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ON RECURRENCE OVER SUBSETS AND WEAK MIXING

JIAN LI, PIOTR OPROCHA AND GUOHUA ZHANG

We study properties of weakly mixing sets (of order n) in relation to prox-
imality, sensitivity, scrambled tuples, Xiong chaotic sets and independent
sets. Our main emphasis is on the structure of the set of transfer times
N(U ∩ A, V ) between open sets U and V , both intersecting a weakly mix-
ing set A. We find several conditions on properties of the set A that are
equivalent to weak mixing.

We also prove that on topological graphs weakly mixing sets of order 2
can be approximated arbitrarily closely by a weakly mixing set of all orders.
This property is known to hold on the unit interval but is not true in general
(there are systems with weakly mixing sets of order n but not n + 1).

1. Introduction

This paper is a continuation of the previous papers by Oprocha and Zhang on
local aspects of topological weak mixing [2011; 2012; 2013; 2014] in dynamical
systems (X, f ), that is, continuous maps f : X → X acting on compact metric
spaces. When defining recurrent properties of dynamical systems, it is convenient
to analyze properties of transfer times between sets, expressed in terms of the set

N (U, V )= {n ∈ N : f n(U )∩ V 6=∅},

where U and V are nonempty open subsets of X . For example, (X, f ) is transitive
if N (U, V ) is nonempty for any choice of two nonempty open sets. As mentioned
before, the main concept in this paper is topological weak mixing (in fact, its local
versions), which is usually defined as transitivity of (X × X, f × f ). In other
words, (X, f ) is weakly mixing if N (U1, V1)∩ N (U2, V2) 6=∅ for any choice of
four nonempty open sets U1,U2, V1, V2 ⊂ X . It was shown by Furstenberg [1967]
that if (X, f ) is weakly mixing then for every n ≥ 2 and any nonempty open sets
U1,U2, . . . ,Un, V1, V2, . . . , Vn ⊂ X we have

N (U1, V1)∩ N (U2, V2)∩ · · · ∩ N (Un, Vn) 6=∅.
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Note that weak mixing can be regarded as a ‘global’ property, while topological
entropy is a ‘local’ one since it can be supported on a small set in the space (e.g.,
a nowhere dense attractor). It is also not hard to see that in general there cannot be
any implication between weak mixing and positive topological entropy. Therefore
an appropriate ‘local’ version of weak mixing is needed. Such a concept was
introduced in [Blanchard and Huang 2008]. Strictly speaking, a nontrivial closed
set A⊂ X (i.e., not a singleton) is weakly mixing if for every n≥2 and any nonempty
open sets U1,U2, . . . ,Un, V1, V2, . . . , Vn ⊂ X intersecting A (i.e., Ui ∩ A 6=∅ and
Vi ∩ A 6= ∅ for each i = 1, 2, . . . , n) we have N (U1 ∩ A, V1)∩ N (U2 ∩ A, V2)∩

· · ·∩N (Un∩ A, Vn) 6=∅. As we can see, the above definition is consistent with the
definition of a weakly mixing map and, more importantly, it is proved in [Blanchard
and Huang 2008] that every dynamical system with positive topological entropy
contains many Cantor weakly mixing sets.

Similarly, for a fixed integer n ≥ 2, we say that a nontrivial closed subset A
of X is weakly mixing of order n if for any nonempty open subsets U1,U2, . . . ,Un,

V1, V2, . . . , Vn of X intersecting A, we have N (U1∩A, V1)∩N (U2∩A, V2)∩· · ·∩

N (Un ∩ A, Vn) 6= ∅. Unfortunately, the analog of Furstenberg’s theorem cannot
be proved here. Namely, it is proved in [Oprocha and Zhang 2011; 2014] that for
every n ≥ 2 there exists a dynamical system which contains weakly mixing sets of
order n but no weakly mixing sets of order n+ 1.

Since Furstenberg’s theorem does not work for weakly mixing sets of order n,
it is natural to ask which criteria for weak mixing (i.e., equivalent conditions)
can be used in the case of weakly mixing sets. It was proved in [Banks 1999]
that most of the conditions that can be expressed in terms of intersections of
sets N (U, V ) lead to weak mixing. Of particular interest is the condition, proved
first in [Petersen 1970], which says that a dynamical system is weakly mixing if
and only if N (U, V )∩ N (U,U ) 6= ∅ for any nonempty open sets U, V ⊂ X . In
the spirit of the above fact, we find the following criterion for weak mixing of
order n. It will be shown later, in Example 3.2, that we cannot use exactly the same
condition as in [Petersen 1970].

Theorem 3.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is a weakly mixing set of order n if and only if for
any n+ 1 open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.

It is shown in [Li 2011, Theorem 3.2] that if a dynamical system (X, f ) is
weakly mixing, then there exists a residual subset K of X such that for every
x ∈ K and every nonempty open subset U of X , the set N (x,U ) contains an IP-set.
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This theorem was generalized in [Oprocha and Zhang 2013, Theorem 8], which
states that if A is a weakly mixing set of order 2 and U is an open subset of X
intersecting A, then there is an x ∈U ∩ A such that for every open subset V of X
intersecting A the set N (x, V ) contains an IP-set. Using the idea in the proof of
[Li 2011, Theorem 3.2], we could extend the above fact from [Oprocha and Zhang
2013] a little further.

Theorem 3.4. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order n with n≥2. Then there exists a residual subset K of A such that for any x ∈K
and any choice of n− 1 open subsets U1, . . . ,Un−1 of X intersecting A there exist
points yi ∈Ui ∩ A, where i = 1, . . . , n− 1, such that N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui )

contains an IP-set.

A subset A of X is transitive in (X, f ) if, for any open subsets U and V of X
intersecting A, the set N (U ∩ A, V ) is not empty; A is totally transitive if it is
transitive in (X, f k) for every k ∈ N. Let n ≥ 2 be an integer. It is clear that a
nontrivial closed subset A ⊂ X is weakly mixing of order n if and only if An is a
transitive set in (Xn, f (n)). Using Theorem 3.4, we have the following result.

Proposition 3.6. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset.

(1.3.1) If A is a weakly mixing set of order 2, then A is totally transitive.

(1.3.2) If A is a weakly mixing set of order n for f with n ≥ 3, then, for every k ∈N,
A is a weakly mixing set of order n− 1 for f k .

The authors in [Huang et al. 2012] proved that a dynamical system is weakly
mixing if and only if it has the IP-independent property (a formal definition of
independence will be given later). We will obtain a similar result for the case of
weakly mixing sets.

Inspired by the result of Xiong and Yang [1991], Blanchard and Huang [2008]
provided an alternative definition of a weakly mixing set. Strictly speaking, it was
proved in [Blanchard and Huang 2008] that a nontrivial closed set A⊂ X is a weakly
mixing set if and only if there exists a dense Mycielski subset B of A such that for
any C ⊂ B and any continuous map g : C→ A there exists an increasing sequence
of natural numbers {ni }

∞

i=1 for which limi→∞ f ni (x)= g(x) for any x ∈ C .
Similarly, we can introduce Xiong chaotic sets of a finite order as follows.

A subset K of X with at least n points is called a Xiong chaotic set of order n
if for any subset E of K with cardinality n and for any map g : E → K there is
an increasing subsequence {qi }

∞

i=1 in N such that limi→∞ f qi (x)= g(x) for every
x ∈ E . Later we will show that a result analogous to [Blanchard and Huang 2008]
holds; that is, any nontrivial closed subset A of X is a weakly mixing set of order n
if and only if there exists a dense Mycielski subset S of A which is Xiong chaotic
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of order n. A dynamical system has a weakly mixing set of order n if and only if it
has an uncountable Xiong chaotic set of order n. An advantage of Xiong chaotic
sets is that they are hereditary by subsets, while weakly mixing sets are not.

For a dynamical system (X, f ), the proximal relation is

Prox2( f )=
{
(x, y) ∈ X × X : lim inf

k→∞
d( f k(x), f k(y))= 0

}
,

and the proximal cell of a point x ∈ X is Prox2( f )(x)={y ∈ X : (x, y)∈ Prox2( f )}.
It was shown in [Akin and Kolyada 2003] that if (X, f ) is weakly mixing, then,
for every x ∈ X , the proximal cell Prox2( f )(x) of x is residual in X . The authors
in [Huang et al. 2004] studied the structure of proximal cells of points in weakly
mixing systems and showed that there is a Xiong chaotic set in those proximal cells.
In [Oprocha and Zhang 2013] it was proved that for every closed weakly mixing
set A and every x ∈ A, the set Prox2( f )(x)∩ A is residual in A. We will show that
the same is true if we consider proximal tuples instead of pairs. For a dynamical
system (X, f ) and a positive integer n ≥ 2, the n-th proximal relation is

Proxn( f )=
{
(x1, . . . , xn) ∈ Xn

: lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0
}
,

and the n-th proximal cell of a point x0 ∈ X is

Proxn( f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1
: (x0, x1, . . . , xn−1) ∈ Proxn( f )}.

Theorem 5.6. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then for every x0 ∈ A and n ≥ 2, the set Proxn( f )(x0)∩ An−1 is residual in An−1.

In fact, we prove even more in the following theorem, where LY δn (X, f )(x0) is the
n-scrambled cell of x0 with modular δ>0. More precisely, LY δn (X, f )(x0) is the col-
lection of points (x1, . . . , xn−1) in Xn−1 such that (x0, x1, . . . , xn−1) is proximal and

lim sup
k→∞

min
0≤i< j≤n−1

d( f k(xi ), f k(x j ))≥ δ.

Theorem 5.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every n ≥ 2, there exists a δ > 0 such that, for every x0 ∈ A, it holds that
LY δn (X, f )(x0)∩ An−1 is residual in An−1.

The following result shows that, when we look only at separation of trajectories
of tuples, weak mixing of order 2 is enough to obtain rich structure of such points
(see Section 2B for definitions of sensitivity).

Theorem 3.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. Then A is a sensitive set in

(
Orb(A, f ), f

)
. In particular, the system(

Orb(A, f ), f
)

is n-sensitive for every n ≥ 2.



ON RECURRENCE OVER SUBSETS AND WEAK MIXING 403

In the final section, we prove that on topological graphs weakly mixing sets
of order 2 can be approximated arbitrarily closely (in the Hausdorff metric) by a
weakly mixing set of all orders. This completes our previous research in [Oprocha
and Zhang 2011].

2. Preliminaries

In this section, we provide some basic notation, definitions and results which will
be used later in this paper. Denote by N, N0, Z and R the set of all positive integers,
nonnegative integers, integers and real numbers, respectively. A subset A of N is an
IP-set if there exists a sequence {p j }

∞

j=1 in N such that A = FS
(
{p j }

∞

j=1

)
, where

FS
(
{p j }

∞

j=1
)
=

{∑
j∈α

p j : α is a nonempty finite subset of N

}
is the set of finite sums of {p j }

∞

j=1.
Let X be a compact metric space. A subset C of X is a Cantor set if it is

homeomorphic to the standard Cantor ternary set (equivalently, it is a perfect
and totally disconnected compact metric space). We say that a subset K of X is a
Mycielski set if it can be presented as a countable union of Cantor sets. The next two
facts help to deal with residual relations. They are important tools with numerous
applications. See [Akin 2004] for a comprehensive treatment of this topic.

Lemma 2.1 (Ulam lemma). Let X be a perfect compact metric space. If R is a
dense Gδ subset of Xn , then there exists a dense Gδ subset K of X such that, for
every x ∈ K , the set R(x) = {(x1, . . . , xn−1) ∈ Xn−1

: (x, x1, . . . , xn−1) ∈ R} is
residual in Xn−1.

Theorem 2.2 (Mycielski theorem [1964]). Let X be a perfect compact metric space.
If R is a dense Gδ subset of Xn , then there exists a dense Mycielski subset K of X
such that, for any n distinct points x1, . . . , xn ∈ K , we have (x1, x2, . . . , xn) ∈ R.

2A. Topological dynamics. By a (topological) dynamical system we mean a pair
(X, f ) consisting of a compact metric space (X, d) and a continuous map f : X→ X .
If X is a singleton, then we say that (X, f ) is trivial. If K ⊂ X is a nonempty closed
subset satisfying f (K )⊂ K , then we say that (K , f ) is a subsystem of (X, f ).

Let (X, f ) be a dynamical system with ∅ 6= A ⊂ X and x ∈ X . The set

Orb(A, f )=
⋃

n∈N0

f n(A)

is said to be the (positive) orbit of A under f . Clearly,
(
Orb(A, f ), f

)
is a subsys-

tem of (X, f ). We will write Orb(x, f )= Orb({x}, f ) for short.
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We say that a point x ∈ X is a periodic point of (X, f ) if f n(x) = x for some
n ∈ N, a recurrent point of (X, f ) if there exists an increasing sequence {kn}

∞

n=1
in N such that limn→∞ f kn (x)= x , and a transitive point of (X, f ) if Orb(x, f ) is
dense in X . Denote by Per(X, f ), Rec(X, f ) and Tran(X, f ) the set of all periodic
points, recurrent points and transitive points, respectively, of (X, f ). A dynamical
system (X, f ) is minimal if Tran(X, f ) = X . A point x ∈ X is minimal if the
subsystem

(
Orb(x, f ), f

)
is minimal.

Let (X, f ) be a dynamical system and A ⊂ X with n ≥ 2. Define the sets
An
= {(x1, x2, . . . , xn): x1, . . . , xn ∈ A} and 1n(A)= {(x, x, . . . , x) ∈ An

: x ∈ A}.
The map f (n) is induced on Xn by the formula

f (n)(x1, x2, . . . , xn)= ( f (x1), f (x2), . . . , f (xn)).

Let (X, f ) be a dynamical system with x ∈ X and A, B ⊂ X . Define the sets
N (x, A)={n ∈N : f n(x)∈ A} and N (A, B)={n ∈N : f n(A)∩B 6=∅}. When we
want to emphasize the map f , we instead use Nf (x, A) and Nf (A, B). A dynamical
system (X, f ) is called transitive if, for any nonempty open subsets U and V of X ,
the set N (U, V ) is not empty, totally transitive if (X, f k) is transitive for every
k ∈ N, and weakly mixing if (X2, f (2)) is transitive. It is well known that if (X, f )
is transitive, then Tran(X, f ) is a dense Gδ subset of X .

2B. Proximal and scrambled tuples. We say that an n-tuple (x1, . . . , xn) ∈ Xn

(where n ≥ 2) is proximal if

lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0.

Let Proxn( f ) denote the collection of all proximal n-tuples in (X, f ). It is easy
to verify that Proxn( f ) is a Gδ subset of Xn . For x ∈ X , define the n-th proximal
cell of x as

Proxn( f )(x)= {(x1, . . . , xn−1) ∈ Xn−1
: (x, x1, . . . , xn−1) is proximal}.

An n-tuple (x1, . . . , xn) ∈ Xn (where n ≥ 2) is called scrambled (with modular
δ > 0) if it is proximal and

lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j ))≥ δ.

A subset S of X is called n-scrambled if any n distinct points in S form a scram-
bled n-tuple. The system (X, f ) is called Li–Yorke n-chaotic if there exists an
uncountable n-scrambled subset S of X .

Xiong [2005] introduced the concept of n-sensitivity. Specifically, a dynamical
system (X, f ) is called n-sensitive, where n ≥ 2, if there exists a δ > 0 such that
for every nonempty open set U ⊂ X there are distinct points x1, x2, . . . , xn ∈ U
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and some m ∈ N with

min
1≤i< j≤n

d( f m(xi ), f m(x j )) > δ.

This definition was further generalized in [Ye and Zhang 2008] to sensitive sets. A
subset A of X is sensitive if for any n ≥ 2, any n distinct points x1, x2, . . . , xn in
A, any neighborhood Ui of xi , i = 1, 2, . . . , n, and any nonempty open set U ⊂ X
there exists a k ∈ N and yi ∈ U such that f k(yi ) ∈ Ui for i = 1, 2, . . . , n. It is
shown in [Ye and Zhang 2008] that a transitive system is n-sensitive if and only if
there exists a sensitive set with cardinality n. Note that 2-scrambled set, Li–Yorke
2-chaos and 2-sensitivity are classical definitions.

2C. Transitive sets and weakly mixing sets. Let (X, f ) be a dynamical system.
A subset A of X is transitive in (X, f ) if for any open subsets U and V of X
intersecting A, the set N (U ∩ A, V ) is not empty and totally transitive if A is
transitive in (X, f k) for every k ∈ N. Let n ≥ 2 be an integer. A nontrivial closed
subset A ⊂ X is weakly mixing of order n provided that An is a transitive set in
(Xn, f (n)) and weakly mixing of all orders or simply weakly mixing if A is weakly
mixing of order k for all k = 2, 3, . . . .

Remark 2.3. In the present paper we require a weakly mixing set (of order n) to
be closed and nontrivial which is a little more restrictive than the original definition
in [Oprocha and Zhang 2011].

The following result is derived directly from the definition.

Lemma 2.4. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is weakly mixing of order n if and only if , for any open
subsets U1, . . . ,Un and V1, . . . , Vn of X intersecting A,

n⋂
i=1

N (Ui ∩ A, Vi ) 6=∅.

The following lemmas, while simple in proof, are very useful in practice. The
proofs can be found in [Oprocha and Zhang 2011; 2014].

Lemma 2.5. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing subset
of order 2. Then A is perfect.

Lemma 2.6. Let (X, f ) be a dynamical system and A a closed subset of X. If A is
a transitive set, then:

(2.6.1)
(
Orb(A, f ), f

)
is a transitive subsystem of (X, f ).

(2.6.2) A∩Tran
(
Orb(A, f ), f

)
is a dense Gδ subset of A.
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2D. Symbolic dynamics. Let A be a finite set (an alphabet) endowed with the
discrete topology and let AN0 denote the Cantor space with respect to the product
topology. We write elements of AN0 as x = x0x1 · · · . The shift transformation
σ :AN0→AN0 is given by σ(x)i = xi+1 for i ∈N0. The dynamical system (AN0, σ )

is called the full shift over A.
By a word (over A), we mean any finite sequence u = u0 · · · un−1, n ≥ 1 where

ui ∈A. The length of u is denoted by |u| = n and the set of all words is denoted
by A+. If x ∈AN0 and 0≤ i < j , then by x[i, j] we mean the sequence xi xi+1 · · · x j .
For simplicity, we use the notation x[i, j) = x[i, j−1]. If a1 · · · am ∈ A+, then we
define the cylinder set

C[a1 · · · am] = {x ∈AN0 : x[0,m) = a1 · · · am}.

If X is a subshift, we denote the cylinder set by CX [a1 · · · am] = C[a1 · · · am] ∩ X .

2E. Topological graphs. Roughly speaking, a topological graph is a continuum
which is the union of a finite number of intervals which can intersect only at
endpoints and do not have self-intersections. More formally, a topological graph
is a compact connected metric space G which is homeomorphic to a polyhedron
(a geometric realization) of some finite one-dimensional complex. In particular, we
can naturally endow G with the metric d given by the length of the shortest arc join-
ing x, y in G (induced on G from the polyhedron). An arc I ⊂G is a closed interval
if there is a homeomorphism ϕ : [0, 1]→ I such that the set ϕ((0, 1)) is open in G.

Let (G, f ) be a dynamical system and let I, J ⊂ G be closed intervals. If there
exists a closed interval K ⊂ I such that f (K )= J , then we say that I f -covers J
and denote this fact by I f

H⇒ J . We will need the following standard properties of
f -covering (see [Alsedà et al. 2003, p. 590]):

Lemma 2.7. Let I, J, K , L ⊂ G be closed intervals and let f, g : G → G be
continuous.

(2.7.1) If I ⊂ K , L ⊂ J and I f
H⇒ J , then K f

H⇒ L.

(2.7.2) If I f
H⇒ J and J g

H⇒ K , then I g◦ f
H⇒ K .

(2.7.3) If J ⊂ f (I ), and K1, K2 ⊂ J are closed intervals such that K1 ∩ K2 is at
most one point, then I f

H⇒ K1 or I f
H⇒ K2.

3. Weakly mixing sets of finite order

In this section we study weakly mixing sets of finite order. It is clear that a
dynamical system (X, f ) is weakly mixing if and only if, for any four nonempty
open subsets U1, V1,U2, V2 of X , we have N (U1, V1)∩N (U2, V2) 6=∅. It is shown
in [Petersen 1970] that we can reduce four open sets in the characterization of
weak mixing to two open sets; that is, a dynamical system (X, f ) is weakly mixing
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if and only if, for any two nonempty open subsets U and V of X , it holds that
N (U, V )∩ N (U,U ) 6= ∅ (this was later extended in [Banks 1999] to show that
most of the possible conditions of this kind are equivalent to weak mixing). Similar
to the above condition, we can simplify the condition in Lemma 2.4 to obtain an
alternative definition of weakly mixing set of order n. The advantage is that we
have to verify conditions on transfer times for only n+1 open sets instead of 2n sets
in the original definition.

Theorem 3.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is a weakly mixing set of order n if and only if , for
any n+ 1 open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.

Proof. The necessity follows from Lemma 2.4. Now we prove the sufficiency. Fix
any 2n open subsets U1, V1,U2, V2, . . . ,Un, Vn of X intersecting A. Assume that
for some 1≤ j < n we have

j⋂
i=1

N (Ui ∩ A, Vi )∩

n⋂
l= j+1

N (Vl ∩ A, Vl) 6=∅.

Then there is a k > 0 and open subsets U ′1, . . . ,U
′

j , V ′j+1, . . . V
′
n of X intersecting

A such that U ′i ⊂ Ui and f k(U ′i ) ⊂ Vi for each i = 1, . . . , j , and V ′l ⊂ Vl and
f k(V ′l )⊂ Vl for each l = j + 1, . . . , n. By the assumption we can choose

m ∈ N (U j+1 ∩ A, V ′j+1)∩

j⋂
i=1

N (U ′i ∩ A,U ′i )∩
n⋂

l= j+2

N (V ′l ∩ A, V ′l ),

so that

m+ k ∈
j+1⋂
i=1

N (Ui ∩ A, Vi )∩

n⋂
l= j+2

N (Vl ∩ A, Vl).

Hence, by induction on j , we eventually obtain that

n⋂
i=1

N (Ui ∩ A, Vi ) 6=∅,

which implies that A is weakly mixing of order n. �

Unfortunately, the above technique is not sufficient if we want to directly copy
the condition from [Petersen 1970]. This condition simply will not induce even the
smallest degree of local weak mixing, as shown by the next example. The technique
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used here is a modification of Example 6.1 from [Oprocha and Zhang 2011]. Since
the construction is somewhat long and complicated, we move it to the Appendix.

Example 3.2. There are a dynamical system (X, f ) and a nontrivial closed subset
A of X satisfying the following two conditions:

(3.2.1) N (U ∩ A, V )∩ N (U ∩ A,U ) 6=∅ and N (U ∩ A, V )∩ N (V ∩ A, V ) 6=∅
for any open subsets U, V of X intersecting A.

(3.2.2) A is not weakly mixing of order 2.

It is shown in [Li 2011, Theorem 3.2] that if a dynamical system (X, f ) is weakly
mixing, then there exists a residual subset K of X such that, for every x ∈ K and
every nonempty open subset U of X , the set N (x,U ) contains an IP-set. This
theorem was generalized in [Oprocha and Zhang 2013, Theorem 8], which states
that if A is a weakly mixing set of order 2 and U is an open set of X intersecting
A, then there is an x ∈U ∩ A such that for every open set V of X intersecting A
the set N (x, V ) contains an IP-set. The following lemma is inspired by the proof
of [Li 2011, Theorem 3.2]. It allows us to extend the above fact from [Oprocha and
Zhang 2013] a little further.

Lemma 3.3. Let (X, f ) be a dynamical system with n ≥ 2. If there are n points
x, y1, y2, . . . , yn−1 ∈ X with x 6= y1 such that

(1) (y1, y1, y2, . . . , yn−1) ∈ Orb((x, y1, . . . , yn−1), f (n)),

then, for every choice of open neighborhoods Ui of yi , i = 1, 2, . . . , n− 1, the set

N (x,U1)∩

n−1⋂
i=1

N (yi ,Ui )

contains an IP-set.

Proof. For each i = 1, 2, . . . , n − 1 fix an open neighborhood Ui of yi . Since
x 6= y1, we may assume that x /∈ U1. We are going to construct an IP-set in
N (x,U1) ∩

⋂n−1
i=1 N (yi ,Ui ). We start our construction by setting U (1)

i = Ui for
i = 1, . . . , n− 1.

By (1), there exists a p1 ∈ N such that f p1(x) ∈ U (1)
1 and f p1(yi ) ∈ U (1)

i for
i = 1, . . . , n− 1. Let U (2)

i =U (1)
i ∩ f −p1(U (1)

i ) for i = 1, . . . , n− 1. Clearly, U (2)
i

is also an open neighborhood of yi for i = 1, . . . , n− 1. By (1) again there exists a
p2 > 0 such that f p2(x) ∈U (2)

1 and f p2(yi ) ∈U (2)
i for i = 1, . . . , n− 1. Then, for

every m ∈ FS
(
{p j }

2
j=1

)
, we have f m(x)∈U1 and f m(yi )∈Ui for i = 1, . . . , n−1.

We continue this construction inductively.
Assume that for some k ≥ 2 positive integers p1, p2, . . . , pk have been con-

structed in such a way that if m ∈ FS
(
{p j }

k
j=1

)
then f m(x) ∈U1 and f m(yi ) ∈Ui
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for i = 1, . . . , n− 1. For each i = 1, . . . , n− 1 set

U (k+1)
i =Ui ∩

⋂
m∈FS

(
{p j }

k
j=1

) f −m(Ui )

and observe that each U (k+1)
i is also an open neighborhood of yi for i = 1, . . . , n−1.

By (1) there exists a pk+1 > 0 such that f pk+1(x) ∈U (k+1)
1 and f pk+1(yi ) ∈U (k+1)

i
for i = 1, . . . , n− 1. Then, completing the induction, for every m ∈ FS

(
{p j }

k+1
j=1

)
,

we have f m(x)∈U1 and f m(yi )∈Ui for i = 1, . . . , n−1. Thus, we get a sequence
{p j }

∞

j=1 such that FS
(
{p j }

∞

j=1

)
⊂ N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui ). �

Theorem 3.4. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order n with n≥2. Then there exists a residual subset K of A such that for any x ∈K
and any choice of n− 1 open subsets U1, . . . ,Un−1 of X intersecting A there exist
points yi ∈Ui ∩ A, where i = 1, . . . , n− 1, such that N (x,U1)∩

⋂n−1
i=1 N (yi ,Ui )

contains an IP-set.

Proof. Since An is a transitive set in (Xn, f (n)), we have by Lemma 2.6 that the
relation R= An

∩Tran
(
Orb(An, f (n)), f (n)

)
is a dense Gδ subset of An . By the Ulam

lemma, there exists a dense Gδ subset K of A such that for every x ∈ K the section
of R at x , that is, the set R(x)= {(y1, . . . , yn−1) ∈ An−1

: (x, y1, . . . , yn−1) ∈ R},
is residual in An−1. It remains to show that K satisfies our requirement.

Fix x ∈ K and n− 1 open subsets U1,U2, . . . ,Un−1 of X intersecting A. Since
R(x) is residual, we can select points yi ∈ Ui ∩ A, where i = 1, . . . , n− 1, such
that (x, y1, . . . , yn−1) ∈ R and x 6= y1 (recall that A is perfect by Lemma 2.5). By
the definition of R we obtain

(y1, y1, y2, . . . , yn−1) ∈ Orb((x, y1, . . . , yn−1), f (n)).

Now the result follows by Lemma 3.3. �

Corollary 3.5. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order n with n ≥ 2. Then, for any n open subsets U1, V1, V2, . . . , Vn−1 of X
intersecting A,

N (U1 ∩ A, V1)∩

n−1⋂
i=1

N (Vi ∩ A, Vi )

contains an IP-set.

It is shown in [Oprocha and Zhang 2012, Theorem 6] that a weakly mixing set
of order 2 is totally transitive. Now, with the help of Corollary 3.5, we can extend
it as follows.

Proposition 3.6. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset.
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(3.6.1) If A is a weakly mixing set of order 2, then A is totally transitive.

(3.6.2) If A is a weakly mixing set of order n for f with n ≥ 3, then, for every k ∈N,
A is a weakly mixing set of order n− 1 for f k .

Proof. If F contains an IP-set, then F ∩ nN 6=∅ for every n ∈N. Now the result
follows by Theorem 3.1 and Corollary 3.5. �

The above fact motivates us to state the following question for investigation.

Question. Let (X, f ) be a dynamical system and k ∈ N, n ≥ 2. If a subset A ⊂ X
is weakly mixing of order n for f , is it weakly mixing of order n for f k?

Theorem 3.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. Then A is a sensitive set in

(
Orb(A, f ), f

)
. In particular, the system(

Orb(A, f ), f
)

is n-sensitive for every n ≥ 2.

Proof. Without loss of generality, we assume that Orb(A, f )= X . First note that
both A and X must be perfect. Now let n≥ 2 and fix n distinct points x1, x2, . . . , xn

in A. Let U be a nonempty open subset of X and Ui an open neighborhood of xi for
i = 1, 2, . . . , n. There is some k ≥ 0 such that f k(A)∩U 6=∅ and therefore there
is an open subset V of X intersecting A such that f k(V )⊂U . Since A is a weakly
mixing set of order 2, there exists an m2 ∈ N such that U1 ∩ A ∩ f −m2(U2) 6= ∅
and V ∩ A∩ f −m2(V ) 6=∅. By induction, there exist m3, . . . ,mn ∈ N such that

U1 ∩ A∩
n⋂

i=2

f −mi (Ui ) 6=∅ and V ∩ A∩
n⋂

i=2

f −mi (V ) 6=∅.

And so there is a point y∈ A such that {y, f m2(y), . . . , f mn (y)}⊂V . By Lemma 2.6,
Tran(X, f ) ∩ A is a dense Gδ subset of A, and therefore we can choose x in
Tran(X, f ) ∩U1 ∩ A ∩

⋂n
i=2 f −mi (Ui ); that is, we choose an x ∈ U1 such that

f mi (x)∈Ui for i = 2, . . . , n. Since x is a transitive point in (X, f ) and the space X
is perfect, there exists a p ∈ N0 such that { f p(x), f p+m2(x), . . . , f p+mn (x)} ⊂ V
and a q > p+ k such that f q(x) ∈U1 and f q+mi (x) ∈Ui for i = 2, . . . , n. Define
r = q− p− k, y1 = f p+k(x) and yi = f p+k+mi (x) for i = 2, . . . , n. Then yi ∈U
and f r (yi ) ∈Ui for i = 1, 2, . . . , n, which implies that A is a sensitive set. Finally,
we have by Lemma 2.6 that

(
Orb(A, f ), f

)
is n-sensitive for every n ≥ 2. �

4. Xiong chaotic set of finite order

In this section, we study Xiong chaotic sets of finite order and their connection to
weakly mixing sets of finite order.

Definition 4.1. Let (X, f ) be a dynamical system with n ≥ 2. A subset K of X
with at least n points is called a Xiong chaotic set of order n if, for any subset E of K
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with cardinality n and for any map g : E→ K , there is an increasing subsequence
{qi }
∞

i=1 in N such that limi→∞ f qi (x)= g(x) for every x ∈ E .

The following result is straightforward by the definition.

Proposition 4.2. If K is a Xiong chaotic set of order n, then there exists a δ > 0
such that, for every n distinct points x1, x2, . . . , xn in K ,

lim inf
k→∞

max
1≤i< j≤n

d( f k(xi ), f k(x j ))= 0,

lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j )) > δ,

lim inf
k→∞

max
1≤i≤n

d( f k(xi ), xi )= 0.

In particular, K is n-scrambled with modular δ.

Theorem 4.3. Let (X, f ) be a dynamical system and A a perfect subset of X with
n ≥ 2. Then the following conditions are equivalent:

(4.3.1) A is a weakly mixing set of order n.

(4.3.2) There exists a dense Mycielski subset S of A which is Xiong chaotic of
order n.

(4.3.3) There exists a dense subset S of A which is Xiong chaotic of order n.

Proof. (4.3.1)⇒ (4.3.2) First note that A is perfect. Since An is a transitive set
in (Xn, f (n)), by Lemma 2.6 the relation R = An

∩Tran
(
Orb(An, f (n)), f (n)

)
is a

dense Gδ subset of An . By the Mycielski theorem, there exists a dense Mycielski
subset S of A such that, for every n distinct points x1, x2, . . . , xn ∈ S, we have
(x1, x2, . . . , xn) ∈ R. Fix a subset E of S with cardinality n and a map g : E→ A.
Enumerate E as {x1, x2, . . . , xn} and let yi = g(xi ) for i = 1, 2, . . . , n. Since
(x1, x2, . . . , xn) is a transitive point in

(
Orb(An, f (n)), f (n)

)
and (y1, y2, . . . , yn)

is in An , there is an increasing subsequence {qk}
∞

k=1 in N such that we have
limk→∞ f qk (xi )= g(xi ) for i = 1, 2, . . . , n; thus S is a Xiong chaotic set of order n.

(4.3.2)⇒ (4.3.3) The implication is trivial.
(4.3.3)⇒ (4.3.1) Fix any open subsets U1, V1,U2, V2, . . . ,Un, Vn of X intersect-

ing A. Choose n distinct points xi ∈Ui∩S and n points yi ∈Vi∩A for i=1, 2, . . . , n.
Define a map g : {x1, x2, . . . , xn} → A as g(xi ) = yi for i = 1, 2, . . . , n. Then
there exists a k ≥ 1 such that f k(xi ) ∈ Vi for i = 1, 2, . . . , n. In particular the set⋂n

i=1 N (Ui ∩ A, Vi ) is not empty, which completes the proof. �

Corollary 4.4. Let (X, f ) be a dynamical system with n ≥ 2. Then (X, f ) has a
weakly mixing set of order n if and only if it has an uncountable Xiong chaotic set
of order n.
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Proof. The necessity follows by Theorem 4.3, since a Mycielski set is uncountable.
Now we prove the sufficiency. Let S be an uncountable Xiong chaotic set of order n.
By compactness of X , we can divide the closure S of S into K1∪K2, where K1 is per-
fect and K2 is at most countable. It is easy to see that K1∩ S is also a Xiong chaotic
set which is dense in K1. By Theorem 4.3, K1 is a weakly mixing set of order n. �

Remark 4.5. It should be noticed that weakly mixing sets (of finite order n) are
perfect. Hence, they are more restrained than Xiong chaotic sets, because any
infinite subsets of Xiong chaotic sets (of finite order n) are also Xiong chaotic sets.

Let (X, f ) be a dynamical system with x0 ∈ X , n ≥ 2 and δ > 0. Define

Dδ
n(X, f )=

{
(x1, x2, . . . , xn) ∈ Xn

: lim sup
k→∞

min
1≤i< j≤n

d( f k(xi ), f k(x j ))≥ δ
}
,

and

Dδ
n(X, f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1

: (x0, x1, . . . , xn−1) ∈ Dδ
n(X, f )}.

Proposition 4.6. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set
of order 2(n− 1) with n ≥ 2. Then there exists a δ > 0 such that, for every x0 ∈ A,
Dδ

n(X, f )(x0)∩ An−1 is residual in An−1.

Proof. Since A is perfect, we can choose a δ > 0 and 2(n − 1) distinct points
u1,1, u1,2, . . . , un−1,1, un−1,2 ∈ A so that d(ui1,i2, u j1, j2) > 4δ for (i1, i2) 6= ( j1, j2).
Fix x0 ∈ A. For every ε > 0, set

Dε=
{
(x1, . . . , xn−1)∈ Xn−1

: min
0≤i< j≤n−1

d( f k(xi ), f k(x j ))>δ−ε for some k> 1
ε

}
.

It is easy to verify that Dε is an open subset of Xn−1 and that

Dδ
n(X, f )(x0)=

∞⋂
m=1

D 1
m
.

Therefore it is sufficient to prove that Dε ∩ An−1 is dense in An−1 for every ε > 0.
Fix ε > 0 and n − 1 open subsets U1, . . . ,Un−1 of X intersecting A. By

Theorem 4.3, there is a Xiong chaotic set S of order 2(n− 1) which is dense in A.
Observing that A is perfect, for each i = 1, . . . , n−1 choose yi,1, yi,2 ∈Ui ∩ S with
yi,1 6= yi,2. Define a map g : {y1,1, y1,2, . . . , yn−1,1, yn−1,2} → A as g(yi, j )= ui, j

for i = 1, . . . , n−1 and j = 1, 2. Then there is an increasing subsequence {ql}
∞

l=1 in
N such that liml→∞ f ql (yi, j )= g(yi, j )= ui, j for i = 1, . . . , n−1 and j = 1, 2. Pick
k > 1/ε such that d( f k(yi, j ), ui, j ) < δ for i = 1, . . . , n− 1 and j = 1, 2. There is
at most one pair (i0, j0) such that d( f k(x0), ui0, j0) < 2δ. For each i = 1, . . . , n−1,
if i 6= i0, let xi = yi,1, and if i = i0, let xi = yi0, j0 , where j0 ∈ {1, 2} and j0 6= j0.
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Then xi ∈Ui for i = 1, . . . , n− 1 and

min
0≤i< j≤n−1

d( f k(xi ), f k(x j )) > δ,

which implies that Dε ∩ An−1 is dense in An−1. �

5. Weakly mixing sets

5A. Weakly mixing sets. By Proposition 3.6, we have the following result.

Lemma 5.1. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset with n ≥ 2. Then A is weakly mixing for f if and only if it is weakly mixing
for f n .

A dynamical system (X, f ) is called an F-system if it is totally transitive and
has a dense set of periodic points [Furstenberg 1967]. It is shown in [Furstenberg
1967] that an F-system is disjoint from any minimal system. It is not hard to see
that every F-system is weakly mixing (see [Banks 1997, Theorem 1.1]). We say a
dynamical system (X, f ) has dense small periodic sets if for any nonempty open
subset U of X there exists a nonempty closed subset K of U and a k ∈ N such
that f k(K )⊂ K . A dynamical system (X, f ) is called an HY -system if it is totally
transitive and has dense small periodic sets. It is shown in [Huang and Ye 2005]
that an HY -system is weakly mixing and disjoint from any minimal system.

It is interesting when a totally transitive set or a weakly mixing set of finite order
is also a weakly mixing set. Recall that a point x ∈ X is distal provided that if
(x, y) is proximal and y ∈Orb(x, f ) then x = y. The following fact is Corollary 11
from [Oprocha and Zhang 2013].

Theorem 5.2. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set
of order 2. If the set of all distal points in A is dense in A, then A is weakly mixing
of all orders.

We show that Theorem 5.2 can be generalized in the following way.

Theorem 5.3. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set of
order 2. If for every open subset U of X intersecting A there is a dynamical system
(Y, g) with a distal point y ∈ Y and an open neighborhood V ⊂ Y of y and a point
x ∈ A∩U such that N (y, V )⊂ N (x,U ), then A is weakly mixing of all orders.

Proof. By Theorem 3.1, it is sufficient to show that, for any n ≥ 2 and any n+ 1
open subsets U1, V1, V2, . . . , Vn of X intersecting A,

N (U1 ∩ A, V1)∩

n⋂
i=2

N (Vi ∩ A, Vi ) 6=∅.
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By assumption, for i = 2, . . . , n there are points xi ∈ Vi ∩ A and distal points
yi (in some dynamical systems) and their open neighborhoods Wi such that we
have N (yi ,Wi )⊂ N (xi , Vi ) and hence

⋂n
i=2 N (yi ,Wi )⊂

⋂n
i=2 N (xi , Vi ). But the

product of distal points is also distal, thus by [Furstenberg 1981] the following set
intersects every IP-set:

N ((y2, . . . , yn),W2× · · ·×Wn)⊂

n⋂
i=2

N (yi ,Wi )⊂

n⋂
i=2

N (xi , Vi ).

But, by Corollary 3.5, N (U1∩A, V1) contains an IP-set, which finishes the proof. �

We say that a subset A of X has dense small periodic sets if, for any open subset
U of X intersecting A, there exists a closed subset K of U intersecting A and a
k ∈ N such that f k(K )⊂ K . Then, observing that weak mixing of order 2 implies
total transitivity, we have the following theorem.

Theorem 5.4. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
subset. If A is totally transitive and has dense small periodic sets, then A is weakly
mixing.

Proof. First we show that A is weakly mixing of order 2. Let U1, V1, V2 be open
subsets of X intersecting A. Since A has dense small periodic sets, there exists
a closed subset K of V2 intersecting A and a k ∈ N such that f k(K )⊂ K . Since
A is transitive for f k , there is an m ∈ N such that m ∈ Nf k (U1 ∩ A, V1). Then
km ∈ N (U1 ∩ A, V1)∩ N (V2 ∩ A, V2), which implies that A is weakly mixing of
order 2 by Theorem 3.1.

Now we show that A satisfies the requirement of Theorem 5.3. Fix an open
subset U of X intersecting A. There exists a closed subset S of U intersecting A
and a k ∈ N such that f k(S) ⊂ S. Pick a point x ∈ S ∩ A. Then kN ⊂ N (x,U ).
Let Y = {0, 1, . . . , k − 1} and g : Y → Y , g(i) = i + 1 (mod k). Let y = 0 and
V = {0}. Then y is a distal point in (Y, g) and N (y, V )= kN⊂ N (x,U ). Hence
A is weakly mixing of all orders by Theorem 5.3. �

5B. Proximal relations. It is shown in [Akin and Kolyada 2003] that if (X, f )
is weakly mixing, then, for every x ∈ X , the set Prox2( f )(x) is residual in X . In
[Oprocha and Zhang 2013] it was proved that, for every weakly mixing set A and
every x ∈ A, the set Prox2( f )(x)∩ A is residual in A. We will show that the same is
true if we consider proximal tuples instead of pairs. First, we use a method of con-
struction from [Oprocha and Zhang 2013, Lemma 16] to prove the following result.

Lemma 5.5. Let (X, f ) be a dynamical system and A⊂ X a weakly mixing set with
x ∈ A. Then, for every n ≥ 2, any open subsets U1,U2, . . . ,Un of X intersecting A
and each ε > 0, there are a yi ∈Ui ∩ A for i = 1, 2, . . . , n and an m ∈ N such that
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(with y0 = x)
max

0≤i< j≤n
d( f m(yi ), f m(y j ))≤ ε.

Proof. Fix n ≥ 2, open subsets U1,U2, . . . ,Un of X intersecting A and ε > 0. Let
{V1, . . . , Vk} be a cover of X consisting of open sets with diameters less than ε/2.

There exists an s1 ∈ {1, 2, . . . , k} with x ∈ Vs1 . By weak mixing of A, there exist
an m1 > 0 and an open set U (1,1)

i ⊂Ui intersecting A such that f m1(U (1,1)
i )⊂ Vs1

for i = 1, 2, . . . , n.
For some q≥1, construct open sets U (q,1)

i ,U (q,2)
i , . . . ,U (q,q)

i ⊂Ui intersecting A
for i = 1, 2, . . . , n, pairwise distinct integers s1, s2, . . . , sq ⊂ {1, 2, . . . , k}, and an
integer mq > 0 such that

f mq (U (q,r)
i )⊂ Vsr for r = 1, 2, . . . , q, i = 1, 2, . . . , n.

If f mq (x) 6∈
⋃q

r=1 Vsr , then we can choose sq+1 ∈ {1, 2, . . . , k}\{s1, s2, . . . , sq} and
an open set U (q,q+1) containing x (and intersecting A) so that f mq (U (q,q+1))⊂Vsq+1 .
By weak mixing of A, there exist open sets U (q+1,1)

i ,U (q+1,2)
i , . . . ,U (q+1,q+1)

i ⊂Ui

intersecting A and a p> 0 such that, for r = 1, 2, . . . , q+1 and i = 1, 2, . . . , n, we
have f p(U (q+1,r)

i ) ⊂ U (q,r)
i , where U (q,q+1)

i = U (q,q+1) for i = 1, 2, . . . , n. Now
if we set mq+1 =mq + p, then for r = 1, 2, . . . , q+ 1 and i = 1, 2, . . . , n we have

f mq+1(U (q+1,r)
i )= f mq ( f p(U (q+1,r)

i ))⊂ f mq (U (q,r)
i )⊂ Vsr .

Obviously, since q ≤ k, we cannot extend the sequence s1, s2, . . . , sq any further
by the above procedure. Hence, we have that f mq (x) ∈

⋃q
r=1 Vsr , and in particular

f mq (x) ∈ Vs` for some ` ∈ {s1, . . . , sq}. But then by the construction we have
f mq (U (q,`)

i )⊂ Vs` for i = 1, 2, . . . , n, and so if we fix any yi ∈U (q,`)
i ∩ A⊂Ui ∩ A

then f mq (yi ) ∈ Vs` , finishing the proof. �

Theorem 5.6. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every x0 ∈ A and n ≥ 2, the set Proxn( f )(x0)∩ An−1 is residual in An−1.

Proof. Fix any x0 ∈ A and n ≥ 2. For every ε > 0, set

Pε =
{
(x1, . . . , xn−1) ∈ Xn−1

: max
0≤i< j≤n−1

d( f k(xi ), f k(x j )) < ε for some k ≥ 0
}
.

It is easy to verify that Pε is an open subset of Xn−1. By Lemma 5.5, Pε ∩ An−1 is
dense in An−1. This, by the fact that

Proxn( f )(x0)=

∞⋂
m=1

P 1
m
,

proves that Proxn( f )(x0)∩ An−1 is residual in An−1. �
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Let (X, f ) be a dynamical system with x0 ∈ X , n ≥ 2 and δ > 0. Define

LY δn (X, f )={(x1, x2, . . . , xn)∈ Xn
: (x1, . . . , xn) is n-scrambled with modular δ},

and

LY δn (X, f )(x0)= {(x1, . . . , xn−1) ∈ Xn−1
: (x0, x1, . . . , xn−1) ∈ LY δn (X, f )}.

The following fact is a direct corollary of Proposition 4.6 and Theorem 5.6.

Theorem 5.7. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set.
Then, for every n ≥ 2, there exists a δ > 0 such that, for every x0 ∈ A, it holds that
LY δn (X, f )(x0)∩ An−1 is residual in An−1.

5C. Local independent sets. Let (X, f ) be a dynamical system. Following [Kerr
and Li 2007], for a tuple A = (A1, A2, . . . , Ak) of subsets of X , we say that a
nonempty subset F ⊂ N0 is an independence set for A if, for any nonempty finite
subset J ⊂ F , we have ⋂

j∈J

f − j (As( j)) 6=∅

for any s ∈ {1, . . . , k}J . We shall denote the collection of all independence sets
for A by Ind(A1, A2, . . . , Ak) or Ind A. According to the best knowledge of the
authors, the above notion of independence sets was first presented in [Huang and
Ye 2006] under the name interpolating set (see also [Glasner and Weiss 1995])
and in [Huang 2006] when defining strong scrambled pairs. Later, the authors of
[Huang et al. 2012] systematically studied independence sets in topological and
measurable dynamics. In particular, they proved the following result (see [Huang
et al. 2012, Theorem 5.1]).

Theorem 5.8. For a dynamical system (X, f ), the following conditions are equiva-
lent:

(5.8.1) (X, f ) is weakly mixing.

(5.8.2) For any two nonempty open subsets U1,U2 of X, Ind(U1,U2) contains an
infinite set.

(5.8.3) For any n ∈ N and any nonempty open subsets U1,U2, . . . ,Un of X, there
is an IP-set in Ind(U1,U2, . . . ,Un).

In the spirit of [Huang et al. 2012] we introduce a local definition of independence
sets as follows.

Definition 5.9. Let (X, f ) be a dynamical system with ∅ 6= A ⊂ X , and let
U1,U2, . . . ,Un be open subsets of X intersecting A. We say that a nonempty
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subset F ⊂ N0 is an independence set for (U1,U2, . . . ,Un) with respect to A if,
for every nonempty finite subset J ⊂ F and s ∈ {1, 2, . . . , n}J ,⋂

j∈J

f − j (Us( j))

is a nonempty open subset of X intersecting A.

Now we can employ this definition to state a theorem analogous to Theorem 5.8.

Theorem 5.10. Let (X, f ) be a dynamical system and A ⊂ X a nontrivial closed
set. Then the following conditions are equivalent:

(5.10.1) A is a weakly mixing set.

(5.10.2) For every n ≥ 2 and any open subsets U1,U2, . . . ,Un of X intersect-
ing A, there exists a t ∈ N such that {0, t} is an independence set for
(U1,U2, . . . ,Un) with respect to A.

(5.10.3) For every n ≥ 2 and any open subsets U1,U2, . . . ,Un of X intersecting A,
there exists a sequence {t j }

∞

j=1 in N such that {0} ∪ FS
(
{t j }
∞

j=1

)
is an

independence set for (U1,U2, . . . ,Un) with respect to A.

Proof. (5.10.2) ⇒ (5.10.1) Fix n ≥ 2 and fix open subsets U1,U2, . . . ,Un,

V1, V2, . . . , Vn of X intersecting A. By assumption there exists a t ≥ 1 such
that {0, t} is an independence set for (U1,U2, . . . ,Un, V1, V2, . . . , Vn) with respect
to A. For i = 1, 2, . . . , n, we have that Ui ∩ f −t(Vi ) is a nonempty open subset
of X intersecting A. Therefore, t ∈

⋂n
i=1 N (Ui ∩ A, Vi ), which implies that A is

weakly mixing of order n.
(5.10.1) ⇒ (5.10.3) Let U1,U2, . . . ,Un be open subsets of X intersecting A.

First, there exists a t1 ∈ N such that

t1 ∈
⋂

i1,i2∈{1,2,...,n}

N (Ui1 ∩ A,Ui2).

That is, for every i1, i2 ∈ {1, 2, . . . , n}, we have that Ui1 ∩ f −t1(Ui2) is a nonempty
open set intersecting A. Therefore, there exists a t2 ∈ N such that

t2 ∈
⋂

i1,i2,i3,i4∈{1,2,...,n}

N (Ui1 ∩ f −t1(Ui2)∩ A,Ui3 ∩ f −t1(Ui4)).

That is, for every i1, i2, i3, i4 ∈ {1, 2, . . . , n},

Ui1 ∩ f −t1(Ui2)∩ f −t2Ui3 ∩ f −(t1+t2)(Ui4)

is a nonempty open set of X intersecting A. Then {0, t1, t2, t1+t2} is an independent
set of (U1,U2, . . . ,Un) with respect to A and the result follows by induction.

(5.10.3)⇒ (5.10.2) The implication is trivial. �
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Remark 5.11. Let A = (A1, . . . , Ak) be a tuple of subsets of X . If F is an
independence set for A, then for every m ∈ N0 the subset F − m defined by
{n −m : n ≥ m and n ∈ F} is also an independence set for A. So we may also
assume that an independence set of A contains 0. But in Theorem 5.10 we cannot
replace {0} ∪ FS

(
{t j }
∞

j=1

)
by FS

(
{t j }
∞

j=1

)
, as shown by the following example.

Example 5.12. Consider X =6+3 = {0, 1, 2}N0 and define

A = {1, 2}N0 ∪CX [00].

For any open subsets U1, . . . ,Un of X intersecting A, we can easily define words
w(1), . . . , w(n) of the same length, M ≥ 2, (with symbols in the alphabet {0, 1, 2})
such that C[w(i)]⊂ A for all i = 1, . . . , n. This implies that the set J ={k M : k ∈N}

is an independence set for (U1,U2, . . . ,Un) with respect to A. But A is not weakly
mixing of order 2, because, for example, N (A∩CX [1],CX [0])=∅.

Question. Let (X, f ) be a dynamical system and A ⊂ X a weakly mixing set of
order 2. Is it true that for every two open subsets U1,U2 of X intersecting A, there
exists a t ∈N such that {0, t} is an independence set for (U1,U2) with respect to A?

6. Topological graphs

For any integer n ≥ 2, it is known that a weakly mixing set of order n does not
have to be weakly mixing of order n+1; even worse, it may happen that there is no
weakly mixing set of order n+ 1 in a system with weakly mixing sets of order n
[Oprocha and Zhang 2014]. Note that the examples in [Oprocha and Zhang 2014]
are subshifts, and for every dynamical system on the unit interval ([0, 1], f ) with
positive topological entropy there is an m > 0 and a closed set 3 invariant for f m

such that (3, f m) is conjugated with the full shift on two symbols. In particular,
in every interval map with weakly mixing sets we can find sets which are weakly
mixing of order n but not n+1. However, in [Oprocha and Zhang 2011] the authors
proved that on the unit interval every weakly mixing set of order 2 is arbitrarily
close (in the Hausdorff metric) to a weakly mixing set of all orders. So even if
these sets are not the same, they are arbitrarily close to each other. Theorem 6.1
completes our research on weakly mixing sets in dimension one, showing that the
above fact also holds for all topological graphs.

Theorem 6.1. Let (G, f ) be a dynamical system acting on the topological graph G
and let A ⊂ G be a weakly mixing subset of order 2. Then for every ε > 0 there is
a weakly mixing subset D ⊂ G such that Hd(A, D)≤ ε, where Hd(A, D) denotes
the Hausdorff distance between A and D.
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Proof. Let ε > 0. Pick nonempty open subsets U1, . . . ,Us of G with diameters at
most ε such that A ⊂

⋃s
i=1 Ui and A ∩Ui 6= ∅ for i = 1, . . . , s. By Lemma 2.5

the set A is perfect; therefore, for every i = 1, . . . , s it is possible to select an open
set Vi ⊂ Ui contained in the interior of an edge of G such that Vi ∩ A 6= ∅ and
V1, . . . , Vs are pairwise disjoint.

Claim. For every i = 1, . . . , s there is an interval Ii ⊂ Vi , its disjoint closed
subintervals K2i , K2i+1 and an integer ni > 0 such that

(6.1.1) K2i , K2i+1 form a strong 2-horseshoe for f ni ; that is, K p
f ni
H⇒ Kq for all

p, q ∈ {2i, 2i + 1}, and

(6.1.2) both sets int(K2i ), int(K2i+1) as well as every connected component of the
set Ii \ (K2i ∪ K2i+1) intersect A.

Proof of Claim. Let Ii be any closed interval contained in Vi such that int(Ii )∩A 6=∅.
Let us identify Ii with [0, 1]. Observe that A is a weakly mixing set of order 2, and
so it contains no isolated points. Thus there are points 0=a0<a1< · · ·<a6<a7=1
in Ii such that (a j , a j+1)∩A 6=∅ for all j = 0, . . . , 6. Define Ii, j =[a2 j , a2 j+1] for
j = 0, 1, 2, 3. Since A is weakly mixing of order 2, there are k > 0, r > 0 such that

f r (Ii,1)∩ (a1, a2) 6=∅, f k(Ii,2)∩ (a1, a2) 6=∅,
f r (Ii,1)∩ (a5, a6) 6=∅, f k(Ii,2)∩ (a5, a6) 6=∅.

If Ii,1
f r

H⇒ Ii,1, Ii,1
f r

H⇒ Ii,2 and Ii,2
f k

H⇒ Ii,1, Ii,2
f k

H⇒ Ii,2 then by Lemma 2.7
the intervals Ii,1 and Ii,2 form a 2-horseshoe for f k+r .

Otherwise there are p∈{1, 2} and j ∈{k, r} such that Ii,p
f j

H⇒ Ii,0 and Ii,p
f j

H⇒ Ii,3.
Next, if we consider Ii,0, then there is an l> 0 such that Ii,0

f l

H⇒ Ii,0 and Ii,0
f l

H⇒ Ii,3,
or we have the second possibility that Ii,0

f l

H⇒ Ii,1 and Ii,0
f l

H⇒ Ii,2 which implies
that Ii,0

f l+ j

H⇒ Ii,0 and Ii,0
f l+ j

H⇒ Ii,3 again by applying Lemma 2.7. We can repeat the
same arguments for Ii,3, and with the help of Lemma 2.7 finally obtain that Ii,0, Ii,3

form a 2-horseshoe for some iterate of f . �

Now for each i = 1, . . . , s let sets K2i , K2i+1 be provided for Vi by the claim,
and let Ji be the connected component of Ii \(K2i ∪K2i+1) such that K2i and K2i+1

are contained in different connected components of Ii \ Ji . We prove by induction
that for every m = 1, . . . , s intervals K2, . . . , K2m+1 form a horseshoe for some
iterate f h, h ∈ N; that is, K p

f h

H⇒ Kq for all p, q ∈ {2, . . . , 2m+ 1}.
By the construction we have proved the above statement for m = 1, so we may

assume that it holds for some 1 ≤ m < s. Therefore, there is a t1 > 0 such that
K p

f t1
H⇒ Kq for all p, q ∈ {2, . . . , 2m + 1} and a t2 > 0 such that K2m+2, K2m+3

form a 2-horseshoe for f t2 . If we set t = t1t2, then we have that K2, . . . , K2m+1

form a horseshoe for f t , and that K2m+2, K2m+3 form a 2-horseshoe for f t . Since
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A is weakly mixing of order 2, there are k, r > 0 such that

f r (K2)∩ J1 6=∅, f r (K2)∩ Jm+1 6=∅,

f k(K2m+3)∩ J1 6=∅, f k(K2m+3)∩ Jm+1 6=∅.

From the construction and the first two conditions we see that K2
f r

H⇒ K2 or
K2

f r

H⇒ K3 and at the same time K2
f r

H⇒ K2m+2 or K2
f r

H⇒ K2m+3, which implies
that K2

f r+t

H⇒ Kq for every q = 2, . . . , 2m + 3 by Lemma 2.7. By a symmetric
argument, we see that K2m+3

f k+t

H⇒ Kq for every q = 2, . . . , 2m+ 3. Now applying
Lemma 2.7 it is easy to verify that K p

f r+k+3t

H⇒ Kq for every p, q ∈ {2, . . . , 2m+ 3}.
This completes the induction.

Since Ki , i = 2, . . . , 2s+ 1, form a horseshoe, rewriting arguments in the proof
of [Moothathu 2011, Theorem 9] (stated there for horseshoes in interval maps)
we obtain that there is an n > 0, an f n-invariant closed subset 0 ⊂

⋃s
i=1 Vi and a

topological conjugacy π : (0, f n)→ (6s, σ ) between dynamical systems such that
0 ∩ Vi 6=∅ for each i = 1, . . . , s (and hence Hd(A, 0)≤ ε), where (6s, σ ) is the
full shift over the alphabet {1, . . . , s}. In particular f n is mixing on 0, so indeed 0
is a weakly mixing subset, which completes the proof. �

Acknowledgements

The authors would like to thank the referee for useful comments that resulted in
substantial improvements to this paper.

The first author was supported in part by National Natural Science Foundation of
China, grant numbers 11401362 and 11471125. The second author was supported
by the Polish Ministry of Science and Higher Education from sources for science in
the years 2013–2014, grant number IP2012 004272. The third author was supported
by Foundation for the Author of National Excellent Doctoral Dissertation of China,
grant number 201018 and National Natural Science Foundation of China, grant
number 11271078.

Appendix

Proof of Example 3.2. Let us endow [0, 1] with the Euclidean metric. Take any
increasing sequences {ai }i∈Z, {bi }i∈Z⊂R\Q such that 1/2<a−1<a0<b0<b1<a1

and limi→∞ a−i = limi→∞ b−i = 0 and limi→∞ ai = limi→∞ bi = 1. Furthermore,
we assume that every interval (ai , ai+1) contains at most one element of the set
{2−k
: k ∈ N}.

We will define homeomorphisms Fi : [0, 1] → [0, 1] for i = 0, . . . , 8. Define
F0 = id and set Fi (0) = 0 and Fi (1) = 1 for every i . For each i ∈ Z we set
F1(ai ) = ai+1 and F3(bi ) = bi+1. On each interval [bi , bi+1] we define F3 as a
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linear map, which completes the definition of F3, since values of F3 at endpoints
of every such interval have already been set. For i ≥ 0 we define F1 on [ai , ai+1]

as a linear map. Now, fix any sequence of distinct points {ck}
∞

k=1 ⊂ (a0, a1) in
such a way that {ck : k ∈ N} = [a0, a1]. We are ready to define F1 on the intervals
[ai , ai+1] for i < 0. Suppose that F1|[a−n,1] is already defined for some n ≥ 0. If
{2−k
: k ∈N}∩[a−n−1, a−n] =∅ then we define F1 as a linear map on [a−n−1, a−n],

and as a result F1 is well-defined on the interval [a−n−1, 1]. Otherwise there is a
k > 0 such that 2−k

∈ (a−n−1, a−n) (hence n ≥ 1). Define

G : [a−n, a−n+1] 3 x 7→ F1|[a−1,a0] ◦ · · · ◦ F1|[a−n,a−n+1](x) ∈ [a0, a1]

and observe that there is a q ∈ [a−n, a−n+1] such that G(q) = ck . Now, we set
F1(2−k)= q and define F1 to be linear on each of the intervals [a−n−1, 2−k

] and
[2−k, a−n]. Then in this case F1 is also well-defined on [a−n−1, 1]. Induction
completes the construction. Define inverses F2 = F−1

1 and F4 = F−1
3 . Then for

every k there is an n > 0 such that Fn
2 (ck)= F−n

1 (ck)= 2−k .
We define F5(x)= 1/2+1/2(2x−1)3 and F6 = F−1

5 . Finally F7(2−k−1)= 2−k

for k ∈N, F7(1/2)= a1 and F7(ai )= ai+1 for i ∈N. Between any two consecutive
points in the set

⋃
k∈N{2

−k, ak} the map F7 is linear, which again gives a well-
defined homeomorphism. As the last map we take F8 = F−1

7 . Observe that for any
δ, ε ∈ (0, 1/2) there is an n > 0 such that Fn

6 ([1/2− δ, 1/2+ δ])⊃ (ε, 1− ε).
Let X =6+9 ×[0, 1] (endowed with the product metric given by the maximum

distance on each coordinate) where 6+9 = {0, 1, . . . , 8}N0 and let T : X → X be
defined by

T (ω, x)= (σ (ω), Fω0(x))

with σ the standard shift transformation on 6+9 . Thus X is compact and T is
continuous.

For any symbol a ∈ {0, 1, . . . , 8} and pairs (0, 0), (1, 2), (3, 4), (5, 6), (7, 8),
let a be the replacement of a by the second element of the respective pair. For
example, 8=7. We extend this definition to words, puttingw0 · · ·wn=wn · · ·w0. If,
for a finite sequencew of symbols in {0, 1, . . . , 8}, we denote by Fw the composition
Fw = Fw|w|−1 ◦ · · · ◦ Fw1 ◦ Fw0 , then Fww = Fw ◦ Fw = id.

Before proceeding with the construction of a set A, let us make a few observations
on these maps Fi . Fix any nonempty open sets U, V with U , V ⊂ (0, 1). First of
all U ∩ (bi , bi+1) 6=∅ for some i ∈ Z, and hence there is a word u consisting only
of symbols 0, 3 or 4 and such that

Fu(U )∩ (a0, a1)⊃ Fu(U )∩ (b0, b1) 6=∅.

In particular, there is a k ∈ N such that ck ∈ Fu(U ). But then there is also an s > 0
such that if we set v= 2s7k−1 (i.e., v is a concatenation of s repetitions of symbol 2
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and k−1 repetitions of symbol 7) then Fv(ck)= Fk−1
7 (F s

2 (ck))= Fk−1
7 (2−k)= 1/2.

In particular, there is a δ > 0 such that [1/2− δ, 1/2+ δ] ⊂ Fuv(U ), where as usual
uv = u0u1 · · · u|u|−1v0v1 · · · v|v|−1. But then there are an ε > 0 and m > 0 such that

Fw([1/2− δ, 1/2+ δ])⊃ (ε, 1− ε)⊃U ∪ V

if we set w = 6m . We have just shown that for any nonempty open sets U, V with
U , V ⊂ (0, 1) there are words u, v, w such that

(2) Fuvw(U )⊃U ∪ V .

Now we are ready to construct set A. Let {ωi }
∞

i=1 be any sequence containing
all possible words (finite sequences) over the symbols 0, 1, . . . , 8. Let

ξ = ω1ω1ω2ω2 · · ·ωnωn · · · ∈6
+

9 and A = {ξ}× [0, 1].

Take any nonempty open sets Ũ , Ṽ intersecting A. Then there are an i > 0 and
open intervals U, V such that U , V ⊂ (0, 1) and

C[ω1ω1 · · ·ωiωi ]×U ⊂ Ũ and C[ω1ω1 · · ·ωiωi ]× V ⊂ Ṽ .

Let words u, v, w be provided for U and V by (2). By the definition, there is a
j > 1 such that ω j = uvwω1ω1 · · ·ωiωi . Define t =

∑ j−1
r=1 2|ωr | and p= t+|uvw|.

Note that

T t({ξ}×U )= {σ t(ξ)}× Fω1ω1···ω j−1ω j−1(U )= {σ
t(ξ)}×U

= {ω jω j · · · } ×U = {uvwω1ω1ω2ω2 · · ·ωiωi · · · } ×U

and therefore

T p(Ũ ∩ A)⊃ T p({ξ}×U )⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(U )

⊃ {ω1ω1 · · ·ωiωi · · · } × (U ∪ V ).

We have just shown that p ∈ N (Ũ ∩ A, Ũ )∩ N (Ũ ∩ A, Ṽ ).
Similarly, if in the above calculations j was such that ω j = uvwω1ω1 · · ·ωiωi

then, since we have Fuvw(U ∪ V ) = F−1
uvw(U ∩ V ) ⊂ U by (2), we obtain that

p ∈ N (Ũ ∩ A, Ũ )∩ N (Ṽ ∩ A, Ũ ), as

T p(Ũ ∩ A)⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(U )⊂ Ũ ,

T p(Ṽ ∩ A)⊃ {ω1ω1 · · ·ωiωi · · · } × Fuvw(V )⊂ Ũ .

Finally, observe that each map Fi preserves the ordering of [0, 1]. Set U = (a, b)
and V = (c, d) where b < c. If for some word w we have Fw(V )∩U 6= ∅, then
Fw(U )⊂[0, b), and in particular Fw(U )∩V =∅. Therefore, if we set Ũ =6+9 ×U
and Ṽ = 6+9 × V , both intersecting A, then N (Ũ ∩ A, Ṽ ) ∩ N (Ṽ ∩ A, Ũ ) = ∅.
This shows that A is not a weakly mixing set of order 2, completing the proof. �
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