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SYMPLECTIC CURVATURE FLOW

AND PLURICLOSED FLOW

SONG DAI

Streets and Tian (2010, 2014) introduced pluriclosed flow and symplectic
curvature flow. Here we construct a curvature flow to unify these two flows.
We show the short-time existence of our flow and exhibit an obstruction to
long-time existence.

1. Introduction

In recent years, Streets and Tian initialized the study of special geometric structures,
such as generalized Kähler and symplectic structures, by using curvature flows
they introduced. They include Hermitian curvature flow, pluriclosed flow, almost
Hermitian curvature flow and symplectic curvature flow [Streets and Tian 2010;
2011; 2014]. Subsequently, there are several further works along this direction; see
[Boling 2014; Enrietti et al. 2015; Enrietti 2013; Fernández-Culma 2013; Pook 2012;
Smith 2013; Streets and Tian 2013; 2012; Vezzoni 2011]. In this paper, we introduce
a curvature flow which unifies symplectic curvature flow and pluriclosed flow.

Streets and Tian [2014] introduced symplectic curvature flow, which preserves
almost Kähler structure, as follows:

(1)

∂

∂t
g =−2 Ric+1

2 B1
− B2,

∂

∂t
J =4J +N+R,

g(0)= g0,

J (0)= J0,

where R is a curvature term and B1, B2,N are all quadratic terms of D J . We will
give the precise definitions of these tensors in Section 3.

Streets and Tian [2010] introduced pluriclosed flow, which preserves pluriclosed
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structure, as follows:

∂

∂t
ω = ∂∂∗ω+ ∂∂∗ω+ 1

2

√
−1∂∂ logdet g,

ω(0)= ω0.

Then, in [Streets and Tian 2013; 2012] they observed that, after a gauge transfor-
mation induced by the Lee form θ =−Jd∗ω, pluriclosed flow is equivalent to the
following flow:

(2)

∂

∂t
g =−2 Ric+1

2 B,

∂

∂t
J =4J +R+Q,

g(0)= g0,

J (0)= J0,

where B and Q are quadratic terms of D J . We will give the precise definitions
of these tensors in Section 3. In this setting, they showed that twisted generalized
Kähler manifolds are a natural background in which to run pluriclosed flow [Streets
and Tian 2012].

Hitchin [2003] first introduced the notion of generalized complex structure,
which unifies symplectic structure and complex structure. After that, Gualtieri
discussed generalized complex structure in detail in his thesis [Gualtieri 2011].
In that work, Gualtieri discovered that a pair of compatible almost generalized
complex structures (J1,J2) is equivalent to almost bi-Hermitian data (g, J+, J−, b),
where J± are almost complex structures, compatible with g, and b is a 2-form. If
J1,J2 are both integrable, i.e., generalized Kähler, the integrability condition is
equivalent to

NJ+ = NJ− = 0,

−dc
+
ω+ = dc

−
ω− = db.

If we only require db to be a closed 3-form H (which is the twisted case) Streets
and Tian [2012] showed that the equivalent pluriclosed flow (2) of (g, J+) and
(g, J−) preserves generalized Kähler structure.

A symplectic structure ω gives a generalized complex structure Jω, and an almost
Kähler structure (ω, J ) gives a compatible pair of almost generalized complex
structures (Jω,JJ ), where Jω is integrable while JJ is not necessarily. So one may
also regard symplectic curvature flow as a curvature flow to deform a compatible
pair of almost generalized complex structures (J1,J2), where J1 is integrable. This
leads to the question of whether or not there is a curvature flow that unifies the
flows in (1) and (2). The following theorem gives a solution to this problem.
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Theorem 1.1. Let (M, g0, J0) be an almost Hermitian manifold. Suppose M
is compact. Then there exists a unique family of almost Hermitian structures
(g(t), J (t)), t ∈ [0, ε) on M satisfying the equations

(3)

∂

∂t
g =−2 Ric+Q1,

∂

∂t
J =4J +N+R+ Q2,

g(0)= g0,

J (0)= J0.

Here R and N are the same as in (1), and Q1 and Q2 are quadratic terms of D J
(see Section 3 for their precise definitions). This flow preserves the integrability of J .
Furthermore, if the initial data is almost Kähler, this flow coincides with symplectic
curvature flow, and if the initial data is pluriclosed, this flow is equivalent to
pluriclosed flow. In particular, if the initial data is Kähler, this flow is Kähler–Ricci
flow.

Another motivation to unify (1) and (2) is to try to understand symplectic curva-
ture flow better. The tremendous success of [Perelman 2002] motivates us to find
similar tools in symplectic curvature flow as exist in Ricci flow. To begin with, we
consider whether symplectic curvature flow is a gradient flow, as is Ricci flow. It
seems difficult to construct such a functional directly. But as shown in [Streets and
Tian 2013], pluriclosed flow is a gradient flow, and the functional is similar to the
case of Ricci flow. So maybe our flow could give some hints to discover the desired
functional in symplectic curvature flow.

Turning to regularity, we derive the evolution equations, and then obtain the
derivative estimates, as follows.

Theorem 1.2. Let (M, g(t), J (t)) be a solution of (3) for t ∈ [0, T ). Suppose M is
compact. If there exists a constant K such that

sup
[0,T )×M

{t |Rm|, t1/2
|D J |} ≤ K ,

then for k ≥ 0 there exists a constant C = C(k, n, K ) such that

sup
[0,T )×M

{t (k+2)/2
|Dk Rm|, tk/2

|Dk J |} ≤ C.

Finally, we obtain an obstruction to long-time existence.

Theorem 1.3. Let (M, g(t), J (t)) be a solution of (3) for t ∈ [0, T ), and let T <

+∞ be the maximal existence time. Suppose M is compact. Then

sup
[0,T )×M

{|Rm|, |D J |} = +∞.
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We outline the proof now. Some results in this paper can be implied directly
from the results in [Streets and Tian 2014]. For the convenience of readers, we give
the complete proof here.

To prove Theorem 1.1, we use the DeTurck trick. But we notice that the almost
complex structure J does not live in a vector space. So we transform the equation on
the space of almost complex structures to its tangent space at J0. We don’t assume
(g, J ) is compatible at first, so we do some modifications to ensure the compatibility,
which gives the nondegenerate symbol. Thus we obtain the short-time existence of
the modified flow. Then we do some estimates to show that the modified flow gives
a compatible pair (g, J ) and that it coincides with the initial flow. For uniqueness,
it is the same as in Ricci flow. In the symplectic and pluriclosed settings, by direct
calculation in Section 3 we see that this flow can be reduced to symplectic curvature
flow and pluriclosed flow, respectively. So, by uniqueness, they coincide with our
flow. And a similar argument also applies to the integrability of J .

To prove Theorem 1.2, the argument is standard. We derive the evolution
equations of Dk J and Dk Rm, then we construct a function involving the terms
we want to estimate. Calculating the evolution equation of this function, and then
using the maximum principle, we obtain the desired result. To prove Theorem 1.3,
the argument is also standard and the same as in Ricci flow.

We organize the paper as follows. In Section 2, we recall some preliminaries
in almost Hermitian geometry and derive the necessary condition of a variation
of almost Hermitian pairs. In Section 3 we define the tensors we will use in this
paper. Then we do some calculations to show that our flow satisfies the necessary
condition. And, also by calculation, we show that the additional tensors will vanish
in special cases. In Section 4, we prove Theorem 1.1. In Section 5, we prove
Theorem 1.2 and Theorem 1.3.

2. Preliminaries

We fix some conventions first.

Convention. (i) Let g be a Riemannian structure. We identify elements T ∈
0(End(TM)) and T ∈ 0(T ∗M ⊗ T ∗M) by

g(T (X), Y )= T (X, Y ).

We implicitly use this identification throughout this paper.

(ii) When we write repeated indices, we always mean to take the trace with respect
to these two positions, i.e., to choose an orthonormal basis and take the sum.

(iii) We write D J ∗3 for D J ∗ D J ∗ D J , etc.

(iv) Sometimes we write i instead of ei for short.



A FLOW UNIFYING SYMPLECTIC CURVATURE FLOW AND PLURICLOSED FLOW 291

(v) Sometimes we omit the time parameter t if there is no ambiguity.

(vi) D denotes the Levi-Civita connection, which we always use throughout the
paper.

We come back to the preliminaries.
Let M be a manifold, J be a section of End(TM). We call J an almost complex

structure if J 2
= −1. An almost complex structure J is called integrable if J is

induced by holomorphic coordinates. By the theorem of Newlander and Nirenberg
[1957], J is integrable if and only if N = 0, where

N (X, Y )= [J X, JY ] − [X, Y ] − J [J X, Y ] − J [X, JY ]

is called the Nijenhuis tensor.
We call (g, J ) an almost Hermitian structure if g is a Riemannian metric, J is

an almost complex structure and (g, J ) is compatible, meaning that

g(J X, JY )= g(X, Y ).

For almost Hermitian structure (g, J ), we define

ω(X, Y )= g(J X, Y ).

Moreover, if J is integrable, (g, J ) is called a Hermitian structure. If dω = 0, then
(g, J ) is called an almost Kähler structure. If J is integrable and dω = 0, then
(g, J ) is called a Kähler structure. If J is integrable and ddcω = 0, where

dcω(X, Y, Z) := −dω(J X, JY, J Z),

then (g, J ) is called a pluriclosed or SKT structure (strong Kähler with torsion).

Definition 2.1. Let h ∈ 0(T ∗M ⊗ T ∗M). We define

hsym(X, Y )= 1
2(h(X, Y )+ h(Y, X)),

hskew(X, Y )= 1
2(h(X, Y )− h(Y, X)).

Definition 2.2. Let (g, J ) be an almost Hermitian structure. Let h∈0(T ∗M⊗T ∗M).
We define

h(1,1)(X, Y )= 1
2(h(X, Y )+ h(J X, JY )),

h(0,2)+(2,0)(X, Y )= 1
2(h(X, Y )− h(J X, JY )).

We say that h is (1, 1) or (0, 2)+ (2, 0) if h(0,2)+(2,0) = 0 or h(1,1) = 0, respectively.

In Lemma 2.3 and Lemma 2.6, we derive the necessary condition of a variation
of almost Hermitian pair.

Lemma 2.3. Let Jt be a family of almost complex structures, and let (∂/∂t)J = K .
Then

K J + J K = 0.
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Proof. By definition,

0= ∂

∂t
J 2
= K J + J K . �

Lemma 2.4. Let (g, J ) be an almost Hermitian structure, K ∈ 0(End(TM)). Then

K J + J K = 0 ⇐⇒ K is (0, 2)+ (2, 0).

Proof. By definition,

〈(K J + J K )X, Y 〉 = K (J X, Y )− K (X, JY )= 2K (1,1)(J X, Y ). �

Remark 2.5. Similarly, K J = J K if and only if K is (1, 1).

Lemma 2.6. Let Jt be a family of almost complex structures, and let (∂/∂t)J = K .
Let gt be a family of Riemannian structures compatible with Jt , and let (∂/∂t)g= h.
Then

K sym J = h(0,2)+(2,0).

Proof. By using the equation K J + J K = 0, we have

0= ∂

∂t
(g(J X, JY )− g(X, Y ))

= h(J X, JY )− h(X, Y )+ g(K X, JY )+ g(J X, K Y )

=−2h(0,2)+(2,0)(X, Y )+ K (J X, Y )+ K (Y, J X)

=−2h(0,2)+(2,0)(X, Y )+ 2(K sym J )(X, Y ). �

Lemma 2.7. Let (g, J ) be an almost Hermitian structure. Then (L X g, L X J )
satisfies the necessary condition of a variation of (g, J ), i.e.,

(i) L X g is symmetric,

(ii) L X J is (0, 2)+ (2, 0),

(iii) (L X J )sym J = (L X g)(0,2)+(2,0).

Proof. Let φt be the 1-parameter transformation groups generated by X , and let
gt = φ

∗
t g and Jt = φ

∗
t J . Then

∂

∂t

∣∣∣
t=0

gt = L X g, ∂

∂t

∣∣∣
t=0

Jt = L X J.

Then Lemma 2.7 follows from Lemmas 2.3, 2.4 and 2.6. �

Lemma 2.8. Let (g, J ) be an almost Hermitian structure. Then

〈(DX J )Y, Z〉 = −〈(DX J )Z , Y 〉,

(DX J )JY =−J (DX J )Y.
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Proof. Let X, Y, Z be in a normal coordinate system. Then

〈(DX J )Y, Z〉 = 〈DX (JY ), Z〉 = X〈JY, Z〉 = −X〈Y, J Z〉 = −〈(DX J )Z , Y 〉,

and
(DX J )JY = DX (J JY )− J DX (JY )=−J (DX J )Y. �

Lemma 2.9 [Gauduchon 1997]. Let (g, J ) be an almost Hermitian structure. Then

〈(DJ X J )Y, Z〉− 〈J (DX J )Y, Z〉 = 1
2(N (X, Y, Z)+ N (Z , X, Y )− N (Y, Z , X)),

〈(DJ X J )Y, Z〉+ 〈J (DX J )Y, Z〉 = (dω)+(J X, Y, Z)− (dω)+(J X, JY, J Z).

In particular,
DJ X J = J DX J ⇐⇒ N = 0,

DJ X J =−J DX J ⇐⇒ (dω)+ = 0.

3. Main calculations

First, we define the tensors we use in this paper.

Definition 3.1. Let (M, g, J ) be an almost Hermitian manifold, X, Y, Z ∈ TM .

• B1(X, Y )= 〈(DX J )i, (DY J )i〉,

• B2(X, Y )= 〈(Di J )X, (Di J )Y 〉,

• B3(X, Y )= 〈(D(Di J )X J )i, Y 〉 = −〈(Di J )X, j〉〈(D j J )Y, i〉,

• B4(X, Y )= 〈(DX J )i, (Di J )Y 〉,

• B1(X, Y )= 〈(DX J )i, (DY J )J i〉,

• B2(X, Y )= 〈(Di J )X, (DJ i J )Y 〉,

• Q1 =−
1
2(B

1)(1,1)− (B3)(0,2)+(2,0)+ 4(B4)(1,1),sym
− (B1 J )(1,1)− B2 J ,

• Q2 = (B3)(0,2)+(2,0) J ,

• N= B2 J ,

• R(X, Y )= Ric(J X, Y )+Ric(X, JY ),

• Q= B2 J + B3 J ,

• H(X, Y, Z)= dcω(X, Y, Z)=−dω(J X, JY, J Z),

• B(X, Y )= H(X, i, j)H(Y, i, j),

• θ ] =−J (Di J )i ,

• N (X, Y ) = 1
2

(
N ((Di J )X, i, Y ) + N (Y, (Di J )X, i) − N (i, Y, (Di J )X)

)
−

1
2

(
N (i, (DX J )i, Y )+ N (Y, i, (DX J )i)− N ((DX J )i, Y, i)

)
− (Di J )N (X, i),

• K(X)= (Di N )(J i, X),
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• (dω)+(X, Y, Z) = 1
4

(
3dω(X, Y, Z) + dω(J X, JY, Z) + dω(J X, Y, J Z) +

dω(X, JY, J Z)
)
.

The lemmas below are preparation for the proof of Theorem 1.1.

Lemma 3.2. Let (g, J ) be an almost Hermitian structure. Then (−2 Ric+Q1,

4J +N+R+ Q2) satisfies the necessary condition of a variation.

Proof. First, we show that (−2 Ric,4J +N+R) satisfies the necessary condition.
We need to check the following things:

(i) Ric is symmetric,

(ii) 4J +N is (0, 2)+ (2, 0),

(iii) R is (0, 2)+ (2, 0),

(iv) 4J is skew,

(v) N is skew,

(vi) R is symmetric,

(vii) RJ =−2 Ric(0,2)+(2,0).

By definition, it is easy to see (i), (iii), (vi), (vii). For (ii), we use normal coordinates
to calculate the (1, 1) part of 4J , by using Lemma 2.8:

〈(4J )(J X), JY 〉 = 〈(Di D J )(i, J X), JY 〉

= 〈Di ((Di J )(J X))− (Di J )(Di (J X)), JY 〉

= −〈Di (J (Di J )X)+ (Di J )(Di (J X)), JY 〉

= −〈(Di J )(Di J )X + J Di ((Di J )X)+ (Di J )(Di J )X, JY 〉

= −2〈(Di J )(J X), (Di J )Y 〉− 〈(Di Di J )X, Y 〉

= −2N−〈(4J )X, Y 〉.

So N=−(4J )(1,1). For (iv), we also use normal coordinates:

〈(4J )X, Y 〉 = 〈Di ((Di J )X), Y 〉

= ∂i 〈(Di J )X, Y 〉

= ∂i 〈Di (J X), Y 〉− ∂i 〈J (Di X), Y 〉

= ∂i∂i 〈J X, Y 〉− ∂i 〈J X, Di Y 〉+ ∂i 〈Di X, JY 〉,

so we see that 4J is skew. And (v) follows from Lemma 2.8.
Next, we show that (Q1, Q2) satisfies the necessary condition. In fact, by

applying Lemma 2.8, we can easily obtain that all terms in Q1 are symmetric and
all terms in Q2 are (0, 2)+(2, 0). And Q(0,2)+(2,0)

1 = (B3)(0,2)+(2,0). This completes
the proof. �
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Lemma 3.3. Let (g, J ) be an almost Hermitian structure. Suppose dω = 0. Then

Q1 =
1
2 B1
− B2,

Q2 = 0.

Proof. Since dω = 0, by Lemma 2.8 and Lemma 2.9, one sees that B1 and B3

are (1, 1), that B1 J = B1, and that B2 J = B2. Now we prove that B4
=

1
2 B1. In

fact, we notice that

〈(DX J )Y, Z〉+ 〈(DY J )Z , X〉+ 〈(DZ J )X, Y 〉 = dω(X, Y, Z)= 0.

Thus,

〈(DX J )i, (Di J )Y 〉 = 〈(Di J )Y, j〉〈(DX J )i, j〉

= −〈(D(DX J )i J )Y, i〉

= 〈(DY J )i, (DX J )i〉+ 〈(Di J )(DX J )i, Y 〉

= B1(X, Y )−〈(DX J )i, (Di J )Y 〉.

So 〈(Di J )X, (DY J )i〉 = 1
2 B1(X, Y ). This completes the proof. �

Lemma 3.4. Let (g, J ) be an almost Hermitian structure. Suppose N = 0. Then

Q1 =
1
2 B,

Q2 = Q−N.

Proof. The proof is by direct calculations based on Lemma 2.8 and Lemma 2.9. We
notice that B1 is (1, 1) and that B3 is (0, 2)+(2, 0). And B1= B1 J and B2= B2 J .
We also have B4

= 0, since

〈(DX J )i, (Di J )Y 〉 = 〈(DX J )J i, (DJ i J )Y 〉

= −〈J (DX J )i, J (Di J )Y 〉

= −〈(DX J )i, (Di J )Y 〉.

We can calculate B in terms of D J :

B(X, Y )= H(X, i, j)H(Y, i, j)

= dω(J X, J i, J j)dω(JY, J i, J j)

= dω(J X, i, j)dω(JY, i, j).

We have

dω(J X, i, j)= 〈(DJ X J )i, j〉+ 〈(DJ i J ) j, X〉+ 〈(DJ j J )X, i〉.
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Calculating term by term,

〈(DJ X J )i, j〉〈(DJY J )i, j〉 = 〈(DX J )i, (DY J )i〉 = B1(X, Y ),

〈(DJ i J ) j, X〉〈(DJ i J ) j, Y 〉 = 〈(DJ j J )X, i〉〈(DJ j J )Y, i〉 = 〈(Di J )X, (Di J )Y 〉

= B2(X, Y ),

〈(DJ X J )i, j〉〈(DJ i J ) j, Y 〉 = 〈(DJ X J )i, j〉〈(DJ j J )Y, i〉

= −〈(DX J )i, (Di J )Y 〉 = 0,

〈(DJY J )i, j〉〈(DJ i J ) j, X〉 = 〈(DJY J )i, j〉〈(DJ j J )X, i〉

= −〈(DX J )i, (Di J )Y 〉 = 0,

〈(DJ i J ) j, X〉〈(DJ j J )Y, i〉 = 〈(DJ i J ) j, Y 〉〈(DJ j J )X, i〉

= −〈(D(Di J )X J )i, Y 〉 = −B3(X, Y ).

So
1
2 B= 1

2 B1
+ B2

− B3.

Then we obtain the desired result. �

Remark 3.5. In [Streets and Tian 2012], Q is defined as

Q(X)=−(Di J )(DJ X J )i − J (D(Di J )X J )i + (Di J )(DJ i J )X

− (DJ (Di J )i J )X + J (D(Di J )i J )X + (DJ X J )(Di J )i − J (DX J )(Di J )i.

Since N = 0, it coincides with our definition.

Lemma 3.6. Let (g, J ) be an almost Hermitian structure. Then

Lθ] J =4J +Q+R+K+ N .

Proof. In [Streets and Tian 2012], there is a similar formula. But in our case we
don’t assume that N = 0.

We use normal coordinates:

(Lθ] J )X = (L−J (Di J )i J )X(4)

=−[J (Di J )i, J X ] + J [J (Di J )i, X ]

= −DJ (Di J )i (J X)+ DJ X (J (Di J )i)

+ J DJ (Di J )i X − J DX (J (Di J )i)

=−(DJ (Di J )i J )X + (DJ X J )(Di J )i + J DJ X ((Di J )i)

− J (DX J )(Di J )i + DX ((Di J )i)

=−(DJ (Di J )i J )X + (DJ X J )(Di J )i + J (DJ X (Di J ))i

− J (DX J )(Di J )i + DX (Di J )
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= J (D2 J )(J X, i, i)+ (D2 J )(X, i, i)− (DJ (Di J )i J )X

+ (DJ X J )(Di J )i − J (DX J )(Di J )i.

By the Ricci identity,

(5) (D2 J )(X, i, i)= (D2 J )(i, X, i)+ (Rm(X, i)J )i

= (D2 J )(i, X, i)+Rm(X, i)(J i)− J Rm(X, i)i

= (D2 J )(i, X, i)+Rm(X, i)(J i)− J Ric(X).

Similarly,

J (D2 J )(J X, i, i)= J (D2 J )(i, J X, i)+ J Rm(J X, i)(J i)+Ric(J X).(6)

Notice that

N (X, Y )= (DJ X J )Y − (DJY J )X − J (DX J )Y + J (DY J )X.

Hence,

J (D2 J )(i, J X, i)= J Di ((DJ X J )i)− J (D(Di J )X J )i

− J Di (J (DX J )i)+ J Di (J (DX J )i)

= J Di ((DJ X J )i − J (DX J )i)− J (D(Di J )X J )i

+ J (Di J )(DX J )i − (D2 J )(i, X, i)

= J Di ((DJ i J )X − J (Di J )X)+ J Di (N (X, i))

− J (D(Di J )X J )i + J (Di J )(DX J )i − (D2 J )(i, X, i)

Notice that

J Di (N (X, i))= Di (J N (X, i))− (Di J )N (X, i)

= Di (N (J i, X))− (Di J )N (X, i)

= (Di N )(J i, X)+ N ((Di J )i, X)− (Di J )N (X, i).

So

(7) J (D2 J )(i, J X, i)= J (D2 J )(i, J i, X)+ J (D(Di J )i J )X

− J (Di J )(Di J )X + (4J )X +K(X)+ N ((Di J )i, X)− (Di J )N (X, i)

− J (D(Di J )X J )i + J (Di J )(DX J )i − (D2 J )(i, X, i).

And

(8) N ((Di J )i, X)= (DJ (Di J )i J )X − (DJ X J )(Di J )i

+ (D(Di J )i J )J X − (DX J )J (Di J )i

= (DJ (Di J )i J )X − (DJ X J )(Di J )i

− J (D(Di J )i J )X + J (DX J )(Di J )i.
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By resorting to Lemma 2.9, we obtain

(9) 〈−J (D(Di J )X J )i − (D(Di J )J X J )i, Y 〉

= 〈−J (D(Di J )X J )i + (DJ (Di J )X J )i, Y 〉

=
1
2(N ((Di J )X, i, Y )+ N (Y, (Di J )X, i)− N (i, Y, (Di J )X)),

and

(10) 〈J (Di J )(DX J )i, Y 〉

= 〈J (Di J )(DX J )i − (DJ i J )(DX J )i, Y 〉

= −
1
2(N (i, (DX J )i, Y )+ N (Y.i, (DX J )i)− N ((DX J )i, Y, i)).

Then, by the Ricci identity again,

(11) J D2 J (i, J i, X)= 1
2(J D2 J (i, J i, X)− J D2 J (J i, i, X))

=
1
2 J (Rm(i, J i)J )X

=
1
2(J Rm(i, J i)(J X)+Rm(i, J i)X).

By the Bianchi identity,

Rm(i, J i)(J X)+Rm(J i, J X)i +Rm(J X, i)(J i)= 0.

Notice that
Rm(J i, J X)i = Rm(J X, i)(J i).

Thus

J Rm(i, J i)(J X)=−2J Rm(J X, i)(J i),(12)

Rm(i, J i)(X)=−2 Rm(X, i)(J i).(13)

Putting (4)–(13) together, we obtain the desired result. �

4. Proof of Theorem 1.1

The argument is the same as in [Streets and Tian 2014]. We use DeTurck trick to
prove short-time existence and uniqueness.

We consider the following equations:

(14)

∂

∂t
g =−2 Ric+Q1+ L X g , D1(g, J ),

∂

∂t
J =4J +N+R+ Q2+ L X J , D2(g, J ),

g(0)= g0,

J (0)= J0,
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where X = trg(0−0) and 0 is the Christoffel symbol of a fixed metric g.
Then, in order to use the PDE theory in Banach space, we consider the tangent

space at J0. Denote by T JJ the tangent space at J , i.e.,

T JJ = {E ∈ End(TM) | E J + J E}.

Then, in a neighborhood U of J0, we can identify J and E by using the map

π : T JJ0 ⊃U ′→U, πE =−J0eJ0 E ,

and note that Dπ |0 = Id.
Notice that we don’t assume that (g, J ) is compatible. So we need to make

some modifications. For convenience, we write g J and g−J instead of g(1,1) and
g(0,2)+(2,0), respectively, and we do similar things for other tensors. Note that g J is
compatible with J . We consider the following equations:

(15)

∂

∂t
g = D1(gπE , πE)+4g0(g

−πE), D̃1(g, E),

∂

∂t
E = (Dπ |πE)

−1D2(gπE , πE), D̃2(g, E),

g(0)= g0,

E(0)= 0.

Note that D̃1 is symmetric, and D̃2 is well-defined since 4J + N+R+ Q2 +

L X J is (0, 2)+ (2, 0) for the pair (g J , J ). So D̃1 ⊕ D̃2 gives an operator from
0((T ∗M ⊗sym T ∗M)⊕ T JJ0) to itself.

Now, we calculate the symbol of D̃1 ⊕ D̃2 at (g0, 0) to show the short-time
existence of the modified flow. First, we calculate the variation of D̃1 along the
direction of (h, 0), where h = δg. Since δE = 0, πE = π0= J0 is fixed. And note
that δ(g J0)= h J0 and g J0

0 = g0. Therefore

L(g0,0)(D1(gπE , πE))(h, 0)= L
g

J0
0
(D1(g, J0))(h J0)= Lg0(D1(g, J0))(h J0),

where L(g0,0) denotes the linearization operator at (g0, 0).
Noting that only −2 Ric and L X g involve second-order terms, and from standard

calculations in Ricci flow [Chow and Knopf 2004] we have

Lg0(D1(g, J0))(h J0)=4g0(h
J0)+O(∂h).

And
L(g0,0)(4g0(g

−J ))(h, 0)=4g0(h
−J0).

Let σ denote the symbol of a linear differential operator. Thus we obtain

σ(L(g0,0)D̃1)(h, 0)(x, ξ)= |ξ |2h, where ξ ∈ T ∗x M.
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Then we calculate the variation of D̃1 along the direction of (0, K ), where K = δE .
Since Dπ |0 = Id, we have

δ(D̃1(g, E))(0, K )= δ(D1(g J , J ))(0, δ J ).

We identify δ J and K below.
From the calculations above, we see that

(−2 Ric(g J )+ L X (g J )(g
J ))i j = (g J )pq∂p∂q(g J )i j +O(∂g, ∂ J ).

So
L(g0,0)(D1(gπE , πE))(0, K )= ∂

∂t

∣∣∣
t=0
(g0)

pq∂p∂q(g
Jt
0 )i j +O(∂K ).

It is easy to see that

L(g0,0)(4g0(g
−J ))(0, K )= ∂

∂t

∣∣∣
t=0
(g0)

pq∂p∂q(g
−Jt
0 )i j +O(∂K ).

Thus we obtain

σ(L(g0,0)D̃1)(0, K )(x, ξ)= 0, where ξ ∈ T ∗x M.

Next, we calculate the variation of D̃2 along the direction of (δg, δE)= (h, K ).
We have

δ(D̃2(g, E))(h, K )= δ(D2(g J , J ))(δg, δ J ).

In the expression for D2, only 4J , L X J , and R involve second-order terms, so we
only need to calculate these three terms. We calculate them for the pair (g, J ) first.

For 4J , we have

(4J )(ek)= gi j D2 J (ei , e j , ek)

= gi j Di ((D j J )ek)+O(∂g, ∂ J )

= gi j Di (D j (Jek)− J D j ek)+O(∂g, ∂ J )

= gi j Di (D j (J l
kel)− J (0 p

jkep))+O(∂g, ∂ J )

= gi j (Di (∂ j J l
kel)+ Di (J

p
k 0

l
j pel)− Di (0

p
jk J l

pel))+O(∂g, ∂ J )

= gi j (∂i∂ j J l
k + J p

k ∂i0
l
j p − J l

p∂i0
p
jk)el +O(∂g, ∂ J ).

For L X J , we have

(L X J )(ek)= [X, Jek] − J [X, ek]

= [X pep, J l
kel] − J [X pep, ek]

= (X p∂p J l
k − J p

k ∂p X l
+ J l

p∂k X p)el

= gi j (J l
p∂k0

p
i j − J p

k ∂p0
l
i j )el +O(∂g, ∂ J ).
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For R, we have

R(ek)= (J
p

k Ricl
p −J l

p Ricp
k )el

= gi j (−J p
k ∂i0

l
pj + J p

k ∂p0
l
i j + J l

p∂i0
p
k j − J l

p∂k0
p
i j )el +O(∂g, ∂ J ).

So we obtain
(4J +R+ L X J )lk = gi j∂i∂ j J l

k +O(∂g, ∂ J ).

As for the pair (g J , J ), the lower-order terms are still lower-order terms, and when
we evaluate at (g0, J0), from the compatibility, we have

(L(g0,0)D̃2)(h, K )=4g0 K +O(∂g, ∂ J ).

Hence, the total symbol is

σ(L(g0,0)D̃)(h, K )(x, ξ)=
(
|ξ |2 0

0 |ξ |2

)
.

By the standard theory of parabolic PDE, there exists a unique short-time solution
of (15).

Next we show that, under (15), (g, J ) is compatible, where J = πE . Suppose
that (g, J ) exists for t ∈ [0, ε0]. Then by the compactness of M , in this time interval,
every tensor we involve is bounded. Let (∂/∂t)J = K . Then

∂

∂t
|g−J
|
2
g J = 2

〈
∂

∂t
(g−J ), g−J

〉
g J
+C∗(g−J )∗2

= 2
〈
∂

∂t
1
2
(g(·, ·)−g(J ·, J ·)), g−J

〉
g J
+C∗(g−J )∗2

= 2
〈(
∂

∂t
g
)−J

, g−J
〉
g J
−
〈
g(J ·, K ·)+g(K ·, J ·), g−J 〉

g J+C∗(g−J )∗2

≤
〈
2(D1(g J , J ))−J

+2(4g0(g
−J ))−J

−g(J ·, K ·)−g(K ·, J ·), g−J 〉
g J

+C |g−J
|
2
g J .

Note that (g J , J ) is compatible and K = D2(g J , J ), so by Lemmas 3.2 and 2.7,

D1(g J , J )−J
−

1
2(g

J (J ·, K ·)+ g J (K ·, J ·))= 0.

So

∂

∂t
|g−J
|
2
g J ≤ 2

〈
(4g0(g

−J ))−J
− g−J (J ·, K ·)− g−J (K ·, J ·), g−J 〉

g J +C |g−J
|
2
g J

≤ 2
〈
(4g0(g

−J ))−J , g−J 〉
g J +C |g−J

|
2
g J .

Since J acts isometrically on the space 0(T ∗M ⊗sym T ∗M) in the induced metric
from g J , and since the (1, 1) tensors and (0, 2)+ (2, 0) tensors correspond to the
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+1 and −1 eigenspaces, respectively, they are orthogonal. So

〈(4g0(g
−J ))J , g−J

〉g J = 0.

Then,
∂

∂t
|g−J
|
2
g J ≤ 2〈4g0(g

−J ), g−J
〉g J +C |g−J

|
2
g J .

By definition,
4g0(g

−J )= trg0 D2
g0
(g−J ).

Since the second order term about g−J in D2
g0
(g−J ) is the same as in D2

g J (g−J ),

4g0(g
−J )= trg0

(
D2

g J (g−J )+C ′ ∗ Dg J (g−J )+C ∗ g−J ).
Let A be any tensor. We have the formula

D2
〈A, A〉 = D(D〈A, A〉)

= 2D(〈Di A, A〉ei )

= 2〈D2
i, j A, A〉ei

⊗ e j
+ 2〈Di A, D j A〉ei

⊗ e j .

Let A= g−J and the metric above be g J . Taking the trace of each side with respect
to g0, we obtain

2〈trg0 D2
g J (g−J ), g−J

〉g J

= trg0 D2
g J (|g−J

|
2
g J )− 2〈Dg J g−J (ei ), Dg J g−J (e j )〉g J 〈ei , e j

〉g0 .

Along this flow, for t ∈ [0, ε0], g J is uniformly bounded by g0, so we have

2〈trg0 D2
g J (g−J ), g−J

〉g J ≤ trg0 D2
g J (|g−J

|
2
g J )− 2C ′′|Dg J g−J

|
2
g J .

Hence,

∂

∂t
|g−J
|
2
g J ≤ trg0 D2

g J (|g−J
|
2
g J )−2C ′′|Dg J g−J

|
2
g J+C ′∗Dg J (g−J )∗g−J

+C |g−J
|
2
g J .

By using the Cauchy inequality on C ′ ∗ Dg J (g−J ) ∗ g−J , finally we obtain

∂

∂t
|g−J
|
2
g J ≤ trg0 D2

g J (|g−J
|
2
g J )+C |g−J

|
2
g J .

Notice that trg0 D2
g J is elliptic and |g−J

|
2
= 0 at t = 0. Then by the maximum

principle, considering e−Ct
|g−J
|
2, we have |g−J

|
2
= 0 for t ∈ [0, ε0], i.e., (g, J ) is

compatible. Since ε0 is arbitrary, (g, J ) is always compatible as long as the solution
exists. Because the positivity of g is an open condition, we may assume that g is
positive in short time. Then the short-time solution of (15) gives the short-time
solution of (14).
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Now, let (g̃(t), J̃ (t)) be a solution of (14) and let ϕt be the one-parameter family
of diffeomorphisms generated by −X (t) defined as above. Let g(t) = ϕ∗t g̃(t),
J (t)= ϕ∗t J̃ (t). Then

(16) ∂

∂t
g = ∂

∂t
(ϕ∗t g̃(t))

= ϕ∗t

(
∂

∂t
g̃(t)+ L(−X (t))g̃(t)

)
= ϕ∗t (−2 Ric(g̃(t))+ Q1(g̃(t)))

=−2 Ric(ϕ∗t g̃(t))+ Q1(ϕ
∗

t g̃(t))

=−2 Ric(g)+ Q1(g).

So g(t) satisfies the equation. Similarly, J (t) also satisfies the equation. And
(g(t), J (t)) differs from (g̃(t), J̃ (t)) by a diffeomorphism, so (g(t), J (t)) is also
an almost Hermitian pair. This completes the existence part of the theorem.

For uniqueness, let (gi , Ji ) be two solutions of (3), i = 1, 2. Since M is compact,
we can solve the harmonic heat flow

∂

∂t
φi (t)=4gi ,gφi (t),

φi (0)= Id,

for φi (t) for short time, where g is the same fixed metric as above. We can also
assume that the φi (t) are diffeomorphisms. Let ĝi = (φ

−1
i (t))∗gi (t). Note that(

∂

∂t
φi

)
(p)= (4gi ,gφi )(p)

= (4ĝi ,g Id)(φi (p))

=

(
−ĝi j (0̂k

i j −0
k
i j )

∂

∂xk

)
(φi (p))

=−X ĝ(φi (p)).

Then, taking the time derivative of (φi (t))∗ĝi (t) = gi (t), and doing a similar
calculation to (16), we see that both ĝi (t) satisfy (14) and they share the same
initial data. Since we have proved the compatibility, the symbol of (14) is Id, as we
calculated, so the solution of (14) is unique. Then we obtain

ĝ1(t)= ĝ2(t)= ĝ(t), Ĵ1(t)= Ĵ2(t)= Ĵ (t).

Then from the uniqueness of

∂

∂t
φ(t)=−X ĝ(φ(t)),

φ(0)= Id,
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we see the uniqueness of (g, J ) for a short while. Then, by continuity, (g, J ) is
unique as long as it exists.

Next, we check two special cases. Suppose that the initial data is almost Kähler.
Then we run the symplectic curvature flow (1). By definitions and Lemma 3.3, we
see that, in this situation, (g, J ) also satisfies (3). So from the uniqueness of (3), if
the initial data is almost Kähler, then (3) coincides with symplectic curvature flow.
And a similar argument holds in the pluriclosed case when we apply Lemma 3.4.

Finally, we prove that the flow (3) preserves the integrability of J . Let (g0, J0)

be an Hermitian structure. Fix J0 and consider the flow

∂

∂t
g̃ =−2 Ricg̃ +Q1(g̃, J0)− Lθ](g̃,J0)g̃,

g̃(0)= g0.

By the DeTurck trick, we see that g̃(t) exists for a while, but is not necessarily
compatible with J0 now. Then by a gauge transformation induced by θ ](g̃, J0), we
obtain a short-time solution (g(t), J (t)) for the flow

∂

∂t
g =−2 Ricg +Q1(g, J ),

∂

∂t
J = Lθ](g,J ) J,

g(0)= g0,

J (0)= J0.

We still don’t know the compatibility of (g, J ) now, but since J is changed just by
a diffeomorphism, N always vanishes. By Lemma 2.9, one may write Q2−Q+N

in terms of N in the almost Hermitian setting. We denote such a tensor N0, i.e., N0

is in terms of N , and, when (g, J ) is compatible, N0 = Q2−Q+N. So the above
flow is the same as the flow

∂

∂t
g =−2 Ricg +Q1(g, J ),

∂

∂t
J = Lθ](g,J ) J + N0(g, J )− N (g, J )−K(g, J ),

g(0)= g0,

J (0)= J0.

Then by Lemma 3.6, and using the same argument in the proof of short-time
existence above, one sees that (g, J ) is compatible and coincides with (3), so the
integrability of J is preserved.

This completes the proof of Theorem 1.1. �

Remark 4.1. Streets and Tian [2014] introduced almost Hermitian curvature flow,
where the symbol term deforming J is −K. From Lemma 3.6 we see that, modulo
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lower-order terms, −K differs from4J+R just by a gauge term. If we also change
the evolution of g by the same gauge transformation, the second derivative of g will
appear in Lθ]g. So, in general, our flow is not in the family of almost Hermitian
curvature flow.

5. Proof of Theorem 1.2 and Theorem 1.3

First, we derive the evolution equations of D J , Rm and their higher covariant
derivatives.

Lemma 5.1. Under (3),

∂

∂t
D J =4D J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J.

Proof. Using the fact 4DT − D4T = D Rm ∗T +Rm ∗DT , we have

∂

∂t
D J = 0̇ ∗ J + D J̇

= D(Rm+J ∗2 ∗ D J ∗2) ∗ J + D(4J +Rm ∗J + J ∗ D J ∗2)

=4D J + D Rm ∗J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J.

Hence we only need to show there is no D Rm ∗J term. It is the same calculation
as in [Streets and Tian 2014], since the only differences are the first-order terms
in J , which does not involve a D Rm term. �

Lemma 5.2. Under (3),

∂

∂t
Rm=4Rm+Rm∗2+Rm ∗J ∗2 ∗ D J ∗2+

∑
0≤k1,...,k4≤3
k1+···+k4=4

Dk1 J ∗ · · · ∗ Dk4 J.

Proof. Let (∂/∂t)g = h. From the variation formula in Ricci flow (see [Chow and
Knopf 2004]) we have

∂

∂t
Rm(X, Y, Z ,W )= 1

2(h(Rm(X, Y )Z ,W )− h(Rm(X, Y )W, Z))

+
1
2(D

2
Y,W h(X, Z)− D2

X,W h(Y, Z)

+ D2
X,Z h(Y,W )− D2

Y,Z h(X,W )).

And, when h =−2 Ric,

∂

∂t
Rm=4Rm+Rm∗2 .

Notice that, in (3), h = (∂/∂t)g =−2 Ric+J ∗2 ∗ D J ∗2, so we obtain the evolution
equation of Rm. �
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Proposition 5.3. Under (3),

∂

∂t
Dk J =4Dk J +

∑
l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J

and

∂

∂t
Dk Rm=4Dk Rm+

∑
l1+···+l4=k+4
0≤l1,...,l4≤k+3

Dl1 J ∗ · · · ∗ Dl4 J +
k∑

l=0

Dl Rm ∗Dk−l Rm

+

∑
0≤l0≤k

∑
l1+···+l4=k+2−l0

0≤l1,...,l4≤k+1

Dl0 Rm ∗Dl1 J ∗ · · · ∗ Dl4 J.

Proof. By using Lemma 5.1 and the fact that (∂/∂t)0 = D(Rm+J ∗2 ∗ D J ∗2),
we have

∂

∂t
Dk J = ∂

∂t
0 ∗ Dk−1 J + D ∂

∂t
Dk−1 J

=

k−2∑
l=0

Dl ∂

∂t
0 ∗ Dk−1−l J + Dk−1 ∂

∂t
D J

=

k−2∑
l=0

Dl D(Rm+J ∗2 ∗ D J ∗2) ∗ Dk−1−l J

+ Dk−1(4D J +Rm ∗D J + J ∗2 ∗ D J ∗3+ J ∗3 ∗ D J ∗ D2 J ).

Interchanging D and 4, we observe that the highest order of Rm is k − 1, and
the highest order of J is k+ 1 if not involving Rm. Then we obtain the evolution
equation of Dk J .

As for the evolution equation of Dk Rm, the calculation is similar. The key point
is to observe the highest order. �

Now we can use Proposition 5.3 to prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. The proof is similar to the higher derivative estimates in
Ricci flow [Chow and Knopf 2004]. We assume t |D2 J | ≤ C first. By induction,
we will prove

(P) |Dk J | ≤ C
tk/2 , |D

k−2 Rm| ≤ C
tk/2 .

(P) holds when k = 2 from the assumption.
Now we assume (P) holds for k− 1. Consider

F(t)= tk+1(|Dk J |2+ |Dk−2 Rm|2)+ λtk(|Dk−1 J |2+ |Dk−3 Rm|2),
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where λ is a large constant to be determined. We will show that

(17) ∂

∂t
F ≤4F +C.

Then, by the maximum principle, (P) holds for k. Now we prove (17) by using
Proposition 5.3:

∂

∂t
|Dk J |2

= (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2+ 2
〈

Dk J,

4Dk J +
∑

l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J
〉

= (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2+4|Dk J |2− 2|Dk+1 J |2

+ Dk J ∗
( ∑

l1+···+l5=k+2
0≤l1,...,l5≤k+1

Dl1 J ∗ · · · ∗ Dl5 J +
k−1∑
l=0

Dl Rm ∗Dk−l J
)

=4|Dk J |2− 2|Dk+1 J |2+ (Rm+J ∗2 ∗ D J ∗2) ∗ Dk J ∗2

+ Dk J ∗ Dk+1 J ∗ D J ∗ J ∗3+ Dk J ∗ Dk J ∗ D J ∗2 ∗ J ∗2

+ Dk J ∗ Dk J ∗ D2 J ∗ J ∗3+ Dk J ∗
∑

l1+···+l5=k+2
0≤l1,...,l5≤k−1

Dl1 J ∗ · · · ∗ Dl5 J

+ Dk J ∗Rm ∗Dk J + Dk J ∗ Dk−1 Rm ∗D J + Dk J ∗ Dk−2 Rm ∗D2 J

+ Dk J ∗
k−3∑
l=1

Dl Rm ∗Dk−l J.

From the assumption,

∂

∂t
|Dk J |2 ≤4|Dk J |2− 2|Dk+1 J |2+ C

t
|Dk J |2+ C

t1/2 |D
k J ||Dk+1 J |

+
C

t (k+2)/2 |D
k J | + C

t1/2 |D
k J ||Dk−1 Rm| + C

t
|Dk J ||Dk−2 Rm|.

Similarly, we obtain

∂

∂t
|Dk−2 Rm|2 ≤4|Dk−2 Rm|2− 2|Dk−1 Rm|2+ C

t
|Dk−2 Rm|2

+
C

t1/2 |D
k−2 Rm||Dk+1 J | + C

t (k+2)/2 |D
k−2 Rm| + C

t
|Dk J ||Dk−2 Rm|.
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Then, by the Cauchy–Schwarz inequality,

∂

∂t
(
tk+1(|Dk J |2+ |Dk−2 Rm|2)

)
≤4

(
tk+1(|Dk J |2+ |Dk−2 Rm|2)

)
−tk+1(

|Dk+1 J |2+ |Dk−1 Rm|2
)
+Ctk(

|Dk J |2+ |Dk−2 Rm|2
)
+C.

Replacing k with k− 1 and using the assumption, we obtain

∂

∂t
(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
≤4

(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
− tk(
|Dk J |2+ |Dk−2 Rm|2

)
+Ctk−1(

|Dk−1 J |2+ |Dk−3 Rm|2
)
+C

≤4
(
tk(|Dk−1 J |2+ |Dk−3 Rm|2)

)
− tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C.

Then

∂F
∂t
≤4F − tk+1(

|Dk+1 J |2+ |Dk−1 Rm|2
)

+ (C − λ)tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C

≤4F + (C − λ)tk(
|Dk J |2+ |Dk−2 Rm|2

)
+C.

We choose λ= C , so (17) holds.
Now, we prove that t |D2 J | ≤ C . For p ∈ M , if |D2 J |p,t 6= 0, then similarly, by

Proposition 5.3,

∂

∂t
|D2 J | = 1

2|D2 J |
∂

∂t
|D2 J |2

=
1

2|D2 J |
(
4|D2 J |2− 2|D3 J |2+ D2 J ∗3 ∗ J ∗3

+ D3 J ∗ D2 J ∗ D J ∗ J ∗3+ D2 J ∗2 ∗ D J ∗2 ∗ J ∗2

+ D2 J ∗ D J ∗4+ D2 J ∗2 ∗Rm+D2 J ∗ D J ∗ D Rm
)
.

Notice that, for |D2 J |p,t 6= 0,

4|D2 J |2 = 2|D2 J |4|D2 J | + 2
∣∣D |D2 J |

∣∣2.
So,

∂

∂t
|D2 J | = 4|D2 J | +

∣∣D|D2 J |
∣∣2

|D2 J |
+

1
2|D2 J |

(
−2|D3 J |2+ D2 J ∗3 ∗ J ∗3

+ D3 J ∗ D2 J ∗ D J ∗ J ∗3+ D2 J ∗2 ∗ D J ∗2 ∗ J ∗2

+ D2 J ∗ D J ∗4+ D2 J ∗2 ∗Rm+D2 J ∗ D J ∗ D Rm
)
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≤4|D2 J | +

∣∣D|D2 J |
∣∣2

|D2 J |
−
|D3 J |2

|D2 J |

+C
(
|D2 J |2+

|D3 J |
t1/2 +

|D2 J |
t
+

1
t2 +
|D Rm|

t1/2

)
.

Consider
G(t)= t2

|D2 J | +µt2
|D J |2+ t3

|Rm|2,

where µ is a large constant to be determined.
Then, for |D2 J | 6= 0,

∂

∂t
G ≤4G− t2 |D

3 J |2

|D2 J |
− 2µt2

|D2 J |2− 2t3
|D Rm|2

+C
(
t2
|D2 J |2+ t3/2

|D3 J | +µt |D2 J | +µ+ t3/2
|D Rm|

)
+

〈
D|t2 D2 J |,

D|D2 J |
|D2 J |

〉
≤4G− 1

2 t2 |D
3 J |2

|D2 J |
−

1
2 t2
|D2 J |2− 1

2 t3
|D Rm|2

+

〈
D|t2 D2 J |,

D|D2 J |
|D2 J |

〉
+C,

where µ is determined now.
Then

∂

∂t
G ≤4G− 1

2 t2 |D
3 J |2

|D2 J |
−

1
2 t2
|D2 J |2− 1

2 t3
|D Rm|2+C

+

〈
DG,

D|D2 J |
|D2 J |

〉
−µt2

〈
D|D J |2,

D|D2 J |
|D2 J |

〉
− t3

〈
D|Rm|2,

D|D2 J |
|D2 J |

〉
.

Notice that∣∣D|D J |2
∣∣≤ |2〈DD J, D J 〉| ≤ 2|D2 J ||D J |,

∣∣D|D2 J |
∣∣= ∣∣D|D2 J |2

∣∣
2|D2 J |

≤ |D3 J |.

Hence,

∂

∂t
G ≤4G− 1

4 t2 |D
3 J |2

|D2 J |
−

1
4 t2
|D2 J |2− 1

2 t3
|D Rm|2+C

+

〈
DG,

D|D2 J |
|D2 J |

〉
+C

t2
|D Rm|2

|D2 J |
.

So if we suppose that |D2 J | ≥ 4C/t , we have the estimate

(18) ∂

∂t
G ≤4G+

〈
DG,

D|D2 J |
|D2 J |

〉
+C,
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where C = C(n, K ). That is to say, for any (p, t), either we have the estimate
|D2 J | ≤ 4C/t , or else (18) holds. Let G = G −Ct , where C is chosen suitably.
We obtain that either G ≤ 0 or

∂

∂t
G ≤4G+

〈
DG,

D|D2 J |
|D2 J |

〉
.

Notice that G = 0 when t = 0. Then one may apply the maximum principle to show
that G ≤ 0 for every (p, t), which implies the desired estimate. This completes the
proof of Theorem 1.2. �

Remark 5.4. Theorem 1.2 is scaling-invariant when we replace g(t) by g(t) =
cg(t/c).

Proof of Theorem 1.3. The argument is standard, as in Ricci flow [Chow and Knopf
2004]. We just sketch the proof.

Suppose not. Then |Rm|, |D J | are bounded. From Theorem 1.2, all covariant
derivatives of Rm and J are bounded. Then we see that the metrics g are uniformly
bounded. We fix a coordinate atlas. From the evolution equation of 0 and the
boundedness of the covariant derivatives of Rm and J , we obtain the boundedness
of 0. Then we obtain the boundedness of ∂g, ∂ J , and by induction we see that
∂k g, ∂k J and ∂k0 are bounded. Finally, we obtain that (∂ l/∂t l)∂k g, (∂ l/∂t l)∂k J
are bounded. Then, by theorems in mathematical analysis, (g(t), J (t)) can be
extended to (g(T ), J (T )) smoothly in all variables of space and time. The almost
Hermitian condition is guaranteed by the continuity. Then, from the short-time
existence, (g(t), J (t)) exists for t ∈ [0, T + ε), which is a contradiction to the
maximality of T . �
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