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Auslander and Buchweitz have proved that every finitely generated module
over a Cohen–Macaulay (CM) ring with a dualizing module admits a so-
called maximal CM approximation. In terms of relative homological alge-
bra, this means that every finitely generated module has a special maximal
CM precover. In this paper, we prove the existence of special maximal
CM preenvelopes and, in the case where the ground ring is henselian, of
maximal CM envelopes. We also characterize the rings over which every
finitely generated module has a maximal CM envelope with the unique lift-
ing property. Finally, we show that cosyzygies with respect to the class of
maximal CM modules must eventually be maximal CM, and we compute
some examples.

1. Introduction

Let R be a commutative noetherian local Cohen–Macaulay (CM) ring with a dualiz-
ing module� and denote by MCM the class of maximal CM R-modules. Auslander
and Buchweitz [1989, Theorem A] construct a maximal CM approximation for
every finitely generated R-module M , that is, a short exact sequence

0−→ I −→ X
π
−→ M −→ 0,

where X belongs to MCM and I has finite injective dimension. By a result form
[Ischebeck 1969] one has Ext1R(Y, I )= 0 for all Y in MCM, so in terms of relative
homological algebra, this means that the homomorphism π : X � M is a special
MCM-precover of M . Corollary 2.5 of [Takahashi 2005] shows that if R is henselian
(for example, if R is complete), then every MCM-precover can be refined to an
MCM-cover. The corollary follows from Takahashi’s Proposition 2.4, which the
author attributes to Yoshino [1993, Lemma 2.2]. We summarize these results in the
following theorem.
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Theorem [Auslander and Buchweitz 1989; Takahashi 2005; Yoshino 1993].

(a) Every finitely generated R-module has a special MCM-precover (also called a
special right MCM-approximation).

(b) If R is henselian, then every finitely generated R-module has an MCM-cover
(also called a minimal right MCM-approximation).

This paper is concerned with the existence and the construction of special MCM-
preenvelopes and MCM-envelopes of finitely generated modules. Our first main
result, which is proved in Section 3, is the following “dual” of the theorem above.

Theorem A. (a) Every finitely generated R-module M has a special MCM-pre-
envelope (also called a special left MCM-approximation).

(b) If R is henselian, then every finitely generated R-module has an MCM-envelope
(also called a minimal left MCM-approximation).

(c) Every special MCM-preenvelope (and hence every MCM-envelope)µ : M→ X
of a finitely generated R-module M has the property that HomR(Cokerµ,�)
has finite injective dimension.

Theorem C of [Holm 2014] showed the existence of (nonspecial!) MCM-preenve-
lopes, but its proof is not constructive: it is a consequence of an abstract result —
Theorem (4.2) of [Crawley-Boevey 1994] — combined with the fact, also proved
in [Holm 2014], that the direct limit closure of MCM is closed under products.
Theorem A above is not only stronger than [Holm 2014, Theorem C]; our proof,
modeled on that of [Holm and Jørgensen 2011, Theorem 1.6], also shows how
(special) MCM-(pre)envelopes can be constructed from (special) MCM-(pre)covers.

In Section 4 we compute the MCM-envelope of some specific modules. In
Section 5 we turn our attention to MCM-envelopes with the unique lifting property,
and we characterize the rings over which every finitely generated module admits
such an envelope:

Theorem B. The following conditions are equivalent.

(i) For every finitely generated R-module M , the module HomR(M, �) is maximal
CM.

(ii) The Krull dimension of R is 6 2.

(iii) The inclusion functor MCM ↪→mod has a left adjoint.

(iv) Every finitely generated R-module has an MCM-envelope with the unique
lifting property.

From a homological point of view, maximal CM modules are interesting because
every module can be finitely resolved by such modules. More precisely, if d denotes
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the Krull dimension of the CM ring R, and if M is any finitely generated R-module
with a resolution

· · · −→ Xd −→ Xd−1 −→ Xd−2 −→ · · · −→ X1 −→ X0 −→ M −→ 0

by finitely generated free R-modules X0, X1, . . ., then the n-th syzygy of M , i.e.,
the module Syzn(M) = Ker(Xn−1 → Xn−2), is maximal CM for every n > d.
Actually, the same conclusion holds if X0, X1, . . . are just assumed to be maximal
CM (but not necessarily free); this well-known fact follows from the behavior of
depth in short exact sequences; see [Bruns and Herzog 1993, Proposition 1.2.9] or
Lemma 2.5. Given a finitely generated R-module M , one can not always construct
an exact sequence

(∗) 0−→ M −→ X0
−→ X1

−→ · · ·

where X0, X1, . . . are maximal CM; however, there is a canonical way to con-
struct a complex of the form (∗). Theorem A guarantees the existence of MCM-
preenvelopes, which makes the following construction possible: take an MCM-
preenvelope µ0

: M→ X0 of M and set C1
=Cokerµ0; take an MCM-preenvelope

µ1
: C1
→ X1 of C1 and set C2

= Cokerµ1; etc. The hereby constructed com-
plex (∗) — which is called a proper MCM-coresolution or an MCM-resolvent of M —
is not necessarily exact, but it becomes exact if one applies the functor HomR(−, Y )
to it for any Y in MCM. The module Cn

= Coker(Xn−2
→ Xn−1) is called the

n-th cosyzygy of M with respect to MCM, and it is denoted by Cosyzn
MCM(M). In

Section 6 we prove that such cosyzygies must eventually be maximal CM:

Theorem C. Let M be a finitely generated R-module. For every n > d, any n-th
cosyzygy Cosyzn

MCM(M) of M with respect to MCM is maximal CM.

2. Preliminaries

Setup 2.1. Throughout, (R,m, k) is a commutative noetherian local CM ring of
Krull dimension d . It is assumed that R has a dualizing (or canonical) module �.

Let M be a finitely generated R-module. The depth of M is the number

depthR M = inf{i | ExtiR(k,M) 6= 0} ∈ N0 ∪ {∞};

see [Bruns and Herzog 1993, Definitions 1.2.6 and 1.2.7]. If M 6= 0, then depthR M
is the common length of a maximal M-regular sequence (in m). The depth can also
be computed from the dualizing module:

depthR M = d − sup{i | ExtiR(M, �) 6= 0};

see [Bruns and Herzog 1993, Corollary 3.5.11]. One calls M maximal CM if
depthR M > d, that is, if ExtiR(M, �) = 0 for all i > 0. The category of all such
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R-modules is denoted by MCM. Note that the zero module is maximal CM and has
depth∞. The category of all finitely generated R-modules is denoted by mod.

We recall a few notions from relative homological algebra.

Definition 2.2. Let A be a full subcategory of an abelian category M (e.g., M=
mod and A = MCM), and let M be an object in M. Following [Enochs and
Jenda 2000, Definition 6.1.1], a morphism ε : M→ A with A ∈A is called an A-
preenvelope (or a left A-approximation) of M if every other morphism ε′ : M→ A′

with A′ ∈A factors through ε, as illustrated below.

M ε
//

ε′

��

A

~~

A′

A special A-preenvelope (or a special left A-approximation) is an A-preenvelope
ε : M→ A such that Ext1M(Coker ε, A′)= 0 for every A′ ∈A. An A-envelope (or
a minimal left A-approximation) is an A-preenvelope ε with the property that every
endomorphism ϕ of A that satisfies ϕε = ε is an automorphism.

Remark 2.3. The notions of A-precover (or right A-approximation), special A-
precover (or special right A-approximation), and A-cover (or minimal right A-
approximation) are categorically dual to the notions defined above.

By definition, a special A-precover/preenvelope is also an (ordinary) A-precover/
preenvelope. If A is closed under extensions in M, then every A-cover/envelope is
a special A-precover/preenvelope; this is the content of Wakamatsu’s lemma.1

Remark 2.4. It is well-known that the dualizing module � gives rise to a duality
on the category of maximal CM modules; more precisely, there is an equivalence
of categories:

MCM
HomR(−,�)

//
MCMop.

HomR(−,�)

oo

We use the shorthand notation (−)† for the functor HomR(−, �). For any finitely
generated R-module M there is a canonical homomorphism δM : M→ M††, called
the biduality homomorphism, which is natural in M . An alternative way of phrasing
the equivalence above is to say δM is an isomorphism if M belongs to MCM; see
[Bruns and Herzog 1993, Theorem 3.3.10].

We will need the following result about depth; it is folklore and easily proved.

1This result is implicit in [Wakamatsu 1988]. It is explicitly stated in [Auslander and Reiten 1991,
Lemma 1.3], but without a proof. It is stated and proved in [Xu 1996, Lemmas 2.1.1 and 2.1.2].



APPROXIMATIONS BY MAXIMAL COHEN–MACAULAY MODULES 359

Lemma 2.5. Let m > 0 be an integer and let 0→ Km → Xm−1→ · · · → X0→

M→ 0 be an exact sequence of finitely generated R-modules. If X0, . . . , Xm−1 are
maximal CM, then one has depthR Km >min{d, depthR M +m}. In particular, if
m > d then the R-module Km is maximal CM. �

3. Special MCM-preenvelopes and MCM-envelopes

In this section, we prove Theorem A from the introduction. Our proof follows that
of [Holm and Jørgensen 2011, Theorem 1.6] with some adjustments.

Lemma 3.1. For every R-module M, the composition M†
δM†
// M††† δ

†
M
// M† is

the identity map on M†.

Proof. Straightforward; see [Jans 1961, Theorem 1.4]. �

Lemma 3.2. For every finitely generated R-module M , the next conditions are
equivalent.

(i) Ext1R(M, �)= 0 and Ext1R(X,M†)= 0 for every X ∈MCM.

(ii) Ext1R(M, Y )= 0 for every Y ∈MCM.

Proof. (i)=⇒(ii): Given any Y ∈MCM we must argue that Ext1R(M, Y )= 0, i.e., that
every short exact sequence 0→ Y

α
→ E→ M→ 0 splits. As Ext1R(M, �)= 0, the

functor (−)† leaves this sequence exact; in fact, the induced short exact sequence

0−→ M†
−→ E† α†

−→ Y †
−→ 0

splits as Y † belongs to MCM and hence Ext1R(Y
†,M†) = 0 by assumption. Let

β : Y †
→ E† be a right inverse of α†. Then δ−1

Y β†δE : E→ Y is a left inverse of α
since one has

δ−1
Y β†δEα = δ

−1
Y β†α††δY = δ

−1
Y (α†β)†δY = δ

−1
Y 1Y ††δY = 1Y .

(ii)=⇒(i): Assumption (ii) implies that Ext1R(M, �)= 0 since � ∈MCM. Given
X ∈ MCM we must show that Ext1R(X,M†) = 0, i.e., that every short exact se-
quence 0→ M† α

→ E→ X→ 0 splits. Since X is in MCM we in particular have
Ext1R(X, �)= 0, so an application of the functor (−)† yields another short exact
sequence:

(∗) 0−→ X†
−→ E† α†

−→ M††
−→ 0.

As X† belongs to MCM we have Ext1R(M, X†) = 0, so the functor HomR(M,−)
leaves the sequence (∗) exact. Surjectivity of HomR(M, α†) yields a homomorphism
β : M → E† with α†β = δM . It follows that β†δE : E → M† is a left inverse of
α since one has β†δEα = β

†α††δM† = (α†β)†δM† = δ
†
M δM† = 1M†, where the last

equality follows from Lemma 3.1. �
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Proof of Theorem A. We begin by proving the last assertion in the theorem. Let
µ : M → X be any special MCM-preenvelope of M . By assumption, we have
Ext1R(Cokerµ, Y ) = 0 for every Y ∈ MCM. Hence Lemma 3.2 implies that
Ext1R(Z , (Cokerµ)†) = 0 for every Z ∈ MCM. By [Auslander and Buchweitz
1989, Theorem A], we can take a hull of finite injective dimension for the finitely
generated module (Cokerµ)†, that is, a short exact sequence

0−→ (Cokerµ)† −→ I −→ Z −→ 0,

where I has finite injective dimension and Z is maximal CM. This sequence splits
since Ext1R(Z , (Cokerµ)†)= 0, and (Cokerµ)† is therefore a direct summand in I .
Since I has finite injective dimension, so has (Cokerµ)†.

To prove parts (a) and (b), let M be a finitely generated R-module and let
π : Z → M† be a homomorphism with Z ∈ MCM. We will show that if π is
a special MCM-precover, respectively, an MCM-cover of M† (recall that by the
theorem by Auslander, Buchweitz, Takahashi and Yoshino from the introduction,
special MCM-precovers always exist, and MCM-covers exist if R is henselian), then
the homomorphism

µ := π†δM : M −→ Z†

is a special MCM-preenvelope, respectively, an MCM-envelope, of M .
First assume that π is a special MCM-precover. We begin by proving that µ is

an MCM-preenvelope. Note that Z† is in MCM by Remark 2.4. We must show
that HomR(µ, Y ) is surjective for every Y ∈MCM. By Remark 2.4 every such Y
has the form Y ∼= X† for some X ∈ MCM (namely for X = Y †), so it suffices to
show that HomR(µ, X†) is surjective for every X ∈MCM. By definition of µ, the
homomorphism HomR(µ, X†) is the composition of the maps

(∗) HomR(Z†, X†)
HomR(π

†,X†)
// HomR(M††, X†)

HomR(δM ,X†)
// HomR(M, X†) .

Via the “swap” isomorphism, see [Christensen 2000, (A.2.9)], the homomorphisms
in (∗) are identified with the ones in the top row of the following diagram:

(∗∗)

HomR(X, Z††)
HomR(X,π††)

// HomR(X,M†††)
HomR(X,δ

†
M )
// HomR(X,M†)

HomR(X, Z)

HomR(X,δZ ) ∼=

OO

HomR(X,π)
// // HomR(X,M†)

HomR(X,δM† )

OO

The left square in (∗∗) is commutative since the biduality homomorphism δ is
natural, and the right triangle in (∗∗) is commutative by Lemma 3.1. The map δZ

is an isomorphism since Z is in MCM; and HomR(X, π) is surjective as π is an
MCM-precover and X ∈MCM. It follows that the composition of the maps in the
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top row of (∗∗), and therefore also the map HomR(µ, X†), is surjective. Thus, µ is
an MCM-preenvelope.

To see thatµ is a special MCM-preenvelope, we must prove that Ext1R(Cokerµ,Y )
vanishes for every Y ∈ MCM. As the functor (−)† is left exact, (Cokerµ)† is
isomorphic to Ker(µ†). By definition we have µ†

= δ
†
Mπ

††, and hence µ† fits into
the commutative diagram:

(∗∗∗)

Z†† µ†
// M†

Z†† π††
// M†††

δ
†
M

OO

Z

δZ ∼=

OO

π
// M†

δM†

OO
1M† (by Lemma 3.1)

cc

It follows that µ† and π are isomorphic maps, and hence they also have isomorphic
kernels, that is, Ker(µ†)∼= Kerπ . It follows that (Cokerµ)† ∼= Kerπ . Since π is a
special MCM-precover, we now have

Ext1R(X, (Cokerµ)†)∼= Ext1R(X,Kerπ)= 0

for every X ∈MCM. Thus, to see that Ext1R(Cokerµ, Y )= 0 for every Y ∈MCM,
it suffices by Lemma 3.2 to prove that Ext1R(Cokerµ,�) = 0. To this end, set
X = Z†

∈MCM and consider the factorization of µ : M→ Z†
= X given by

M

µ0 �� ��

µ
// X

Imµ
/� ι

??

where µ0 is the corestriction of µ to its image and ι is the inclusion map. As µ0

is surjective and (−)† is left exact, the map µ†
0 is injective. As � ∈ MCM and

µ is an MCM-preenvelope, the map µ†
= HomR(µ,�) is surjective; and hence

so is µ†
0 since µ†

= µ
†
0 ι

†. Thus, µ†
0 is an isomorphism. Hence ι† and µ† are

isomorphic maps, and since µ† is surjective, so is ι†. Thus, application of (−)† to
0→ Imµ

ι
→ X→ Cokerµ→ 0 yields an exact sequence

X† ι†
// (Imµ)†

0
// Ext1R(Cokerµ,�) // Ext1R(X, �)= 0,

which forces Ext1R(Cokerµ,�)= 0, as desired.
Finally, assume that π is an MCM-cover. We show that µ= π†δM is an MCM-

envelope. We have already seen that µ is an MCM-preenvelope. To show that it
is an envelope, let ϕ be an endomorphism of Z† with ϕµ = µ. It follows that
µ†ϕ†

= µ†. The diagram (∗∗∗) shows that µ†δZ = π , and thus π(δ−1
Z ϕ†δZ ) =
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µ†ϕ†δZ = µ
†δZ = π . As π is an MCM-cover, we conclude that δ−1

Z ϕ†δZ , and
therefore also ϕ†, is an automorphism. It follows that ϕ†† is an automorphism of
Z†††, and finally that ϕ = δ−1

Z† ϕ
††δZ† is an automorphism of Z†. �

The proof of Theorem A (above) shows that one can construct MCM-envelopes
from MCM-covers. We do not know if the converse is true, that is, we do not know
if existence of MCM-envelopes is logically equivalent to existence of MCM-covers.
The next result provides a partial answer to this question; it shows that existence of
MCM-envelopes for all finitely generated modules implies existence of MCM-covers
for some finitely generated modules (namely for modules N of the form N ∼= M†

for some M).

Proposition 3.3. Let M be a finitely generated R-module. If µ : M → X is an
MCM-preenvelope, a special MCM-preenvelope, or an MCM-envelope of M , then
µ†
: X†
→ M† is an MCM-precover, a special MCM-precover, or an MCM-cover

of M†, respectively.

Proof. This is left as an exercise to the reader. �

4. Examples

We compute the MCM-envelope of some specific modules. We begin with a charac-
terization of modules with trivial MCM-envelope.

Proposition 4.1. For a finitely generated R-module M , one has dimR M < d if and
only if the zero map M→ 0 is an MCM-envelope of M.

Proof. If dimR M < d then [Bruns and Herzog 1993, Corollary 3.5.11(a)] shows
that HomR(M, �) = 0. It follows that every homomorphism ϕ : M → X with
X ∈ MCM is zero. Indeed, since � cogenerates the category MCM, there exists
a monomorphism ι : X → �n for some natural number n. As HomR(M, �) = 0,
the homomorphism ιϕ : M→�n must be zero, and thus ϕ = 0 since ι is injective.
Since every homomorphism from M to a maximal CM module is zero, the zero
map M→ 0 is an MCM-envelope of M .

Conversely, if M → 0 is an MCM-(pre)envelope then, since � is in MCM,
every homomorphism ϕ : M → � factors through 0, and hence ϕ = 0. Thus
HomR(M, �)=0, and it follows from [Bruns and Herzog 1993, Corollary 3.5.11(b)]
that one can not have dimR M = d; so dimR M < d . �

In general, MCM-(pre)envelopes need not be injective. In fact:

Corollary 4.2. The ring R is artinian if and only if every finitely generated R-
module admits an injective (that is, monic) MCM-(pre)envelope.
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Proof. If R is artinian, then every finitely generated R-module M is maximal CM,
and therefore 1M : M→ M is an injective MCM-envelope of M . Conversely, if R
is not artinian, then the residue field k, which has dimension dimR k = 0, does not
have an injective MCM-preenvelope by Proposition 4.1. �

Next we give a somewhat “general” example.

Example 4.3. Let M be a finitely generated R-module. If M† is maximal CM,
then the identity homomorphism π = 1M† : M†

→ M† is an MCM-cover of M†.
The proof of Theorem A shows that the homomorphism µ= π†δM = δM , i.e., the
biduality homomorphism δM : M→ M††, is an MCM-envelope M .

Here is a concrete application of the example above.

Example 4.4. Let M be a submodule of a maximal CM R-module X with the
property that dimR(X/M) < d−1. For example, M = a could be an ideal in X = R
with heightR(a) > 1; see [Bruns and Herzog 1993, Corollary 2.1.4]. Or M could
be the submodule M = ( f1, f2, . . .)X , where f1, f2, . . . is an X -regular sequence
of length at least two. We claim that, in this case, the inclusion map ι : M ↪→ X is
an MCM-envelope of M .

To see why, note that the short exact sequence 0→ M
ι
→ X→ X/M→ 0 is

mapped by the functor (−)† to the exact sequence

0−→ (X/M)† −→ X† ι†

−→ M†
−→ Ext1R(X/M, �).

Since d − dimR(X/M) > 1, it follows from Corollary 3.5.11(a) of [Bruns and
Herzog 1993] that HomR(X/M, �) = 0 and Ext1R(X/M, �) = 0. Hence the
sequence displayed above shows that ι† is an isomorphism and, in particular,
M† ∼= X† is maximal CM. Thus Example 4.3 shows that the biduality homo-
morphism δM : M→ M†† is an MCM-envelope of M . It remains to argue that δM

can be identified with ι : M ↪→ X ; however, this follows from the commutative
diagram:

M ι
//

δM
��

X
∼= δX
��

M††
∼=

ι††
// X††

Indeed, δX is an isomorphism as X ∈ MCM, and ι††
= (ι†)† is an isomorphism

because ι† is.

Remark 4.5. For a special MCM-precover π : X → M of a finitely generated
module M , the kernel Kerπ has finite injective dimension, and hence one has
ExtiR(X,Kerπ) = 0 for every X ∈ MCM and every i > 0 — not just for i = 1.
A similar phenomenon does not occur for special MCM-preenvelopes. Indeed, if



364 HENRIK HOLM

in Example 4.4 one has dimR(X/M) = d − 2, say, then Coker ι = X/M satisfies
Ext2R(X/M, �) 6= 0 by [Bruns and Herzog 1993, Corollary 3.5.11(b)].

5. MCM-envelopes with the unique lifting property

If µ :M→ X is an MCM-preenvelope of a finitely generated R-module M , then the
induced homomorphism HomR(µ, Y ) :HomR(X, Y )→HomR(M, Y ) is surjective
for every Y ∈ MCM; see Definition 2.2. If HomR(µ, Y ) is an isomorphism for
every Y ∈MCM, then we say that the MCM-preenvelope µ has the unique lifting
property. Indeed, in this case, there exists for every homomorphism ν :M→ Y with
Y ∈MCM a unique homomorphism ϕ : X→ Y that makes the following diagram
commute:

M
µ
//

ν

��

X

ϕ
~~

Y

Note that an MCM-preenvelope µ : M→ X with the unique lifting property must
necessarily be an MCM-envelope. Indeed, the only endomorphism ϕ of X with
ϕµ= µ is ϕ = 1X . Evidently, every surjective MCM-preenvelope has the unique
lifting property.

Lemma 5.1. For any finitely generated R-module M , one has depthR(M
†) >

min{d, 2}.

Proof. Take an exact sequence L1→ L0→ M→ 0 where L0 and L1 are finitely
generated and free. Since the functor (−)† = HomR(−, �) is left exact, we get
an exact sequence, 0→ M†

→ L†
0→ L†

1→ C → 0, where C is the cokernel of
the homomorphism L†

0 → L†
1. Since the modules L†

0 and L†
1 are maximal CM,

Lemma 2.5 yields

depthR(M
†)>min{d, depthR C + 2}>min{d, 2}. �

Proof of Theorem B. (i)=⇒(ii): Consider an exact sequence of finitely generated
modules

0−→ K −→ L1
α
−→ L0 −→ N −→ 0,

where L0 and L1 are free and K = Kerα. From [Bruns and Herzog 1993, Proposi-
tion 1.2.9] (last inequality) one gets

(∗) depthR N > depthR K − 2.

Set C = Coker(α†) and consider the exact sequence L†
0

α†

−→ L†
1 −→ C −→ 0. As
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the functor (−)† is left exact, we get a commutative diagram with exact rows:

0 // K // L1

∼= δL1
��

α
// L0

∼= δL0
��

0 // C† // L††
1

α††
// L††

0

which shows that K ∼= C†, since δL0 and δL1 are isomorphisms. By assumption (i),
the module K is therefore maximal CM, and hence inequality (∗) yields depthR N >
d − 2. As this holds for every finitely generated R-module N , it holds in particular
for the residue field N = k. We get 0= depthR k > d − 2, and thus d 6 2.

(ii)=⇒(iii): In the case where R is reduced, a proof of this implication can be
found in [Burban and Drozd 2008, Proposition 3.2]. We give a slightly different
argument.

If d 6 2, then Lemma 5.1 shows that for every finitely generated R-module
M , the module M† is maximal CM, and hence so is M††. Thus F = (−)†† is
a functor from mod to MCM, which we claim is a left adjoint of the inclusion
G :MCM→mod. For each finitely generated R-module M and each maximal CM
R-module X , the homomorphism ϕM,X = HomR(δM , X) given by

HomR(FM, X)= HomR(M††, X)
ϕM,X

// HomR(M, X)= HomR(M,GX)

is evidently natural in M and X ; and it is surjective since the biduality map δM :

M→ M†† is an MCM-preenvelope of M by Example 4.3. It remains to see that
HomR(δM , X) is injective. To this end, let µ : M††

→ X be a homomorphism
with µδM = HomR(δM , X)(µ) = 0. It follows that δ†

Mµ
†
= (µδM)

†
= 0. As M†

is maximal CM, the biduality map δM† is an isomorphism, and hence so is δ†
M by

Lemma 3.1. Since δ†
Mµ

†
= 0 we conclude that µ†

= 0. Thus µ††
= (µ†)† = 0 and

consequently µ= δ−1
X µ††δM†† = 0, as desired.

(iii)=⇒(iv): Let F :mod→MCM be a left adjoint of the inclusion G :MCM→mod.
For every finitely generated R-module M , the unit of adjunction ηM : M→ GFM
induces, for every maximal CM R-module Y , an isomorphism:

ϕM,Y : HomR(FM, Y )−→∼ HomR(M,GY ) given by α 7→ G(α)ηM ;

see [MacLane 1971, IV.1 Theorem 1]. If we suppress the inclusion functor G and
set X = GFM = FM , which is maximal CM by the assumption on F, we see that
unit of adjunction ηM : M→ X has the property that the map

HomR(X, Y )−→∼ HomR(M, Y ) given by α 7→ αηM = HomR(ηM , Y )(α)

is an isomorphism. Thus, ηM is an MCM-envelope of M with the unique lifting
property.
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(iv)=⇒(i): Let M be a finitely generated R-module. By assumption, M has an
MCM-envelope µ : M→ X with the unique lifting property. Since � is maximal
CM, the homomorphism µ†

: X†
→ M† is an isomorphism, and as X† is maximal

CM, so is M†. �

6. Cosyzygies with respect to MCM

Let A be a full subcategory of an abelian category M (for example, M=mod and
A=MCM).

Assume that every object in M has an A-precover. In this case, every M ∈
M admits a proper A-resolution, meaning a, not necessarily exact, complex
A = · · · → A1→ A0→ M→ 0 with Ai ∈A such that the sequence HomM(A,A)

is exact for every A ∈A. Such a resolution is constructed recursively as follows:
take an A-precover π0 : A0→ M of M and set K1 = Kerπ0; take an A-precover
π1 : A1→K1 of K1 and set K2=Kerπ1; etc. The object Kn is denoted by SyzAn (M)
and it is called the n-th syzygy of M with respect to A. A given object M ∈M has,
typically, many different A-precovers and proper A-resolutions, so SyzAn (M) is not
uniquely determined by M ; but it almost is: the version of Schanuel’s lemma found
in [Enochs et al. 2001, Lemma 2.2] shows that if Kn and K n are both n-th syzygies
of M with respect to A, then there exist A, A ∈A such that Kn ⊕ A ∼= K n ⊕ A. In
particular, if A is closed under direct summands (as is the case if A=MCM), then
Kn belongs to A if and only if K n belongs to A; and thus it makes sense to ask if
SyzAn (M) belongs to A.

If every object in M admits an A-cover, then π0, π1, . . . in the construction above
can be chosen to be A-covers, and the resulting proper A-resolution is then called a
minimal proper A-resolution of M . In this case, Kn is called the minimal n-th syzygy
of M with respect to A, and it is denoted by min-SyzAn (M). Since an A-cover (of a
given object in M) is unique up to isomorphism, see [Xu 1996, Theorem 1.2.6],
the object min-SyzAn (M) is uniquely determined, up to isomorphism, by M .

Dually, if every M ∈M has an A-preenvelope (resp. A-envelope), then a proper
A-coresolution (resp. minimal proper A-coresolution) 0→ M→ A0

→ A1
→ · · ·

can always be constructed as follows: take an A-preenvelope (resp. A-envelope)
µ0
: M → A0 of M and set C1

= Cokerµ0; take an A-preenvelope (resp. A-
envelope) µ1

: C1
→ A1 of C1 and set C2

= Cokerµ1; etc. The object Cn is called
the n-th cosyzygy of M with respect to A (resp. the minimal n-th cosyzygy of M
with respect to A) and it is denoted by Cosyzn

A(M) (resp. min-Cosyzn
A(M)). The

object min-Cosyzn
A(M) is uniquely determined, up to isomorphism, by M . The

object Cosyzn
A(M) is almost uniquely determined by M in the sense that if Cn and

Cn are both n-th cosyzygies of M with respect to A, then there exist A, A ∈A such
that Cn

⊕ A ∼= Cn
⊕ A. Thus, if A is closed under direct summands, then it makes

sense to ask if Cosyzn
A(M) belongs to A.
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We supplement the definitions above by setting SyzA0 (M)=min-SyzA0 (M)= M ,
and similarly Cosyz0

A(M)=min-Cosyz0
A(M)= M .

Example 6.1. Let (A, n, `) be any local ring and let F be the class of finitely
generated free A-modules. Every finitely generated A-module M has an F-cover; to
construct it one takes a minimal set x1, . . . , xb of generators of M (here b= β A

0 (M)
is the zeroth Betti number of M) and then defines Ab�M by ei 7→ xi ; see [Enochs
and Jenda 2000, Theorem 5.3.3]. A minimal proper F-resolution · · ·→ F1→ F0→

M→ 0 of a finitely generated A-module M is nothing but a minimal free resolution
of M in the classical sense, that is, where each homomorphism Fn→ Fn−1 becomes
zero when tensored with the residue field ` of A.

In this section, we are interested in cosyzygies with respect to the class MCM of
maximal CM R-modules. We begin with a characterization of modules for which
the first such cosyzygy is maximal CM.

Proposition 6.2. For a finitely generated R-module M the next conditions are
equivalent:

(i) M has an MCM-preenvelope whose cokernel is maximal CM, meaning that
Cosyz1

MCM(M) is a maximal CM module.

(ii) M has a surjective MCM-envelope, that is, min-Cosyz1
MCM(M)= 0.

Proof. Evidently, (ii) implies (i). Conversely, letµ :M→ X be an MCM-preenvelope
such that C = Cokerµ is maximal CM. Since X and C = X/ Imµ are maximal
CM, so is Imµ. It follows that the corestriction µ : M � Imµ is a surjective
MCM-envelope of M . �

Next we give a sufficient condition for the second cosyzygy to be maximal CM.

Proposition 6.3. Let M be a finitely generated R-module such that M† is maximal
CM. Then any second cosyzygy, Cosyz2

MCM(M), of M with respect to MCM is
maximal CM.

Proof. By Example 4.3, the homomorphism δM : M→ M†† is an MCM-envelope
of M . Set C1

= min-Cosyz1
MCM(M) = Coker δM . By application of the left ex-

act functor (−)†, the exact sequence M
δM
−→ M††

−→ C1
−→ 0 induces an exact

sequence

0 // (C1)† // M††† δ
†
M
// M†.

As M† is maximal CM, the biduality homomorphism δM† is an isomorphism, and
hence so is δ†

M by Lemma 3.1. It follows that HomR(C1, �) = (C1)† = 0, so
[Bruns and Herzog 1993, Corollary 3.5.11(b)] implies that dimR(C1) < d. Thus
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Proposition 4.1 shows that C1
→ 0 is an MCM-envelope of C1, and therefore the

minimal second cosyzygy of M with respect to MCM is zero:

min-Cosyz2
MCM(M)=min-Cosyz1

MCM(C
1)= Coker(C1

→ 0)= 0.

Hence any second cosyzygy of M with respect to MCM must be maximal CM. �

Proof of Theorem C. First note, that if X is a maximal CM R-module, then
Cosyzi

MCM(X) is clearly maximal CM for every i > 0. If n > d, then the n-th
cosyzygy of M is an (n− d)th cosyzygy of Cosyzd

MCM(M), that is,

Cosyzn
MCM(M)= Cosyzn−d

MCM(Cosyzd
MCM(M));

so it suffices to argue that Cosyzd
MCM(M) is maximal CM.

If d = 0, then certainly Cosyz0
MCM(M)= M is maximal CM, since every finitely

generated R-module is maximal CM over an artinian ring.
Assume that d = 1. By Theorem A we can take a special MCM-preenvelope

µ : M → X of M . We must show that C1
= Cosyz1

MCM(M) = Cokerµ is max-
imal CM. By definition, we have Ext1R(C

1, Y ) = 0 for all Y ∈ MCM, in partic-
ular, Ext1R(C

1, �) = 0. Since � has injective dimension d = 1, we also have
ExtiR(−, �) = 0 for all i > 1, and consequently, ExtiR(C

1, �) = 0 for all i > 0.
Thus C1 is maximal CM.

Finally, assume that d > 2. Let 0→ M→ X0
→ · · · → Xd−3

→ Cd−2
→ 0 be

part of a proper MCM-coresolution of M , where Cd−2
= Cosyzd−2

MCM(M). In the
case d = 2, this just means that we consider the module C0

= Cosyz0
MCM(M)= M .

Since the module � is maximal CM, the sequence

0−→ (Cd−2)† −→ (Xd−3)† −→ · · · −→ (X0)† −→ M†
−→ 0

is exact. From Lemma 2.5 and Lemma 5.1 we derive that depthR(C
d−2)† >

min{d, depthR M†
+ d − 2} = d, so (Cd−2)† = (Cosyzd−2

MCM(M))
† is maximal CM.

Proposition 6.3 now yields that

Cosyzd
MCM(M)= Cosyz2

MCM(Cosyzd−2
MCM(M))

is maximal CM, as desired. �

Dutta [1989] shows that if R is not regular, then no syzygy in the minimal free
resolution of the residue field k (see Example 6.1) can contain a nonzero free direct
summand. The following result has the same flavor, but its proof is easy. Actually,
the proof of [Takahashi 2006, Proposition 2.6] applies to prove Proposition 6.4 as
well, but since it is so short, we repeat it here.

Proposition 6.4. Assume that every finitely generated R-module has an MCM-
envelope (by Theorem A, this is the case if R is henselian). Let M be a finitely
generated R-module and let n > 1 be an integer. The minimal n-th cosyzygy,
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min-Cosyzn
MCM(M), of M with respect to MCM contains no nonzero free direct

summand.

Proof. It suffices to consider the case n= 1. Let µ :M→ X be an MCM-envelope of
M , set C =min-Cosyz1

MCM(M)= Cokerµ, and write π : X � C for the canonical
homomorphism. Let F be a free direct summand in C and denote by ρ : C � F
the projection onto this direct summand. We have a commutative diagram

M
µ
//

µ0

��

X π
// C

ρ

����

// 0

0 // K ι
// X

ρπ
// F // 0,

where ι : K → X is the kernel of ρπ , and µ0 is the corestriction of µ to K . Since
F is free, the lower short exact sequence splits, so ι has a left inverse σ : X→ K .
The endomorphism ισ of X satisfies ισµ = ισ ιµ0 = ιµ0 = µ, and since µ is an
envelope, we conclude that ισ is an automorphism. In particular, ι is surjective, and
hence F is zero. �
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by A. Skowroński, Eur. Math. Soc., Zürich, 2008. MR 2010a:13017 Zbl 1200.14011

[Christensen 2000] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics 1747,
Springer, Berlin, 2000. MR 2002e:13032 Zbl 0965.13010

[Crawley-Boevey 1994] W. Crawley-Boevey, “Locally finitely presented additive categories”, Comm.
Algebra 22:5 (1994), 1641–1674. MR 95h:18009 Zbl 0798.18006

[Dutta 1989] S. P. Dutta, “Syzygies and homological conjectures”, pp. 139–156 in Commutative
algebra (Berkeley, CA, 1987), edited by M. Hochster et al., Math. Sci. Res. Inst. Publ. 15, Springer,
New York, 1989. MR 90i:13015 Zbl 0733.13006

[Enochs and Jenda 2000] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, de Gruyter
Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000. MR 2001h:16013 Zbl 0952.13001

http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://www.numdam.org/item?id=MSMF_1989_2_38__5_0
http://msp.org/idx/mr/91h:13010
http://msp.org/idx/zbl/0697.13005
http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://dx.doi.org/10.1016/0001-8708(91)90037-8
http://msp.org/idx/mr/92e:16009
http://msp.org/idx/zbl/0774.16006
http://dx.doi.org/10.1017/CBO9780511608681
http://msp.org/idx/mr/95h:13020
http://msp.org/idx/zbl/0788.13005
http://dx.doi.org/10.4171/062-1/3
http://dx.doi.org/10.4171/062-1/3
http://msp.org/idx/mr/2010a:13017
http://msp.org/idx/zbl/1200.14011
http://dx.doi.org/10.1007/BFb0103980
http://msp.org/idx/mr/2002e:13032
http://msp.org/idx/zbl/0965.13010
http://dx.doi.org/10.1080/00927879408824927
http://msp.org/idx/mr/95h:18009
http://msp.org/idx/zbl/0798.18006
http://dx.doi.org/10.1007/978-1-4612-3660-3_7
http://msp.org/idx/mr/90i:13015
http://msp.org/idx/zbl/0733.13006
http://dx.doi.org/10.1515/9783110803662
http://msp.org/idx/mr/2001h:16013
http://msp.org/idx/zbl/0952.13001


370 HENRIK HOLM

[Enochs et al. 2001] E. E. Enochs, O. M. G. Jenda, and L. Oyonarte, “λ and µ-dimensions of
modules”, Rend. Sem. Mat. Univ. Padova 105 (2001), 111–123. MR 2002c:16012 Zbl 1072.16011

[Holm 2014] H. Holm, “The structure of balanced big Cohen–Macaulay modules over Cohen–
Macaulay rings”, preprint, 2014. arXiv 1408.5152v1

[Holm and Jørgensen 2011] H. Holm and P. Jørgensen, “Rings without a Gorenstein analogue of the
Govorov–Lazard theorem”, Q. J. Math. 62:4 (2011), 977–988. MR 2012k:13031 Zbl 1251.13008

[Ischebeck 1969] F. Ischebeck, “Eine Dualität zwischen den Funktoren Ext und Tor”, J. Algebra 11:4
(1969), 510–531. MR 38 #5894 Zbl 0191.01306

[Jans 1961] J. P. Jans, “Duality in Noetherian rings”, Proc. Amer. Math. Soc. 12 (1961), 829–835.
MR 25 #1192 Zbl 0113.26104

[MacLane 1971] S. MacLane, Categories for the working mathematician, Graduate Texts in Mathe-
matics 5, Springer, New York, 1971. MR 50 #7275 Zbl 0232.18001

[Takahashi 2005] R. Takahashi, “On the category of modules of Gorenstein dimension zero”, Math.
Z. 251:2 (2005), 249–256. MR 2006j:13012 Zbl 1098.13014

[Takahashi 2006] R. Takahashi, “Remarks on modules approximated by G-projective modules”, J.
Algebra 301:2 (2006), 748–780. MR 2007a:13010 Zbl 1109.13012

[Wakamatsu 1988] T. Wakamatsu, “On modules with trivial self-extensions”, J. Algebra 114:1 (1988),
106–114. MR 89b:16020 Zbl 0646.16025

[Xu 1996] J. Xu, Flat covers of modules, Lecture Notes in Mathematics 1634, Springer, Berlin, 1996.
MR 98b:16003 Zbl 0860.16002

[Yoshino 1993] Y. Yoshino, “Cohen–Macaulay approximations”, pp. 119–138 in Proceedings of the
4th Symposium on Representation Theory of Algebras (Izu, Japan, 1993), 1993. In Japanese.

Received October 21, 2014. Revised February 17, 2015.

HENRIK HOLM

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITETSPARKEN 5
2100 COPENHAGEN Ø
DENMARK

holm@math.ku.dk

http://www.numdam.org/item?id=RSMUP_2001__105__111_0
http://www.numdam.org/item?id=RSMUP_2001__105__111_0
http://msp.org/idx/mr/2002c:16012
http://msp.org/idx/zbl/1072.16011
http://msp.org/idx/arx/1408.5152v1
http://dx.doi.org/10.1093/qmath/haq023
http://dx.doi.org/10.1093/qmath/haq023
http://msp.org/idx/mr/2012k:13031
http://msp.org/idx/zbl/1251.13008
http://dx.doi.org/10.1016/0021-8693(69)90090-8
http://msp.org/idx/mr/38:5894
http://msp.org/idx/zbl/0191.01306
http://dx.doi.org/10.2307/2034886
http://msp.org/idx/mr/25:1192
http://msp.org/idx/zbl/0113.26104
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://msp.org/idx/mr/50:7275
http://msp.org/idx/zbl/0232.18001
http://dx.doi.org/10.1007/s00209-005-0795-8
http://msp.org/idx/mr/2006j:13012
http://msp.org/idx/zbl/1098.13014
http://dx.doi.org/10.1016/j.jalgebra.2005.09.033
http://msp.org/idx/mr/2007a:13010
http://msp.org/idx/zbl/1109.13012
http://dx.doi.org/10.1016/0021-8693(88)90215-3
http://msp.org/idx/mr/89b:16020
http://msp.org/idx/zbl/0646.16025
http://dx.doi.org/10.1007/BFb0094173
http://msp.org/idx/mr/98b:16003
http://msp.org/idx/zbl/0860.16002
mailto:holm@math.ku.dk


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 277 No. 2 October 2015

257The Borel–Weil theorem for reductive Lie groups
JOSÉ ARAUJO and TIM BRATTEN

287A curvature flow unifying symplectic curvature flow and pluriclosed
flow

SONG DAI

313Representations of knot groups into SLn(C) and twisted Alexander
polynomials

MICHAEL HEUSENER and JOAN PORTI

355Approximations by maximal Cohen–Macaulay modules
HENRIK HOLM

371Patterson–Sullivan currents, generic stretching factors and the
asymmetric Lipschitz metric for outer space

ILYA KAPOVICH and MARTIN LUSTIG

399On recurrence over subsets and weak mixing
JIAN LI, PIOTR OPROCHA and GUOHUA ZHANG

425Représentations de Steinberg modulo p pour un groupe réductif sur un
corps local

TONY LY

463Calculating two-strand jellyfish relations
DAVID PENNEYS and EMILY PETERS

0030-8730(201510)277:2;1-#

Pacific
JournalofM

athem
atics

2015
Vol.277,N

o.2


	1. Introduction
	2. Preliminaries
	3. Special MCM-preenvelopes and MCM-envelopes
	4. Examples
	5. MCM-envelopes with the unique lifting property
	6. Cosyzygies with respect to MCM
	Acknowledgement
	References
	
	

