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In this manuscript we consider the extent to which an irreducible represen-
tation for a reductive Lie group can be realized as the sheaf cohomology of
an equivariant holomorphic line bundle defined on an open invariant sub-
manifold of a complex flag space. Our main result is the following: suppose
G0 is a real reductive group of Harish-Chandra class and let X be the asso-
ciated full complex flag space. Suppose O� is the sheaf of sections of a G0-
equivariant holomorphic line bundle onX whose parameter � (in the usual
twisted D-module context) is antidominant and regular. Let S � X be a
G0-orbit and supposeU �S is the smallestG0-invariant open submanifold
of X that contains S . From the analytic localization theory of Hecht and
Taylor one knows that there is a nonnegative integer q such that the com-
pactly supported sheaf cohomology groups H p

c .S;O�jS / vanish except in
degree q, in which caseH q

c .S;O�jS / is the minimal globalization of an as-
sociated standard Beilinson–Bernstein module. In this study, we show that
the q-th compactly supported cohomology group H q

c .U;O�jU / defines, in
a natural way, a nonzero submodule of H q

c .S;O�jS /, which is irreducible
(i.e., realizes the unique irreducible submodule of H q

c .S;O�jS /) when an
associated algebraic variety is nonsingular. By a tensoring argument, we
can show that the result holds, more generally (for nonsingular associated
variety), when the representationH q

c .S;O�jS / is what we call a classifying
module.

1. Introduction

In this manuscript we show there is a natural generalization of the Borel–Weil
theorem to the class of reductive Lie groups which serves to realize many, but not
all, irreducible admissible representations.

Starting with Schmid’s thesis [1989], there are general results realizing irreducible
representations as sheaf cohomologies of finite-rank holomorphic vector bundles
defined over open orbits in generalized complex flag spaces [Wong 1995; Bratten
1998]. However, relatively few irreducible representations can be realized this
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way. The equivariant D-module theory of Beilinson and Bernstein [1981] provides
a powerful generalization to the Borel–Weil theorem and produces geometric
realizations for any irreducible Harish-Chandra module. However, one would also
like to find a natural realization of a corresponding group representation. In a
general sense, the analytic localization defined by Hecht and Taylor [1990] does
just that, by giving realizations for the minimal globalizations [Schmid 1985] of
Harish-Chandra modules. Along these lines, the theory of analytic localization was
used by Hecht and Taylor to realize minimal globalizations of the standard modules
defined by the Beilinson–Bernstein theory. In many cases, standard modules are
irreducible, but when they are not, it is not obvious how to proceed. One difficulty
is that the geometric realization defined by Hecht and Taylor is obtained via an
equivalence of derived categories so that the analytic localization of an irreducible
representation can (and sometimes does) appear as a complex of sheaves that has
nonzero homologies in various degrees. In spite of this difficulty, it turns out
(somewhat surprisingly to us) that the theory of analytic localization can be used
to realize many more irreducible representations than the example of irreducible
standard modules. In the end, one sees that the key point hinges on whether a certain
associated algebraic variety has singularities. When it does not, then the Beilinson–
Bernstein realization of the corresponding irreducible Harish-Chandra module has a
simple geometric description and this fact controls the analytic localization. When
the associated variety is singular, this simplicity breaks down, and it turns out that
it is impossible to realize the irreducible representation as the sheaf cohomology of
a finite-rank holomorphic vector bundle defined over an invariant open submanifold
of a generalized flag manifold.

Rather than make a general statement about our main results in the introduction
(our main results are Theorem 5.1 and Corollary 6.2), we would like to illustrate
how the theory works in the context of a connected complex reductive group where
the relationship to the Beilinson–Bernstein classification of irreducible admissible
representations is more transparent. In particular, suppose G0 is a connected
complex reductive group with Lie algebra g0 and let K0 �G0 be a compact real
form. Associated to K0 is a corresponding Cartan involution � W G0 ! G0 (in
this case � is the conjugation given by the real form). Let X0 be the complex flag
manifold of Borel subgroups of G0, and let X c

0 be the conjugate complex manifold.
Then the flag manifold X of Borel subalgebras of the complexified Lie algebra g

of g0 can be identified with the direct product

X DX0 �X
c
0:

We need to consider two actions of G0 on X. The diagonal action

g � .x; y/D .gx; gy/
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corresponds to the fact that G0 is a real group with real Lie algebra g0 and the
action

g � .x; y/D .gx; �.g/y/

corresponds to the fact that G0 D K is the complexification of K0. Choose a
� -stable Cartan subgroup H0 �G0 and a Borel subgroup B0 �H0. Let W.G0/ be
the Weyl group of H0 in G0. Then we can identify the set of Borel subgroups of
G0 that contain H0 with W.G0/ (the identity in W.G0/ corresponds to the Borel
subgroup B0). Let Bop

0 be the Borel subgroup opposite to B0 with respect to H0
(this subgroup corresponds to the longest element in W.G0/). Then each G0-orbit
and each K-orbit on X contains exactly one point of the form

.w �B0; B
op
0 / 2X0 �X

c
0

for w 2W.G0/. Thus, the orbits for both actions are simultaneously parametrized
by W.G0/. Observe that the open orbit for the G0-action and the closed orbit for
the K-action correspond to the identity in W.G0/ We introduce the length function,
l.w/, on W.G0/. In particular, each element w 2 W.G0/ can be expressed as a
product of simple reflections and the corresponding length, l.w/, is defined to be
the number of simple reflections that appear in a minimal expression (i.e., a reduced
word) for w. Observe that if Qw is the K-orbit corresponding to w 2W.G0/ then
the complex dimension of Qw is given by

dimC.Qw/D dimC.X0/C l.w/:

For simplicity we will consider the sheaf of holomorphic functions OX on X
(more generally one could consider the sheaf of sections O� of a G0-equivariant
holomorphic line bundle on X whose parameter � in the usual twisted D-module
context is antidominant and regular). The Beilinson–Bernstein classification gives
a one-to-one correspondence between the equivalence classes of irreducible admis-
sible representations for G0 that have the same infinitesimal character as the trivial
representation and the G0-orbits on X given in the following way. For w 2W.G0/,
let Sw be the corresponding G0-orbit and define

q D dimC.X0/� l.w/:

Thus, q is the (complex) codimension of the K-orbit Qw in X. Using their theory
of analytic localization, Hecht and Taylor have shown that the compactly supported
sheaf cohomologies

Hpc .Sw ;OX jSw
/

of the restriction of OX to Sw vanish except when p D q, in which case the
module H q

c .Sw ;OX jSw
/ is the minimal globalization of a corresponding stan-

dard Beilinson–Bernstein module. It follows that H q
c .Sw ;OX jSw

/ has a unique
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irreducible submodule Jw � H
q
c .Sw ;OX jSw

/. These representations Jw for
w 2 W.G0/ are exactly the irreducible admissible representations for G0 that
have the same infinitesimal character as the trivial representation.

In this manuscript we want to realize the representations Jw . Along those lines
we introduce the Bruhat order in W.G0/: if w; u 2W.G0/ then we write u � w
if u is an ordered subword that occurs in a reduced expression for w in terms of
products of simple reflections. Given w 2W.G0/, it is well known that the Bruhat
interval ‡.w/ D fu 2 W.G0/ W u � wg characterizes the Zariski closure of the
K-orbit Qw in the following way:

Qw D
[

u2‡.wA/

Qu:

We call Qw the algebraic variety associated to the G0-orbit Sw . Define

Uw D
[

u2‡.w/

Su:

Then, Uw is the smallest G0-invariant open submanifold of X that contains Sw
and it is not hard to show that Sw is the unique G0-orbit that is closed in Uw .
Put U D Uw � Sw . Letting .OX jU /X, etc., denote the extension by zero of the
restriction of OX to U, we obtain the following short exact sequence of sheaves on
X :

0! .OX jU /X ! .OX jUw
/X ! .OX jSw

/X ! 0:

Using an argument like [Bratten 2008, Lemma 3.3], it is not hard to show that

Hpc .U;OX jU /D 0 if p < qC 1

and that
H q

c .Uw ;OX jUw
/

is a nonzero minimal globalization. Thus, the long exact sequence in sheaf coho-
mology determines an inclusion

H q
c .Uw ;OX jUw

/ ,!H q
c .Sw ;OX jSw

/:

We note that when Uw is the preimage of an open G0-orbit on a generalized flag
space Y then there is a natural identification of the representation H q

c .Uw ;OX jUw
/

with the q-th compactly supported cohomology of the holomorphic functions on the
given open orbit in Y. (This is one of the key points in [op. cit.].) When this happens,
it is known that the representation H q

c .Uw ;OX jUw
/ is irreducible. We say that Uw

is parabolic when Uw is the preimage of an open G0-orbit on a generalized flag
space Y . Our main result in this study shows that (more generally) the submodule
H
q
c .Uw ;OX jUw

/ is irreducible when the associated algebraic varietyQw is smooth.
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Thus we can realize Jw as H q
c .Uw ;OX jUw

/ when (and, in fact, only when) this
happens.

For example, if G0 is the complex general linear group GL.3;C/, then 4 out of
the 6 G0-orbits on X are parabolic but the algebraic varieties associated to all 6
orbits are smooth so we can realize all irreducible representations with the given
infinitesimal character in this case. IfG0DGL.4;C/, then only 8 of the 24G0-orbits
are parabolic, but 22 out of 24 orbits have smooth associated varieties so we can
realize all but two of the irreducible representations with the given infinitesimal
character (and so on). We will also see (for some examples) that when the algebraic
variety Qw is singular the representation H q

c .Uw ;OX jUw
/ is reducible, and it is

actually impossible to realize the irreducible representation Jw as the compactly
supported sheaf cohomology of an equivariant (finite-rank) holomorphic vector
bundle defined on a G0-invariant open submanifold in a generalized flag space.

Our manuscript is organized as follows. In Section 2, we will present the main
results we need about orbits and invariant subspaces in X. In Section 3, we will
introduce the equivariant homogeneous line bundles and prove the basic embedding
theorem. In Section 4, we introduce the algebraic localization theory and give a
geometric description to the irreducible Harish-Chandra module in the Beilinson–
Bernstein classification, assuming the corresponding algebraic variety is smooth. In
Section 5, we introduce the analytic localization and use the comparison theorem
to prove our main result. Then, in Section 6, we use a tensoring argument to extend
our result to antidominant parameters and also consider how our construction relates
to the classical parabolic induction (in the case of a complex reductive group) so we
can consider some examples. We conclude our manuscript with a brief consideration
of how Serre duality applies. We would like to mention that the idea of our proof
involves a mix of ideas from the two articles [Bratten 2008; 1997]. Although our
argument requires a heavy use of the D-module theory and some familiarity with
derived categories, we would hope it looks natural to anyone familiar with these
two previous articles.

2. G0-orbits and K-orbits

Throughout this manuscript G0 will denote a real reductive Lie group of Harish-
Chandra class with Lie algebra g0 and complexified Lie algebra g. Abusing notation
a bit, we let G denote the complex adjoint group of g. (Note that G has Lie algebra
Œg; g�.) There is a natural morphism of Lie groups

G0!G:

We also fix a maximal compact subgroup K0 � G0 and let K be the complex-
ification of K0. Associated to the maximal compact subgroup, there is an involutive
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automorphism

� WG0!G0;

whose fixed point set is K0. The involution � (as well as the complexification
� W g! g of its derivative) is called the Cartan involution.

A Borel subalgebra of g is a maximal solvable subalgebra. G acts transitively
on the set of Borel subalgebras of g and the resulting homogeneous G-space X is a
complex projective variety called the full flag space of G0. Since G0 has finitely
many orbits on X [Wolf 1969], the G0-orbits are locally closed submanifolds.

A basic geometric property of flag manifolds that is fundamental to our study
is the existence of a one-to-one correspondence between G0-orbits and K-orbits
referred to as Matsuki duality. For x 2X we let bx denote the corresponding Borel
subalgebra of g. Then, the nilradical nx of bx is given by nx D Œbx; bx�. The point
x 2 X (as well as the Borel subalgebra bx) is called special if there is a Cartan
subalgebra c of bx such that

c0 D g0\ c is a real form of c and �.c/D c:

Matsuki [1979] showed that both the special points in a G0-orbit as well as the
special points in a K-orbit form a (nonempty) K0-orbit. A G0-orbit S and a K-orbit
Q are said to be Matsuki dual if S \Q contains a special point. It follows that
Matsuki duality defines a bijection between the set of G0-orbits and the set of
K-orbits. When S is a G0-orbit and Q is a K-orbit then we will write S �Q when
S and Q are Matsuki dual.

Given a K-orbit Q, the associated algebraic variety is defined to be the Zariski
closure Q of Q (when S is the G0-orbit dual Q, we will also refer to Q as the
algebraic variety associated to S ). There is a partial order, called the closure order,
defined on the set of K-orbits by

Q1 �Q2 if Q1 �Q2:

While the associated algebraic variety is a closed K-invariant subvariety of X
associated to a G0-orbit S, we will now define a corresponding G0-invariant open
submanifold of X. In particular, suppose S0 is a G0-orbit and letQ0 be the Matsuki
dual. We define an associated indexing set ‡.S0/ of G0-orbits by

S 2 ‡.S0/ () 9Q such that Q � S and Q �Q0:

We define the corresponding G0-invariant subspace U by

U D
[

S2‡.S0/

S:
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Proposition 2.1. With the previous notation, U is the smallest G0-invariant open
submanifold that contains S0, and S0 is the unique closed G0-orbit in U.

Proof. We consider the closure orders on the set of K-orbits and on the set of
G0-orbits. Matsuki [1988] showed that duality reverses the corresponding closure
relations. It follows that

S 2 ‡.S0/ () S0 � S () S0 � S:

Thus, if S … ‡.S0/, then S0 \S D¿; therefore, S0 \S1 D¿ for each G0-orbit
S1 contained in S. Hence,

U \S D¿:

Since there are a finite number of orbits, the set

C D
[

S…‡.S0/

S

is closed and therefore
U DX �C

is open.
Now, suppose that W is an open G0-invariant submanifold that contains S0.

Suppose S � U. Then S0 � S. Thus,

S \W ¤¿:

Hence, S \W is a nonempty open G0-invariant subset of S. Since S is locally
closed, it follows that S is open and dense in S. Hence, from the G0-invariance,

S � S \W D) S �W

so that U �W, which proves that U is the smallest G0-invariant open submanifold
that contains S0.

To prove the last claim, first observe that if S is a G0-orbit contained in S0 then
S � S0 so that S � U if and only if S D S0. Thus,

S0\U D S0

and S0 is closed in U. On the other hand, if S is a closed G0-orbit in U, then

S D S \U:

However, from the definition of U, for S � U, we have S0 � S, hence

S0 � S \U:

It follows that S D S \U if and only if S D S0. �
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Example 2.2. Suppose that p � g is a parabolic subalgebra and let Y be the
corresponding G-homogeneous space of parabolic subalgebras of g conjugate to
p. For each y 2 Y , let py denote the corresponding parabolic subalgebra of g.
For x 2 X, there is a unique y 2 Y such that bx � py . Thus there is a canonical
G-equivariant projection

� WX ! Y

given by �.x/ D y if bx � py . A point y 2 Y is called special if py contains a
special Borel subalgebra.

Suppose W � Y is an open G0-orbit and let y 2W be a special point. Let O
be the K-orbit of y. Then, O is closed in Y (in fact O �W ), and Matsuki [1982]
showed that the G0-orbits in U D ��1.W / are Matsuki dual to the K-orbits in
��1.O/. Also, there is a unique G0-orbit S0 that is closed in U and its Matsuki
dual Q0 is the unique open orbit in the closed algebraic variety ��1.O/. Therefore,
Q0 D �

�1.O/ and it follows that a G0-orbit S is contained in U if and only if
its Matsuki dual Q is contained in Q0; thus, U is the smallest G0-invariant open
submanifold that contains S0. Observe that, in this case, the associated algebraic
variety Q0 D ��1.O/ is smooth since the fibers of � are smooth and since �
defines a locally trivial algebraic fibration of ��1.O/ over O.

3. Equivariant line bundles

In this section, we introduce the equivariant line bundles on the full flag space X,
as well as the corresponding standard modules associated to a G0-orbit S �X. We
begin this section by introducing the abstract Cartan dual, which is the parameter
set for the twisted sheaves of differential operators (TDOs) on X. Recall that G
is the complex adjoint group of g. For x 2 X, let nx denote the nilradical of the
corresponding Borel subalgebra bx and put

hx D bx=nx :

Since the stabilizer of x in G (i.e., the corresponding Borel subgroup in G) acts
trivially on hx it also acts trivially on the complex dual h�x . It follows that the
corresponding G-homogeneous holomorphic vector bundle on X is trivial and that
the associated space of global sections h� is naturally isomorphic to h�x via the
evaluation at x. The vector space h� is called the abstract Cartan dual for g. If c
is a Cartan subalgebra of bx , then by coupling the natural projection of c onto
hx with the evaluation at x, we obtain an isomorphism of c� with h� called the
specialization of h� to c� at x. Using the specializations, we can identify an abstract
set of roots

†� h�
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and an abstract set of positive roots

†C �†;

where † corresponds to the set of roots of c in g and †C corresponds to the roots
of c in bx , via the specialization at x. Given ˛ 2† and � 2 h�, we can also define
the complex number

_

˛.�/;

the value of � on the coroot of ˛. The element � 2 h� is called integral if
_

˛.�/ 2 Z for each ˛ 2†:

It just so happens that the half-sum of positive roots, denoted by �, is an integral
element of h� that plays a key role in the TDO parametrization.

Let zG denote the universal cover of G and suppose � 2 h� is integral. For a
point x 2 X, the Lie algebra of the corresponding Borel subgroup zBx in zG (i.e.,
the stabilizer of x in zG) is given by bx \ Œg; g�. Thus, using the evaluation at x, the
global section � determines a one-dimensional representation

bx \ Œg; g� �! hx
�x
�! C:

Since zG is simply connected, it is known that there is a (unique) holomorphic
character of zBx whose derivative is given, in this way, by �x . Thus, corresponding
to each integral � 2 h� there is a corresponding zG-homogeneous holomorphic line
bundle

L.�/ �!X:

Let O.�/ be the corresponding sheaf of holomorphic sections. In a natural way, zG
and thus Œg; g� act on O.�/. Let z be the center of g. Suppose W �X is an open
set, and let

� WW ! L.�/

be a local holomorphic section. Then, extend O.�/ to a sheaf of g-modules by

.� � �/.x/D �.�/�.x/ for � 2 z and x 2W:

We say that L.�/ is a G0-equivariant line bundle if there exists a G0-action on
L.�/ (in the sense of differentiable G0-actions on vector bundles over differentiable
G0-spaces) such that the induced morphisms L.�/! L.�/, given by multiplication
by group elements, are holomorphic and such that the derivative of the G0-action
on local sections coincides with the g-action.

Example 3.1. An important class of G0-equivariant holomorphic line bundles
corresponds to the family of (equivalence classes of) finite-dimensional irreducible
representations of G0 that are also irreducible for the corresponding g-action (i.e.,
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irreducible finite-dimensional g-modules with a compatibleG0-action). In particular,
let V be a finite-dimensional G0-module that is irreducible as a g-module. For
each x 2 X, let G0Œx� denote the stabilizer of x and consider the corresponding
.bx , G0Œx�/-module

V=nxV:

Choosing a Cartan subalgebra c� bx and using the specialization to x, the action
of c on V=nxV is given by an element � 2 h� that corresponds to the lowest weight
in V . Hence, if we define

�D �� �

then
_

˛.�/ is a negative integer, for each positive root ˛ 2†C. We can define the
total space of a G0-equivariant holomorphic line bundle L� by

L� D
[
x2X

V=nxV:

Using the action of zG one can define holomorphic transition functions. Then the
Borel–Weil Theorem says that the representation V is recovered as the global
holomorphic sections of the bundle L�.

In general„ when O.�/ is the sheaf of holomorphic sections of G0-equivariant
line bundle we will use the shifted parameter �D �� � and write

O� DO.�/

for the sheaf of holomorphic sections. We say � is regular if
_

˛.�/¤ 0 for each root ˛ 2†:

An element � is called singular when it is not regular. We say � is antidominant if
_

˛.�/ … N for each positive root ˛ 2†C:

Suppose that O� is the sheaf of holomorphic sections of a G0-equivariant line
bundle. Let S be a G0-orbit in X and let Q be the Matsuki dual to S. We define
the vanishing number q of S to be the (complex) codimension of Q in X. Suppose
that � is antidominant and regular. One of the main results of the Hecht–Taylor
analytic localization theory is that the compactly supported sheaf cohomology of
the restriction O�jS of O� to S vanishes, except in degree q, in which case

H q
c .S;O�jS /

is the minimal globalization of a corresponding standard Beilinson–Bernstein
module. (We will describe this module in the following section.) In particular,
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H
q
c .S;O�jS / has a unique irreducible submodule. In general, (for any parameter

�), the sheaf cohomology groups

Hpc .S;O�jS /

vanish [Bratten 1997] for p < q, and in the nonzero cases these cohomology
groups are minimal globalizations of the sheaf cohomology groups of an associated
standard Harish-Chandra sheaf.

In general, terms, we now consider a simple geometric procedure which can be
used in the context of the Hecht–Taylor realization of minimal globalizations, to
study representations. We first remark that the sheaves O� are examples of what
is referred to in the Hecht–Taylor development as DNF (stands for dual nuclear
Fréchet) sheaves of analytic G0-modules (we will not need the formalism of DNF
sheaves of analytic G0-modules in our study however we would simply like to
mention the general criteria used to establish the following results). We want to
remark that, in the case of the global sheaf cohomology on X, the sheaf cohomology
groups

Hp.X;O�/

are finite-dimensional and were originally studied in [Bott 1957]. Now suppose
L� X is a locally closed G0-invariant subspace and let

.O�jL/X

denote the extension by zero to X of the restriction of O� to L. Then there is a
natural isomorphism of functors

Hp.X; .O�jL/X /ŠHpc .L;O�jL/

and it follows from the results of Hecht and Taylor (at least for � regular — in the
singular case one can prove this by a tensoring argument as in [Bratten 1997]) that
the sheaf cohomology groups

Hpc .L;O�jL/

are minimal globalizations of Harish-Chandra modules. Let W � L be an open,
G0-invariant subspace and let C DL�W . Then we have the following short exact
sequence of DNF sheaves of analytic G0-modules:

0! .O�jW/X ! .O�jL/X ! .O�jC/X ! 0:

Therefore, the corresponding long exact sequence in cohomology

� � �!Hpc .W;O�jW/!Hpc .L;O�jL/!Hpc .C;O�jC/!HpC1
c .W;O�jW/!� � �

is a sequence of minimal globalizations with continuous G0-morphisms.
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Return to the case where S is a G0-orbit and let U be the smallest G0-invariant
open set that contains S. Then the compactly supported sheaf cohomology groups

Hpc .U;O�jU /

are minimal globalizations of Harish-Chandra modules. Recall that q is the van-
ishing number of S. We will now show that there is a natural embedding of
H
q
c .U;O�jU / in H q

c .S;O�jS /. Let W DU �S. Then W is open and we have the
following short exact sequence of sheaves on X :

0! .O�jW/X ! .O�jU /X ! .O�jS /X ! 0:

This sequence will induce a sequence of continuous morphisms of minimal global-
izations when we apply the long exact sequence of sheaf cohomology. To prove we
have an inclusion in grade q we use the vanishing on S, and the following lemma.

Lemma 3.2. Maintain the previously defined notations. Then,

Hpc .W;O�jW/D 0 for p � q:

Proof. First observe that since Q is open in Q then for each Q0 � Q such that
Q0 ¤Q then the codimension of Q0 is strictly bigger than the codimension of
Q, so that the vanishing numbers for G0-orbits in W are at least qC 1. Suppose
O �W is a G0-invariant open subset. We define the length of O to be the number
of G0-orbits contained in O. We show that the announced vanishing result holds
for every G0-invariant open subset of W by an induction on length. When O has
length one, it is an open G0-orbit so the result holds since it has vanishing number
at least qC1. In general, let S0�O be a G0-orbit of minimal dimension. Since S0
is open and dense in its closure it follows that any G0-orbit in the closure different
from S0 has strictly smaller dimension. Thus,

S0\O D S0

and O0DO�S0 is an open G0-invariant of shorter length. Thus, the result follows
by induction, using the long exact sequence in cohomology applied to the short
exact sequence of sheaves:

0! .O�jO0
/X ! .O�jO/X ! .O�jS0

/X ! 0: �

Corollary 3.3. Let O� be the sheaf of sections of a G0-equivariant holomorphic
line bundle over X. Suppose S �X is G0-orbit with associated vanishing number
q and let U be the smallest G0-invariant open submanifold that contains S. Then
there is a natural inclusion of analytic G0-modules

H q
c .U;O�jU /!H q

c .S;O�jS /
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4. Localization and standard Beilinson–Bernstein modules

We begin this section by introducing the sheaves of twisted differential operators and
reviewing some of the necessary theory. For a basic reference on the algebraic side
of the localization theory, we note that [Miličić 1993] provides a nice overview to the
geometric realization of Harish-Chandra modules given by the Beilinson–Bernstein
theory.

Let U.g/ be the enveloping algebra of g and let Z.g/ be the center of U.g/. An
infinitesimal character ‚ is a morphism of algebras (with identity)

‚ WZ.g/! C:

We let U‚ be the quotient of U.g/ by the two-sided generated from the kernel of
‚ in Z.g/. Observe that U‚ is the algebra that acts naturally on a g-module with
infinitesimal character ‚.

Let W be the Weyl group of h�. By Harish-Chandra’s classical result, Z.g/
is isomorphic to the Weyl group invariants in the enveloping algebra of a Cartan
subalgebra of g. It follows that the infinitesimal characters are naturally parametrized
by the W-orbits in h�. For � 2 h�, we write

‚DW � and � 2‚

when the W orbit of � parametrizes the infinitesimal character ‚. It is known
that if � 2 h� is integral (or regular) then w� is integral (or regular) for every
w 2W . In this case we also say that the corresponding infinitesimal character is
integral (or regular). When an infinitesimal character ‚ is integral and regular
then there exists a unique � 2‚ that is antidominant. Notice that the infinitesimal
character of an irreducible admissible representation is an important invariant and
that the Beilinson–Bernstein realization of irreducible Harish-Chandra modules
with infinitesimal character ‚ depends, to some extent, on the choice of � 2‚.

At this point we need to distinguish between the algebraic and analytic structures
on X. Therefore, we consider the full flag space X as both an algebraic variety
(with the Zariski topology) and as a complex manifold (with the analytic topology)
according to the context. Since the line bundles, defined for integral � 2 h� in
the previous section, have a compatible algebraic structure, we can consider the
corresponding sheaf of algebraic sections Oalg

�
defined on the algebraic variety

X. Associated to the sheaf Oalg
�

is a corresponding twisted sheaf of differential
operators (TDO) Dalg

�
.

We can also consider the corresponding TDO D�, with holomorphic coefficients
and defined on complex variety X. In a natural way, O� is a sheaf of modules for
D�. When O� is the sheaf of holomorphic sections of a G0-equivariant line bundle,
G0 acts on D� while K acts compatibly (extending the K0-action) on Oalg

�
and
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Dalg
�

. We want to emphasize that we are using the shifted parametrization from the
previous section. In particular, O�� is the sheaf of holomorphic functions on X
and D�� is the sheaf of holomorphic differential operators.

Suppose that � 2‚. Beilinson and Bernstein showed that

�.X;Dalg
� /Š U‚ and Hp.X;Dalg

� /D 0 for p > 0:

Thus, the sheaf cohomology groups of a sheaf of Dalg
�

-modules are g-modules with
infinitesimal character ‚. When F is a sheaf of quasicoherent Dalg

�
-modules and �

is antidominant, Beilinson and Bernstein showed that

Hp.X;F/D 0 for p > 0:

In particular, when � is antidominant, the functor of global sections is exact on the
category of quasicoherent Dalg

�
-modules. The localization functor

��.M/D Dalg
� ˝U‚

M

is defined on the category ofU‚-modules and is the left adjoint to the global sections
functor on the category of quasicoherent Dalg

�
-modules. When � is antidominant and

regular, Beilinson and Bernstein showed that the localization functor and the global
sections functor are mutual inverses and determine an equivalence of categories.

Suppose S �X is a G0-orbit with associated vanishing number q. Let O� be the
sheaf of holomorphic sections of a G0-equivariant line bundle. We now consider the
geometric construction of the underlying Harish-Chandra module of the minimal
globalization

H q
c .S;O�jS /:

Let Q denote the K-orbit Matsuki dual to S (equip Q with the Zariski topology)
and consider the K-equivariant sheaf Oalg

�
. Let i WQ ,!X be the inclusion and let

i�.Oalg
� /D i�1.Oalg

� /˝i�1.O alg
X /O

alg
Q

be the inverse image of Oalg
�

with respect to the structure sheaves of the algebraic
varieties Q and X. Therefore, i�.Oalg

�
/ is the sheaf of sections of a corresponding

K-homogeneous algebraic line bundle defined on Q. Let Dalg
Q;�

be the sheaf of
differential operators for the locally free sheaf i�.Oalg

�
/. Then, there is a corre-

sponding direct image functor iC in the category of sheaves of (twisted) D-modules.
In this case, since the morphism i is an affine inclusion of smooth varieties, the
direct image is an exact functor [Hecht et al. 1987]. The sheaf

I.Q; �/D iCi�.Oalg
� /

is a K-equivariant sheaf of Dalg
�

-modules called the corresponding standard Harish-
Chandra sheaf onX, which contains a unique (coherent andK-invariant) irreducible
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subsheaf
J .Q; �/� I.Q; �/:

of Dalg
�

-modules. We note that the notation being used is a bit ambiguous since the
structure of these objects also depends on the K0-action and not just the orbit Q
and the integral parameter �. However, in the current context it should be clear
how one construction leads to the other and we feel our approach avoids an overly
complicated notation. The Harish-Chandra module

I.Q; �/D �.X; iCi
�.Oalg

� //

is called the corresponding standard Beilinson–Bernstein module. In general, one
knows [Bratten 1997] that I.Q; �/ is the underlying Harish-Chandra module of
H
q
c .S;O�jS /. Observe that when � is antidominant and regular, by the equivalence

of categories, it follows that the Harish-Chandra module

J.Q; �/D �.X;J .Q; �//� I.Q; �/

is the unique irreducible submodule of the corresponding standard Beilinson–
Bernstein module. We call I.Q; �/ a classifying module if � is antidominant
and J.Q; �/ ¤ 0. As the name suggests, the classifying modules are used in
Beilinson–Bernstein classification of irreducible admissible representations. This
works perfectly when G0 is a connected, complex reductive group, however, in
general, one must enlarge the class of standard Harish-Chandra sheaves to include
all irreducible representations with the given integral infinitesimal character.

Suppose � is antidominant and regular and let J.Q; �/min denote the correspond-
ing minimal globalization.

Proposition 4.1. Maintain the above notations (in particular, we assume that �
is antidominant and regular). Let U be the smallest G0-invariant open set that
contains S. Then, there exists a natural inclusion

J.Q; �/min ,!H q
c .U;O�jU /:

Proof. Since I.Q; �/ is the underlying Harish-Chandra module of H q
c .S;O�jS /,

it follows that J.Q; �/min is the unique irreducible submodule in H q
c .S;O�jS /.

Therefore, to establish the result it suffices to show that

H q
c .U;O�jU /¤ 0:

We follow the setup used in Lemma 3.2 and argue by contradiction. Suppose
that H q

c .U;O�jU / D 0 and let W D U � S. Using the long exact sequence in
cohomology, we obtain an inclusion

J.Q; �/min ,!H q
c .S;O�jS / ,!H qC1

c .W;O�jW /:
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Now, suppose that S1 �W is a G0-orbit of minimal dimension and define W1 D
W �S. Then S1 is closed in W1, so using the corresponding long exact sequence
in cohomology, we obtain the sequence

0!H qC1
c .W1;O�jW1

/!H qC1
c .W;O�jW/!H qC1

c .S1;O�jS1
/! � � � :

Since J.Q; �/min, is irreducible either

J.Q; �/min ,!H qC1
c .W1;O�jW1

/ or J.Q; �/min ,!H qC1
c .S1;O�jS1

/:

However, if H qC1
c .S1;O�jS1

/¤ 0, then this representation is the minimal global-
ization of the classifying module I.Q1; �/ where Q1 is the K-orbit Matsuki dual to
S1. Thus, J.Q1; �/min is the unique irreducible submodule of H qC1

c .S1;O�jS1
/.

Since Q1 ¤Q, it follows that J.Q; �/ is not isomorphic to J.Q1; �/. Therefore,

J.Q; �/min ,!H qC1
c .W1;O�jW1

/:

Proceeding in this fashion, we would obtain that

J.Q; �/min ,!H qC1
c .O;O�jO/;

where O is an open G0-orbit. However, this is impossible since H qC1
c .O;O�jO/

is either zero or an irreducible minimal globalization that is not isomorphic to
J.Q; �/min. �

The proof of our main result now consists of two steps. The first part is to char-
acterize the irreducible Harish-Chandra sheaf J .Q; �/ when the associated variety
Q is smooth. Once we have that in hand, it turns out to be fairly straightforward to
calculate the analytic localization of J.Q; �/min on G0-orbits. To finish the proof
we show that the inclusion

J.Q; �/min ,!H q
c .U;O�jU /

induces an isomorphism between the analytic localization of J.Q; �/min and the
sheaf

.O�jU /X:

We can then recover our main result by the Hecht–Taylor equivalence of derived
categories.

For the first step of our proof, we continue with the previous notation.
Let

j WQ ,!X

denote the inclusion and assume Q is smooth. We consider the K-equivariant
sheaf j �.Oalg

�
/ defined on Q. Notice that j �.Oalg

�
/ is the sheaf of sections of a

K-equivariant algebraic line bundle defined on Q. Let Dalg
Q;�

denote the sheaf on Q



THE BOREL–WEIL THEOREM FOR REDUCTIVE LIE GROUPS 273

of (twisted) differential operators of the invertible sheaf j �.Oalg
�
/, and let jC be

the corresponding direct image functor. Thus,

jCj
�.Oalg

� /

is a K-equivariant sheaf of Dalg
�

-modules.

Proposition 4.2. Suppose Oalg
�

is the sheaf of sections of aK-equivariant algebraic
line bundle onX. LetQ�X be aK-orbit and suppose I.Q; �/ is the corresponding
standard Harish-Chandra sheaf. Assume that the associated variety Q is smooth
and let j WQ ,!X be the inclusion. Then there exists a natural isomorphism

jCj
�.Oalg

� /Š J .Q; �/:

Proof. Let

l WQ ,!Q

be the inclusion and recall that i WQ ,!X. Since Q is open in Q, it is clear that

j �.Oalg
� /jQ Š i

�.Oalg
� /;

as sheaves of K-equivariant Dalg
Q;�-modules. Furthermore, the direct image lC

coincides with the direct image l� in the category of sheaves. By the adjointness
property of the direct image

Hom.j �.Oalg
� /; l�i

�.Oalg
� //Š Hom.j �.Oalg

� /jQ; i
�.Oalg

� //

so the isomorphism above determines a nonzero morphism

j �.Oalg
� /! l�i

�.Oalg
� /

of K-equivariant Dalg
Q;�

-modules.
Since Q is a closed, smooth subvariety of X, Kashiwara’s equivalence of cate-

gories says that the direct image jC establishes an equivalence between the category
of coherent Dalg

Q;�
-modules and the category of coherent Dalg

�
-modules with support

on Q. Thus, we have a nonzero morphism

jCj
�.Oalg

� /! jCl�i
�.Oalg

� /Š iCi
�.Oalg

� /D I.Q; �/

this last isomorphism since i D j ı l . Now we simply observe that j �.Oalg
�
/ is

an irreducible Dalg
Q;�

-module so that jCj �.Oalg
�
/ is also irreducible (once again by

Kashiwara’s equivalence). Since the morphism we have defined is nonzero and
iCi
�.Oalg

�
/ has a unique irreducible coherent subsheaf, the proposition is proven. �
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5. Analytic localization and comparison

We are now ready to introduce the analytic localization. The Hecht–Taylor version
of the localization functor is built around the topology of the minimal globalization.
One the one hand, Hecht and Taylor consider topological U‚-modules that have a
dual nuclear Fréchet (DNF) topology, where morphisms are continuous morphisms
of modules; on the other hand, they define the concept of a DNF sheaf of D�-
modules with an accompanying concept of continuous morphisms of DNF sheaves
of modules. For � 2‚, the topological localization

�an
� .M/D D� y̋U‚

M

does not have very interesting results, but since free resolutions of DNF modules
are complexes of DNF modules, using these sorts of resolutions, one can define a
derived functor L�an

�
. In particular, the analytic localization takes complexes of

DNF U‚-modules to complexes of DNF sheaves of D�-modules (by applying �an
�

to the corresponding free resolutions). On the other side of the equation, by using
Čech resolutions, Hecht and Taylor show there are enough injectives within the
category of DNF sheaves of D�-modules. Thus, by applying the global sections to
injective resolutions, one can define a derived global sections functor on complexes
of DNF sheaves of D�-modules. The result is then a complex of DNF U‚-modules.
On appropriately defined derived categories, for � regular, it is not hard to show
the derived functors L�an

�
and R� are mutual inverses.

In general, one does not know about the homology groups of the analytic local-
ization of a complex of DNF U‚-modules: these homology groups may very
well not be DNF sheaves (although they will be D�-modules). However, the
homology groups of the analytic localization of a minimal globalization M (any
DNF U‚-module can be thought of as a complex which is zero in all nonzero
degrees) turn out to be DNF sheaves of D�-modules of a very special sort. In
order to explain this, we introduce the concept of the geometric fiber of a sheaf
of OX -modules. In particular, if F is a sheaf of OX -modules and x 2X, then we
define the geometric fiber Tx.F/ of F at x by

Tx.F/D C˝OX;x
Fx;

where OX;x and Fx denote the corresponding stalks of these sheaves at x and where
OX;x acts on C by evaluation at x. Then, letting G0Œx� be the stabilizer of x in G0,
Hecht and Taylor showed (for � regular) that the geometric fiber

Tx.Lp�
an
� .M//

of the p-th homology group Lp�
an
�
.M/ of the analytic localization of the minimal

globalization M is a finite-dimensional (continuous) .hx , G0Œx�/-module, where
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hx acts by the evaluation of �C � 2 h� at x, and that the restriction of Lp�
an
�
.M/

to the G0-orbit S of x is the sheaf of (restricted holomorphic) sections of the
corresponding homogeneous vector bundle over S.

When ‚ is a regular and � 2‚ is antidominant, the comparison theorem [Hecht
and Taylor 1993] provides a way to understand the analytic localization L�an

�
.M/

of a minimal globalization M, with infinitesimal character ‚, assuming one under-
stands the (derived) geometric fibers of the localization

��.MHC/

of the underlying Harish-Chandra module MHC of M. To explain this result, we
introduce the geometric fiber

T alg
x .F/D C˝Oalg

X;x
Fx

of a sheaf of Oalg
X -modules F at x 2X. Note that T alg

x defines a left exact functor
(for example) on the category of quasicoherent Dalg

�
-modules and that there are

corresponding derived functors LpT
alg
x . When MHC is a Harish-Chandra module

with infinitesimal character ‚ and � 2 ‚ is antidominant and regular, Beilinson
and Bernstein have shown that the hx-modules

LpT
alg
x ��.MHC/

are finite-dimensional (algebraic) .hx , KŒx�/-modules, where KŒx� is the stabilizer
of x in K and hx acts by the evaluation of �C � 2 h� at x. The comparison
theorem says that when x is a special point, then there exists a natural equivalence
between the finite-dimensional .hx , G0Œx�/-modules and the finite-dimensional
.hx , KŒx�/-modules (given by the .hx , K0Œx�/-structure) and that there is a natural
isomorphism

LpT
alg
x ��.MHC/Š Tx.Lp�

an
� .M//

of .hx , K0Œx�/-modules. Note that a more general comparison theorem, described
in exactly these terms is proved in [Bratten 1997, Theorem 7.2].

Theorem 5.1. Suppose O� is the sheaf of holomorphic sections of aG0-equivariant
line bundle with regular antidominant parameter � 2 h�. Let S �X be a G0-orbit
with vanishing number q and let U � S be the smallest G0-invariant open sub-
manifold that contains S. Let Q be the K-orbit that is Matsuki dual to S and
suppose the associated variety Q is smooth. Then the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q in which case H q
c .U;O�jU / is the unique irreducible

submodule of the standard module H q
c .S;O�jS /.
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Proof. Utilizing the notation from the previous section, we know that H q
c .S;O�jS /

is the minimal globalization of the standard Beilinson–Bernstein module I.Q; �/.
Let J.Q; �/ � I.Q; �/ be the corresponding unique irreducible Harish-Chandra
submodule and J.Q; �/min its minimal globalization. Consider the complex

R�..O�jU /X /

of DNF U‚-modules and let J.Q; �/minŒ�q� denote the complex which has zeros
in all gradings except q, where we have the module J.Q; �/min. The point of our
proof is to present a nonzero morphism in the derived category

J.Q; �/minŒ�q�!R�..O�jU /X /

such that the induced morphism

L�an
� .J.Q; �/minŒ�q�/! L�an

�

�
R�..O�jU /X /

�
Š .O�jU /X Œ0�

is an isomorphism (we include the place holder Œ0� to emphasize the fact that we
think of the sheaf .O�jU /X as a complex concentrated in degree zero). By the
equivalence of derived categories, we will thus obtain an isomorphism

R�..O�jU /X /Š J.Q; �/minŒ�q�;

which is the desired result.
To present a morphism in the derived category, recall, by Proposition 4.1, that

we have a natural inclusion

J.Q; �/min!H q
c .U;O�jU /:

Since the sheaf cohomology groups of .O�jU /X vanish in degrees smaller that q, a
standard truncation argument provides a nonzero morphism in the derived category

H q
c .U;O�jU /Œ�q�!R�..O�jU /X /:

Composing this morphism with the inclusion gives the desired result.
We now want to show that the cohomology groups of the complex

L�an
� .J.Q; �/minŒ�q�/

vanish except in degree zero. That is, we want to calculate the homology groups

Lp�
an
� .J.Q; �/min/

and see that they vanish except in degree q. To do this, we use the comparison
theorem. So we need to calculate the derived geometric fibers of the sheaf

��.J.Q; �//D J .Q; �/:
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Let j WQ ,!X denote the inclusion. Since Q is smooth, we have

J .Q; �/Š jCj �.Oalg
� /:

Thus, calculating the geometric fibers

LpT
alg
x ��.J.Q; �//Š LpT

alg
x .jCj

�.Oalg
� //

is a straightforward application of the base change formula for the direct image
in the category of TDOs. In particular, since the codimension of Q in X is q, it
follows that, for each x 2X,

LpT
alg
x ��.J.Q; �//D 0 if p ¤ q:

When x 2Q,

LqT
alg
x ��.J.Q; �//Š LqT

alg
x .jCj

�.Oalg
� //Š T alg

x .Oalg
� /;

and when x …Q,
LqT

alg
x ��.J.Q; �//D 0:

In particular, if we let
V D �.X;Oalg

� /

be the corresponding irreducible finite-dimensional .g; K/-module, then for each
special point x 2Q,

LqT
alg
x ��.J.Q; �//Š V=nxV

as .hx; KŒx�/-modules.
By the comparison theorem, it follows that the homology groups

Lp�
an
� .J.Q; �/min/

vanish except when p D q, and this, in turn, implies that the complex

L�an
� .J.Q; �/minŒ�q�/

is quasi-isomorphic to the complex

Lq�
an
� .J.Q; �/min/Œ0�

which is nonzero only in degree 0. Hence, the nonzero morphism

L�an
� .J.Q; �/minŒ�q�/! .O�jU /X Œ0�

in the derived category reduces to a nonzero morphism

Lq�
an
� .J.Q; �/min/! .O�jU /X
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of G0-equivariant DNF sheaves of D�-modules. We will prove that this morphism
is in fact an isomorphism. In particular, if O is a G0-orbit in U , then since both
Lq�

an
�
.J.Q; �/min/jO and O�jO are induced equivariant sheaves, it follows that

the restricted morphism

Lq�
an
� .J.Q; �/min/jO !O�jO

is either an isomorphism or zero.
Notice that these limited possibilities for the restricted morphism can also be

deduced from the fact that we have a morphism of .D�jO/-modules and both
objects are locally free rank one sheaves of .OX jO/-modules. Indeed, if we knew
a priori that Lq�

an
�
.J.Q; �/min/ was a locally free sheaf of OU -modules, then

it would follow immediately from standard D-module theory [Hotta et al. 2008,
Theorem 1.4.10] that a nonzero morphism of D�-modules would be an isomorphism.

Define W to be the set of x 2 U such that the induced morphism

Lq�
an
� .J.Q; �/min/x! .O�/x

is nonzero. We will show that W is an open set that contains S. Since G0 acts on
W and since U is the smallest G0-invariant open set that contains S it will follow
from our previous remarks that the morphism in question is an isomorphism.

Consider the composition

Lq�
an
� .J.Q; �/min/! .O�jU /X ! .O�jS /X;

where the second morphism is the canonical one. Since these morphisms induce
the nonzero composition

J.Q; �/min!H q
c .U;O�jU /!H q

c .S;O�jS /;

it follows that the restricted morphism

Lq�
an
� .J.Q; �/min/jS !O�jS

is an isomorphism and S �W . To show W is open, suppose x 2W . Since O� is a
locally free rank one sheaf of OX -modules there is a local section � of O�, defined
on a neighborhood of x such that every local section has the form f� where f is a
holomorphic function. Since the induced morphism on the geometric fiber

Tx.Lq�
an
� .J.Q; �/min//! Tx.O�/

is nonzero, it follows that for some open set W1 that contains x, there is a holomor-
phic function f defined on W1 such that f .x/¤ 0, and there is a local section in
�
�
W1; Lq�

an
�
.J.Q; �/min/

�
that maps onto f� . Thus,

W2 D fz 2W1 W f .z/¤ 0g
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is an open set such that x 2W2 �W , and we have finished the proof. �

6. Some additional considerations

6.1. A tensoring argument. We maintain the notation from the previous section.
In particular, S is a G0-orbit in X, Q is the K-orbit that is Matsuki dual to S, O�
is the sheaf of holomorphic sections of a G0-equivariant line bundle on X, and so
on. When the parameter � 2 h� is antidominant then it may be the case that the
Harish-Chandra module

J.Q; �/D �.X;J .Q; �//

is zero. However, when J.Q; �/ ¤ 0, it is the unique irreducible submodule
of the standard Beilinson–Bernstein module I.Q; �/. When � is antidominant
and J.Q; �/ ¤ 0, we will refer to I.Q; �/ (as well as its minimal globalization
H
q
c .S;O�jS /) as a classifying module. Let U be the smallest G0-invariant open

submanifold that contains S. Under the assumption that the associated variety Q is
smooth and � is antidominant, we can give the following tensoring argument that
shows that H q

c .U;O�jU / is the minimal globalization of J.Q; �/. Hence, when
H
q
c .S;O�jS / is a classifying module, it follows that H q

c .U;O�jU / is the unique
irreducible submodule.

Lemma 6.1. Assume that � 2 h� is antidominant, and suppose that the associated
variety Q is smooth. Then, the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q, in which case H q
c .U;O�jU / is the minimal globalization

of J.Q; �/.

Proof. The proof is basically the same as (but simpler than) the proof in [Bratten
1997, Theorem 9.4] with the slight difference that we need to use the description
of the irreducible Harish-Chandra sheaf J .Q; �/ from Proposition 4.2 instead
of the description for I.Q; �/. We sketch some details to help the reader adapt
the notation here to the notation in Section 9 of that reference. From the theory
of highest weight modules, one knows there is an irreducible finite-dimensional
G0-module F � which is irreducible as a g-module and has a highest weight � 2 h�

sufficiently dominant that ��� is antidominant and regular. Observe that O��� is
the sheaf of holomorphic sections of a G0-equivariant line bundle. Let ‚ be the
infinitesimal character

‚DW ��:
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If M is a g-module (or if M is a sheaf of g-modules) we let M‚ (respectively M‚)
denote the corresponding Z.g/-eigenspace. Then, as in the proof of [loc. cit.], we
have the natural isomorphisms:

(i)
�
O���jU ˝F �

�
‚
ŠO�jU , and

(ii)
�
J .Q; ���/˝F �

�
‚
Š J .Q; �/.

Taking sheaf cohomology, in the first case we obtain

Hpc .U;O�jU /Š
�
Hpc .U;O���jU /˝F

�
�
‚
;

which implies that the compactly supported sheaf cohomology groupsHpc .U;O�jU /
vanish except when pD q, in which caseH q

c .U;O�jU / is the minimal globalization
of a Harish-Chandra module. To see which Harish-Chandra module, we begin with
the natural isomorphism from the previous section

.J���/min ŠH
q
c .U;O���jU /:

Therefore, we obtain the isomorphism

Œ.J���˝F
�/‚�min Š .H

q
c .U;O���jU /˝F

�/‚ ŠH
q
c .U;O�jU /:

Finally, taking global sections for the isomorphism in (ii), we obtain

.J���˝F
�/‚ Š J�;

which completes the proof of the lemma. �

Corollary 6.2. Let S �X be aG0-orbit with vanishing number q and let U �S be
the smallest G0-invariant open submanifold that contains S. Let Q be the K-orbit
that is Matsuki dual to S and suppose the associated variety Q is smooth. Let O�
be the sheaf of holomorphic sections of a G0-equivariant line bundle and suppose

H q
c .S;O�jS /

is a classifying module. Then, the sheaf cohomology groups

Hpc .U;O�jU /

vanish except in degree q in which case H q
c .U;O�jU / is the unique irreducible

submodule of the standard module H q
c .S;O�jS /.

6.2. Maximal parabolic subgroups of complex reductive groups. Suppose G0 is
a connected, complex reductive group. It turns out that the representation we are
studying has a close relationship to the classical parabolic induction when the
parabolic subgroup under consideration is maximal. This allowed us to consider
some examples (with the help of D. Vogan and A. Paul) to see how the representa-
tion works when the associated algebraic variety is singular. In the examples we
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considered, the representation is irreducible only when the associated algebraic
variety is nonsingular.

In particular, let H0 � G0 be a �-stable Cartan subgroup (� is the complex
conjugation of G0 with respect to a compact real form) and let B0 � H0 be a
Borel subgroup. We consider a maximal, proper parabolic subgroup P0 of G0
that contains B0. These are determined in the following way. Let W.G0/ be the
Weyl group of H0 (we can think of W.G0/ as the quotient of the normalizer of
H0 in G0 over H0). Then, W.G0/ acts naturally on the set of Borel subgroups
that contain H0. As in the introduction, we let X0 be the complex flag manifold of
Borel subgroups of G0 and let X c

0 be the conjugate complex manifold. Then, the
flag manifold X of Borel subalgebras of the complexified Lie algebra g of g0 can
be identified with the direct product

X DX0 �X
c
0:

We have the two actions of G0 on X: the diagonal action

g � .x; y/D .gx; gy/;

corresponding to the fact that G0 is a real group with real Lie algebra g0, and the
action

g � .x; y/D .gx; �.g/y/;

corresponding to the action of G0 DK as the complexification of K0. As before
let Bop

0 be the Borel subgroup opposite to B0 (this subgroup corresponds to the
longest element in W.G0/). Then, each G0-orbit and each K-orbit on X contains
exactly one special point of the form

.w �B0; B
op
0 / 2X0 �X

c
0;

so we can identify G0-orbits andK-orbits with elements ofW.G0/. One knows that
Qw1

�Qw2
if and only w1 � w2 in the Bruhat order � on W.G0/. In particular,

the Bruhat interval
Œ1; w�D fu 2W.G0/ W u� wg

characterizes the K-orbits Qu contained in Qw , as well as the G0-orbits Su con-
tained in the smallestG0-invariant open submanifold Uw that contains Sw . Let n be
the number of simple reflections in W.G0/. Observe that the number of G0-orbits
with vanishing number 1 is exactly n. (The closed G0-orbit is the unique orbit with
vanishing number 0.)

Let Y0 be the generalized complex flag space of G0-conjugates to P0 and let Y c
0

be the complex manifold conjugate to Y0. Consider the generalized flag space

Y D Y0 �Y
c
0 ;
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and let C be the G0-orbit of y D .P0; P0/ 2 Y . Then, C is closed in Y , and the
G0-orbit of y is a real form in Y . Let

� WX ! Y

denote the equivariant projection. Then, ��1.C / is a closed G0-invariant sub-
manifold, and, since P0 is a maximal, it contains exactly n�1 orbits with vanishing
number 1. In particular, if L0 � P0 is the Levi factor of P0 that contains H0 then
these n� 1 orbits correspond to the simple reflections of the Weyl group W.L0/ of
H0 in L0, and the orbits in ��1.C / correspond to the elements in W.L0/. Indeed,
by intersection with the fiber, these G0-orbits give the L0-orbits in the complex
flag manifold

Xy D �
�1.fyg/

for L0. Let S be the remaining G0-orbit with vanishing number 1 and let

U DX ���1.C /:

Then, U is the smallest G0-invariant open set that contains S. (To see this fact,
since U is open and contains S, is sufficient to check that S is the unique G0-orbit
that is closed in U.)

Let O� be the sheaf of holomorphic sections of aG0-equivariant line bundle onX
and assume � is antidominant and regular. In a natural way, the sheaf O� determines
a corresponding sheaf of holomorphic sections OXy ;� for an L0-equivariant line
bundle defined on Xy . Let

F D �.Xy ;OXy;�/

be the corresponding irreducible finite-dimensional representation for L0 with
lowest weight �C �. In a unique way, this representation extends to an irreducible
representation

! W P0! GL.F /:

Consider the corresponding classical (unnormalized) parabolic induction IG0

P0
.F /,

given by

I
G0

P0
.F /D freal analytic functions ' WG0! F W '.gp/D !.p�1/'.g/g:

Then, there is a natural isomorphism of G0-modules (see, e.g., [Bratten 2008]),

�.��1.C /;O�/Š I
G0

P0
.F / and Hp.��1.C /;O�/D 0 for p > 0;

where we obtain the vanishing by the Leray spectral sequence and the fact that
the sheaf cohomology groups of a real analytic vector bundle over a real analytic
manifold vanish in positive degree.
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Now, consider the short exact sequence of sheaves

0! .O�jU /X !O�! .O�j��1.C//
X
! 0:

Thus, we have the short exact sequence of representations

0! V ! I
G0

P0
.F /!H 1

c .U;O�jU /! 0;

where V D�.X;O�/ is the corresponding irreducible finite-dimensionalG0-module.
Therefore, the minimal globalization H 1

c .U;O�jU / is irreducible if and only if the
quotient

I
G0

P0
.F /=V

is irreducible.
Let Q be the K-orbit Matsuki dual to S. Then one would like to know when Q

is smooth. The calculation for GL.nC 1;C/ (which is not difficult) works like this.
The Levi factor of P0 is characterized by a partition

n1Cn2 D nC 1;

where
L0 D GL.n1;C/�GL.n2;C/� GL.nC 1;C/:

It turns out that Q is smooth if and only n1 and n2 belong to fn; 1g. Therefore,
I
G0

P0
.F /=V is irreducible in this case. At this point, we contacted D. Vogan

to see what was known about the composition factors of these principal series
(we asked about the case when V D C is the trivial G0-module). After doing a
calculation, he guessed that there are minfn1; n2g composition factors occurring
in the representation IG0

P0
.C/=C: Vogan passed this on to Annegret Paul, who

confirmed the guess for some low-dimensional examples by using a computer
program (apparently the group GL.6;C/ is already a difficult calculation for the
algorithms that were used).

Hence, for these examples, the representation H 1
c .U;O�jU / is irreducible if and

only if the associated algebraic variety is smooth.

7. Serre duality

Since the resolutions used in the Hecht–Taylor construction of the derived category
of DNF sheaves of D�-modules are Čech resolutions, perhaps it is worth mentioning
that it is not difficult to establish the validity of Serre duality using these sorts of
resolutions [Bratten 1997, Section 10]. In particular, let n be the complex dimension
of X and let �n be the canonical bundle on X. Thus, for x 2X, the geometric fiber
Tx.�

n/ of �n at x is given by

Tx.�
n/D

Vnnx
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as aG0Œx�-module (recall thatG0Œx� denotes the stabilizer of x inG0). In particular,
�n is a G0-equivariant holomorphic line bundle on X. Using the unshifted notation
from Section 3 of this paper, suppose O.�/ is the sheaf of holomorphic sections of a
G0-equivariant line bundle onX. Then, the sheaf of holomorphic sections of the dual
bundle is given by O.��/ (i.e., the sheaf of sections of the line bundle associated
to the dual geometric fiber). If U �X is any G0-invariant open submanifold of X,
then Serre duality gives a natural isomorphism of topological G0-modules

Hpc .U;O.�/jU /
0
ŠHn�p.U;O.��/˝O.�n/jU /

where Hpc .U;O.�/jU /0 denotes the continuous dual of the topological G0-module
H
p
c .U;O.�/jU / and O.�n/ is the sheaf of holomorphic sections of the canonical

bundle. In terms of the shifted D-module parameters � 2 h�, we obtain

Hpc .U;O�jU /
0
ŠHn�p.U;O��jU /

for each p. In particular, the sheaf cohomology groups of a G0-equivariant holo-
morphic line bundle on aG0-invariant open submanifold are maximal globalizations
of Harish-Chandra modules.
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