wenzl underneath. We let RT be the
union of the above two sets.

Since we hope that our generators generate a subfactor planar algebra with the
desired principal graph, we want some linear combination of these reduced trains
to lie in annular consequences.

Definition 4.2. We set

RTAC= (TLn+2,+⊕An+2)∩ span(RT),

where RTAC stands for reduced trains in annular consequences.

Step 1 of our algorithm finds a basis for RTAC. Since we are trying to derive
box jellyfish relations, we are only interested in basis elements which are not sent
to zero when we put a f (2n+4) underneath. Thus we make the following definition.

Definition 4.3. An element of RTAC is called essential if at least one of the
coefficients of the P ◦n−2 Q’s or the P ◦n−1 Q ◦n−1 R’s does not vanish.

Remark 4.4. If we’ve chosen k generators in a graph planar algebra and are hoping
that they give us a subfactor planar algebra with one spoke principal graph, we
expect to have at least k essential basis elements of RTAC, i.e., one two-strand
jellyfish relation for each generator.

Step 1 (a basis for RTAC). Consider the matrix(
〈X− PTLn+2,+(X)− P

An+2
(X),Y〉

)
X,Y∈RT

,

of inner products modulo Temperley–Lieb and annular consequences. (Note that
the necessary inner products were derived in Propositions 3.12 and 3.14 and
Remark 3.16.)

(i) Taking a basis for the null space of this matrix gives us a basis for RTAC.

(ii) From this basis, we keep only the essential elements, which we call X1, . . . , Xk .

4B. Compute the jellyfish matrix. From Step 1, we have an expression for each
essential basis element of RTAC. Namely, the basis elements X i can be written in
the form

∑
P,Q∈B

αi
P,Q

n− 2

n+ 2 n+ 2

P Q
??

+

∑
P,Q,R∈B

β i
P,Q,R

n− 1 n− 1

n+ 1 2 n+ 1

P

?

Q
?

R + Wi ,
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where Wi ∈ span{Ci [P ◦ Q] | P, Q ∈B and i = 1, . . . , 2n+ 3}. We also have an
expression for X i as an element of TLn+2,+⊕An+2.

Step 2 (expression in the annular basis). Using Proposition 3.9, we express the X i

in terms of the dual annular basis ∪̂r,s(S) for S ∈B. We then use the change of
basis matrix discussed in Remark 2.30 to write the ∪̂r,s(S) in terms of the ∪ j,`(S).
Hence we may write each X i as

X i =

(∑
S∈B

γ i
S ∪−1,−1 (S)

)
+ Yi + Zi =

∑
S∈B

γ i
S

2n

S
?

+ Yi + Zi ,

where Yi is a linear combination of the ∪ j,`(S) for S ∈B and ( j, `) 6= (−1,−1),
and Zi ∈ TLn+2,+.

Notation 4.5. For P, Q, R, S ∈B, we use the notation

f
(
P ◦

n−2
Q
)
=

n− 2

n+ 2 n+ 2

P Q
??

f (2n+4)?

f
(
P ◦

n−1
Q ◦

n−1
R
)
=

n− 1 n− 1

n+ 1 2 n+ 1

P

?

Q
?

R

?

f (2n+4)

f · j2(S)= 2n

S
?

f (2n+4)

We also write f ·X to denote X ∈Pn+2,+ in jellyfish form with a f (2n+4) underneath.

Step 3 (box jellyfish equations). Put an f (2n+4) underneath the two formulas for
X i obtained in Steps 1 and 2 to get the following equations for i = 1, . . . , k:

f ·X i =
∑

P,Q∈B

αi
P,Q f

(
P ◦

n−2
Q
)
+

∑
P,Q,R∈B

β i
P,Q,R f

(
P ◦

n−1
Q ◦

n−1
R
)
=

∑
S∈B

γ i
S f · j2(S).

Remark 4.6. In [Morrison and Penneys 2015b, Section 3.2], similar formulas to
those obtained in Step 3 were checked by wrapping a Jones–Wenzl around the top
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of P ◦n−1 Q. In our case, we cannot use this check, since wrapping a Jones–Wenzl
around the top of a 3-train does not give another box-train.

We now define the jellyfish matrix and the reduced trains matrix from the
equations from Step 3.

Definition 4.7. The two-strand jellyfish matrix is the matrix J2 whose i-th row is
(γ i

S)S∈B. The reduced trains matrix is the matrix K2 whose i-th row is given by
concatenating the lists (αi

P,Q)P,Q∈B and (β i
R,S,T )R,S,T∈B.

Remark 4.8. Note that

K2


f
(
P ◦

n−2
Q
)

...

f
(
R ◦

n−1
S ◦

n−1
T
)

...


P,Q,R,S,T∈B

= J2

(
f · j2(S)

...

)
S∈B

.

4C. Invert the jellyfish matrix. At this point, we have accomplished most of the
difficult work. Two easy steps remain.

Step 4 (invert J2). Given the matrix J2 from Definition 4.7 obtained via Step 3, we
check if it has rank |B|. If it does (and we know that it should by [Bigelow and
Penneys 2014]), we find a left inverse for J2 by the formula

J L
2 = (J

∗

2 J2)
−1 J ∗2

since J2 and J ∗2 J2 have the same rank.

Step 5 (box jellyfish relations). Finally, we get the box jellyfish relations by multi-
plying by J L

2 from Step 4:

(
f · j2(S)

...

)
S∈B

= J L
2 K2


f
(
P ◦

n−2
Q
)

...

f
(
P ◦

n−1
Q ◦

n−1
R
)

...


P,Q,R∈B

which express the f · j2(S) as linear combinations of reduced trains.

Remark 4.9. Recall that our goal was to derive two-strand jellyfish relations for
our generators. These relations would be sufficient to evaluate all closed diagrams.
Note that two-strand box jellyfish relations by themselves are not sufficient to
evaluate closed diagrams!

In order to recover jellyfish relations from box jellyfish relations, we need to ex-
pand the Jones–Wenzl idempotents as in [Morrison and Penneys 2015b, Section 2.5].
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When expanding f (2n+4) for the two-strand box jellyfish relations, terms of the
form

k 2n+1−k , k2n+1−k

in f (2n+4) yield diagrams not in jellyfish form, as they have a strand separating the
generator from the outer region. Hence we also need one-strand jellyfish relations,
which are obtained from one-strand box jellyfish relations of the form

2n

Š
?

f (2n+2)

=

∑
P,Q∈B

δS
P,Q

n− 1

n+ 1 n+ 1

P Q
??

f (2n+2)?

by the argument in [Morrison and Penneys 2015b, Section 2.5]. We compute the
necessary one-strand box jellyfish relations using the algorithm provided there.

4D. Checking our calculations. Since the computer is doing all the arithmetic, it
is good to check that our formulas are consistent with other methods of calculation.
The computations in this section are redundant, hence we freely take shortcuts and
perform spot checks when more thorough checks would be too time consuming.

The checks we perform in this subsection are done directly in the graph planar
algebra. As such computations are computationally expensive, we use the following
shortcut, which is known to experts. We do not prove it here as it would take us
too far afield.

Proposition 4.10. Suppose P• is a subfactor planar algebra. Choose an embedding
of P• into GPA(0+)•, the graph planar algebra of its principal graph, and identify
P• with its image. Define the map 8 :Pk,±→ GPA(0+)k,± by cutting down at the
zero box ? (the distinguished vertex of 0+), i.e., forgetting all loops of length 2k
which do not start at ?.

x

k

k
8
7−→ ? x

k

k

Then8 is a ∗-algebra isomorphism under the usual multiplication, and8 commutes
with taking (partial) traces.

We remark that dim(Pk,±) is equal to the number of loops of length 2k starting at
? on the principal graph, so one only needs to prove this map is injective.

To simplify calculations in the graph planar algebra, we can compute the inner
product by first cutting down at ? and then taking the inner product of the cut down
elements in the graph planar algebra. Note that this simplification assumes we are
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working in the image of a subfactor planar algebra, so it cannot be used to prove
that formulas hold. However, it can be used as a check for our calculations.

Using this shortcut, we check the propositions listed in the following table. The
calculations are performed in the notebook TwoStrandJellyfish.nb in subsec-
tions called “Checking directly in the GPA” for each of our examples. Many of the
computations are exact, but two are numerical. For the checks for Propositions 3.9
and 3.10, we don’t check all the coefficients in the graph planar algebra; rather we
only check the coefficients that our formulas tell us are nonzero.

Proposition Checking functions Numerical?
2.28 CheckPairwiseInnerProductsOfSecondAC Yes

3.9
CheckCoefficientsOf2TrainsInSecondAC

NoCheckCoefficientsOf3TrainsInSecondAC
3.10 CheckCoefficientsOfCiQTCircsInSecondAC No
3.12 CheckInnerProductBetweenTrains No
3.13 CheckInnerProductWithCiQTCircs Yes

As a verification of the correctness of our algorithm, we also reproved the
existence of the Haagerup 3Z/3Z subfactor and the 3Z/2Z×Z/2Z subfactor. We did
not include these calculations since there are already several proofs for existence of
these subfactors. We note that the formula we obtain for the two-strand jellyfish
relation for 3Z/3 (Haagerup) agrees with that obtained in [BMPS 2012]. We have not
checked that our two-strand relations for 3Z/2×Z/2 are consistent with the one-strand
relations found in [Morrison and Penneys 2015b], since we use different generators.

In [Morrison and Penneys 2015b], the authors were able to check the one-strand
jellyfish relations for 2221 directly in the graph planar algebra using a clever trick
due to Bigelow. We cannot do these computations for our graphs. Not only are
our graphs 3-supertransitive, but we also use two-strand relations, making the
preparation of the two-cup Jones–Wenzl too computationally expensive.

5. Relations for 3Z/4

We now record the two- and one-strand jellyfish relations for a planar algebra
which we will show, in Section 6, is the 3Z/4 planar algebra. The three lemmas
below consist of performing the calculations described in Section 4. The proofs
are simply substituting in the appropriate quantities (moments, tetrahedral struc-
ture constants) where applicable, and executing the functions in the Mathematica
notebooks included with the arXiv sources of this article.

The set B= {A, B} is an orthogonal set of minimal generators which lives in
the graph planar algebra. Formulas for these generators are given in Appendix A.
We first check that Assumptions 2.9, 2.12, and 2.21 hold for these generators, i.e.:
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• The elements R ∈B are self-adjoint low-weight rotational eigenvectors with
corresponding chiralities σR given in Appendix A. Moreover, B is linearly
independent and orthogonal and has scalar moments. The moments are given
in Appendix B.

• The sets B∪ { f (n)} and B̌∪ { f (n)} span complex algebras under the usual
multiplication. The program VerifyClosedUnderMultiplication in the notebook
TwoStrandJellyfish.nb is used to check this.

• The tetrahedral structure constants 1(P, Q, R | S) are scalars for all elements
P, Q, R, S ∈B. The tetrahedral constants are given in Appendix B.

Throughout, the notation λ(z)an,...,a0 denotes the root of the polynomial
∑

i ai x i

which is closest to the approximate real number z. (The digits of precision of z are
in each case chosen so that this unambiguously identifies the root.) For example,
λ
(0.3278)
1024,0,−864,0,81 denotes the root of 1024x4

−864x2
+81 which is closest to 0.3278.

5A. Two-strand relations.

Lemma 5.1. The following linear combinations X i of reduced trains lie in annular
consequences. The column marked X i gives the coefficients of the reduced trains
for X i .

X1 X2

A ◦
n−2

A 1 0

A ◦
n−2

B 0 1

B ◦
n−2

A λ
(0.1449i)
2025,0,−720,0,−16 1

B ◦
n−2

B 1
45

(
−10− 3

√
5
)

0

A ◦
n−1

A ◦
n−1

A λ
(0.1761i)
100,0,−2610,0,−81 λ

(2.43)
4,0,−1134,0,6561

A ◦
n−1

A ◦
n−1

B λ
(0.3447)
100,0,−1030,0,121 λ

(0.637i)
4,0,−198,0,−81

A ◦
n−1

B ◦
n−1

A λ
(0.1493)
25,0,−180,0,4 0

A ◦
n−1

B ◦
n−1

B λ
(−0.3436i)
4,0,−8,0,−1 λ

(0.3733)
4,0,−180,0,25

B ◦
n−1

A ◦
n−1

A λ
(0.4370)
4,0,−6,0,1 λ

(−0.637i)
4,0,−198,0,−81

B ◦
n−1

A ◦
n−1

B λ
(0.05869i)
100,0,−290,0,−1 λ

(0.810)
4,0,−126,0,81

B ◦
n−1

B ◦
n−1

A λ
(0.3976i)
324,0,−2232,0,−361 λ

(0.3733)
4,0,−180,0,25

B ◦
n−1

B ◦
n−1

B λ
(0.4382)
164025,0,−34020,0,484 0
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C1
[
B ◦

n−1
A
]

λ
(−0.017098i)
2025,0,−3420,0,−1

√
5− 2

C1
[
B ◦

n−1
B
] 1

45

(
5− 3
√

5
)

λ
(−0.1237i)
81,0,−1044,0,−16

C2
[
B ◦

n−1
A
]

λ
(0.039125i)
2025,0,−2610,0,−4 λ

(−0.540)
1,0,−14,0,4

C2
[
B ◦

n−1
B
]

λ
(0.08686)
164025,0,−9720,0,64 λ

(0.2831i)
81,0,−792,0,−64

C3
[
B ◦

n−1
A
]

λ
(−0.07243i)
2025,0,−180,0,−1 1

C3
[
B ◦

n−1
B
] 1

45

(
−5−

√
5
)

λ
(−0.5241i)
81,0,−36,0,−16

C4
[
B ◦

n−1
A
]

λ
(0.1266i)
2025,0,−3960,0,−64 λ

(−1.75)
1,0,−24,0,64

C4
[
B ◦

n−1
B
] 4

√
2/5
9 λ

(0.916i)
81,0,−1152,0,−1024

C5
[
B ◦

n−1
A
]

λ
(−0.2173i)
25,0,−20,0,−1 3

C5
[
B ◦

n−1
B
] 1

15

(
−5−

√
5
)

λ
(−1.57i)
1,0,−4,0,−16

C6
[
B ◦

n−1
A
]

λ
(−0.2532i)
2025,0,−15840,0,−1024 λ

(−3.50)
1,0,−96,0,1024

C6
[
B ◦

n−1
B
]

λ
(0.3348)
164025,0,−87480,0,7744 λ

(1.66i)
81,0,−360,0,−1600

C7
[
B ◦

n−1
A
]

λ
(0.652i)
25,0,−180,0,−81 3

C7
[
B ◦

n−1
B
] 1

30

(√
5− 5

)
λ
(−1.27i)
1,0,1,0,−1

C8
[
B ◦

n−1
A
]

λ
(−0.3798i)
25,0,−440,0,−64 λ

(−1.75)
1,0,−24,0,64

C8
[
B ◦

n−1
B
]

λ
(0.05368)
164025,0,−22680,0,64 λ

(0.741i)
81,0,−72,0,−64

C9
[
B ◦

n−1
A
]

λ
(0.2173i)
25,0,−20,0,−1 1

C9
[
B ◦

n−1
B
] 1

90

(√
5− 5

)
λ
(−0.4240i)
81,0,9,0,−1

C10
[
B ◦

n−1
A
]

λ
(−0.1174i)
25,0,−290,0,−4 λ

(−0.540)
1,0,−14,0,4

C10
[
B ◦

n−1
B
]

λ
(0.016589)
164025,0,−14580,0,4 λ

(0.2290i)
81,0,−72,0,−4

C11
[
B ◦

n−1
A
]

λ
(0.05129i)
25,0,−380,0,−1

√
5− 2

C11
[
B ◦

n−1
B
] 1

90

(
15− 7

√
5
)

λ
(−0.1001i)
81,0,−99,0,−1

In the next two lemmas, we use

J2 =

(
λ
(0.1245i)
400,0,−5220,0,−81

1
10

(
−5−

√
5
)

1
4

(
27− 9

√
5
)

0

)
.

We let K2 be the transpose of the 12× 2 matrix whose entries are given by the first
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12 rows and the 2 columns of the table in Lemma 5.1, and we define

Y =



f
(

A ◦
n−2

A
)

f
(

A ◦
n−2

B
)

f
(
B ◦

n−2
A
)

f
(
B ◦

n−2
B
)

f
(

A ◦
n−1

A ◦
n−1

A
)

f
(

A ◦
n−1

A ◦
n−1

B
)

f
(

A ◦
n−1

B ◦
n−1

A
)

f
(

A ◦
n−1

B ◦
n−1

B
)

f
(
B ◦

n−1
A ◦

n−1
A
)

f
(
B ◦

n−1
A ◦

n−1
B
)

f
(
B ◦

n−1
B ◦

n−1
A
)

f
(
B ◦

n−1
B ◦

n−1
B
)



.

Lemma 5.2. We have K2Y = J2

(
f · j2(A)

f · j2(B)

)
.

Lemma 5.3. The elements A,B satisfy the two-strand box jellyfish relations(
f · j2(A)

f · j2(B)

)
= J L

2 K2Y

where

(J L
2 K2)

T
=



0 1
2

(√
5− 5

)
1
9

(
3+
√

5
)

λ
(0.1001i)
81,0,−99,0,−1

1
9

(
3+
√

5
)

λ
(−0.1001i)
81,0,−99,0,−1

0 1
18

(
7+
√

5
)

√
2 0

λ
(0.3706i)
81,0,−18,0,−4 λ

(−0.540)
1,0,−14,0,4

0 λ
(−0.2063)
1,0,−94,0,4

λ
(0.2172)
6561,0,−2430,0,100 λ

(0.512i)
81,0,−360,0,−100

λ
(−0.3706i)
81,0,−18,0,−4 λ

(−0.540)
1,0,−14,0,4

√
2

3 0

λ
(0.2172)
6561,0,−2430,0,100 λ

(−0.512i)
81,0,−360,0,−100

0 λ
(−0.6056)
6561,0,−3726,0,484



.
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5B. One-strand relations.

Lemma 5.4. The linear combinations

K1


A ◦ A
A ◦ B
B ◦ A
B ◦ B

 and Ǩ1


Ǎ ◦ Ǎ
Ǎ ◦ B̌
B̌ ◦ Ǎ
B̌ ◦ B̌


lie in annular consequences, where

K1 =

(
1 0 0 1

18

(
−1−

√
5
)

0 1 −1 λ
(0.948i)
81,0,45,0,−25

)
and Ǩ1 =

(
1 0 0 1

18

(
−1−

√
5
)

0 1 1 λ
(0.948)
81,0,−45,0,−25

)
.

Lemma 5.5. In particular, we have

K1


f (A ◦ A)
f (A ◦ B)
f (B ◦ A)
f (B ◦ B)

= J1

(
f · j ( Ǎ)

f · j (B̌)

)
and Ǩ1


f ( Ǎ ◦ Ǎ)
f ( Ǎ ◦ B̌)
f (B̌ ◦ Ǎ)
f (B̌ ◦ B̌)

= J̌1

(
f · j (A)
f · j (B)

)
,

where

J1 =

(
λ
(−0.590)
256,0,144,0,−81

1
24

(
5+
√

5
)

λ
(2.71i)
256,0,2160,0,2025 λ

(0.8325i)
256,0,176,0,−1

)
and J̌1 =

(
0 λ

(−0.49923)
5184,0,−1296,0,1

0 λ
(0.7277i)
64,0,32,0,−1

)
.

Lemma 5.6. The elements A and B satisfy the one-strand box jellyfish relations

(
f · j ( Ǎ)

f · j (B̌)

)
= J L

1 K1


f (A ◦ A)
f (A ◦ B)
f (B ◦ A)
f (B ◦ B)

 ,
where

J L
1 K1 =

(
λ
(−0.6360)
16,0,−4,0,−1 λ

(−0.2303i)
1296,0,540,0,25 λ

(0.2303i)
1296,0,540,0,25 λ

(0.3327)
104976,0,3564,0,−1681

1
4

(
15− 3

√
5
)
λ
(−0.4504i)
16,0,−396,0,−81 λ

(0.4504i)
16,0,−396,0,−81

1
12

(
7
√

5− 15
) )

.

6. Calculating principal graphs

We now know that the set of minimal generators given in Appendix A generates
an evaluable subfactor planar algebra PZ/4

•
. We must now determine the principal

graphs of the PZ/4
•

. By the next lemma, we know that the principal graphs have the
desired supertransitivity since we have two-strand jellyfish relations.

Lemma 6.1. Suppose a planar algebra P• is generated by uncappable elements
A1, . . . , Ak ∈ Pn,+ such that
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(i) the A j ’s satisfy two-strand jellyfish relations, and

(ii) the complex span of {A1, . . . , Ak, f (n)} forms an algebra under the usual
multiplication.

Then P• is (n− 1) supertransitive.

Proof. Similar to [Morrison and Penneys 2015b, Lemma 5.1]. �

We now determine the principal graphs of the PZ/4
•

. These arguments are similar
to those in [Morrison and Penneys 2015b, Section 5].

Theorem 6.2. The principal graphs of PZ/4
•

are(
,

)
.

Proof. The modulus is
√

3+
√

5'2.28825, and we find that the minimal projections
one past the branch from bottom to top are given by a A+ bB+ c f (4), where

(a, b, c)=


(
0, 1

3 ,
1
3

)
,(1

2 ,−
1
6 ,

1
3

)
,(

−
1
2 ,−

1
6 ,

1
3

)
.

Since Tr( f (4))= 6+ 3
√

5, all the minimal projections have trace 2+
√

5, and the
proof of [Morrison and Penneys 2015b, Theorem 5.9] shows the principal graph is
correct.

To see that the dual graph is correct, we first find that the minimal projections
one past the branch from bottom to top are given by a Ǎ+ bB̌+ c f (4), where

(a, b, c)=


(
λ
(−0.556)
4,0,2,0,−1, λ

(0.09003)
324,0,−126,0,1,

1
3

)
,(

λ
(0.2123)
4,0,22,0,−1, λ

(−0.3257)
324,0,−270,0,25,

1
3

(√
5− 1

))
,(

λ
(0.3436)
4,0,8,0,−1,

1
3
√

2
, 1

3

(
3−
√

5
))

which have traces 2+
√

5, 3+
√

5, 1+
√

5 respectively. Hence there is a univalent
vertex at depth 4 on the dual graph. We now run the FusionAtlas program Find-
GraphPartners on the 3333 graph and we see there are only two possibilities where
the dual graph has a univalent vertex at depth 4:(

,
)
,(

,
)
.

Now the projections at depth 4 on the principal graph are self-dual since ρ2
= id

on span{A, B, f (4)}, so the only possibility is the one claimed. �
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Appendix A. Generators

Suppose 0 is a simply laced graph with a distinguished subgraph 3⊂ 0 such that
0 is obtained from 3 by adding Afinite tails to 3. For example, when 0 is a spoke
graph, we can choose 3 to be the central vertex. When 0 = 2D2 (see Section AA),
we can choose 3 to be the central diamond.

By the proof of [Morrison and Penneys 2015b, Lemma A.1], a low-weight
generator A is completely determined by its values on loops which stay within
distance 1 of 3. Furthermore, if 0 is obtained from 3 by adding Afinite tails to
distinct vertices of 3, then A is completely determined by its values on loops which
stay inside 3. So when 0 is a spoke graph with n spokes, we can choose 3 to be
an (n− 1)-star.

Moreover, as A is a rotational eigenvector, A is completely determined by its
values on a set of rotation orbit representatives which stay in 3.

We now describe an algorithm to recover our low-weight generator A from its
values on such loops.

Remark A.1. It should seem plausible, but not at all obvious, that the recovered
generator is in fact a low-weight rotational eigenvector. Proposition A.11 gives a
well-defined element of the graph planar algebra. For our examples, the programs
CheckLowestWeightCondition and CheckRotationalEigenvector in the notebook
Generators.nb check that the low-weight and rotational eigenvector conditions
hold respectively.

Definition A.2. For a vertex v ∈ 0, we define d(v,3) to be the minimal distance
of v to 3. For a loop γ whose i-th vertex is denoted γ (i), we define d(γ,3) =
maxi d(γ (i),3).

2-valent folding relation. Suppose A is an n-box. We start with a loop γ on 0
of length 2n. If d(γ,3) > 1, we can use the 2-valent relation first considered in
[Peters 2010; BMPS 2012] to fold γ inward by analyzing the capping action on
2-valent vertices as follows. We use the notation of [Morrison and Penneys 2015b].

Notation A.3. Suppose s = γ (i) is a vertex on γ whose distance from 3 is at least
2. Let t be the vertex on the same tail 2 closer to 3 than s (possibly t is in 3 itself).
Let γ ′ be the loop modified from γ by replacing s at position i with t . Let π be
the “snipped” loop of length 2n− 2 obtained from γ or γ ′ by removing the i-th
and i + 1-st positions. For convenience, we let r = γ (i ± 1) = γ ′(i ± 1). For an
example, see Figure 1.

Definition A.4. Applying a cap at position i to A, we have ∩i (A)= 0. Evaluating
this at π gives the 2-valent folding relation

0=
√

dim(r)
ki
∩i (A)(π)=

√
dim(s)

ki
A(γ )+

√
dim(t)

ki
A(γ ′).
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γ

s ,

γ ′

t ,

π

r

Figure 1. Example of loops and vertices appearing in the 2-valent
folding relation.

Here ki is the number of critical points in the cap strand, either 1 or 2 depending
on the position of the point i around the boundary of the rectangular box:

ki =


1 when we have

i
or

i
,

2 when we have i or i .

Lemma A.5. If γ̂ is the loop of length 2n with d(γ̂ ,3)= 1 obtained from γ by the
2-valent folding relation described above, we have

(6) A(γ )= (−1)(‖γ ‖−‖γ̂ ‖)/2
(∏

i

√
dim(γ̂ (i))
dim(γ (i))

ki
)

A(γ̂ ),

where ‖γ ‖ =
∑

i d(γ (i),3).

Remark A.6. In the lopsided convention, this formula is given by

(7) A(γ )= (−1)(‖γ−‖γ̂ ‖)/2
(∏

i

(
dim(γ̂ (i))
dim(γ (i))

)̀
i
)

A(γ̂ ),

where `i is the number of minima on the cap:

`i =


0 when we have

i
,

1 when we have
i

, i , or i .

Tail avoiding relation. Now suppose 0 is obtained from 3 by adding Afinite tails
to distinct vertices of 3. Further suppose γ is a loop of length 2n with d(γ,3)= 1.

Notation A.7. Suppose s = γ (i) is a vertex on γ which is distance 1 from 3, and
let r = γ (i+1) which is necessarily in3. Let {t} be the set of vertices in3 incident
to r . Let γi,t be the loop modified from γ by replacing s at position i with t . Let
π be the “snipped” loop of length 2n− 2 obtained from γ or γi,t by removing the
i-th and i + 1-st positions.
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Definition A.8. The tail avoiding relation is given by

0=
√

dim(r)
ki
∩i (A)(π)=

√
dim(s)

ki
A(γ )+

∑
t

√
dim(t)

ki
A(γi,t).

Lemma A.9. If γ has d(γ,3)= 1, and γ̂ has d(γ̂ ,3)= 0 and is obtained from γ

by the tail avoiding relation described above, then

(8) A(γ )= (−1)‖γ ‖
∑

{i | γ (i)/∈3}

∑{
ti
∣∣ ti∼γ (i±1)

ti∈3

}
√

dim(ti )
dim(γ (i))

ki

A(γi,ti ),

where v ∼ w means v is incident to w (note γ (i + 1)= γ (i − 1) if γ (i) /∈3), and
ki is as in Lemma A.5.

Remark A.10. In the lopsided convention, this formula is given by

(9) A(γ )= (−1)‖γ ‖
∑

{i | γ (i)/∈3}

∑{
ti
∣∣ ti∼γ (i±1)

ti∈3

}
( dim(ti )

dim(γ (i))

)̀
i
A(γi,ti )

using similar notation from Remark A.6 and Lemma A.9.

Rotation. We still assume 0 is obtained from 3 by adding Afinite tails to distinct
vertices of 3.

Rotation acts on the set of loops which stay in 3, so if we are trying to specify
a lowest weight vector A which is also a rotational eigenvector corresponding to
eigenvalue ω, then it suffices to specify A only on a representative of each such
orbit.

Proposition A.11. Let S be a set of representatives of each rotation orbit of loops
of length 2n in 3. Let A0 : S→ C. For a loop γ of length 2n in 3, let [γ ] be its
representative in S. Suppose that whenever γ ′ ∈ S is fixed by the k-fold rotation,
and ωk

6= 1, then A0(γ
′)= 0. Then there is a well-defined function A1 on the loops

of length 2n in 3 such that A1|S = A0.
Moreover, there is a well-defined element A ∈ PA(0)n such that the values of A

on the loops of length 2n on 3 is equal to A1.

Proof. Suppose γ is a loop of length 2n which stays in 3, and ρ− j (γ )= [γ ] for
some j = 0, . . . , n− 1. If j ≤ n/2,
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ρ j (A)(γ )= A(ρ− j (γ ))=

A

γ (1) γ (2 j+1)

γ (n+1)γ (n+1+2 j)

.

Hence for all j = 0, . . . , n− 1, we define

(10) A1(γ )= ω
− j
√

dim(γ (2 j+1)) dim(γ (n+2 j+1))
dim(γ (1)) dim(γ (n+1))

A0([γ ]),

modulo some modular arithmetic, namely γ (b)= γ (b mod 2n).
In the lopsided convention, the above equation is given by

(11) A1(γ )= ω
− j

( 2 j∏
k=1

dim(γ (1+k))
dim(γ (n+k))

)
A0([γ ]).

We now define A ∈ PA(0)n as follows. First, for loops γ of length 2n which
stay in 3, define A(γ ) = A1(γ ). Next, we define A on loops γ of length 2n for
which d(γ,3)= 1 by Lemma A.9. Finally, we define A on loops γ of length 2n
for which d(γ,3) > 1 by Lemma A.5. �

We now apply the above discussion to specify our generators by their values
on a certain collection of loops. A little unusually, we find our generators in the
graph planar algebra of a different graph: 0 = 2D2, which has a central diamond.
We label the vertices on the diamond by W, S, E, N, which stand for “west,” “south,”
“east,” “north” respectively. We denote the value of A on the collapsed loop which
stays inside the central diamond by A(w), where w is a word on {W, S, E, N}.

AA. Generators for 3Z/4. In an unpublished manuscript, Izumi constructs a 3Z/4

subfactor with principal graphs(
,

)
,

and he claims there is a de-equivariantization, giving a subfactor with principal
graph “2-diamond-2”:

2D2= .
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In an independent calculation, Morrison and Penneys [2015a] verify the existence
and prove uniqueness for the 2D2 subfactor with principal graphs

2D2=
(

,
)
.

They solve the equation T 2
= f (3) in the graph planar algebra of 2D2 to get a

low-weight rotational eigenvector at depth 3. Then they verify, using a universal
variant of the jellyfish algorithm for finite depth subfactor planar algebras, that the
planar subalgebra generated by T is evaluable and has principal graphs 2D2. They
obtain a 3Z/4 subfactor planar algebra as an equivariantization of the 2D2 subfactor
planar algebra. Note that 2D2 has annular multiplicities ∗12, so the 3Z/4 generators
must be the new low-weight vectors at depth 4. See [Morrison and Penneys 2015a]
for more details.

For our purposes in this article, we do not rely on the fact that our generators were
obtained via equivariantization. Rather, we present candidate generators for 3Z/4 in
2D2, show they satisfy Assumptions 2.9, 2.12, and 2.21, and use our formulas to
show they generate an evaluable planar subalgebra of the graph planar algebra of
2D2, i.e., a subfactor planar algebra.

Hence we work in the graph planar algebra of 2D2 where 3 is the central
diamond. The self-adjoint generators A, B for PZ/4

•
have chiralities ωA =−1 and

σA = i and ωB = σB = 1.
A assigns the below values to the indicated rotation orbit representatives of loops

which remain in 3:

0 WSWSWSWS, WSWSWSES, WSWSWNWN, WSWSWNEN,
WSWSESES, WSWSENEN, WSWNWSWN, WSWNWNES,
WSWNENES, WSESWSES, WSESWNWN, WSESWNEN,
WSESESES, WSESENWN, WSESENEN, WSENWSEN,
WSENWNES, WSENENES, WNWNWNWN, WNWNWNEN,
WNWNESES, WNWNENEN, WNESWNES, WNESESEN,
WNENWNEN, WNENESES, WNENENEN, ESESESES,
ESESENEN, ESENESEN, ENENENEN

1
4

(
3−
√

5
)

WSWSWSEN, WSWSWNES, WSWNESES, WSESESEN,
WSENWNWN, WSENENEN, WNWNWNES, WNESESES,
WNENENES

1
4

(√
5− 3

)
WSWSESEN, WSESWSEN, WSESWNES, WSENWNEN,
WSENENWN, WNWNENES, WNESWNEN

2−
√

5 WSWNWSEN, WSENESEN, WNESENES
√

5− 2 WSWNESWN
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λ
(0.09279i)
16,0,−116,0,−1 WSWSESWN, WSWSENES, WSWNWSES, WSWNWNWN,

WSWNENEN, WSENESES, WNWNESEN, WNESENEN,
ESENENEN

λ
(−0.09279i)
16,0,−116,0,−1 WSWSWSWN, WSWNWNEN, WSWNENWN, WSESESWN,

WSESENES, WNENESEN, ESESESEN

λ
(−0.3003i)
1,0,−11,0,−1 WSWNESEN

λ
(0.3003i)
1,0,−11,0,−1 WSENESWN

B assigns the below values to the indicated rotation orbit representatives of loops
which remain in 3:

0 WSWSENWN, WSWSENEN, WSWNWSEN, WSWNWNES,
WSWNESWN, WSWNENES, WSESENWN, WSESENEN,
WSENESEN, WNWNESES, WNESENES, WNENESES

λ
(0.2784i)
16,0,−1044,0,−81 WSWSWSEN, WSWNESES, WSESWNES, WSESESEN,

WSENWNEN, WSENENWN, WNWNWNES, WNENENES

λ
(−0.2784i)
16,0,−1044,0,−81 WSWSWNES, WSWSESEN, WSESWSEN, WSENWNWN,

WSENENEN, WNWNENES, WNESWNEN, WNESESES
1
2

(
11− 5

√
5
)

WSWSWSES, WSESESES, WNWNWNEN, WNENENEN
1
2

(
5
√

5− 11
)

WSWSWSWS, WSWSESES, WSESWSES, WNWNWNWN,
WNWNENEN, WNENWNEN, ESESESES, ENENENEN

1
4

(√
5− 3

)
WSWSWSWN, WSWSENES, WSWNWNWN, WSWNENEN,
WSESESWN, WNWNESEN, ESESESEN, ESENENEN

1
4

(
3−
√

5
)

WSWSESWN, WSWNWSES, WSWNWNEN, WSWNENWN,
WSESENES, WSENESES, WNESENEN, WNENESEN

1
2

(
3−
√

5
)

WSWNWSWN, ESENESEN
1
2

(
7− 3
√

5
)

WSWSWNWN, WSESWNEN, WSENWNES, ESESENEN
1
2

(
3
√

5− 7
)

WSWSWNEN, WSESWNWN, WSENENES, WNESESEN
1
2

(
3
√

5− 9
)

WSENWSEN, WNESWNES

2−
√

5 WSWNESEN, WSENESWN

These entries lie in Q(µZ/4), where µZ/4 is the root of

x8
− 38x6

+ 100x5
+ 343x4

− 2300x3
+ 5102x2

− 5500x + 2581

which is approximately 2.236+ 0.700i .



508 DAVID PENNEYS AND EMILY PETERS

Appendix B. Moments and tetrahedral constants of 3Z/4

For all of our planar algebras, our generators are self-adjoint. This is a list of the
moments and tetrahedral structure constants needed for our calculations.

Tr(AA)= 4+ 2
√

5 Tr( Ǎ Ǎ)= 4+ 2
√

5

Tr(AB)= 0 Tr( Ǎ B̌)= 0

Tr(B B)= 12+ 6
√

5 Tr(B̌ B̌)= 12+ 6
√

5

Tr(AAA)= 0 Tr( Ǎ Ǎ Ǎ)= λ(−3.25)
4,0,−40,0,−25

Tr(AAB)=−4− 2
√

5 Tr( Ǎ Ǎ B̌)= λ(6.698)
4,0,−180,0,25

Tr(AB B)= 0 Tr( Ǎ B̌ B̌)= λ(13.1)
4,0,−648,0,−6561

Tr(B B B)= 12+ 6
√

5 Tr(B̌ B̌ B̌)= λ(0.501)
4,0,−324,0,81

1(A, A, A | A)=−
√

3+
√

5 1(A, A, A | B)= 0

1(A, A, B | A)=−i
√

11+ 5
√

5 1(A, A, B | B)=−
√

2

1(A, B, A | B)=
√

107+ 39
√

5 1(A, B, B | B)=−9i
√

1+
√

5

1(B, A, B | A)=
√

47+ 21
√

5 1(B, A, B | B)= 0

1(B, B, B | B)= 9
√

3−
√

5
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