Vol. 278, No. 1, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A flag structure on a cusped hyperbolic 3-manifold

Elisha Falbel and Rafael Santos Thebaldi

Vol. 278 (2015), No. 1, 51–78
Abstract

A flag structure on a 3-manifold is an (X,G) structure where G = SL(3, ) and X is the space of flags on the 2-dimensional projective space. We construct a flag structure on a cusped hyperbolic manifold with unipotent boundary holonomy. The holonomy representation can be obtained from a punctured torus group representation into SL(3, ) which is equivariant under a pseudo-Anosov.

Keywords
flag structures, hyperbolic structures, SL(3, R) representations
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 57S30
Milestones
Received: 26 April 2014
Revised: 14 April 2015
Accepted: 14 April 2015
Published: 30 September 2015
Authors
Elisha Falbel
Institut de Mathématiques
Université Pierre et Marie Curie
75252 Paris CEDEX 5
France
Rafael Santos Thebaldi
Departamento de Ciências Exatas e Aplicadas
Universidade Federal de Ouro Preto
35931-008 João Monlevade, MG
Brazil