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PATTERSON–SULLIVAN CURRENTS,
GENERIC STRETCHING FACTORS

AND THE ASYMMETRIC LIPSCHITZ METRIC
FOR OUTER SPACE

ILYA KAPOVICH AND MARTIN LUSTIG

We quantitatively relate the Patterson–Sullivan currents and generic stretch-
ing factors for free group automorphisms to the asymmetric Lipschitz met-
ric on outer space and to Guirardel’s intersection number. Thus we show
that, given N � 2 and " > 0, there exists a constant c D c.N; "/ > 0 such
that for any two trees T;S 2 cvN of covolume 1 and injectivity radius � ",
we have

j loghS; �T i�dL.T;S /j � c;

where dL is the asymmetric Lipschitz metric on the Culler–Vogtmann outer
space, and where �T is the (appropriately normalized) Patterson–Sullivan
current corresponding to T . As a corollary, we show there exist constants
C1 � 1 and C2 � 1 (depending on N; ") such that for any T;S as above we
have

1

C1

log ic.T;S /�C2 � loghS; �T i �C1 log ic.T;S /CC2;

where ic is the combinatorial version of Guirardel’s intersection number.
We apply these results to the properties of generic stretching factors of free
group automorphisms. In particular, we show that for any N � 2, there
exists a constant 0 < �N < 1 such that for every automorphism ' of FN D

F.A/, we have

0< �N �
�A.'/

ƒA.'/
� 1:

Here �A is the generic stretching factor of ' with respect to the free basis A

of FN and ƒA.'/ is the extremal stretching factor of ' with respect to A.
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1. Introduction

For an integer N � 2, the unprojectivized outer space cvN is the set of all R-trees
equipped with a free discrete minimal isometric action of FN , considered up to
an FN -equivariant isometry. We denote by cv1

N
the set of all T 2 cvN such that

the metric graph T=FN has volume 1. The closure cvN of cvN with respect to
the equivariant Gromov–Hausdorff convergence topology (or equivalently [Paulin
1989], with respect to the hyperbolic length function topology) consists of all very
small minimal isometric actions of FN on R-trees, again up to an FN -equivariant
isometry. There is a natural action of R>0 on cvN by multiplying the metric on
a tree by a positive scalar. The subset cvN of cvN is invariant under this action,
and the quotient CVN D cvN =R>0 is the projectivized outer space, originally
introduced by Culler and Vogtmann [1986]. The quotient CVN D cvN =R>0 is
compact, and is called the Thurston compactification of CVN . All of the above
spaces admit natural Out.FN /-actions. The space CVN is naturally Out.FN /-
equivariantly homeomorphic to cv1

N
, but it is useful to remember that technically

cv1
N

and CVN are distinct objects.
There are three main quantitative tools for studying points of cvN . The first

is the so-called “asymmetric Lipschitz distance”. If T 2 cvN and S 2 cvN , the
extremal Lipschitz distortion is given by

ƒ.T;S/ WD sup
w2FN nf1g

kwkS

kwkT
:

It is known (see [Francaviglia and Martino 2011] for details) that this supremum is
actually a maximum, and that ƒ.T;S/ is the infimum of the Lipschitz constants
of all the FN -equivariant Lipschitz maps T ! S . It is also known that for all
T;S 2 cv1

N
, we have ƒ.T;S/ � 1, and that the equality holds if and only if

T D S . The asymmetric Lipschitz distance is defined as dL.T;S/ WD logƒ.T;S/,
where T;S 2 cv1

N
. Although it is usually the case that dL.T;S/¤ dL.S;T /, the

asymmetric distance dL satisfies all the other properties of being a metric, and
it is known that the topology defined by dL on cv1

N
coincides with the standard

subspace topology for cv1
N
� cvN . Moreover, for any T;S 2 cv1

N
, there exists an

(in general nonunique) dL-geodesic path from T to S in cv1
N

, given by natural
“folding lines” [loc. cit.]. The asymmetric distance dL is a useful tool in the study
of the geometry of Out.FN / and it has found significant recent applications; see,
for example, [Algom-Kfir 2011; 2013; Algom-Kfir and Bestvina 2012; Bestvina
2011; Francaviglia and Martino 2011; 2012; Ladra et al. 2015; White 1991].

Another two important quantitative tools for studying outer space are two notions
of a “geometric intersection number”. The first of these was introduced by Guirardel
[2005] in the general setting of groups acting by isometries on R-trees. Guirardel’s
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intersection number i.T;S/ (where T;S 2 cvN ) is defined as the covolume of the
“core” for the action of FN on T �S . Guirardel’s intersection number is symmetric
and Out.FN /-invariant, and for T;S 2 cvN , one always has 0 � i.T;S/ < 1.
However, for trees in @cvN D cvN n cvN , it is often the case that i.T;S/D1 and
i. � ; � / is discontinuous when viewed as a function on cvN �cvN . Still, Guirardel’s
intersection number is a highly useful tool when studying the asymptotic geometry
of cvN itself, particularly when looking at orbits of subgroups of Out.FN / in cv1

N

and cvN . Examples of such applications can be found in [Behrstock et al. 2010;
Clay et al. 2015; Clay and Pettet 2010; 2012b; Guirardel 2005; Horbez 2012].

The second notion of a “geometric intersection number” was introduced in
[Kapovich and Lustig 2009]. There we constructed a geometric intersection form
h � ; � i W cvN �Curr.FN /!R�0, where Curr.FN / is the space of geodesic currents
on FN . See Section 2C below and [Kapovich 2005; 2006; Kapovich and Lustig
2007; 2009] for the more information and the background on geodesic currents. The
geometric intersection form is continuous, Out.FN /-equivariant, and, importantly,
it always gives a finite output; that is, for every T 2 cvN and � 2 Curr.FN /, one
has 0 � hT; �i <1. If T 2 cvN and g 2 FN n f1g then hT; �gi D kgkT , where
�g 2 Curr.FN / is the “counting current” associated with g. By its very definition,
h � ; � i is an asymmetric gadget. However, its good properties, including finiteness
and global continuity on cvN , make the geometric intersection form a useful tool
that has also found a number of significant applications to the study of the dynamics
and geometry of Out.FN /. See, for example, [Bestvina and Feighn 2010; Bestvina
and Reynolds 2012; Carette et al. 2012; Clay and Pettet 2012a; Coulbois and Hilion
2014; Coulbois et al. 2008b; Hamenstädt 2014a; 2014b; Kapovich and Lustig 2009;
2010a; 2010b; Mann and Reynolds 2013; Reynolds 2012].

For "� 0, we denote by cv1
N;"

the set of all T 2 cv1
N

such that the length of the
shortest simple closed loop in T=FN is at least ". The set cv1

N;"
is called the "-thick

part of cv1
N

. Horbez [2012] showed that, for any fixed ">0, if T;S 2 cv1
N;"

, one has

.}/
1

K1
log ic.T;S/�K2 � dL.T;S/�K1 log ic.T;S/CK2

for some constants K1�1, K2�0 depending only on N and ". Here ic.T;S/ is the
combinatorial version of Guirardel’s intersection number, where ic.T;S/ is defined
as the number of 2-cells in Core.T �S/=FN , while i.T;S/ is defined as the sum
of the areas of all the 2-cells in Core.T �S/=FN . Thus if, for S;T 2 cv1

N
, the trees

T0;S0 2 cvN are obtained from T and S by making all edges have length 1, then
ic.T;S/ WD i.T0;S0/. Also, following the usual convention, in .}/ we interpret
log 0 as log 0D 0.

In the present paper, for T;S 2 cv1
N;"

, we relate ƒ.T;S/ to a natural quantity
defined in terms of h � ; � i. Via Horbez’ result, this connection also relates the
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geometric intersection form h � ; � i to Guirardel’s geometric intersection number
i. � ; � /. Following the results of Furman [2002] in the general set-up of word-
hyperbolic groups, Kapovich and Nagnibeda [2007] associated to every T 2 cvN its
Patterson–Sullivan current. In general, the Patterson–Sullivan current is naturally
defined only up to a multiplication by a positive scalar. Normalizing by the geometric
intersection number with T provides a canonical choice. Thus for a tree T 2 cvN ,
we denote by �T 2 Curr.FN / the Patterson–Sullivan current associated to T ,
normalized so that hT; �T i D 1. We refer the reader to Section 4 below and to
[Furman 2002; Kapovich and Nagnibeda 2007; 2010] for the precise definitions and
background information about the Patterson–Sullivan currents. A key result obtained
by Kapovich and Nagnibeda [2007] shows that the map JPS W cv1

N
! Curr.FN /,

T 7! �T is a continuous Out.FN /-equivariant embedding.
Our main result (see Theorem 4.2 below) is:

Theorem 1.1. Let N � 2 and " > 0. Then there exist constants 0 < ı1 � ı2 such
that for every T 2 cv1

N;"
and every S 2 cvN we have

ı1 �
hS; �T i

ƒ.T;S/
� ı2:

Therefore there exists a constant c D c.N; "/ > 0 such that for every T 2 cv1
N;"

and
S 2 cv1

N
we have

j loghS; �T i � dL.T;S/j � c:

Using the result of Horbez [2012] stated in .}/ above, Theorem 1.1 directly
implies (using the notation introduced after .}/):

Corollary 1.2. Let N � 2 and " > 0. There exist constants C1;C2 � 1 such that
for any T;S 2 cv1

N;"
, we have

1

C1
log ic.T;S/�C2 � loghS; �T i � C1 log ic.T;S/CC2:

The proof of Theorem 1.1 relies on several results regarding geodesic currents,
particularly one from [Kapovich and Lustig 2009] about the continuity of the
already mentioned geometric intersection form on cvN �Curr.FN /, and a result
from [Kapovich and Nagnibeda 2007] saying that the Patterson–Sullivan map
cv1

N
! Curr.FN /, T 7! �T , is a continuous Out.FN /-equivariant embedding.

The crucial point in the argument uses a result from [Kapovich and Lustig 2010a]
characterizing the case hS; �i D 0, where S 2 cvN and � 2 Curr.FN / are arbitrary.
This characterization implies that every current � with full support (such as the
Patterson–Sullivan current �T for T 2 cv1

N
) is filling, that is, satisfies hS; �i> 0 for

every S 2 cvN . Modulo the tools mentioned above, the proof of Theorem 1.1 is not
difficult (although it does require an extra trick exploiting the Out.FN /-equivariant
nature of certain functions and some nice properties of dL). Still, Theorem 1.1
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and its applications obtained here do provide a conceptual clarification regarding
the quantitative relationships between the two notions of a geometric intersection
number used in the study of Out.FN /, and about their relationship to the asymmetric
Lipschitz distance.

One of our main motivations for this paper has been to better understand the
properties of “generic stretching factors” for free group automorphisms.

Proposition-Definition 1.3 [Kaimanovich et al. 2007]. For any free basis A of FN

and any S 2 cvN , there exists a number �A.S/� 0 with the following property.
For a.e. trajectory �Dy1y2 � � �yn � � � of the simple nonbacktracking random walk

on FN with respect to A (that is, for a “random” geodesic ray � D y1y2 � � �yn � � �

over A˙1 with yi 2A˙1), we have ky1y2 � � �ynkA D nC o.n/ and

lim
n!1

ky1y2 � � �ynkS

n
D lim

n!1

ky1y2 � � �ynkS

ky1y2 � � �ynkA
D �A.S/:

The number �A.S/ is called [Kapovich 2006; Kaimanovich et al. 2007] the
generic stretching factor of S with respect to A.

The term “nonbacktracking” in “nonbacktracking simple random walk” refers
to the fact that for this random walk, if x;y 2A[A�1, the transition probability
for x to be followed by y is equal to 1=.2N � 1/ if y ¤ x�1 and is equal to 0 if
y D x�1. Thus the trajectories of this random walk are semi-infinite freely reduced
words over A˙1. Informally, the generic stretching factor �A.S/� 0 captures the
distortion ky1y2 � � �ynkS=n, where y1 � � �yn is a “random” freely reduced word of
length n over A, as n tends to infinity. The existence of �A.S/� 0 follows from
general ergodic-theoretic considerations, as observed in [Kaimanovich et al. 2007].
As noted in Remark 4.6 below, one actually has �A.S/ > 0 for every S 2 cvN .

Let A be a free basis of FN and consider the Cayley tree TA 2 cvN , with
all edges of length 1=N , so that TA 2 cv1

N
. Thus for every w 2 FN , we have

kwkA DN kwkTA
, where kwkA is the cyclically reduced length of w over A˙1. It

is known that the Patterson–Sullivan current�TA
is equal to the “uniform current” �A

on FN corresponding to A. Using the interpretation of hS; �Ai as the “generic
stretching factor” �A.S/ of S 2 cvN with respect to A [Kapovich 2006], as a
consequence of Theorem 1.1 we also obtain (see Theorem 4.7 below):

Corollary 1.4. Let N � 2. There exists a constant ı D ı.N / 2 .0; 1/ with the
following property:

For any free basis A of FN and any S 2 cvN , we have

(|) 0< ı �
�A.S/

ƒ.TA;S/
�

1

N
:

We are particularly interested in relationships between generic stretching factors
and extremal stretching factors in the context of Cayley trees of FN and of elements
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of Out.FN /. Note that if A is a free basis of A then N TA 2 cvN is the standard
Cayley graph of FN with respect to A, where all edges have length 1.

If ' 2 Out.FN / and w 2 FN , then, since ' is an outer automorphism, it acts
on the conjugacy classes of elements of FN (rather than on elements of FN ).
By convention, for ' 2 Out.FN / and w 2 FN , if '.w/ appears in an expression
that depends only on the conjugacy class '.Œw�/, we will use '.w/ to mean any
representative of that conjugacy class.

Definition 1.5 (extremal and generic stretching factors of automorphisms). Let A

be a free basis of FN and let ' 2 Out.FN /.
Define

ƒA.'/ WDƒ.TA;TA'/D sup
w¤1

k'.w/kA

kwkA
D edL.TA;TA'/;

and refer to ƒA.'/ as the extremal stretching factor for ' with respect to A.
Also, define �A.'/ WD �A.N TA'/DN�A.TA'/.
Thus for a.e. trajectory � D y1 � � �yn � � � of the simple nonbacktracking random

walk on FN with respect to A, we have

�A.'/D lim
n!1

k'.y1y2 � � �yn/kA

n
D lim

n!1

k'.y1y2 � � �yn/kA

ky1y2 � � �ynkA
:

We call �A.'/ the generic stretching factor of ' with respect to A.

Thus ƒA.'/ measures the maximal distortion k'.w/kA=kwkA as w varies
over all nontrivial elements of FN , while �A.'/ captures the “generic distortion”
k'.w/kA=kwkA, where w is a “long random” freely reduced (or cyclically reduced)
word over A˙1. In practice, ƒA.'/ is easy to compute since it is known (see, e.g.,
[Francaviglia and Martino 2011]) that ƒA.'/Dmax1�kwk�2.k'.w/kA=kwkA/.

The generic stretching factors �A.'/ were introduced in [Kaimanovich et al.
2007] and further studied in [Francaviglia 2009; Kapovich 2006; Kapovich and
Lustig 2010a; Sharp 2010]. In particular, it is proved in [Kaimanovich et al.
2007] that for every ' 2 Out.FN /, the number �A.'/ is rational, and moreover,
2N�A.'/ 2 ZŒ1=.2N � 1/� and there exists an algorithm that, given ', computes
�A.'/. The definitions directly imply that �A.'/ �ƒA.'/. However, other than
this fact, the quantitative relationship between ƒA.'/ and �A.'/ remained unclear.

Let N � 2 and FN D F.a1; : : : ; aN / with AD fa1; : : : ; aN g. Define

�N WD inf
'2Out.FN /

�A.'/

ƒA.'/
:

For every ' 2 Out.FN /, we have TA;TA' 2 cv1
N;"

with " D 1=N , and thus
Corollary 1.4 directly implies:

Theorem 1.6. For every N � 2 we have �N > 0.
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Therefore for every ' 2 Out.FN /, we have

0< �N �
�A.'/

ƒA.'/
� 1:

Our proof that �N > 0 does not give any explicit quantitative information
about �N . It would be interesting to find some explicit bounds from above and
below for �N , and perhaps to even compute �N , at least for small values of N . We
show in Proposition 7.1 that limN!1 �N D 0 and that �N DO.1=N /.

As another application, we obtain (see Corollary 5.3 below):

Corollary 1.7. Let N � 2 and FN DF.a1; : : : ; an/ with ADfa1; : : : ; aN g. There
exists D DD.N /� 1 such that for every ' 2 Out.FN / we have

1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

Let ' 2 Out.FN /. Recall that the algebraic stretching factor �.'/ is defined as

�.'/ WD sup
w2FN ;w¤1

lim
n!1

n
p
k'n.w/kS ;

where S 2 cvN is an arbitrary base point. It is known that the limit in the last
equality always exists, that this definition of �.'/ does not depend on the choice of
S 2 cvN , and that we always have �.'/ � 1. An element ' 2 Out.FN / is called
exponentially growing if �.'/ > 1, and polynomially growing if �.'/D 1. Indeed,
it is known (see, for example, [Levitt 2009]), that ' is polynomially growing if and
only if for every w 2 FN and S 2 cvN , the sequence k'n.w/kS is bounded above
by a polynomial in n.

The algebraic stretching factor �.'/ can be read off from any relative train-track
representative f W�!� of ' as the maximum of the Perron–Frobenius eigenvalues
for any of the canonical irreducible diagonal blocks of the (nonnegative) transition
matrix M.f /.

As another application of the results of this paper, we explain how the generic
stretching factor �A.'

n/ grows in terms of n for an arbitrary ' 2 Out.FN /. Thus
we obtain (see Theorem 5.6 below) the following result, which answers Problem 9.2
posed in [Kaimanovich et al. 2007]:

Theorem 1.8. Let A be a free basis of FN , let ' 2 Out.FN / and let �.'/ be the
algebraic stretching factor of '. Then there exist constants c1; c2 > 0 and an integer
m� 0 such that for every n� 1, we have

c1 �.'/
n nm

� �A.'
n/� c2 �.'/

n nm:

Moreover, if ' admits an expanding train-track representative with an irreducible
transition matrix (e.g., if ' is fully irreducible), then mD 0 and �.'/ > 1.
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The “polynomial growth degree” m in this result is bounded above by the
number of strata of any relative train track representative f as above which have
PF-eigenvalue equal to �, and it has been determined precisely by Levitt [2009],
see the proof of Proposition 5.4 below.

2. Preliminaries

2A. Basic terminology and notations related to outer space. We denote by cvN

the unprojectivized outer space, that is, the space of all free discrete minimal isomet-
ric actions of FN on R-trees, considered up to FN -equivariant isometry. Denote by
cvN the closure of cvN in the equivariant Gromov–Hausdorff convergence topology
(or, equivalently, in the hyperbolic length functions topology). It is known [Bestvina
and Feighn 1993; Cohen and Lustig 1995; Guirardel 1998] that cvN consists of
all the very small nontrivial minimal isometric actions of FN on R-trees, again
considered up to FN -equivariant isometry. Recall that a point T 2 cvN is uniquely
determined by its translation length function k � kT W FN ! Œ0;1/, where for
w 2 FN , we have kwkT D infx2T d.x; wx/Dminx2T d.x; wx/.

The space cvN has a natural right Out.FN /-action, where for w 2 FN and
T 2 cvN , we have kwkT' Dk'.w/kT . It is sometimes useful to convert this action
to a left Out.FN /-action by setting 'T WD T '�1. Define

cv1
N WD fT 2 cvN j vol.T=FN /D 1g;

and refer to cv1
N

as the volume-normalized outer space or just normalized outer
space. Then cvN is an open dense Out.FN /-invariant subset of cvN , and cv1

N
is a

closed Out.FN /-invariant subset of cvN (but of course cv1
N

is not closed in cvN ).
There is a natural action of R>0 on cvN and cvN by scalar multiplication, which

yields the corresponding projectivizations CVN D cvN =R>0 and CVN D cvN =R>0.
For a tree T 2 cvN , we denote its projective class in CVN by ŒT �. Thus ŒT � D
fcT j c > 0g. Note that CVN is canonically Out.FN / equivariantly homeomorphic
to cv1

N
, but it is still important to remember that technically CVN and cv1

N
are

distinct objects.
For " > 0, we denote by cv1

N;"
the set of all T 2 cv1

N
such that the shortest

nontrivial immersed circuit in the metric graph T=FN has length � ". Equivalently,
cv1

N;"
is the set of all T 2 cv1

N
such that for every w 2FN nf1g, we have kwkT � ".

For every " > 0, the set cv1
N;"
� cv1

N
is a closed Out.FN /-invariant subspace, and

the quotient cv1
N;"
=Out.FN / is compact.

A chart on FN is an isomorphism ˛ W FN ! �1.�;p/, where � is a finite
connected graph with all vertices of degree � 3 and where p is a base vertex in �
(which is usually suppressed). Every such ˛ defines an open cone in cvN consisting
of assigning arbitrary positive lengths to edges of � and then lifting this assignment
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to the universal cover z� to get an element T 2 cvN . The intersection of such an
open cone with cv1

N
is an open simplex � in cv1

N
of dimension m� 1, where m is

the number of nonoriented edges of � . Every point T 2 cvN belongs to a unique
open cone of this form, and every point of cv1

N
belongs to a unique such open

simplex �.
The space CVN is known to be compact and finite-dimensional.

2B. Asymmetric Lipschitz distance. For points T 2 cvN and S 2 cvN , define

ƒ.T;S/D sup
w2FN nf1g

kwkS

kwkT
:

If T;S 2 cv1
N

, we also define dL.T;S/ WD logƒ.T;S/. As noted in the In-
troduction, for T;S 2 cv1

N
, the quantity dL.T;S/ is often called the asymmetric

Lipschitz distance from T to S .

Remark 2.1. If T 2 cvN and S 2 cvN then 0 < ƒ.T;S/ <1. Moreover, it is
known [Francaviglia and Martino 2011; White 1991] that for any open simplex
�� cv1

N
as in Section 2A, there exists a finite subset C� � FN n f1g such that for

every T 2� and every S 2 cvN , we have

ƒ.T;S/D max
w2C�

kwkS

kwkT
:

The set C� can be chosen to be contained in the subset of all elements which
are represented by paths that cross at most twice over every nonoriented edge of
� D T=FN for T 2�.

Note also that from the definition, we see that for every T 2 cvN , S 2 cvN and
' 2 Out.FN /, one has ƒ.T;S/Dƒ.'T; 'S/.

2C. Geodesic currents. We refer the reader to [Kapovich 2006; Kapovich and
Lustig 2007; 2009; 2010a] for detailed background on geodesic currents, and we
only recall a few basic definitions and facts here. Let @2FN D @FN � @FN n diag,
and endow @2FN with the subspace topology and with the diagonal FN -action by
translations. A geodesic current on FN is a positive Borel measure � on @2FN

such that � is finite on compact subsets, FN -invariant and “flip”-invariant (where
the “flip” map @2FN ! @2FN interchanges the two coordinates). The space of
all geodesic currents on FN is denoted Curr.FN /. The space Curr.FN / comes
equipped with a natural weak*-topology and a natural left Out.FN /-action by affine
homeomorphisms.

Let ˛ W FN ! �1.�;p/ be a chart on FN , and consider z� with the simplicial
metric, where every edge has length 1. Then there is a natural FN -equivariant quasi-
isometry (given for any point p 2 z� by the orbit map FN !

z� , g 7! gp) between
FN and z� , which induces a canonical FN -equivariant homeomorphism between



380 ILYA KAPOVICH AND MARTIN LUSTIG

@FN and @z� . We will therefore identify @FN with @z� using this homeomorphism
without invoking it explicitly, whenever it is convenient.

A nondegenerate geodesic segment 
 in z� defines a cylinder set Cyl˛.
 / con-
sisting of all .X;Y / 2 @2FN such that the geodesic from X to Y in z� passes
through 
 (in the correct direction). The sets Cyl˛.
 /, as 
 varies among all
nondegenerate geodesic edge-paths in z� , are compact and open, and form a basis
for the topology on @2FN . Note that for w 2FN , we have Cyl˛.w
 /Dw Cyl˛.
 /.
If � 2 Curr.FN / and v is a nondegenerate reduced edge-path in � , we define the
weight hv; �i˛ WD �.Cyl˛.
 //, where 
 is any lift of v. Since the measure � is
FN -invariant, this definition does not depend on the specific choice of the lift 

of v to z� . A current � is uniquely determined by its collection of weights with
respect to a given chart. Moreover, if �n; � 2 Curr.FN / and ˛ is a chart as above,
then limn!1 �n D � in Curr.FN / if and only if for every nondegenerate reduced
edge-path v in � , we have limn!1hv; �ni˛ D hv; �i˛.

For every w 2 FN n f1g, there is an associated counting current �w 2 Curr.FN /,
which depends only on the conjugacy class Œw� of w in FN and satisfies �w�1 D

�w and �wn D n �w for all integers n � 1, and such that ' �w D �'.w/ for all
' 2 Out.FN /, w 2 FN n f1g. The precise definition of �w is not important at the
moment, but we will recall some of its basic properties later, as necessary. The set
fc�w j c>0; w2FN ; w¤1g of the so-called rational currents is dense in Curr.FN /.

Be aware that, in general, for a representative (even a train-track representative)
f W �! � of ', one has hv; '�i˛ ¤ hŒf .v/�; �i˛, where Œf .v/� denotes the edge-
path obtained from f .v/ by reduction (that is, the iterative contraction of any
backtracking path).

2D. Intersection form. Kapovich and Lustig [2009] proved the existence of a con-
tinuous geometric intersection form between points of cvN and geodesic currents:

Proposition 2.2 [Kapovich and Lustig 2009]. There exists a unique continuous
function h � ; � i W cvN �Curr.FN /! Œ0;1/, called the geometric intersection form,
with the following properties:

(1) For any �1; �2 2 Curr.FN /, T 2 cvN , c1; c2 � 0 and r > 0, we have

hrT; c1�1C c2�2i D rc1hT; �1iC rc2hT; �2i:

(2) For any T 2 cvN , � 2 Curr.FN / and ' 2 Out.FN /, we have

h'T; '�i D hT; �i:

(3) For any T 2 cvN and w 2 FN n f1g, we have

hT; �wi D kwkT :
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(4) For any T 2 cvN (with the associated chart ˛ W FN ! �1.T=FN /) and any
� 2 Curr.FN /, we have

hT; �i D
X

e2Edges.T=FN /

1
2
heI�i˛;

where the summation is taken over all oriented edges of the graph T=FN .

3. Tree-current morphisms and extremal Lipschitz distortion

Recall that a current � 2 Curr.FN / is called filling if for every S 2 cvN , we have
hS; �i> 0.

We proved in [Kapovich and Lustig 2010a] that for a current � 2 Curr.FN / and
a tree T 2 cvN , we have hT; �i D 0 if and only if the support of � is contained
in the “dual algebraic lamination” of T (in the sense of [Coulbois et al. 2008a]).
Using this fact, it was shown in [Kapovich and Lustig 2010a] that if � is a current
with full support, then � is filling. We denote by Currfill.FN / the set of all filling
� 2 Curr.FN /, and endow Currfill.FN / with the subspace topology given by the
inclusion Currfill.FN /� Curr.FN /.

Definition 3.1 (tree-current morphism). A tree-current morphism is a continuous
function J W cv1

N
!Curr.FN / such that for every T 2 cv1

N
and every ' 2Out.FN /,

we have J.'T /D ' J.T /.
A filling tree-current morphism is a tree-current morphism J W cv1

N
!Curr.FN /

such that for every T 2 cv1
N

, the current J.T / 2 Curr.FN / is filling.

Lemma 3.2. The function cv1
N
� cvN ! R, .T;S/ 7!ƒ.T;S/, is continuous.

Proof. Let T 2 cv1
N

be arbitrary.
Let �1; : : : ; �m be all the open simplices in cv1

N
whose closures in cv1

N
con-

tain T .
Set CT D

Sm
iD1 C�i

. Note that U D�1[� � �[�m is a neighborhood of T in cv1
N

.
Thus for every T 0 2 U and every S 2 cvN , we have

ƒ.T 0;S/D max
w2CT

kwkS

kwkT 0
:

Therefore the function ƒ.T 0;S/ is continuous on U � cvN . Since T 2 cv1
N

was
arbitrary, the conclusion of the lemma follows. �

Let J be a filling tree-current morphism. Then for any S 2 cvN and c > 0,
we have

hS;J.T /i

ƒ.T;S/
D
hcS;J.T /i

ƒ.T; cS/
:
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Also, since J.T / is a filling current, for every S 2 cvN , we have hS;J.T /i> 0.
Therefore we have a well-defined function

f W cv1
N �CVN ! .0;1/

given by f .T; ŒS �/D hS;J.T /i=ƒ.T;S/, where T 2 cv1
N

and S 2 cvN .

Lemma 3.3. Let J be a filling tree-current morphism. Then the function

f W cv1
N �CVN ! .0;1/; .T;S/ 7!

hS;J.T /i

ƒ.T;S/

is continuous.

Proof. The conclusion of the lemma follows directly from Lemma 3.2 together with
the continuity of the geometric intersection form h � ; � i. �

Corollary 3.4. Let K � cv1
N

be a compact subset, and let J W cv1
N
! Currfill.FN /

be a filling tree-current morphism.
Then there exist ı1 D ı1.K;J / > 0 and ı2 D ı2.K;J / > 0 such that for every

T 2K and every S 2 cvN , we have ı1 � f .K; ŒS �/� ı2.

Proof. The set K � CVN is a compact Hausdorff space and, by Lemma 3.3,
f WK �CVN ! .0;1/ is a continuous function. Therefore f achieves a positive
minimum ı1 and a positive maximum ı2 on K �CVN , and the conclusion of the
corollary follows. �

Corollary 3.5. Let K � cv1
N

be a compact subset, let TK D
S
'2Out.FN /

'K and
let J W cv1

N
! Curr.FN / be a filling tree-current morphism.

Furthermore, let ı1 D ı1.K;J / > 0 and ı2 D ı2.K;J / > 0 be the constants
provided by Corollary 3.4.

Then for every T 2 TK and every ŒS � 2 CVN , we have

0< ı1 �
hS;J.T /i

ƒ.T;S/
� ı2 <1:

Proof. Let T 2 TK and ŒS � 2 CVN be arbitrary.
Then there exist T 0 2K and ' 2Out.FN / such that T D'T 0. By '-equivariance

of J , we have J.T /D 'J.T 0/. Define S 0 D '�1S , so that 'S 0 D S . Then

hS;J.T /i

ƒ.T;S/
D
h'S 0; 'J.T 0/i

ƒ.'T 0; 'S 0/
D
hS 0;J.T 0/i

ƒ.T 0;S 0/
D f .T 0; ŒS 0�/ 2 Œı1:ı2�;

where the last inclusion holds by Corollary 3.4 since T 0 2K. �

Note that Corollary 3.5 does not require the tree-current morphism J W cv1
N
!

Currfill.FN / to be injective, although in the specific applications of interest to us J

will be injective.
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4. Patterson–Sullivan currents and extremal Lipschitz distortion

4A. Volume entropy and the Patterson–Sullivan currents. We only give here a
brief summary of basic definitions and facts regarding Patterson–Sullivan cur-
rents for points of cvN . We refer the reader to [Furman 2002; Coornaert 1993;
Kaimanovich 1991; Kapovich and Nagnibeda 2007] for more detailed background
information about Patterson–Sullivan measures and Patterson–Sullivan currents in
the context of word-hyperbolic groups and Gromov-hyperbolic spaces.

Let T 2 cvN , where N � 2. Since FN and T are FN -equivariantly quasi-
isometric, there is a natural identification of @FN and @T , which we will use later on.

The volume entropy h.T / of T is defined as

h.T / WD lim
R!1

log
�
#fw 2 FN j dT .p; wp/�Rg

�
R

;

where p 2 T is an arbitrary base point. It is known that the above definition does
not depend on the choice of a base-point p 2 T and that we have h.T / > 0 for
every T 2 cvN . It is also known that h.T / is exactly the critical exponent of the
Poincaré series

…p.s/D
X
w2FN

e�sdT .p;wp/:

In other words, …p.s/ converges for all s > h.T / and diverges for all s � h.T /. It
is also known that as s! hC, any weak limit � of the measures

1

…p.s/

X
w2FN

e�sdT .p;wp/ Dirac.wp/

is a probability measure supported on @T D @FN . Any such � is called a Patterson–
Sullivan measure on @FN corresponding to T , and the measure class of � is
canonically determined by T . As follows from general results of Furman [2002],
in this case there exists a unique, up to a scalar multiple, geodesic current � in the
measure class of � � � on @2FN . We call the unique scalar multiple �T of � such
that hT; �T iD 1, the Patterson–Sullivan current for T 2 cvN . One also has that the
current �T has full support (this follows, for example, both from the general results
of Furman [2002] and from the explicit formulas for �T obtained in [Kapovich and
Nagnibeda 2007]).

Proposition 4.1. The map

JPS W cv1
N ! Curr.FN /; T 7! �T

is a filling tree-current morphism.
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Proof. Since �T has full support, by a result of Kapovich and Lustig [2010a,
Corollary 1.3], it follows that �T 2 Currfill.FN /. The fact that JPS is a continuous
Out.FN /-equivariant map was proved by Kapovich and Nagnibeda [2007]. Thus
JPS is indeed a filling tree-current morphism, as claimed. �

The fact that for T 2 cv1
N

, the Patterson–Sullivan current �T is filling, i.e., that
hS; �T i ¤ 0 for every S 2 cvN , is quite nontrivial and does not follow directly
from Proposition 2.2. This fact, which requires a general result from [Kapovich
and Lustig 2010a] characterizing the case where hS; �i D 0 (where S 2 cvN and
� 2 Curr.FN /), is, in a sense, the place where the real “magic” in the proofs of the
main results of the present paper happens.

We now obtain Theorem 1.1 from the Introduction:

Theorem 4.2. Let N � 2 and " > 0. Then there exist constants ı2 � ı2 > 0 such
that for every T 2 cv1

N;"
, S 2 cvN we have

ı1 �
hS; �T i

ƒ.T;S/
� ı2:

Therefore there exists a constant c > 0 such that for every T 2 cv1
N;"

and S 2 cv1
N

,
we have

j loghS; �T i � dL.T;S/j � c:

Proof. Since cv1
N;"
=Out.FN / is compact and the action of Out.FN / on cv1

N;"
is

properly discontinuous, there exists a compact subset K � cv1
N;"

such that

cv1
N;" D TK D

[
'2Out.FN /

'K:

By Proposition 4.1, the map JPS W cv1
N
! Curr.FN / is a filling tree-current

morphism. The conclusion of the theorem now follows from Corollary 3.5. �

4B. Uniform currents and generic stretching factors. Kapovich and Nagnibeda
also provide reasonably explicit description of �T in terms of its weights on the
“cylinder subsets” of @2FN . The details of that description are not immediately
relevant for the present paper. However, in the case where T 2 cv1

N
and where

T=FN is a regular metric graph (that is, a regular graph where all edges have the
same length), one can give a more precise description of �T as a “uniform current”
corresponding to T and relate �T to the exit measure of the simple nonbacktracking
random walk on T . We briefly recall here the description of uniform currents for
the standard N -roses, that is for points of cv1

N
corresponding to free bases of FN .

Let AD fa1; : : : ; aN g be a free basis of FN . Let RN be the graph given by a
wedge of N loop-edges e1; : : : ; eN at a vertex x0. By identifying ei with ai 2 FN ,
we get an identification of ˛A W FN

Š
�!�1.RN ;x0/, that is, a chart on FN . We

give each edge of RN length 1=N , so that RN becomes a metric graph of volume 1.
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Then the universal cover TA WD
zRN is an R-tree, which can be thought of as the

Cayley graph of FN with respect to A, but where all edges have length 1=N . The
group FN has a natural free and discrete isometric left action on TA by covering
transformations, with TA=FN DRN . Thus TA is a point of cv1

N
.

The uniform current �A on FN corresponding to A is defined explicitly by its
weights. Namely, for every nontrivial freely reduced word v over A˙1, we have

hv; �Ai˛A
D

1

N.2N � 1/jvj�1
:

One can check that this assignment of weights does define a geodesic current and
that hTA; �Ai D 1. Moreover, in this case we also have:

Proposition 4.3. Let N � 2 and let A be a free basis of FN . Then �TA
D �A;

that is, the Patterson–Sullivan current corresponding to TA is exactly the uniform
current �A.

The above fact is not explicitly stated in [Kapovich and Nagnibeda 2007] but
it easily follows from the explicit formulas for the weights for Patterson–Sullivan
currents they obtained in the same work. Alternatively, one knows, for example,
by the results of [Coornaert 1993; Lyons 1994], that for TA the uniform visibility
measure mA on @FN D @TA is a Patterson–Sullivan measure for TA. Since �A 2
Curr.FN / is in the measure class of mA �mA and since hTA; �Ai D 1, it follows
from the definition of the Patterson–Sullivan current that �TA

D �A. Note that for
any other S 2 cvN , the intersection number hS; �Ai measures the distortion of a
“long random geodesic” in TA with respect to S .

Recall that in the Introduction, given a free basis A of FN , S 2 cvN and
' 2 Out.FN /, we defined the generic stretching factors �A.S/ and �A.'/.

Lemma 4.4. For any free basis A of FN and any S 2 cvN , we have

�A.S/�
1

N
ƒ.TA;S/:

Proof. Since all edges in TA have length 1=N , for every w 2 FN , we have
kwkA DN kwkTA

. Then for a random trajectory � D y1y2 � � �yn � � � of the simple
nonbacktracking random walk on FN with respect to A we have

�A.S/D lim
n!1

ky1 � � �ynkS

ky1 � � �ynkA
D lim

n!1

ky1 � � �ynkS

N ky1 � � �ynkTA

D
1

N
lim

n!1

ky1 � � �ynkS

ky1 � � �ynkTA

�
1

N
sup
w¤1

kwkS

kwkTA

D
1

N
ƒ.TA;S/: �

A key fact about generic stretching factors, originally established in [Kapovich
2006, Proposition 9.1] in slightly more limited context, is:
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Proposition 4.5. Let A be a free basis of FN (where N � 2/ and let S 2 cvN . Then

hS; �Ai D �A.S/:

Proof. By [Kapovich 2006, Proposition 7.3], for a.e. trajectory � D y1y2 � � �yn � � �

of the simple nonbacktracking random walk on FN with respect to A, we have

lim
n!1

1

n
�y1���yn

D �A:

Therefore, by Proposition 2.2, for any S 2 cvN , we have

hS; �Ai D lim
n!1

1

n
hS; �y1���yn

i D lim
n!1

ky1 � � �ynkS

n
D �A.S/: �

Remark 4.6. Since the current �A has full support and therefore �A is filling,
Proposition 4.5 implies that for every S 2 cvN , we have �A.S/ > 0. (From the
definition of �A.S/, one only knows that �A.S/� 0 and it is not a priori obvious
that the case �A.S/D 0 cannot occur.)

We can now obtain Corollary 1.4 from the Introduction:

Theorem 4.7. Let N � 2. Then there exists a constant ı D ı.N / 2 .0; 1/ with the
following property:

For any free basis A of FN and any S 2 cvN , we have

0< ı �
�A.S/

ƒ.TA;S/
�

1

N
:

Proof. Let A be a free basis of FN and let S 2 cvN be arbitrary. By Lemma 4.4,
we have

�A.S/

ƒ.TA;S/
�

1

N
:

Let ı D ı1.";N / > 0 be the constant provided by Theorem 4.2. By decreasing
this constant if necessary, we can always assume that 0 < ı1 < 1. Note that the
length of the shortest essential circuit in TA is equal to 1=N .

Since 0< "� 1=N , it follows that TA 2 cv1
N;"

. Since �TA
D �A and hS; �Ai D

�A.S/, by Theorem 4.2 we have

0< ı1 �
hS; �TA

i

ƒ.TA;S/
D
hS; �Ai

ƒ.TA;S/
D

�A.S/

ƒ.TA;S/
�

1

N
;

as required. �

5. Extremal, generic and algebraic stretching factors for free group
automorphisms

We recall the notions of extremal and generic stretching factors from Definition 1.5
in the Introduction:
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Definition 5.1 (extremal and generic stretching factors of automorphisms). Let A

be a free basis of FN and let ' 2 Out.FN /.
Define

ƒA.'/ WDƒ.TA;TA'/D sup
w¤1

k'.w/kA

kwkA
D edL.TA;TA'/;

and refer to ƒA.'/ as the extremal stretching factor for ' with respect to A.
Also, define �A.'/ WD �A.N TA'/DN�A.TA'/.
Thus for a.e. trajectory � D y1 � � �yn � � � of the simple nonbacktracking random

walk on FN with respect to A, we have

�A.'/D lim
n!1

k'.y1y2 � � �yn/kA

n
D lim

n!1

k'.y1y2 � � �yn/kA

ky1y2 � � �ynkA
:

We call �A.'/ the generic stretching factor of ' with respect to A.

First, we obtain, in a slightly restated form, Theorem 1.6 from the Introduction:

Theorem 5.2. For every N � 2, there exists 0 < �N � 1 such that if A is a free
basis of FN and ' 2 Out.FN / then

0< �N �
�A.'/

ƒA.'/
� 1:

Proof. Let A be a free basis of FN . Recall that, by definition, for ' 2Out.FN / we
have �A.'/DN�A.TA'/ and ƒA.'/Dƒ.TA;TA'/. Therefore, by Lemma 4.4,
we have �A.'/�ƒA.'/, so that �A.'/=ƒA.'/� 1. Since for any ' 2 Out.FN /,
we have TA;TA' 2 cv1

N;"
with "D 1=N , the statement of the theorem now follows

directly from Theorem 4.7. �
For two sequences xn > 0;yn > 0 (where n� 1), we say that xn grows like yn,

if there exist 0< c < c0 <1 such that for every n� 1, we have c � xn=yn � c0.
We now obtain Corollary 1.7 from the Introduction:

Corollary 5.3. Let N � 2 and FN DF.a1; : : : ; an/ with ADfa1; : : : ; aN g. There
exists D DD.N /� 1 such that for every ' 2 Out.FN /, we have

1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

Proof. It follows from [Algom-Kfir and Bestvina 2012, Theorem 24] that there
exists D0 DD0.N /� 1 such that for every ' 2 Out.FN /, we have

1

D0
dL.TA;TA'/� dL.TA';TA/�D0dL.TA;TA'/:

Note that dL.TA;TA'/D logƒ.TA;TA'/D logƒA.'/ and that

dL.TA';TA/D dL.TA;TA'
�1/D logƒ.TA;TA'

�1/D logƒA.'
�1/:
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Theorem 5.2 now implies that there exists D00 DD00.N /� 1 such that for every
' 2 Out.FN /, we have

.��/
1

D00
log�A.'/�D00 � log�A.'

�1/�D00 log�A.'/CD00:

It was proved in [Francaviglia 2009; Kapovich and Lustig 2010a] (and also
follows from Theorem 5.2) that the set �N WD f�A.'/ j ' 2Out.FN /g is a discrete
subset of Œ1;1/. It was established in [Kaimanovich et al. 2007] that �A.'/D 1

if and only if ' is a permutational automorphism with respect to A, that is, if and
only if, after a possible composition with an inner automorphism, ' is induced by
a permutation of A, with possibly inverting some elements of A. Note that ' is
permutational with respect to A if and only if '�1 is permutational with respect
to A, so that for ' 2 Out.FN /, �A.'

�1/D 1 if and only if �A.'/D 1. It was also
proved in [loc. cit.] that the minimum of �A.'/, taken over all nonpermutational ',
is equal to 1C .2N � 3/=.2N 2 �N /. Therefore .��/ implies that there exists
D DD.N /� 1 such that for every nonpermutational ' 2 Out.FN /, we have

(})
1

D
log�A.'/� log�A.'

�1/�D log�A.'/:

If ' is permutational, then so is '�1. In this case we have log�A.'
�1/ D

log�A.'/ D 0 and (}) holds as well. Thus (}) holds for every ' 2 Out.FN /,
which completes the proof. �

Recall that for ' 2 Out.FN /, the algebraic stretching factor �.'/ is defined as

�.'/D sup
w2FN ;w¤1

lim
n!1

n
p
k'n.w/kS ;

where S 2 cvN is an arbitrary base-point. As noted earlier, this definition of �.'/
does not depend on the choice of S 2 cvN . The algebraic stretching factor �.'/
can be read off from any relative train-track representative f W �! � of ' as the
maximum of the Perron–Frobenius eigenvalues for any of the canonical irreducible
diagonal blocks of the (nonnegative) transition matrix M.f /.

Corollary 5.5 below describes, given '2Out.FN /, the asymptotics ofƒ.S;S'n/

as n tends to infinity (where S 2 cvN is an arbitrary point, the choice of which
does not affect this asymptotics). The statement of Corollary 5.5 is probably known
to the experts. Since the proof is not yet available in the literature, and since we
need Corollary 5.5 for the applications in this paper, we include the proof here.

Proposition 5.4. Let ' 2 Out.FN /.

(1) Let q� 1 and let ˛D 'q admit an improved relative train-track (in the sense of
[Bestvina et al. 2000]) representative f W�!� . Put � WD1 if ˛ is polynomially
growing (that is, if f has no exponentially growing strata) and otherwise let
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� > 1 be the largest Perron–Frobenius eigenvalue of the exponentially growing
strata of f W �! � .

Then there exists an integer m � 0 such that for every S 2 cvN , there are
some constants 0< C1 � C2 <1 such that for every n� 1,

C1�
n=qnm

�ƒ.S;S'n/� C2�
n=qnm:

(2) If ' admits a train-track representative f W�!� with an irreducible transition
matrix and with the Perron–Frobenius eigenvalue �>1, then for every S 2cvN ,
there exist 0< C1 � C2 <1 such that for every n� 1,

C1�
n
�ƒ.S;S'n/� C2�

n:

Proof. (1) Let T 2 cv1
N

be the point corresponding to the improved relative train-
track f W � ! � , where all edges of � are given equal length. Put LD f1g if f
has no exponentially growing strata. Otherwise let �1 � � � � � �k > 1 be all the
Perron–Frobenius eigenvalues of the exponentially growing strata of f and put
L D f�1; : : : ; �k ; 1g. Finally put � D max L. Thus � � 1 and � D 1 if and only
if f has no exponential strata.

A result of Levitt [2009, Theorem 6.2] shows that there is a finite subset M of
Z�0 such that for every nontrivial w 2 FN , there is some .�0;m0/ 2L�M such
that the sequence k˛n.w/kT grows like .�0/nnm0 . Moreover, there exists some
element 1¤ w0 2 FN such that k˛n.w0/kT grows as �nnm and such that if some
other w ¤ 1 has k˛n.w/kT growing as �nnm0 then m0 �m.

Let D D C� be the finite subset of FN as in Remark 2.1, where � is the open
simplex in cv1

N
containing T . Therefore for every n � 1, we have ƒ.T;T 'n/D

maxw2D.k˛
n.w/kT =kwkT /. Moreover, through replacing D by D [ fw0g, we

can assume that w0 2D.
It follows that ƒ.T;T˛n/Dmaxw2D.k˛

n.w/kT =kwkT / grows like �nnm.
Now let n� 1 and write nD qn1Cr , where n1� 0 and 0� r � q�1 are integers.

As we have seen, ƒ.T;T˛n1/Dmaxw2D.k'
n1.w/kT =kwkT / grows like �n1nm

1
.

Since 0� r � q�1, applying 'r distorts k �kT by a bounded multiplicative amount.
Therefore ƒ.T;T 'n/D maxw2D.k'

n.w/kT =kwkT / grows as �n=q.n=q/m, that
is, as �n=qnm.

Since T and S are FN -equivariantly quasi-isometric, it follows thatƒ.S;S'n/D

ƒA.'
n/ also grows like �n=qnm, and the conclusion of part (1) of the proposition

follows.

(2) The proof of part (2) is known (e.g., see Theorem 8.1 in [Francaviglia and
Martino 2011]) and is simpler than the proof of part (1), and we leave the details to
the reader. The key point is that in this case for every nontrivialw2FN such that the
conjugacy class of w is not '-periodic, the sequence k'n.w/kS grows like �n. �



390 ILYA KAPOVICH AND MARTIN LUSTIG

Corollary 5.5. Let ' 2 Out.FN /, let S 2 cvN and let �.'/ be the algebraic
stretching factor of '.

Then there is an integer m � 0 such that for every S 2 cvN , there are some
C1;C2 > 0 such that

C1 �.'/
n nm

�ƒ.S;S'n/� C2 �.'/
n nm

for all n� 1.

Proof. It is known [Bestvina et al. 2000] that some positive power ˛ D 'q of '
admits an improved relative train track representative.

In this case we have �.˛/ D �.'q/ D �.'/q , so that Œ�.˛/�1=q D �.'/. The
conclusion of the corollary now follows directly from part (1) of Proposition 5.4. �

Now Corollary 5.5 (applied to S D TA, which gives ƒ.S;S'n/DƒA.'
n/) and

Theorem 5.2 directly imply Theorem 1.8 from the Introduction:

Theorem 5.6. Let A be a free basis of FN , let ' 2 Out.FN / and let �.'/ be the
algebraic stretching factor of '. Then there exist constants c1; c2 > 0 and an integer
m� 0 such that for every n� 1, we have

c1 �.'/
n nm

� �A.'
n/� c2 �.'/

n nm:

Moreover, if ' admits an expanding train-track representative with an irreducible
transition matrix (e.g., if ' is fully irreducible), then mD 0 and �.'/ > 1. �
Example 5.7. To demonstrate that the case �> 1;m> 0 in Theorem 5.6 can indeed
occur, we consider an example explained on p. 1138 in [Levitt 2009]. Let N D 4

and F4DF.A/ with ADfa1; b1; a2; b2g. Let an automorphism ' WF.A/!F.A/

be given by

'.a1/D a1b1; '.b1/D a1; '.a2/D a2b1a1; '.b2/D a2:

For the A-rose RA, the map f WRA!RA, given by the same formula as ', is both a
global train-track and a 2-strata relative train-track representative for '. The bottom
stratum is fa1; b1g and the top stratum is fa2; b2g. The transition matrices for both
strata are the same and are equal to B D

�
1
1

1
0

�
, which has the Perron–Frobenius

eigenvalue �D .1C
p

5/=2. The transition matrix for f has the form M D
�

B
C

0
B

�
,

where C D
�

1
0

0
0

�
. By iterating M one can see that k'n.a2/kA grows like n�n.

One can then show that in this case ƒA.'
n/ also grows as n�n. Therefore, by

Theorem 5.2, �A.'
n/ grows as n�n as well.

6. Other examples of filling tree-current morphisms

The Patterson–Sullivan map JPS W cv1
N
! Curr.FN /, T 7! �T , is just one, albeit

natural and useful, example of a filling tree-current morphism. There are many other
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filling tree-current morphisms J W cv1
N
!Curr.FN /, and Corollary 3.5 is applicable

to all such J . We indicate here some sources of such J , following the approach of
Reiner Martin [1995]. The main idea is that if t 7!�.t/>0 is a monotone decreasing
continuous function which approaches 0 as t !1 “sufficiently quickly”, then

J� W cv1
N ! Curr.FN /; T 7!

X
Œw�¤Œ1�

�.kwkT /�w

is a filling tree-current morphism.
The summation here can be taken either over all nontrivial conjugacy classes Œw�

of elements of FN (or over an Out.FN /-invariant set of such conjugacy classes,
although in the latter case one has to take additional care to ensure that the current
J�.T / is filling).

Let us first observe that such a function J� is, by its construction, always
Out.FN /-equivariant: for any T 2 cv1

N
and ' 2 Out.FN /, we have

'.J�.T //D
X

Œw�¤Œ1�

�.kwkT /'.�w/D
X

Œw�¤Œ1�

�.kwkT /�'.w/

and

J�.'T /D
X

Œw�¤Œ1�

�.kwk'T /�w D
X

Œw�¤Œ1�

�.k'�1.w/kT /�w

D
with uD'�1.w/

X
Œu�¤Œ1�

�.kukT /�'.u/ D '.J�.T //;

so that J� is indeed Out.FN /-equivariant.
We provide here a representative result of the kind described above:

Proposition 6.1. The function

J W cv1
N ! Curr.FN /; T 7!

X
Œw�¤Œ1�

e�ekwkT �w;

where the sum is taken over all nontrivial root-free conjugacy classes Œw� of elements
of FN , is an injective filling tree-current morphism.

Proof. Fix a free basis A of FN and let TA 2 cv1
N

be the Cayley graph of FN

with respect to A, where all edges in TA have length 1=N . For w 2 FN denote by
kwkA the cyclically reduced length of w over A˙1. Thus kwkA DN kwkTA

. We
let RA D TA=FN be the quotient metric graph, which is a wedge of N loop-edges
of length 1=N corresponding to elements of A. Let ˛A W FN ! �1.RA/ be the
associated chart.

Let T 2 cv1
N

be arbitrary and let U be a compact neighborhood of T in cv1
N

.
There exists a constant C � 1 such that for every w 2 FN and every T 0 2 U , we
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have kwkT 0=C � kwkA � CkwkT 0 . Note that for n� 1, the number of conjugacy
classes Œw� with kwkA � n is at most .2N /n.

To show that for each T 0 2U , J.T 0/ is a geodesic current we only need to verify
that J.T 0/ takes finite values on all the two-sided cylinder sets in @2FN determined
by the chart ˛A. Since every cylinder is contained in a cylinder determined by
a single edge, it suffices to show that for every oriented edge e of RA, we have
he;J.T 0/i˛A

<1.
Let T 0 2 U and let e be an edge of RA. For every integer n� 1, set

bn.e;T
0/ WD

X
0:9n�kŒw�kA�1:1n

e�ekwkT 0
he; �wi˛A

:

Then he;J.T 0/i˛A
�
P1

nD1 bn.e;T
0/. The weight he; �wi˛A

is equal to 1=N

times the number of occurrences of e˙1 in the cyclically reduced circuit 
w in
RA representing Œw�. Hence he; �wi˛A

� .1=N /kwkA. Since T 0 2 U , we have
kwkT 0 � kwkA=C . Hence for every n� 1 and T 0 2 U , we have

bn.e;T
0/D

X
kŒw�kA2I

e�ekwkT 0
he; �wi˛A

�
1

N

X
kŒw�kA2I

e�ekwkA=C

kwkA

�
1

N

X
kŒw�kA2I

e�e0:9n=C

1:1n �
1:1n

N
e�e0:9n=C

.2N /1:1n

D
1:1n

N
e�e0:9n=C

e1:1n log.2N /
D

1:1n

N
e1:1n log.2N /�e0:9n=C

;

where I D Œ0:9n; 1:1n�. From here we see that

he;J.T 0/i˛A
�

1X
nD1

bn.e;T
0/� C1;

where C1 D C1.U / <1 is some constant depending only on U .
Thus for every T 0 2 U , J.T 0/ is indeed a geodesic current on FN , and, in

particular, J.T / 2 Curr.FN /.
Note that the current J.T / has full support. Indeed, for every nontrivial freely

reduced word v over A˙1, there exists a root-free cyclically reduced word w over
A˙1 containing v as a subword. Then hv; �wi˛A

> 0 and hence, from the definition
of J.T /, we see that hv;J.T /i˛A

> 0. Thus indeed J.T / has full support and
therefore, by a result of Kapovich and Lustig [2010a], the current J.T / is filling.

Since an automorphism of FN permutes the set of all root-free nontrivial conju-
gacy classes in FN , it follows from the definition of J that for every T 2 cv1

N
and

every ' 2 Out.FN /, we have J.'T /D 'J.T /.
Thus we have constructed an Out.FN /-equivariant map J W cv1

N
! Currfill.FN /.
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We next observe that the map J is continuous. The proof of the continuity of J

is similar to the proof that J.T / is a current. Let T 2 cv1
N

, let U be a compact
neighborhood of T in cv1

N
and let v be a nontrivial freely reduced word over A˙1.

Then for every T 0 2 U , we have

hv;T 0i˛A
D

X
Œw�

hv; e�ekwkT 0 �wi˛A
D

X
Œw�

e�ekwkT 0
hv;wi˛A

:

One can then show, by an argument similar to that used above, that there ex-
ist positive constants Mw > 0 (also depending on U and v but independent of
T 0 2 U ) such that for every T 0 2 U , we have e�ekwkT 0hv;wi˛A

�Mw and thatP
Œw�Mw <1. By the Weierstrass M -test, it follows that the seriesX

Œw�

e�ekwkT 0
hv;wi˛A

;

viewed as the sum of a functions on U , converges uniformly on U and that its sum
hv;T 0i˛A

is a continuous function on U .
Since v was arbitrary, the explicit description of the topology on Curr.FN /

(see [Kapovich 2006]) implies that J is a continuous function on cv1
N

, as required.
It remains to show that J is injective. Fix an enumeration, without repetitions,

w1; w2; : : : of representatives of all the nontrivial root-free conjugacy classes in FN .
Thus for every root-free nontrivial w 2 FN , there exist unique distinct m; n � 1

such that Œw�D Œwm� and Œw�1�D Œwn�.
For every i � 1, set qi D .w

�1
i ; w1i / 2 @

2FN and set Qi D fqig. Note that for
i; j � 1, we have �wj

.Qi/D 1 if Œwi �D Œw
˙1
j � and �wi

.Qi/D 0 otherwise. Then,
by definition of J , for every T 2 cv1

N
and i � 1, we have J.T /.Qi/D 2e�ekwi kT .

Since the function t 7! 2e�et

is strictly monotone and thus injective, it follows
that knowing the current J.T /, we can recover kwikT for all i � 1. Hence we can
recover the length function k � kT W FN ! R and so we can also recover T itself.
Thus J is injective, as required. �

7. Open problems

As we have seen in Theorem 1.6, if N � 2, AD fa1; : : : ; aN g is a fixed free basis
of FN D F.A/, then for

�N D inf
'2Out.FN /

�A.'/

ƒA.'/
;

we have �N > 0. In fact, one can show:

Proposition 7.1. We have limN!1 �N D 0, and moreover, �N DO.1=N /; that
is, lim supN!1N�N <1.
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Proof. For N �2 and m�1, let 'N;m WF.A/!F.A/ be given by 'N;m.a1/Da1am
2

and 'N;m.ai/D ai for 2� i �N . It is not hard to see that

ƒA.'N;m/D sup
w¤1

k'N;m.w/kA

kwkA
DmC 1:

For any freely reduced w 2 F.A/, we have

k'N;m.w/kA � .mC 1/.a1Iw/AC

NX
iD2

.ai Iw/A;

where .aj Iw/A is the number of occurrences of a˙1
j in w. On the other hand, if

wn 2F.A/ is a “long random” freely reduced word of length n, then asymptotically
we have .ai Iwn/A=n n!1

���! 1=N for i D 1; : : : ;N . Therefore

�A.'N;m/� lim
n!1

.mC 1/.a1Iw/AC
PN

iD2.ai Iw/A

n

D .mC 1/
1

N
C

N � 1

N
D

m

N
C 1:

Hence

�N �
�A.'N;m/

ƒA.'N;m/
�

1C m
N

mC 1
:

By taking mDN , we see that �N � 2=.N C 1/ n!1
���! 0. Thus limN!1 �N D 0

and lim supN!1N�N <1. �

Theorem 1.6 and Proposition 7.1 naturally raise the following:

Problem 7.2. Are the values �N algorithmically computable in terms of N ? What
are the exact values of �N for small N , say for N D 2; 3; 4? Is it true that �N 2Q?
What can be said about the precise asymptotics of �N as N !1? (Note that
Proposition 7.1 shows that �N decays at least as fast as 1=N .)

Theorem 1.1 also motivates the definition of a new notion of a continuous
symmetric and Out.FN /-invariant intersection number I W cv1

N
� cv1

N
! R>0,

where for T;S 2 cv1
N

, we define I.T;S/ WD hS; �T ihT; �S i. The function I. � ; � /

was originally suggested to us by Arnaud Hilion, as it appears to be relevant for
attempting to define an analogue of the Weil–Petersson metric on cv1

N
.

Since the Patterson–Sullivan currents are normalized so that hT; �T i D 1, for
T D S , we have I.T;T /D 1.

Problem 7.3. (a) Is it true that for every T;S 2 cv1
N

, we have I.T;S/� 1?

(b) Is it true that for T;S 2 cv1
N

, we have I.T;S/D 1 if and only if T D S?

It was shown in [Kaimanovich et al. 2007] that if A is a free basis of FN and
' 2 Out.FN / then �A.'/ � 1 and that �A.'/ D 1 if and only if TA' D TA. If
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B is another free basis of FN and ' 2 Aut.FN / is such that TA' D TB , then
hTB; �TA

i D �A.'/ and hTA; �TB
i D �A.'

�1/. It follows that if A;B are free
bases of FN then I.TA;TB/ � 1 and that I.TA;TB/D 1 if and only if TA D TB .
However, beyond this fact nothing appears to be known about the above question.

Recently Pollicott and Sharp [2014], using a different approach, defined and
studied a Weil–Petersson type metric on cv1

N
. It would be interesting to investigate

the relationship of their metric to the quantity I.T;S/ defined above.
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