Vol. 278, No. 1, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A new upper bound for the Dirac operators on hypersurfaces

Nicolas Ginoux, Georges Habib and Simon Raulot

Vol. 278 (2015), No. 1, 79–101
Abstract

We prove a new upper bound for the first eigenvalue of the Dirac operator of a compact hypersurface in any Riemannian spin manifold carrying a nontrivial twistor-spinor without zeros on the hypersurface. The upper bound is expressed as the first eigenvalue of a drifting Schrödinger operator on the hypersurface. Moreover, using a recent approach developed by O. Hijazi and S. Montiel, we completely characterize the equality case when the ambient manifold is the standard hyperbolic space.

Keywords
global analysis, spectral theory, Dirac operator, geometry of submanifolds
Mathematical Subject Classification 2010
Primary: 53C27, 53C40
Milestones
Received: 19 March 2014
Accepted: 16 January 2015
Published: 30 September 2015
Authors
Nicolas Ginoux
Département informatique
IUT de Metz
Université de Lorraine
Ile du Saulcy
CS10628
57045 Metz
France
Georges Habib
Faculty of Sciences II
Department of Mathematics
Lebanese University
P.O. Box 90656
Fanar-Matn
Lebanon
Simon Raulot
Laboratoire de Mathématiques R. Salem UMR 6085 CNRS
Université de Rouen Avenue de l’Université
BP.12 Technopôle du Madrillet
76801 Saint-Étienne-du-Rouvray
France