We prove a new upper bound for the first eigenvalue of the Dirac operator of a
compact hypersurface in any Riemannian spin manifold carrying a nontrivial
twistor-spinor without zeros on the hypersurface. The upper bound is expressed as the
first eigenvalue of a drifting Schrödinger operator on the hypersurface. Moreover,
using a recent approach developed by O. Hijazi and S. Montiel, we completely
characterize the equality case when the ambient manifold is the standard hyperbolic
space.
Keywords
global analysis, spectral theory, Dirac operator, geometry
of submanifolds
Laboratoire de Mathématiques R.
Salem UMR 6085 CNRS
Université de Rouen Avenue de l’Université
BP.12 Technopôle du Madrillet
76801 Saint-Étienne-du-Rouvray
France