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GROWTH TIGHT ACTIONS

GOULNARA N. ARZHANTSEVA, CHRISTOPHER H. CASHEN AND JING TAO

We introduce and systematically study the concept of a growth tight action.
This generalizes growth tightness for word metrics as initiated by Grigorchuk
and de la Harpe. Given a finitely generated, nonelementary group G acting
on a G-space X , we prove that if G contains a strongly contracting element
and if G is not too badly distorted in X , then the action of G on X is a growth
tight action. It follows that if X is a cocompact, relatively hyperbolic G-space,
then the action of G on X is a growth tight action. This generalizes all previ-
ously known results for growth tightness of cocompact actions: every already
known example of a group that admits a growth tight action and has some
infinite, infinite index normal subgroups is relatively hyperbolic; conversely,
relatively hyperbolic groups admit growth tight actions. This also allows us
to prove that many CAT(0) groups, including flip-graph manifold groups and
many right angled Artin groups, and snowflake groups admit cocompact,
growth tight actions. These provide first examples of non relatively hyper-
bolic groups admitting interesting growth tight actions. Our main result ap-
plies as well to cusp uniform actions on hyperbolic spaces and to the action of
the mapping class group on Teichmüller space with the Teichmüller metric.
Towards the proof of our main result, we give equivalent characterizations
of strongly contracting elements and produce new examples of group actions
with strongly contracting elements.
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0. Introduction

The growth exponent of a set A⊂ X with respect to a pseudometric d is

δA,d := lim sup
r→∞

log #{a ∈A | d(o, a)6 r}
r

where # denotes cardinality and o ∈ X is some basepoint. The limit is independent
of the choice of basepoint.

Let G be a finitely generated group. A left invariant pseudometric d on G
induces a left invariant pseudometric d on any quotient G/0 of G by the formula
d(g0, g′0) := d(g0, g′0).

Definition 0.1. G is growth tight with respect to d if δG,d >δG/0,d for every infinite
normal subgroup 0 P G.

One natural way to put a left invariant metric on a finitely generated group is
to choose a finite generating set and consider the word metric. More generally,
pseudometrics on a group are provided by actions of the group on metric spaces.
Let X be a G-space, that is, a proper, geodesic metric space with a properly
discontinuous, isometric G-action G yX. The choice of a basepoint o ∈X induces
a left invariant pseudometric on G by dG(g, g′) := dX (g . o, g′. o).

Define the growth exponent δG of G with respect to X to be the growth ex-
ponent of G with respect to an induced pseudometric dG ; this depends only on
the G-space X, since a different choice of basepoint in X defines a pseudometric
that differs from dG by an additive constant. Likewise, let δG/0 denote the growth
exponent of G/0 with respect to a pseudometric on G/0 induced by dX .

Definition 0.2. G y X is a growth tight action if δG > δG/0 for every infinite
normal subgroup 0 P G.

Some groups admit growth tight actions for the simple reason that they lack any
infinite, infinite index normal subgroups. For such a group G, every action on a
G-space with positive growth exponent will be growth tight. Exponentially growing
simple groups are examples, as are irreducible lattices in higher rank semisimple
Lie groups, by the Margulis normal subgroup theorem [1991].
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Growth tightness1 for word metrics was introduced and studied by Grigorchuk
and de la Harpe [1997], who showed, for example, that a finite rank free group
equipped with the word metric from a free generating set is growth tight. On the
other hand, they showed that the product of a free group with itself, generated by
free generating sets of the factors, is not growth tight. Together with the normal
subgroup theorem, these results suggest that for interesting examples of growth
tightness we should examine “rank 1” type behavior. Further evidence for this
idea comes from the work of Sambusetti and collaborators, who in [Sambusetti
2002b; 2003; 2004; Dal’Bo et al. 2011] proved growth tightness for the action of the
fundamental group of a negatively curved Riemannian manifold on its Riemannian
universal cover.

In the study of nonpositively curved, or CAT(0), spaces there is a well established
idea that a space may be nonpositively curved but have some specific directions
that look negatively curved. More precisely:

Definition 0.3 [Ballmann and Brin 1995]. A hyperbolic isometry of a proper CAT(0)
space is rank 1 if it has an axis that does not bound a half-flat.

In Definition 2.17, we introduce the notion for an element of G to be strongly
contracting with respect to G y X. In the case that X is a CAT(0) G-space, the
strongly contracting elements of G are precisely those that act as rank 1 isometries
of X ; see Theorem 9.1.

In addition to having a strongly contracting element, we will assume that the
orbit of G in X is not too badly distorted. There are two different ways to make
this precise.

We say a G-space is C-quasiconvex if there exists a C-quasiconvex G-orbit; see
Definitions 1.3 and 1.4. This means that it is possible to travel along geodesics
joining points in the orbit of G without leaving a neighborhood of the orbit.

Theorem 6.4. Let G be a finitely generated, nonelementary group. Let X be a
quasiconvex G-space. If G contains a strongly contracting element, then G y X is
a growth tight action.

Alternatively, we can assume that the growth rate of the number of orbit points
that can be reached by geodesics lying entirely, except near the endpoints, outside
a neighborhood of the orbit is strictly smaller than the growth rate of the group:

Theorem 6.3. Let G be a finitely generated, nonelementary group. Let X be a
G-space. If G contains a strongly contracting element and there exists a C > 0 such

1Grigorchuk and de la Harpe define growth tightness in terms of “growth rate”, which is just the
exponentiation of our growth exponent. The growth exponent definition is analogous to the notion of
“volume entropy” familiar in Riemannian geometry, and is more compatible with the Poincaré series
in Section 1B.
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that the C-complementary growth exponent of G is strictly less than the growth
exponent of G, then G y X is a growth tight action.

See Definition 6.2 for a precise definition of the C-complementary growth
exponent. The proof of Theorem 6.4 is a special case of the proof of Theorem 6.3.
Using Theorem 6.4, we prove:

Theorem 8.6. If X is a quasiconvex, relatively hyperbolic G-space and G does not
coarsely fix a peripheral subspace, then G y X is a growth tight action.

This generalizes all previously known results for growth tightness of cocompact
actions: every example already known of a group that admits a growth tight action
and has some infinite, infinite index normal subgroups is relatively hyperbolic;
conversely, relatively hyperbolic groups admit growth tight actions [Arzhantseva
and Lysenok 2002; Sambusetti 2002a; Yang 2013; Sambusetti 2003; Sabourau
2013; Dal’Bo et al. 2011].

We also use Theorem 6.4 to prove growth tightness for actions on non-relatively
hyperbolic spaces. For instance, we prove that a group action on a proper CAT(0)
space with a rank 1 isometry is growth tight:

Theorem 9.2. If G is a finitely generated, nonelementary group and X is a quasi-
convex, CAT(0) G-space such that G contains an element that acts as a rank 1
isometry on X, then G y X is a growth tight action.

Two interesting classes of non-relatively hyperbolic groups to which Theorem 9.2
applies are nonelementary right angled Artin groups, which are non-relatively
hyperbolic when the defining graph is connected, and flip-graph manifolds. These
are the first examples of non-relatively hyperbolic groups that admit nontrivial
growth tight actions.

Theorem 9.3. Let 2 be a finite graph that is not a join and has more than one
vertex. The action of the right angled Artin group G defined by 2 on the universal
cover X of the Salvetti complex associated to 2 is a growth tight action.

Theorem 9.4. Let M be a flip-graph manifold. Let G and X be the fundamental
group and universal cover, respectively, of M. Then the action of G on X by deck
transformations is a growth tight action.

We even exhibit an infinite family of non-relatively hyperbolic, non-CAT(0)
groups that admit cocompact, growth tight actions:

Theorem 11.1. The Brady–Bridson snowflake groups BB(1, r) for r > 3 admit
cocompact, growth tight actions.

Using Theorem 6.3, we prove growth tightness for interesting nonquasiconvex
actions. We generalize a theorem of Dal’bo, Peigné, Picaud, and Sambusetti
[Dal’Bo et al. 2011] for Kleinian groups satisfying an additional parabolic gap
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condition — see Definition 8.9 — to cusp-uniform actions on arbitrary hyperbolic
spaces satisfying the parabolic gap condition:

Theorem 8.10. Let G be a finitely generated, nonelementary group. Let G yX be
a cusp uniform action on a hyperbolic space. Suppose that G satisfies the parabolic
gap condition. Then G y X is a growth tight action.

Once again, our theorems extend beyond actions on relatively hyperbolic spaces,
as we use Theorem 6.3 to prove:

Theorem 10.2. The action of the mapping class group of a hyperbolic surface on
its Teichmüller space with the Teichmüller metric is a growth tight action.

Mapping class groups, barring exceptional low complexity cases, are neither
relatively hyperbolic nor CAT(0).

In Part I of this paper we prove our main results, Theorem 6.3 and Theorem 6.4.
We show in Proposition 3.1 that if there exists a strongly contracting element for
G y X then every infinite normal subgroup 0 contains a strongly contracting
element h. We prove growth tightness by bounding the growth exponent of a subset
that is orthogonal, in a coarse sense, to every translate of an axis for h.

A dual problem, which is of independent interest, is to find the growth exponent
of the conjugacy class of h. In Section 7 we show that the growth exponent of
the conjugacy class of a strongly contracting element is exactly half the growth
exponent of the group, provided the strongly contracting element moves the base
point far enough.

In Part II we produce new examples of group actions with strongly contracting
elements. These include groups acting on relatively hyperbolic metric spaces
(Section 8), certain CAT(0) groups (Section 9), mapping class groups (Section 10),
and snowflake groups (Section 11). Our main theorems imply that all these groups
admit growth tight actions. These are first examples of growth tight actions and
groups which do not come from and are not relatively hyperbolic groups.

0A. Invariance. Growth tightness is a delicate condition. A construction of Dal’bo,
Otal, and Peigné [Dal’bo et al. 2000] — see Observation 8.8 — shows that there exist
groups G and noncocompact, hyperbolic, equivariantly quasi-isometric G-spaces
X and X ′ such that G y X is growth tight and G y X ′ is not.

In [Cashen and Tao 2014], we extend the techniques of this paper to produce
the first examples of groups that admit a growth tight action on one of their Cayley
graphs and a non-growth tight action on another. This answers in the affirmative
the following question of Grigorchuk and de la Harpe [1997]:

Question 1. Does there exist a word metric for which F2× F2 is growth tight?
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Recall that F2× F2 is not growth tight with respect to a generating set that is a
union of free generating sets of the two factors.

More generally, a product of infinite groups acting on the l1 product of their
Cayley graphs is not growth tight. Such l1 products and the Dal’bo, Otal, Peigné
examples are the only known general constructions of non-growth tight examples.
It would be interesting to have a condition to exclude growth tightness. One can
not hope to bound the growth exponents of quotients away from that of the group,
as Shukhov [1999] and Coulon [2013] have given examples of hyperbolic groups
and sequences of quotients whose growth exponents limit to that of the group. At
present, growth tightness can only be excluded for a particular action by exhibiting
a quotient of the group by an infinite normal subgroup whose growth exponent is
equal to that of the group.

0B. The Hopf property. A group G is Hopfian if there is no proper quotient of G
isomorphic to G.

Let D be a set of pseudometrics on G that is quotient-closed, in the sense that if
0 is a normal subgroup of G such that there exists an isomorphism φ : G→ G/0,
then for every d ∈D, the pseudometric on G obtained by pulling back via φ the
pseudometric on G/0 induced by d is also in D. For example, the set of word
metrics on G coming from finite generating sets is quotient-closed.

Suppose further that D contains a minimal growth pseudometric d0, i.e., that
δG,d0 = infd∈D δG,d , and that G is growth tight with respect to d0.

Proposition 0.4. Let G be a finitely generated group with a bound on the cardinali-
ties of its finite normal subgroups. Suppose that there exists a quotient-closed set D
of pseudometrics on G that contains a growth tight, minimal growth element d0, as
above. Then, G is Hopfian.

The hypothesis on bounded cardinalities of finite normal subgroups holds for all
groups of interest in this paper; see Theorem 1.12.

Proof. Suppose that 0 is a normal subgroup of G such that G ∼= G/0. Let d be the
pseudometric on G obtained from pulling back the pseudometric on G/0 induced
by d0. Since D is quotient-closed, d ∈ D. By minimality, δG,d0 6 δG,d , but by
growth tightness, δG,d 6 δG,d0 , with equality only if 0 is finite. Thus, the only
normal subgroups 0 for which we could have G ∼= G/0 are finite. However, if
G ∼= G/0 for some finite 0 then G has arbitrarily large finite normal subgroups,
contrary to hypothesis. �

Grigorchuk and de la Harpe [1997] suggested this as a possible approach to
the question of whether a nonelementary Gromov hyperbolic group is Hopfian,
in the particular case that D is the set of word metrics on G. Arzhantseva and
Lysenok [2002] proved that every word metric on a nonelementary hyperbolic
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group is growth tight. They conjectured that the growth exponent of such a group
achieves its infimum on some finite generating set and proved a step towards this
conjecture [Arzhantseva and Lysenok 2006]. Sambusetti [2002a] gave an examples
of a (nonhyperbolic) group for which the set of word metrics does not realize its
infimal growth exponent. In general, it is difficult to determine whether a given
group has a generating set that realizes the infimal growth exponent among word
metrics. Part of our motivation for studying growth tight actions is to open new
possibilities for the set D of pseudometrics considered above.

Torsion free hyperbolic groups are Hopfian [Sela 1999]. Reinfeldt and Weidmann
[2014] have announced a generalization of Sela’s techniques to hyperbolic groups
with torsion, and concluded that all hyperbolic groups are Hopfian.

0C. The rank rigidity conjecture. The rank rigidity conjecture (see [Caprace and
Sageev 2011; Ballmann and Buyalo 2008]) asserts that if X is a locally compact,
irreducible, geodesically complete CAT(0) space, and G is an infinite discrete group
acting properly and cocompactly on X, then one of the following holds:

(1) X is a higher rank symmetric space.

(2) X is a Euclidean building of dimension at least 2.

(3) G contains a rank 1 isometry.

In case (1), the Margulis normal subgroup theorem implies that G is trivially
growth tight, since it has no infinite, infinite index normal subgroups. Conjecturally,
the Margulis normal subgroup theorem also holds in case (2). Our Theorem 9.2
says that if X is proper then G y X is a growth tight action in case (3). Thus, a
non-growth tight action of a nonelementary group on a proper, irreducible CAT(0)
space as above would provide a counterexample either to the rank rigidity conjecture
or to the conjecture that the Margulis normal subgroup theorem applies to Euclidean
buildings.

The rank rigidity conjecture is known to be true for many interesting classes of
spaces, such as Hadamard manifolds [Ballmann 1995], 2-dimensional, piecewise
Euclidean cell complexes [Ballmann and Brin 1995], Davis complexes of Coxeter
groups [Caprace and Fujiwara 2010], universal covers of Salvetti complexes of right
angled Artin groups [Behrstock and Charney 2012], and finite dimensional CAT(0)
cube complexes [Caprace and Sageev 2011]; so Theorem 9.2 provides many new
examples of growth tight actions.

It is unclear when growth tightness holds if X is reducible. A direct product of
infinite groups acting via a product action on a product space with the l1 metric fails
to be growth tight. However, there are also examples [Burger and Mozes 1997] of
infinite simple groups acting cocompactly on products of trees. In [Cashen and Tao
2014], we find partial results in the case that the group action is a product action.
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0D. Outline of the proof of the main theorems. Sambusetti [2002a] proved that a
nonelementary free product of nontrivial groups has a greater growth exponent than
that of either factor. Thus, a strategy to prove growth tightness is to find a subset
of G that looks like a free product, with one factor that grows like the quotient
group we are interested in. Specifically:

(1) Find a subset A ⊂ G ⊂ X such that δA = δG/0. We will obtain A as a
coarsely dense subset of a minimal section of the quotient map G→ G/0; see
Definition 4.4.

(2) Construct an embedding of a free product set A ∗ Z2 into X. The existence
of a strongly contracting element h ∈ 0 is used in the construction of this
embedding; see Proposition 5.1.

(3) Show that δG/0 = δA,dX < δA∗Z/2Z,dX 6 δG . In this step it is crucial that A is
divergent; see Definition 1.7 and Lemma 6.1. We use the quasiconvexity and
complementary growth exponent to establish divergence.

This outline, due to Sambusetti, is nowadays standard. Typically, step (2) is
accomplished by a ping-pong argument, making use of fine control on the geometry
of the space X. Our methods are coarser than such a standard approach, and
therefore can be applied to a wider variety of spaces. We use, in particular, a
technique of Bestvina, Bromberg, and Fujiwara [Bestvina et al. 2014] to construct
an action of G on a quasitree. Verifying that the map from the free product set into
X is an embedding amounts to showing that elements in A do not cross certain
coarse edges of the quasitree.

Part I. Growth tight actions

1. Preliminaries

Fix a G-space X. From now on, d is used to denote the metric on X as well as
the induced pseudometric on G and G/0. Since there will be no possibility of
confusion, we suppress d from the growth exponent notation.

We denote by Br (x) the open ball of radius r about the point x and by Br (A) :=⋃
x∈A Br (x) the open r -neighborhood about the set A. The closed r -ball and closed

r -neighborhood are denoted Br (x) and Br (A), respectively.

1A. Coarse language. All of the following definitions may be written without
specifying C to indicate that some such C > 0 exists: Two subsets A and A′ of
X are C-coarsely equivalent if A⊂ BC(A′) and A′ ⊂ BC(A). A subset A of X is
C-coarsely dense if it is C-coarsely equivalent to X. A subset A of X is C-coarsely
connected if for every a and a′ in A there exists a chain a = a0, a1, . . . , an = a′ of
points in A with d(ai , ai+1)6 C .
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A pseudomap φ : X → Y assigns to each point in X a subset φ(x) of Y . A
pseudomap is C-coarsely well-defined if for every x ∈ X the set φ(x) of Y has
diameter at most C . Pseudomaps φ and φ′ with the same domain and codomain
are C-coarsely equivalent or C-coarsely agree if φ(x) is C-coarsely equivalent to
φ′(x) for every x in the domain. A C-coarsely well-defined pseudomap is called a
C-coarse map. From a C-coarse map we can obtain a C-coarsely equivalent map
by selecting one point from every image set. Conversely:

Lemma 1.1. If φ : X → Y is coarsely G-equivariant then there is an equivariant
coarse map coarsely equivalent to φ.

Proof. Suppose there is a C such that d(g . φ(x), φ(g . x)) 6 C for all x ∈ X
and g ∈ G. Define φ′(x) :=

⋃
g∈G g−1 . φ(g . x). Then, φ′ is G-equivariant and

C-coarsely equivalent to φ. �

Notation 1.2. If φ : X → Y is a pseudomap and A and A′ are subsets of X, let
dφ(A,A′) denote the diameter of φ(A)∪φ(A′).

Definition 1.3. A subset A ⊂ X is C-quasiconvex if for every a0, a1 ∈ A, there
exists a geodesic γ between a0 and a1 such that γ ⊂ BC(A). It is C-strongly
quasiconvex if every geodesic with endpoints in A stays in BC(A).

Definition 1.4. A G-space X is C-quasiconvex if it contains a C-quasiconvex
G-orbit.

For convenience, if X is a quasiconvex G-space we assume we have chosen a
basepoint o ∈ X such that G . o is quasiconvex.

A group is elementary if it has a finite index cyclic subgroup.

Definition 1.5. Let g ∈ G. The elementary closure of g, denoted by E(g), is the
largest virtually cyclic subgroup containing g, if such a subgroup exists.

A map φ : X → Y is an (M,C)-quasi-isometric embedding, for some M > 1
and C > 0, if, for all x0, x1 ∈ X :

1
M

d(x0, x1)−C 6 d(φ(x0), φ(x1))6 M d(x0, x1)+C

A map φ is C-coarsely M-Lipschitz if the second inequality holds, and is a quasi-
isometry if it is a quasi-isometric embedding whose image is C-coarsely dense.

An (M,C)-quasigeodesic is an (M,C)-quasi-isometric embedding of a coarsely
connected subset of R. If γ : I → X is a quasigeodesic we let γt denote the point
γ (t), and let γ denote the image of γ in X.

Definition 1.6. A quasigeodesic Q is Morse if for every M > 1 there exists a K > 0
such that every (M,M)-quasigeodesic with endpoints on Q is contained in the
K-neighborhood of Q.
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We will use notation to simplify some calculations. Let C be a “universal
constant”. For us this will usually mean a constant that depends on G y X and a
choice of o ∈X, but not on the point in X at which quantities a and b are calculated.

• For a 6 Cb, we write a ∗

≺ b.

• For 1
C b 6 a 6 Cb, we write a ∗

� b.

• For a 6 b+C , we write a
+

≺ b.

• For b−C 6 a 6 b+C , we write a
+

� b.

• For a 6 Cb+C , we write a ≺ b.

• For 1
C b−C 6 a 6 Cb+C , we write a � b.

1B. The Poincaré series and growth. Let (X , o, d) be a pseudometric space with
choice of basepoint. Let |x | := d(o, x) be the induced seminorm. Define the
Poincaré series of A⊂ X to be

2A(s) :=
∑
a∈A

exp(−s|a|)

Another related series is:

2′A(s) :=
∞∑

n=0

#(Bn(o)∩A) · exp(−sn)

The series 2A and 2′A have the same convergence behavior, since 2A(s) =
2′A(s) · (1 − exp(−s)). It follows that the growth exponent of A is a critical
exponent for 2′A and 2A: the series converge for s greater than the critical exponent
and diverge for s less than the critical exponent.

Definition 1.7. A⊂ X is divergent if 2A diverges at its critical exponent.

Since point stabilizers are finite, if A < G and we set A := A . o then 2A
∗

�2A
and 2′A

∗

�2′A. This implies δA = δA, so we can compute the growth exponent of A
with respect to the pseudometric on A induced by G yX by computing the growth
exponent of the A-orbit as a subset of X.

1C. The quasitree construction. We recall the method of Bestvina, Bromberg,
and Fujiwara [Bestvina et al. 2014] for producing group actions on quasitrees. A
quasitree is a geodesic metric space that is quasi-isometric to a simplicial tree. Man-
ning [2005] gave a characterization of quasitrees as spaces satisfying a “bottleneck”
property. We use an equivalent formulation:

Definition 1.8. A geodesic metric space satisfies the bottleneck property if there
exists a number 1 such that for all x and y in X, and for any point m on a geodesic
segment from x to y, every path from x to y passes through B1(m).
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Theorem 1.9 [Manning 2005, Theorem 4.6]. A geodesic metric space is a quasitree
if and only if it satisfies the bottleneck property.

Let Y be a collection of geodesic metric spaces, and suppose for each X, Y ∈ Y

we have a subset πY (X)⊂ Y , which is referred to as the projection of X to Y . Let
dπY (X, Z) := diamπY (X)∪πY (Z).

Definition 1.10 (projection axioms). A set Y with projections as above satisfies
the projection axioms if there exist ξ > 0 such that for all distinct X, Y, Z ∈ Y:

(P0) diamπY (X)6 ξ

(P1) At most one of dπX (Y, Z), dπY (X, Z), or dπZ (X, Y ) is strictly greater than ξ .

(P2) |{V ∈ Y | dπV (X, Y ) > ξ}|<∞

For a motivating example, let G be the fundamental group of a closed hyperbolic
surface, and let H be the axis in H2 of h ∈ G. Let Y be the distinct G-translates
of H, and for each Y ∈ Y, let πY be closest point projection to Y. In this example,
projection distances arise as closest point projection in an ambient space contain-
ing Y. Bestvina, Bromberg, and Fujiwara consider abstractly the collection Y and
projections satisfying the projection axioms, and build an ambient space containing
a copy of Y such that closest point projection agrees with the given projections, up
to bounded error:

Theorem 1.11 [Bestvina et al. 2014, Theorems A and B]. Consider a set Y of
geodesic metric spaces and projections satisfying the projection axioms. There
exists a geodesic metric space Y containing disjoint, isometrically embedded, totally
geodesic copies of each Y ∈ Y, such that for X, Y ∈ Y, closest point projection of X
to Y in Y is uniformly coarsely equivalent to πY (X).

The construction is equivariant with respect to any group action that preserves
the projections. Also, if each Y ∈Y is a quasitree, with uniform bottleneck constants,
then Y is a quasitree.

The basic idea is that Z is “between” X and Y in Y if dπZ (X, Y ) is large, and X
and Y are “close” if there is no Z between them. Essentially, Y is constructed by
choosing parameters C and K and connecting every point of πY (X) to every point of
πX (Y ) by an edge of length K if there does not exist Z ∈Y with dπZ (X, Y )>C . For
technical reasons one actually must perturb the projection distances by a bounded
amount first. Then, if C is chosen sufficiently large and K is chosen sufficiently
large with respect to C , the resulting space is the space Y of Theorem 1.11.

1D. Hyperbolically embedded subgroups. Dahmani, Guirardel, and Osin [Dah-
mani et al. 2011] define the concept of a hyperbolically embedded subgroup. This
is a generalization of a peripheral subgroup of a relatively hyperbolic group. We
will not state the definition, as it is technical and we will not work with this
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property directly, but it follows from Theorem 4.42 from that reference that E(h) is
hyperbolically embedded in G for any strongly contracting element h. The proof of
this theorem proceeds by considering the action of E(h) on a quasitree constructed
via the method of Bestvina, Bromberg, and Fujiwara.

We state some results on hyperbolically embedded subgroups that are related to
the work in this paper. These are not used in the proofs of the main theorems.

Theorem 1.12 [Dahmani et al. 2011, Theorem 2.23]. If G has a hyperbolically
embedded subgroup, then G has a maximal finite normal subgroup.

Recall that this theorem guarantees one of the hypotheses of Proposition 0.4.

Theorem 1.13. If G contains an infinite order element h such that E(h) is hyper-
bolically embedded, then G has an infinite, infinite index normal subgroup.

Proof. By [Dahmani et al. 2011, Theorem 5.15], for a sufficiently large n, the
normal closure of 〈hn

〉 in G is the free product of the conjugates of 〈hn
〉. �

This theorem says that our main results are true for interesting reasons, not
simply for lack of normal subgroups.

Minasyan and Osin [2015] produce hyperbolically embedded subgroups in certain
graphs of groups. We use these to produce growth tight examples in Theorem 9.5.

Theorem 1.14 [Minasyan and Osin 2015, Theorem 4.17]. Let G be a finitely
generated, nonelementary group that splits nontrivially as a graph of groups and
is not an ascending HNN-extension. If there exist two edges of the corresponding
Bass–Serre tree whose stabilizers have finite intersection then G contains an infinite
order element h such that E(h) is hyperbolically embedded in G.

2. Contraction and constriction

In this section we introduce properties called “contracting” and “constricting” that
generalize properties of closest point projection to a geodesic in hyperbolic space,
and verify that the “strong” versions of these properties are sufficient to satisfy the
projection axioms of Definition 1.10. These facts are well known to the experts2,
but as there is currently no published general treatment of this material, we provide
a detailed account.

2A. Contracting and constricting. In this section we define contracting and con-
stricting maps and show that the strong versions of these properties are equivalent.

Definition 2.1. A C-coarse map π :X→A is C-coarsely a closest point projection
if for all x there exists an a∈A with d(x,A)=d(x, a) such that diam{a}∪π(x)6C .

2For example, [Sisto 2011] shows that the projection axioms are satisfied for constricting elements,
without assuming that X is proper.
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Recall dπ (x0, x1) := diamπ(x0)∪π(x1).

Definition 2.2. π : X →A is (M,C)-contracting for C > 0 and M > 1 if

(1) π and IdA are C-coarsely equivalent on A, and

(2) d(x0, x1) <
1
M d(x0,A)−C implies dπ (x0, x1)6 C for all x0, x1 ∈ X.

We say π is strongly contracting if it is (1,C)-contracting and, for all x ∈ X,
d(x, π(x))− d(x,A)6 C .

Another formulation of strong contraction says that geodesics far from A have
bounded projections to A:

Definition 2.3. A coarse map π :X→A has the bounded geodesic image property
if there is a constant C such that for every geodesic L, if L ∩ BC(A) = ∅ then
diam(π(L))6 C .

Lemma 2.4. If d(x, π(x))−d(x,A) is uniformly bounded, then π has the bounded
geodesic image property if and only if it is strongly contracting.

Proof. First, assume that π has the bounded geodesic image property, for some
constant C . Let x be any point in X \ BC(A). For any y such that d(x, y) <
d(x,A)−C , every geodesic from x to y remains outside BC(A), so its projection
has diameter at most C .

For the converse, suppose π :X→A is a C-coarse map that is (1,C)-contracting
and d(x, π(x)) − d(x,A) 6 C for all x ∈ X. If C = 0 then balls outside of
BC(A) project to a single point, and we are done; so assume that C > 0. Let
L : [0, T ] → X be a geodesic that stays outside B3C(A). Let t0 := d(L0,A)−C ,
and let s := T −d(LT ,A)+C . If s 6 t0 then dπ (L0,LT )6 2C . Otherwise, define
ti+1 := ti + d(Lti ,A)−C , provided ti+1 < s. Each ti+1− ti > 2C , so we have a
partition of [0, T ] into subintervals [0, t0], [t0, t1], . . . , [tk−1, tk], [tk, s], [s, T ] with
k < (s− t0)/(2C), and if [a, b] is one of these intervals then dπ (La,Lb)6 C , by
strong contraction. Now,

d(L0,LT )6 d(L0, π(L0))+ d(π(L0), π(Lt0))+ d(π(Lt0), π(Ls))

+ d(π(Ls), π(LT ))+ d(π(LT ),LT )

6 d(L0, π(L0))+ d(π(LT ),LT )+C
(
2+ s−t0

2C

)
,

and
d(L0,LT )= d(L0,Lt0)+ d(Lt0,Ls)+ d(Ls,LT )

= d(L0,A)−C + s− t0+ d(LT ,A)−C,
so

s− t0 6 2
(
5C + d(L0, π(L0))− d(L0,A)+ d(LT , π(LT ))− d(LT ,A)

)
6 14C.

This means that k < 7, so dπ (L0,LT )6 C(3+ k) < 10C . �
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If π is only (M,C)-contracting then a similar argument shows that dπ (L0,LT )

is bounded in terms of C and log(M+1)/(M−1)(d(L0,A)d(LT ,A)).
We now introduce the notion of a constricting map. Using constricting maps will

simplify some of our proofs, but it turns out that the strong versions of constricting
and contracting are equivalent.

Definition 2.5. A path system is a transitive collection of quasigeodesics with
uniform constants that is closed under taking subpaths.

A path system is minimizing if, for some C > 0, it contains a path system
consisting of (1,C)-quasigeodesics.

Definition 2.6. Let PS be a path system. For M > 1 and C > 0, a coarse map
π : X →A is (M,C)-PS-constricting3 if:

(1) PS contains a path system consisting of (M,C)-quasigeodesics,

(2) π and IdA are C-coarsely equivalent on A, and

(3) for every P ∈ PS with endpoints x0 and x1, if dπ (x0, x1) > C then, for both
i ∈ {0, 1}, we have d(π(xi ),P)6 C.

A coarse map is constricting if it is (M,C)-PS-constricting for some path system
PS and strongly constricting if it is (1,C)-constricting for the path system consisting
of all geodesics.

Lemma 2.7. If π : X →A is constricting, then it is contracting.

Proof. Suppose π is (M,C)-PS-constricting C-coarse map for a path system PS
consisting of (M,C)-quasigeodesics. Suppose P : [0, T ] → X is a path in PS
with P0 = x and PT = y, and suppose z = Ps ∈ BC(A). Using the fact that P is
an (M,C)-quasigeodesic on the intervals [0, T ], [0, s], and [s, T ], one sees that
d(x, y)> (1/M2)(d(x,A)+ d(y,A)− 4C). Therefore, if

d(x, y) <
1

M2 d(x,A)−
4C
M2 ,

then P can not enter BC(A). This would contradict the constricting property, unless
dπ (x, y)6 C. Therefore, π is (M2,max{C, 4C/M2

})-contracting. �

Lemma 2.8. Let π :X→A be a C-coarse map that is (1,C)-PS-constricting. For
all x ∈ X and all r > 0, we have

{a ∈A | d(x, a)6 d(x,A)+ r} ⊂ {a ∈A | d(a, π(x))6 r + 5C}.

In particular, setting r = 0 shows that closest point projection to A is coarsely
well defined and coarsely equivalent to π .

3Sisto [2011] calls this property “PS-contracting”. We change the name to avoid conflict with the
better established “contracting” terminology of Definition 2.2.
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Proof. For x ∈ X and r > 0, let a ∈A be a point such that d(x, a)6 d(x,A)+ r .
Let P be a (1,C)-quasigeodesic from x to a in PS. If d(a, π(x)) > 2C, then
dπ (a, x) > C, so there is a point z ∈ P ∩BC(π(x)). Now,

d(x, z)+C > d(x, π(x))> d(x,A)> d(x, a)− r.

Since P is a (1,C)-quasigeodesic, d(x, a) > d(x, z)+ d(z, a)− 3C. As a result,
d(z, a)6 r + 4C, and d(a, π(x))6 r + 5C. �

Proposition 2.9. Let π : X →A. The following are equivalent:

(1) π is strongly constricting.

(2) π is constricting for some minimizing path system.

(3) π is strongly contracting.

(4) π has the bounded geodesic image property and d(x, π(x))− d(x,A) is uni-
formly bounded.

Proof. The fact that (1) implies (2) is immediate.
Suppose π is (1,C)-PS-constricting for a minimizing path system PS con-

sisting of (1,C)-quasigeodesics. Lemma 2.7 shows π is (1,C ′)-contracting. By
Lemma 2.8, π is coarsely a closest point projection, so d(x, π(x))− d(x,A) is
uniformly bounded. Thus, (2) implies (3).

Now suppose π is (1,C)-contracting and d(x, π(x))−d(x,A)6C for all x ∈X.
Take any geodesic L : [0, T ] → X. If dπ (L0,LT ) > 10C then L∩ B3C(A) 6= ∅,
as in Lemma 2.4. Let t = t0, t1 be the first and last times, respectively, such that
d(Lt ,A)6 3C. By Lemma 2.4, dπ (L0,Lt0)6 10C. Thus,

d(π(L0),Lt0)6 dπ (L0,Lt0)+ d(π(Lt0),Lt0)6 14C.

The same argument shows that d(π(LT ),Lt1)6 14C, so π is (1, 14C)-constricting
for the path system of all geodesics. Thus, (3) implies (1).

Finally, (3) is equivalent to (4) by Lemma 2.4. �

2B. Additional properties of contracting and constricting maps. We establish
some properties of contracting and constricting maps that will be useful in the
sequel.

Lemma 2.10. If π is a (1,C)-strongly constricting C-coarse map and dπ (x, y)>C,
then d(x, y)> d(x, π(x))+ dπ (x, y)+ d(π(y), y)− 6C.

Proof. Let L be a geodesic from x to y; by strong constriction, there exist s and t
such that d(Ls, π(x)) 6 C and d(Lt , π(y)) 6 C. The lemma follows from the
triangle inequality and the fact that π(x) and π(y) have diameter at most C. �

Lemma 2.11. If π : X →A is strongly constricting, then it is coarsely 1-Lipschitz.
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Proof. Let π be a C-coarse map that is (1,C)-constricting on the path system
of geodesics. Let x0 and x1 be arbitrary points, and let L be a geodesic from x0

to x1. If dπ (x0, x1) > 4C then L ∩ BC(xi ) 6= ∅ for each i , which implies that
d(x0, x1)> d(x0, π(x0))+dπ (x0, x1)+d(π(x1), x1)−8C. Thus, for all x0 and x1,
we have dπ (x0, x1)6 d(x0, x1)+ 8C. �

Lemma 2.12. Let π : X → A be an (M,C)-contracting C-coarse map such that
d(x, π(x))− d(x,A) 6 C for all x ∈ X. Fix K > 1. For all sufficiently large D,
there exists a Tmax such that if Q : [0, T ] → X is a (K , K )-quasigeodesic with
d(Q0, A)= D = d(QT ,A) and Q∩BD(A)=∅ then T 6 Tmax.

Proof. Let D > M(K 2C +C + K ). Let t0 := 0 and let ti+1 be the last time that
d(Qti ,Qtt+1)= (1/M)d(Qti ,A)−C, provided that ti+1< T. This subdivides [0, T ]
into at most 1+(T K )/(D/M−C−K ) intervals [t0, t1], . . . , [tk, T ], each of which
has endpoints whose π -images are distance at most C apart.

Since Q is a quasigeodesic, T 6 K d(Q0,QT )+ K 2. On the other hand:

d(Q0,QT )6 2D+ 2C + dπ (Q0,QT )6 2D+ 2C +C
(

1+
T K

D
M −C − K

)
Combined with the condition on D, this yields an upper bound on T. �

Corollary 2.13. If π :X→A is contracting and d(x, π(x))−d(x,A) is uniformly
bounded, then for all M > 1 and D > 0 there exists a K such that every (M,M)-
quasigeodesic with endpoints at distance at most D from A is contained in BK (A).

In particular, if A is a quasigeodesic, then it is Morse.

Lemma 2.14. Let Q : R→ X be a quasigeodesic, and let π : X →Q be a strongly
contracting projection. For all D > 0, there exists a K such that if P : [0, T ] → X
is a geodesic and t0 and t1 are such that d(P0,Qt0)6 D and d(PT ,Qt1)6 D, then
Q[t0,t1] ⊂ BK (P).

Proof. By Proposition 2.9, π is strongly constricting, so P passes close to every
point in π(P). Let i and j be numbers in the domain of P, with 0< j − i 6 1. Let
si and sj be such that Qsi ∈ π(Pi ) and Qsj ∈ π(Pj ). Then si and sj are boundedly
far apart, since π is coarsely 1-Lipschitz, by Lemma 2.11, and Q is a quasigeodesic.
Therefore, the diameter of Q[si ,sj ] is bounded, and we have already noted that Q(si )

and Q(sj ) are close to P, since they are in the image of π . �

Lemma 2.15. Let A and A′ be coarsely equivalent subsets of X. Let σ : A→ A′

and σ : A′ → A be C-coarse maps such that d(a, σ (a)) 6 C for all a ∈ A and
d(a′, σ (a′))6 C for all a′ ∈A′. Then, πA : X →A is strongly contracting if and
only if πA′ := σ ◦πA : X →A′ is strongly contracting.
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Proof. Suppose πA is (1,C)-contracting and d(x, π(x))−d(x,A)6C for all x ∈X.
If d(x, y)6 d(x,A′)− 2C 6 d(x,A)−C, then dπA′(x, y)6 dπA (x, y)+ 2C 6 3C,
so πA′ is (1, 3C)-contracting.

Take a point x and let a′ ∈A′ such that d(x,A′)= d(x, a′). Then,

d(x, σ (a′))−C 6 d(x, a′)6 d(x, πA′(x))6 d(x, πA(x))+ 2C,

so d(x, σ (a′))6 d(x,A)+ 3C. By Proposition 2.9, πA is strongly constricting, so
by Lemma 2.8, there is a constant D such that d(πA(x), σ (a′))6 3C + D. Thus,
πA′ is (5C + D)-coarsely a closest point projection, hence, strongly contracting. �

Lemma 2.16. Let π : X → A be strongly constricting. There exists a number K
such that if d(A, gA) > K then diamπ(gA) is bounded, independent of g.

Proof. Let π be (1,C)-strongly constricting. By Proposition 2.9, π is strongly
contracting, so by Corollary 2.13 there is a constant K such that a geodesic with
endpoints in A stays in the (K −C)-neighborhood of A. Therefore, a geodesic with
endpoints in gA stays in BK−C(gA). Choose x ∈ gA such that d(x,A)= d(gA,A).
For all y ∈ gA, if dπ (x, y) >C, then a geodesic from x to y passes within distance
C of π(x) and π(y). This means BC(A) ∩ BK−C(gA) 6= ∅, so d(A, gA) 6 K .
Thus, if d(A, gA) > K , then dπ (x, y)6 C, so diamπ(gA)6 2C. �

2C. Strongly contracting elements. We have defined contraction and constriction
for maps. We now give definitions for group elements:

Definition 2.17. An element h ∈ G is called contracting, with respect to G y X,
if i 7→ hi .o is a quasigeodesic and if there exists a subset A⊂ X on which 〈h〉 acts
cocompactly and a map π : X →A that is contracting.

An element h ∈ G is called constricting, with respect to G y X, if i 7→ hi . o is
a quasigeodesic and if there exists a subset A⊂ X on which 〈h〉 acts cocompactly,
a G-invariant path system PS, and a map π : X →A that is PS-constricting.

An element is strongly contracting or strongly constricting if the projection π is,
respectively, strongly contracting or strongly constricting.

For π and A as in the definition, Proposition 2.9 says π is strongly contracting if
and only if it is strongly constricting. Thus, Lemma 2.8 says closest point projection
to A is coarsely well defined and coarsely equivalent to π . Lemma 2.15 says that
the choice of the set A only affects the constants of strong contraction. It follows
that an element h is strongly contracting if and only if i 7→ hi . o is a quasigeodesic
and closest point projection to 〈h〉 . o is strongly contracting. In the remainder of
this section we produce more finely tailored choices for A and π . In particular, we
would like π to be compatible with the group action; see Remark 2.22.
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Proposition 2.18 (compare [Dahmani et al. 2011, Lemma 6.5]). Let G be a finitely
generated group, and let X be a G-space. Let h ∈ G be an infinite order element. If
there exists a strongly constricting π : X → 〈h〉 . o, then E(h)= H , where

H := {g ∈ G | g〈h〉 . o is coarsely equivalent to 〈h〉 . o}.

Proof. H is a group containing every finite index supergroup of 〈h〉. Let D be
the constant of Lemma 2.16, and let S := {g ∈ G | d(g〈h〉 . o, 〈h〉 . o)6 D}. Then,
Lemma 2.16 implies H ⊂ S. Since G yX is properly discontinuous, S is contained
in finitely many h-orbits, so 〈h〉< H has finite index. Therefore, E(h) exists and
is equal to H . �

Definition 2.19. If h is a strongly contracting element, define the (quasi-)axis of h,
with respect to the basepoint o, to be H := E(h) . o.

Lemma 2.20. If h is a strongly contracting element, then there exists an E(h)-
equivariant, strongly contracting coarse map πH : X →H.

Proof. By Proposition 2.9, Lemma 2.8, and Lemma 2.15 any choice of closest point
projection map to H is strongly contracting and coarsely E(h)-equivariant, so, by
Lemma 1.1, we can replace it by a coarsely equivalent, E(h)-equivariant coarse
map, which will still be strongly contracting, by Lemma 2.15. �

Definition 2.21. From the projection πH of Lemma 2.20, define strongly contract-
ing projections onto each translate of H by πgH : X → gH, x 7→ g . πH(g−1. x).

If g′H= gH then g−1g′ ∈ E(h), so Lemma 2.20 implies that πg′H(x)= πgH(x)
for all x ∈ X.

Remark 2.22. The projections of Definition 2.21 satisfy g . πH(x) = πgH(g . x)
for all x ∈ X and g ∈ G.

2D. Strongly contracting elements and the projection axioms. Let h ∈ G be a
strongly contracting element with respect to G y X. Let H be a quasi-axis of h
defined in Definition 2.19. We wish to apply Theorem 1.11 to the collection of
G-translates of H with the projections of Definition 2.21. To see that the hypotheses
of the theorem are satisfied, we first embed H into a geodesic metric space and then
verify the projection axioms of Definition 1.10.

Choose representatives 1 = g0, . . . , gn−1 for 〈h〉\E(h), so that for each i we
have d(gi . o, o)=ming∈〈h〉gi d(g . o, o). Let gn := h. Let Ĥ be the Cayley graph
of E(h) with respect to the generating set {g1, . . . , gn}. The graph Ĥ becomes a
geodesic metric space by assigning each edge length one, and it is a quasitree since
E(h) is virtually cyclic.

Choose representatives 1 = f0, f1, . . . for G/E(h). Let Y be a disjoint union
of copies of Ĥ , one for each coset fi E(h) ∈ G/E(h), denoted fi Ĥ . The orbit
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map fi Ĥ → fiH, defined by fi e 7→ fi e . o, is a quasi-isometric embedding, so
its inverse φ fiH : fiH→ fi Ĥ is a coarse map that is a quasi-isometry. Define
πfi Ĥ ( f j Ĥ) := φ fi (πfiH( fjH)). Since φ fi is a quasi-isometry, it suffices to check
the projection axioms on translates of H in X.

Lemma 2.23 (Axiom (P0)). There is a uniform bound on the diameter of πH(gH)
for g /∈ E(h).

Proof. Let πH : X → H be (1,C ′)-strongly constricting. Let Q : R� H be an
(M,C ′′)-quasigeodesic parametrization that agrees with i 7→ hi . o on the integers.
Replace C ′ and C ′′ by C :=max{C ′,C ′′}.

Let D := diam〈h〉\H. Let K be large enough such that whenever P is a geodesic
with d(Ps0,Qt0) 6 C and d(Ps1,Qt1) 6 C, we have P[s0,s1] ⊂ BK (Q[t0,t1]) and
Q[s0,s1] ⊂ BK (P[t0, t1]), as in Corollary 2.13 and Lemma 2.14.

Suppose g /∈ E(h). For a pair of points x0, x1 ∈ gH, take t0 and t1 such that
Qti ∈πH(xi ) for each i . Let P be a geodesic connecting x0 to x1. If dπH(x0, x1) >C,
then for each i there exists si such that d(Psi ,Qti )6 C.

Now, Q[t0, t1] is K-close to P[s0,s1], which in turn is K-close to a subinterval
of gH. Therefore, for each integer i ∈ [t0, t1] there is an integer αi such that
d(hi . o, ghαi g−1. o)6 2K + D.

If, for some i 6= j , the equation h−i ghαi g−1.o= h− j ghαj g−1.o is satisfied, then
h j−i
= ghαj−αi g−1, which implies 〈h〉 and 〈ghg−1

〉 are commensurable. However,
this would imply g ∈ E(h), contrary to hypothesis. Therefore, for each integer i
in [t0, t1] we get a distinct point h−i ghαi g−1. o ∈ B2K+D(o). Since the action of
G is properly discontinuous, the number of orbit points in B2K+D(o) is finite, so
diamπH(gH) is bounded, independent of g. �

Lemma 2.24 (Axiom (P1)). For all sufficiently large ξ and for any X, Y, Z ∈ Y,
at most one of dπX (Y, Z), dπY (X, Z), and dπZ (X, Y ) is greater than ξ .

Proof. Suppose πY is (1,C)-strongly constricting. Let ξ ′ be the constant from
Lemma 2.23. Let ξ>2ξ ′+14C. Suppose that dπX (Y, Z)>ξ . We show dπX (Y, Z)6ξ ;
the inequality dπZ (X, Y )6 ξ follows by a similar argument.

Take any point z ∈ Z , and let y ∈ Y be a point such that d(z, y) = d(z, Y ).
Let L : [0, T ] → X be a geodesic from z to y. For every point of L, y is the
closest point of Y. By Lemma 2.8, πY (L)⊂ B5C(y). Now, dπX (Y, Z) > ξ implies
dπX (L0,LT ) >C, so there are z′ ∈L and x ∈ X with d(x, z′)6 D. By Lemma 2.11,
πY is 8C-coarsely 1–Lipschitz, which means dπY (x, z′)6 9C. Thus,

dπY (X, Z)6 2ξ ′+ dπY (x, z)6 2ξ ′+ 5C + dπY (x, z′)6 2ξ ′+ 14C 6 ξ. �

Lemma 2.25 (Axiom (P2)). For all sufficiently large ξ and for all X, Y ∈ Y, the
set {V ∈ Y | dπV (X, Y ) > ξ} is finite.
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Proof. Let ξ ′ be the constant of Lemma 2.23. Suppose πH is (1,C)-strongly con-
stricting. Let ξ >C+2ξ ′. Take arbitrary X, Y ∈Y, and let L be a geodesic from some
point in πX (Y ) to some point in πY (X). If dπV (X, Y ) > ξ , then dπV (L0,LT ) >C, so
L comes within distance C of V. By proper discontinuity of the action, there are only
finitely many elements of Y that come within distance C of the finite geodesic L. �

Notation 2.26. Let Y be the quasitree produced by Theorem 1.11 from Y, and let
? ∈ Y be the vertex corresponding to o ∈ X. Furthermore, let π̂gĤ : Y → gĤ be
closest point projection to the isometrically embedded copy of gĤ in Y , which the
theorem says coarsely agrees with πgĤ .

Definition 2.27. Define uniform quasi-isometric embeddings φgH : gH→ Y for
each translate gH of H by sending gH to fi Ĥ via φ fi , where g ∈ fi E(h), and post-
composing by the isometric embedding of fi Ĥ into Y provided by Theorem 1.11.

Proposition 2.28. If there is a strongly contracting element for G yX , then G has
nonzero growth exponent.

Proof. [Bestvina et al. 2014, Proposition 3.23] says that G contains a free subgroup,
so it has exponential growth. �

3. Abundance of strongly contracting elements

In this section we show that strongly contracting elements are abundant.

Proposition 3.1. If G contains a strongly contracting element for G y X , then so
does every infinite normal subgroup.

In effect, the proposition reduces the problem of growth tightness for arbitrary
quotients of G to quotients by the normal closure of a strongly contracting element.

Given a strongly contracting element h ∈ G and an infinite normal subgroup 0 of
G we find an element g ∈ 0 such that f := ghng−1h−n

∈ 0 is strongly contracting
for all sufficiently large n. To prove f is strongly contracting we follow a standard
strategy by showing that an axis for f has “long” (� n) segments in contracting
sets, separated by “short” (= d(o, g . o)) hops between such segments. For each
x ∈ X there is, coarsely, a unique one of these segments such that the projection
of x transitions from landing at the end of the segment to landing at the beginning
of the segment. We use this transition point to define the projection to the f-axis,
and verify that this projection is strongly contracting.

We first prove some preliminary lemmas.

Lemma 3.2. Let h ∈ G be an infinite order element and let π : X → 〈h〉 . o be a
contracting coarse map such that d(x, π(x))−d(x,A) is uniformly bounded. Then,
i 7→ hi . o is a quasigeodesic.
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Proof. Take any α < β in Z. By the triangle inequality, d(hα. o, hβ . o) ∗≺ (β −α).
We now prove the opposite inequality. Let L : [0, T ]→ X be a geodesic from hα.o
to hβ.o. By Corollary 2.13, there exists a D such that for every i ∈ [0, T ]∩Z there
exists an α 6 αi 6 β such that d(Li , hαi . o) 6 D. Since the action of G on X is
properly discontinuous, there exists a maximum γ such that d(o, hγ . o)6 2D+ 1,
so αi+1−αi 6 γ for all i . Setting α0 := α and αdT e := β, we have

β −α =

dT e−1∑
i=0

αi+1−αi 6 γ dT e6 γ
(
d(hα. o, hβ . o)+ 1

)
. �

Fix a strongly contracting element h, and let Y be the quasitree of Notation 2.26,
with bottleneck constant 1.

Lemma 3.3. There exists K > 0 such that dπH(o, g1 . o)− dπH(g1 . o, g0 . o) > K
implies that g0 . ? and g1 . ? are contained in the same component of Y \B1(?).

Proof. Let D := diam〈h〉\Ĥ in Y . For each i ∈ {0, 1}, choose an mi such that
d(hmi . ?, π̂Ĥ (gi . ?))6 D. Choose a geodesic L from ? to h . ?. Take M > 0 such
that hm .L∩B1(?)=∅ when |m| ≥ M.

For each i , |mi | � d(hmi . ?, ?) � K , so for sufficiently large K , we have the
lower bound d(hmi . ?, ?) > 21+ D and |mi |> M. Furthermore, m0 and m1 must
have the same sign if K is large enough: by Lemma 2.14, the interval of H between
hm0 . o and hm1 . o stays close to a geodesic between hm0 . o and hm1 . o, so if m0

and m1 have different signs, then

dπH(g0 . o, g1 . o)
+

� d(hm0 . o, hm1 . o)
+

� d(o, hm0 . o)+ d(o, hm1 . o)
+

� dπH(o, g0 . o)+ dπH(o, g1 . o).

However, dπH(g0 . o, g1 . o)6 dπH(o, g1 . o)− K , so this would imply

K
+

≺ dπH(o, g0 . o)
+

≺−K,

which is false for sufficiently large K .
No geodesic between gi . ? and hmi . ? enters B1(?), since this would imply:

d(hm1 . ?, ?)6 21+ D.

For min{m0,m1} 6 m 6 max{m0,m1} − 1, the geodesic hm . L stays outside
B1(?) since m0 and m1 have the same sign and magnitude at least M, which implies
that |m|> M. By concatenating such geodesics, we construct a path from g0 . ? to
g1 . ? in Y \B1(?). �

Corollary 3.4. There exists an N > 0 such that for all n > N the points hn. ? and
hN . ? are in the same component of Y \B1(?).
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Proof. Take N large enough so that dπH(o, hn . o) > K + d(o, h . o)+ 2C for all
n > N. Then, dπH(o, hn+1. o)− dπH(h

n. o, hn+1. o)> K . Apply Lemma 3.3. �

Definition 3.5. Call the component of Y \ B1(g . ?) containing ghn . ? for all
sufficiently large n the gh∞ component and the component containing gh−n. ? for
all sufficiently large n the gh−∞ component.

Lemma 3.6. For some K > 0, suppose g0 and g1 are elements of G such that
g0H 6= g1H and dπg0H(g0 . o, g1 . o)6 K and dπg1H(g0 . o, g1 . o)6 K. Then, there
exists an N > 0 such that for all n > N , ε0, ε1 ∈ {±1}, and f0, f1 ∈ {g0, g1},

• the balls B1( f0hε0n/2. ?) and B1( f1hε1n/2. ?) in Y are disjoint unless f0 = f1

and ε0 = ε1,

• f0 . ? and f1 . ? are in the f0h−ε0∞ component of Y \B1( f0hε0n/2. ?), and

• f0hε0n. ? and f0hε0n f1 . ? are in the f0hε0∞ component of Y \B1( f0hε0n/2. ?).

Proof. B1( f0hn/2. ?) and B1( f0h−n/2. ?) are disjoint for all sufficiently large n
since i 7→ hi . ? is a quasigeodesic. In the other cases, f0H and f1H are distinct
axes, so f0 Ĥ and f1Ĥ are disjoint. For each i ∈ {0, 1}, the bounds

dπfiH( fi . o, f1−i . o)6 K

imply that the closest point projection π̂fi Ĥ ( f1−i Ĥ) of f1−i Ĥ to fi Ĥ is contained
in a bounded neighborhood of fi . ?. For any point y . ? ∈ B1( f1hε1n/2. ?) \ f1Ĥ ,
we have that π̂f1Ĥ (y Ĥ) is 21-close to f1hε1n/2. ?. Therefore,

dπf1Ĥ ( f0 Ĥ , y Ĥ)
+

� d( f1 . ?, f1hε1n/2. ?)� n,

so for n sufficiently large we can make dπf1Ĥ ( f0 Ĥ , y Ĥ) larger then the constant ξ
of projection axiom (P1), which implies dπf0 Ĥ ( f1Ĥ , y Ĥ)6 ξ . On the other hand,
B1( f0hε0n/2. ?) projects close to f0hε0n/2. ? in f0 Ĥ , so for large enough n the balls
have disjoint projections, which means the balls are disjoint.

For the second statement, suppose N is large enough so that for all n > N we
have d(o, hn/2. o)> K ′+ K + 2C, where K ′ is the constant of Lemma 3.3. Then,

dπf0H( f0hε0n/2. o, f0 . o)− dπf0H( f0 . o, f1 . o)> K ′,

so Lemma 3.3 implies f0.? and f1.? are in the same component of Y\B1( f0hε0n/2.?).
If, in addition, N is at least twice the constant of Corollary 3.4, then this is the
f0h−ε0∞ component.

The proof of the third statement is similar. �
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Bi−1
Bi

Bi+1
Bi+2

Âi

Âi+1

Âi+2

Âi−1

Ẑ i V̂i Ẑ i+2

V̂i−1 Ẑ i+1 V̂i+1

Figure 1. Disjoint balls in Y.

Proof of Proposition 3.1. Strongly constricting is the same as strongly contracting,
by Proposition 2.9, so suppose h is a (1,C)-strongly constricting element. By
Lemma 2.8, there exists a D such that πH is D-coarsely equivalent to closest point
projection. Recall that D > C. By Lemma 2.11, there exists a D′ such that πH is
D′-coarsely 1-Lipschitz.

Let 0 be an infinite normal subgroup of G. Every infinite order element of E(h) is
strongly contracting, so if 0 contains such an element then we are done. Otherwise,
0 ∩ E(h) is finite. Since 0 is infinite, there exists an element g ∈ 0 such that
g /∈ E(h). We claim that for sufficiently large n the element f := ghng−1h−n

∈ 0

is strongly constricting.
For brevity, let f i+1/2 denote f i ghn . Let Âi := f i/2 Ĥ and Ai := f i/2H. Define

B0 := B1(hn/2 . ?), B1 := B1( f 1/2h−n/2 . ?), and B2k+i := f kBi for k ∈ Z. Let
Ẑ i := f i/2h(−1)i n . ? ∈ Y and Zi := f i/2h(−1)i n . o ∈ X. Let V̂i := f i/2. ? ∈ Y and
Vi := f i/2. o ∈ X. See Figure 1.

By repeated applications of Lemma 3.6, for large enough n, the balls Bi are
pairwise disjoint. There are two orbits of these balls under the f-action, so f is an
infinite order element. Furthermore, the balls are linearly ordered by separation,
consistent with the subscripts, since for all i we have that Bj is contained in the
f i/2h(−1)i+1

∞ component of Y \Bi for all j > i , and in the f i/2h(−1)i∞ component
for all j < i .

For any i and any j < i−1 the ball Bi−1 separates Â j from Âi in Y , so π̂Âi (Â j )

is contained in a bounded neighborhood of π̂Âi (Âi−1), which in turn we know is
contained in a bounded neighborhood of Ẑ i . Conversely, π̂Âi (Â j ) is contained in a
bounded neighborhood of V̂i for j > i . Since π̂Âi agrees with πAi up to bounded
error, the same statements are true for the axes in X. That is, there exists a K,
independent of n, such that for all i ,

• dπAi
(Zi ,A j )6 K if j < i , and

• dπAi
(Vi ,A j )6 K if j > i .

Define K ′ := 2K +C + 2D+ D′.
Suppose that for some x ∈ X there exists an i such that dπAi

(x,Vi ) > K ′. Then
for any j > i we have d(πAi (x), πAi (A j )) > D>C. Let y be a point of A j closest
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BK ′(Zi+1) BK ′(Vi+1) BK ′(Zi+3)

BK ′(Vi ) BK ′(Zi+2) BK ′(Vi+2)
x© y© x© y©

x© y© x© y©

Figure 2. Projections x© of x and y© of y to each axis.

to x . On any given geodesic from x to y, there is a point z ∈ BC+K (Vi ), since
dπAi
(x, y) > C. Now πA j is D-coarsely equivalent to closest point projection, and

y is closest to both x and z, so dπA j
(x, z)6 2D. However, z is (C + K )-close to Vi ,

and dπA j
(Vi ,Z j )6 K, so dπA j

(x,Z j )6 2D+C + K + D′+ K = K ′.
We have shown that dπAi

(x,Vi ) > K ′ implies dπA j
(x,Z j ) 6 K ′ for all j > i . A

similar argument shows that dπAi
(x,Zi ) > K ′ implies dπA j

(x,V j )6 K ′ for all j < i .
Assume that n is large enough so that

dπA0
(Z0,V0)= dπH(h

n. o, o) > 2K ′+ 2C + 2D+ d(o, g . o).

Define F :=
⋃

i∈Z{Vi }. We wish to define πF : X → F by sending a point x
to the point Vα where α is the greatest integer such that dπAα

(x,Vα) 6 K ′, but
we must verify that such an α exists. Fix an x ∈ X, and suppose that ι ∈ Z

is such that d(x,Aι) = min j∈Z d(x,A j ). Such an ι exists since the action is
properly discontinuous. Suppose that dπAι

(x,Vι) 6 K ′. By the assumption on n,
dπAι
(x,Zι) > K ′, so dπA j

(x,Vι)6 K ′ for all j < ι. A brief computation shows that

dπAι+1
(x,Zι+1)6 d(x,Aι+1)+ d(o, g . o)+ K ′+ 2C + D.

By Lemma 2.8, d(Zι+1, πAι+1(x))6 d(o, g . o)+ K ′+ 2C + 2D, which, again by
our assumption on n, implies dπAι+1

(x,Vι+1) > K ′. We conclude that α 6 ι. The
previous paragraph then tells us that dπA j

(x,Z j )6 K ′ for all j > α+ 1.
Now suppose x and y are points with πF (x)= Vi and πF (y)= V j for j > i + 1.

Then for each i+26 k 6 j , we have dπAk
(x, y)> dπAk

(Zk,Vk)−2K ′ >C. Figure 2
depicts a situation with j = i + 2 that shows j > i + 1 is necessary, since the
projections to Ai+1 may be close. By the strong constriction property for each Ak ,
every geodesic from x to y passes (C + K ′)-close to Zk and Vk . So every geodesic
passes within C+K ′ of πF (y)=V j and within C+K ′ of Zi+2, which is boundedly
close to πF (x)= Vi .

Therefore, πF is (1,max{d(V0,V2), C+ K ′+d(V0,Z2)})-strongly constricting.
Lemma 3.2 says i 7→ f i . o is a quasigeodesic, so f ∈ 0 is a strongly contracting
element. �
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4. A minimal section

Let X be a G-space with basepoint o. Suppose that there exists a strongly contracting
element for G yX. Let 0 be an infinite normal subgroup of G. By Proposition 3.1,
there exists a strongly contracting element h ∈ 0. Let H= E(h) .o be an axis for h,
and define equivariant projections to translates of H as in Definition 2.21. Suppose
πH is a (1,C)-strongly constricting C-coarse map.

Definition 4.1. For each element g0 ∈ G/0 choose an element g ∈ g0 such that
d(o, g . o)= d(o, g0. o)= d(0. o, g0. o). Let G := {g | g0 ∈ G/0}. We call G
a minimal section, and let G denote G . o.

Observe that 2′G/0(s)=2′G(s), so δG/0 = δG . The next lemma says, coarsely,
that the minimal section is orthogonal to translates of H.

Lemma 4.2. For every g ∈G and for every f ∈G we have dπf H(o, g .o)6 8C+D,
where D := diam〈h〉\H.

Proof. Suppose not. Then there exists an n 6= 0 such that

D > d(πf H(o), f hn f −1 . π f H(g . o))> dπf H(o, f hn f −1g . o)− 2C.

Thus, dπf H(o, g . o)− dπf H(o, f hn f −1g . o) > 6C. However,

d(o, f hn f −1g . o)

6 d(o, π f H(o))+ dπf H(o, f hn f −1g . o)+ d(πf H( f hn f −1g . o), f hn f −1g . o)

< d(o, π f H(o))+ dπf H(o, g . o)+ d(πf H( f hn f −1g . o), f hn f −1g . o)− 6C

= d(o, π f H(o))+ dπf H(o, g . o)+ d(πf H(g . o), g . o)− 6C

6 d(o, g . o) (by Lemma 2.10)

This contradicts minimality of G, since f hn f −1g = gg−1 f hn f −1g ∈ g0. �

Corollary 4.3. If d(g . o, g′. o)> 18C + 2D for g, g′ ∈ G, then there is no f ∈ G
such that g . o ∈ f H and g′. o ∈ f H.

Proof. If there were such an f , we would have dπf H(g .o, g′.o)> 2(8C+D), which
means either g or g′ would contradict Lemma 4.2. �

In light of Corollary 4.3, it will be convenient to pass to a coarsely dense subset
of G whose elements yield distinct translates of H:

Definition 4.4. Let K > 18C + 2D, and let A be a maximal subset of G such that
1 ∈ A and d(g . o, g′. o)> K for all distinct g, g′ ∈ A. Let A := A . o.
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By maximality, for every g ∈ G there is some a ∈ A such that d(a . o, g . o)6 K .
There are boundedly many points of G in a ball of radius K , so 2G(s) is bounded
below by 2A(s) and above by a constant multiple of 2A(s). In particular, 2A(s)
has the same convergence behavior as 2G(s), so δA = δG = δG/0.

Corollary 4.3 implies aH 6= a′H for distinct a, a′ ∈ A.

5. Embedding a free product set

Let A ⊂ G as in Definition 4.4, and let A∗ := A \ {1}. Consider the free product
set A∗∗Z2 :=

⋃
∞

k=1{(a1, . . . , ak) | ai ∈ A∗}. For any n > 0 we can map the free
product set into G by φn : (a1, . . . , ak) 7→ a1hna2hn

· · · akhn. Our goal is to show
δφn(A∗∗Z2) > δA. We establish the inequality in the next section. In this section we
show φn is an injection for all sufficiently large n. In fact, we prove something
stronger:

Proposition 5.1. The map A∗∗Z2→ G, sending (a1, . . . , ak) 7→ a1hn
· · · anhn . o

is an injection for all sufficiently large n.

The map is an injection because we have an action of G on the quasitree Y, and
for large enough n we have “quasi-edges” of the form [y, yhn

]. We have set things
up so that the ai do not backtrack across such edges. See Figure 3. We make this
precise:

Proof. Let a = (a1, . . . , ak) ∈ A∗∗ Z2. By Lemma 4.2, there is a K such that
dπf H(o, g . o) 6 K for every f ∈ G and every g ∈ G. The choice of A ⊂ G in
Definition 4.4 guarantees that the axes aH for a ∈ A are distinct. Let N be the
constant of Lemma 3.6 for this K , and choose n > N.

Note that the proof of Lemma 3.6 includes the fact that

d(o, hn/2. o)> K ′+ K + 2C,

where K ′ is the constant of Lemma 3.3. Therefore, if φn(a) . o= φn(a′) . o, then

dπφn(a)H(φn(a) . o, φn(a)h−n/2. o)− dπφn(a)H(φn(a) . o, φn(a′) . o)≥ K ′+C > K ′,

so Lemma 3.3 implies that φn(a) . ? and φn(a′) . ?, though they might not be equal,
are at least contained in the same component of Y \B1(φn(a)h−n/2. ?).

Define Vi (a) to be the a1hn
· · · ai h∞ component of Y \ B1(a1hn

· · · ai hn/2. ?)

for i 6 k (recall Definition 3.5). Lemma 3.6 implies that Vi (a) ⊃ Vi+1(a) and
φn(a) . ? ∈ Vk(a). Moreover, for i ≤min{k, k ′}, Vi (a) and Vi (a′) are disjoint unless
aj = a′j for all j 6 i .

If φn(a) .o= o, then Lemma 3.3 implies that ?∈ Vk(a)⊂ V1(a). This contradicts
the fact that ? is contained in the a1h−∞ component of Y \B1(a1hn/2.?). The same
argument shows that if a is a proper prefix of a′, that is, if a = (a1, . . . , ak) and
a′ = (a1, . . . , ak, a′k+1, . . . , a′k′) with k ′ > k, then φn(a) . o 6= φn(a′) . o.
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hn. ?
?

a1 . ?

a′1 . ?
a1hna2 . ?

a1hn. ?

a1hna2hn. ?

a′1hn. ?

B1(a1hna2hn/2. ?)

B1(hn/2. ?)B1(h−n/2. ?)

B1(a′1hn/2. ?)

B1(a1hn/2. ?)

Figure 3. A does not cross hn quasi-edges.

Suppose φn(a) .o= φn(a′) .o with k 6 k ′. Lemma 3.3 implies φn(a) .?∈ Vk′(a′),
so ai = a′i for all i 6 k. Since a cannot be a proper prefix of a′, we have k = k ′.
Hence, φn(a) . o= φn(a′) . o implies a = a′ for all sufficiently large n. �

6. The growth gap

A free product of groups has greater growth exponent than the factor groups, with
respect to a word metric, so we expect that φn(A∗ ∗Z2) should have a larger growth
exponent than A. To verify this intuition, one must show that the Poincaré series for
φn(A∗ ∗Z2) diverges at δA+ ε for some ε > 0. A clever manipulation of Poincaré
series yields the following criterion:

Lemma 6.1 [Dal’Bo et al. 2011, Criterion 2.4; Sambusetti 2002a, Proposition 2.3].
If the map

φn : A∗ ∗Z2→ G, (a1, . . . , ak) 7→ a1hn
· · · akhn

is an injection and exp(|hn
| · δA) < 2A(δA), then δφn(A∗∗Z2) > δA.

Because our methods are coarse, we have passed to a high power hn of h
and therefore do not have control over |hn

|. However, the criterion is satisfied
automatically if A, or, equivalently, G, is divergent, which, recalling Definition 1.7,
means 2A diverges at δA. The following definition will be used in a condition to
guarantee divergence of G.

Definition 6.2. Let CompG
Q, r ⊂ G .o be the set of points g .o such that there exists

a geodesic [x, y] of length r with x ∈ BQ(o) and y ∈ BQ(g . o), whose interior is
contained in X \BQ(G . o). Define the Q-complementary growth exponent of G to
be

δc
G := lim sup

r→∞

log # CompG
Q, r

r
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BQ(o)

o g . og0 . o g1 . o

x0 x1
[o, g . o]

Figure 4. Splitting a geodesic into three subsegments.

Theorem 6.3. Let G be a finitely generated, nonelementary group. Let X be a
G-space. If G contains a strongly contracting element and there exists a Q> 0 such
that the Q-complementary growth exponent of G is strictly less than the growth
exponent of G, then G y X is a growth tight action.

The proof of Theorem 6.3 follows in part the proof of [Dal’Bo et al. 2011,
Theorem 1.4] for geometrically finite Kleinian groups. For the divergence part of
the proof, the Kleinian group ingredients of [op. cit., Theorem 1.4] are inessential,
and our changes are mostly cosmetic. The real generalization is in the use of
Proposition 5.1 instead of a ping-pong argument.

Proof. Let 0 be an infinite, infinite index normal subgroup of G. By Proposition 3.1,
there is a strongly contracting element in 0. Let G be a minimal section of G/0. If
δG 6 δ

c
G then we are done since δc

G < δG , so suppose δG > δ
c
G .

Claim: G is divergent.
Assume the claim, and let A be a maximal separated set in G as in Definition 4.4.

Then A and G have the same critical exponent, and are both divergent. By
Proposition 5.1, for sufficiently large n the map φn : A∗∗Z2→ G is an injection.
By Lemma 6.1, δA < δφn(A∗∗Z). Thus, δG/0 = δA < δφn(A∗∗Z2) 6 δG .

It remains to prove the claim. Let r > 0, and suppose d(o, g . o) = r . Let
06 M0 6 r and M1 = r −M0. Choose a geodesic [o, g . o] from o to g . o, and let
[o, g . o](M0) denote the point of [o, g . o] at distance M0 from o.

First, we suppose that [o, g .o](M0) ∈X \BQ(G .o). Let [x0, x1] ⊂ [o, g .o] be
the largest subsegment containing [o, g .o](M0) such that (x0, x1)⊂X \BQ(G .o).
Let m0 = d(o, x0), and let m1 = d(x1, g . o). There exist group elements gi ∈ G
such that d(gi .o, xi )6 Q; see Figure 4. We have g .o= g0 · g−1

0 g1 · g−1
1 g .o. Now,

m0− Q 6 d(o, g0 . o)6 d(o, g0 . o)6 m0+ Q, and

m1− Q 6 d(o, g−1
1 g . o)6 d(o, g−1

1 g . o)6 m1+ Q.

Furthermore, g−1
0 g1 ∈ CompG

Q, r−(m0+m1). Thus, the point g . o can be expressed
as the product of an element of G of length m0 ± Q, an element of G of length
m1± Q, and the quotient of an element of CompG

Q, r−(m0+m1)
.
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(†) The same is also true if [o, g . o](M0) ∈ BQ(G . o), in which case we can take
m0 = M0 and m1 = r −m0. Then choose g0 = g1 so that the contribution from
CompG

Q, r−(m0+m1)
is trivial.

Let Vr,Q := #
(
G . o∩Br+Q(o) \Br−Q(o)

)
. For every M0+M1 = r ,

Vr,Q
∗

≺

M0∑
m0=0

M1∑
m1=0

Vm0,Q · Vm1,Q · # CompG
Q, r−(m0+m1)

Choose ξ > 0 such that δG > 2ξ + δc
G . Since

# CompG
Q, r−(m0+m1)

∗

≺ exp
(
(r − (m0+m1))(δG − ξ)

)
,

whenever r − (m0+m1) is sufficiently large, it follows that

(1) Vr,Q · exp(−r(δG − ξ))
∗

≺( M0∑
m0=0

Vm0,Q · exp(−m0(δG − ξ))

)
·

( M1∑
m1=0

Vm1,Q · exp(−m1(δG − ξ))

)
.

Set wi := Vi,Q · exp(−i(δG − ξ)) and Wi :=
∑i

j=1wi . Then, (1) and [Dal’Bo et al.
2011, Lemma 4.3] imply that

∑
i wi · exp(−is) diverges at its critical exponent,

which is

lim sup
i

logwi

i
=

(
lim sup

i

log Vi,Q

i

)
− (δG − ξ)= ξ.

So,∞=
∑

i wi · exp(iξ)=
∑

i Vi,Q · exp(−iδG)
∗

�2G(δG). �

Theorem 6.4. Let G be a finitely generated, nonelementary group. Let X be a
quasiconvex G-space. If G contains a strongly contracting element then G y X is
a growth tight action.

Proof. The proof is an easier special case of the proof of Theorem 6.3. If X is
Q-quasiconvex, then we can always choose to be in case (†) of the proof. �

7. The growth of conjugacy classes

Parkkonen and Paulin [2015] ask: given a finitely generated group G with a word
metric and an element h ∈G, what is the growth rate of the conjugacy class [h] of h?
In a hyperbolic group G there is a finite subgroup, the virtual center, consisting of
elements whose centralizer is finite index in G. The growth exponent of a conjugacy
class in the virtual center is clearly zero. Parkkonen and Paulin show that for every
element h not in the virtual center, δ[h] = 1

2δG . This generalizes an old result of
Huber [1956] for the case of G acting cocompactly on the hyperbolic plane and h
loxodromic.
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Since strongly contracting elements behave much like infinite order elements in
hyperbolic groups, it is natural to ask whether the growth exponent of the conjugacy
class of a strongly contracting element h also satisfies δ[h] = 1

2δG .
We show that the lower bound holds, and the upper bound holds if h moves the

basepoint sufficiently far with respect to the contraction constant for the axis.

Theorem 7.1. Let G be a nonelementary, finitely generated group, and let X be a
G-space. Let h be a strongly contracting element for G y X. Then, δ[h] > 1

2δG .
Let D := diam Z(h)\H, where Z(h) is the centralizer of h in G. Suppose πH

is a (1,C)-strongly constricting, C-coarse map. If d(o, h . o) > 15C + 2D, then
δ[h] =

1
2δG .

Corollary 7.2. For h strongly contracting, δ[hn] =
1
2δG for all sufficiently large n.

Proof. For n nonzero, E(hn) = E(h) and Z(hn) ⊃ Z(h), so the same C and D
work for hn as work for h. On the other hand, 〈h〉 is quasi-isometrically embedded,
so d(o, hn. o)� n. Thus, d(o, hn. o) > 15C + 2D for large enough n. �

It would be interesting to know whether the restriction on d(o, h . o) is really
necessary.

Question 2. Does there exist an action G yX such that h is a strongly contracting
element with δ[h] > 1

2δG?

Proof of Theorem 7.1. Define K := 6C + D and F := {g ∈ G | dπgH(o, g . o)6 K }.
First, we will show δF = δG . Then, we will relate δ[h] to δF .

For any r > 0 consider

φ : { f ∈ F \ E(h) | d(o, f . o)6 r} → {gH | g ∈ G \ E(h) and gH∩Br (o) 6=∅},

defined by φ( f ) := f H. For each axis gH meeting Br (o) there exists a g′ ∈ gE(h)
such that d(o, g′ . o) = d(o, gH) 6 r . Since πgH is within 5C of closest point
projection, by Lemma 2.8, we have dπg′H(o, g′. o) 6 6C 6 K . Therefore, g′ ∈ F
with φ(g′)= gH, so φ is surjective.

We estimate:

#{axes meeting Br (o)}>
|G . o∩Br (o)| × #{axes per orbit point}

maximum number of orbit points per axis
.

The basepoint belongs to [StabG(o) : E(h)∩ StabG(o)] distinct translates of H, so
the number of axes per orbit point is constant. The maximum number of orbit
points in Br (o) contained in a single axis is proportional to r, since each axis is a
quasi-isometrically embedded image of a virtually cyclic group. Combined with
surjectivity of φ, this gives

|F . o∩Br (o)|
∗

�
|G . o∩Br (o)|

r



GROWTH TIGHT ACTIONS 31

Thus,

δF = lim sup
r→∞

1
r

log|F . o∩Br (o)|> lim sup
r→∞

1
r

log |G .o ∩ Br (o)|
r

= lim sup
r→∞

1
r

log|G . o∩Br (o)| = δG .

The reverse inequality is trivial, since F ⊂ G, so δF = δG .
Now, consider the map ψ : F \ E(h)→ [h] \ E(h) defined by ψ( f ) := f h f −1.

Choose minimal length representatives e1, . . . , em of Z(h)\E(h). Associated to
each g ∈ G \ E(h), there is a g′ ∈ gE(h) such that d(o, gH)= d(o, g′. o). There
exist z ∈ Z(h) and i such that g′ = gzei . By setting f := g′e−1

i , we get

f h f −1
= gzei ei

−1hei ei
−1z−1g−1

= ghg−1.

Since ei has length at most D and πgH is 5C-close to closest point projection,
it follows that f ∈ F; hence, ψ is surjective. Furthermore, d(o, f h f −1 . o) 6
2d(o, f . o)+ d(o, h . o), by the triangle inequality.

On the other hand, ψ is boundedly many-to-one, since if f h f −1
= f ′h f ′−1 then

f ′ ∈ f E(h), so f H= f ′H. By definition of F , we then have dπf H(o, f .o)6 K and
dπf H(o, f ′. o)6 K , so d( f . o, f ′. o)6 2(C + K ). There are uniformly boundedly
many such f ′ for each f .

We conclude that ψ is a surjective, boundedly-many-to-one map such that
d(o, ψ( f ).o)

+

≺ 2d(o, f.o) for all f . We excluded E(h) from the domain and
range, but its growth exponent is zero, since it embeds quasi-isometrically into X,
so δ[h] = δ[h]\E(h) > 1

2δF\E(h) =
1
2δF =

1
2δG .

Now, dπf H( f h . o, f h f −1 . o)= dπf H(o, f . o)6 K for f ∈ F , so

dπf H(o, f h f −1. o) > d( f . o, f h . o)− 2(C + K ).

If d(o, h . o) > 15C + 2D = C + 2(C + K ), then dπf H(o, f h f −1. o) > C, so by
strong constriction,

d(o, f h f −1. o)> 2d(o, f . o)+ d(o, h . o)− 4(C + K ).

Thus, d(o, ψ( f ) . o)
+

� 2d(o, f . o) and δ[h] = 1
2δG . �

Part II. Examples of actions with strongly contracting elements

8. Actions on relatively hyperbolic spaces

Yang [2013] proved that the action of a finitely generated group G with a nontrivial
Floyd boundary on any of its Cayley graphs is growth tight. Relatively hyperbolic
groups have nontrivial Floyd boundaries by a theorem of Gerasimov [2012], so the
action of a relatively hyperbolic group on any of its Cayley graphs is growth tight.
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It is an open question whether there exists a group with a nontrivial Floyd boundary
that is not relatively hyperbolic.

There is also a notion of relative hyperbolicity of metric spaces, which we will
review in Section 8A. One motivating example of a relatively hyperbolic metric
space is a Cayley graph of a relatively hyperbolic group. Another is the universal
cover M̃ of a complete, finite volume hyperbolic manifold M. The fundamental
group π1(M) of such a manifold is a relatively hyperbolic group, so the action of
π1(M) on any of its Cayley graphs is growth tight by Yang’s theorem. However,
this does not tell us whether the action of π1(M) on M̃ is growth tight. This
question was addressed for a more general class of manifolds by Dal’bo, Peigné,
Picaud, and Sambusetti [Dal’Bo et al. 2011], who proved growth tightness results
for geometrically finite Kleinian groups. Using our main theorems, Theorem 6.3
and Theorem 6.4, we generalize their results to all groups acting on relatively
hyperbolic metric spaces.

8A. Relatively hyperbolic metric spaces.

Definition 8.1 (compare [Druţu 2009; Sisto 2012]). Let X be a geodesic metric
space and let P be a collection of uniformly coarsely connected subsets of X. We
say X is hyperbolic relative to the peripheral sets P if the following conditions are
satisfied:

(1) For each A there exists a B such that diam(BA(P0)∩BA(P1))6 B for distinct
P0, P1 ∈ P .

(2) There exists an ε ∈ (0, 1
2) and M > 0 such that if x0, x1 ∈ X are points such

that for some P ∈ P we have d(xi ,P) 6 ε · d(x0, x1) for each i , then every
geodesic from x0 to x1 intersects BM(P).

(3) There exist σ and δ so that for every geodesic triangle either:
(a) there exists a ball of radius σ intersecting all three sides, or
(b) there exists a P ∈ P such that Bσ (P) intersects all three sides and for each

corner of the triangle, the points of the outgoing geodesics from that corner
which first enter Bσ (P) are distance at most δ apart.

We say X is hyperbolic if it hyperbolic relative to P =∅.

If X is hyperbolic in the sense of Definition 8.1, then the only nontrivial condition
is (a), which is equivalent to the usual definition of hyperbolic metric space.

Definition 8.2. A group G is hyperbolic relative to a collection of finitely generated
peripheral subgroups if a Cayley graph of G is hyperbolic relative to the cosets of
the peripheral subgroups.

Sisto [2012] shows that Definition 8.2 is equivalent to Bowditch’s definition
[2012] of relatively hyperbolic groups.
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Definition 8.3 (compare [Groves and Manning 2007]). Let X be a connected graph
with edges of length bounded below. A combinatorial horoball based on X with
parameter a>0 is a graph whose vertex set is VertX×({0}∪N), contains an edge of
length 1 between (v, n) and (v, n+1) for all v ∈VertX and all n ∈ {0}∪N, and for
each edge [v,w]∈X contains an edge [(v, n), (w, n)] of length e−an

·length([v,w]).

Let X be hyperbolic relative to P. An augmented space is a space obtained
from X as follows. By definition, there exists a constant C such that each P ∈ P
is C-coarsely connected. For each P ∈ P choose a maximal subset of points that
pairwise have distance at least C from one another. Let these points be the vertex
set of a graph. For edges, choose a geodesic connecting each pair of vertices at
distance at most 2C from each other. Use this graph as the base of a combinatorial
horoball with parameter aP > 0. The augmented space is the space obtained from
the union of X with horoballs XP for each P ∈ P by identifying the base of XP
with the graph constructed in P.

Definition 8.4. Let X be a hyperbolic G-space, and let P be the collection of
maximal parabolic subgroups of G. Suppose there exists a G-invariant collection
of disjoint open horoballs centered at the points fixed by the parabolic subgroups.
The truncated space is X minus the union of these open horoballs. We say G y X
is cusp uniform if G acts cocompactly on the truncated space.

If G acts cocompactly on a G-space X ′ that is hyperbolic relative to a G-invariant
peripheral system P, then an augmented space X can be constructed G-equivariantly,
and G y X will be a cusp uniform action.

Several different versions of the following theorem occur in the literature on
relatively hyperbolic groups:

Theorem 8.5 [Bowditch 2012; Groves and Manning 2008; Sisto 2012]. If X is
hyperbolic relative to P, then any augmented space with horoball parameters
bounded below is hyperbolic.

If G y X is a cusp uniform action, then G is hyperbolic relative to the maximal
parabolic subgroups and the truncated space is hyperbolic relative to boundaries of
the deleted horoballs.

8B. Quasiconvex actions.

Theorem 8.6. If X is a quasiconvex, relatively hyperbolic G-space and G does not
coarsely fix a peripheral subspace then G y X is a growth tight action.

Proof. It follows from [Sisto 2012, Lemma 5.4] that every infinite order element
of G that does not coarsely fix a peripheral subspace is strongly constricting. We
conclude by Theorem 6.4. �
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Theorem 8.6 unifies the existing proofs of growth tightness for cocompact actions
on hyperbolic spaces [Sabourau 2013] and for actions of a relatively hyperbolic
group on its Cayley graphs [Yang 2013], and extends to actions on a more general
class of spaces.

Corollary 8.7. The action of a finitely generated group G with infinitely many ends
on any one of its Cayley graphs is growth tight.

Proof. Stallings’ theorem [1971] says that G splits nontrivially over a finite subgroup.
G is hyperbolic relative to the factor groups of this splitting. Since the splitting is
nontrivial, G does not fix any factor group, so Theorem 8.6 gives the result. �

Corollary 8.7 generalizes a result of Sambusetti [2002a, Theorem 1.4], who
proved it with additional constraints on the factor groups.

8C. Cusp uniform actions. Theorems 8.6 and 8.5 show that if G y X is a cusp
uniform action on a hyperbolic space then the action of G on the truncated space is
a growth tight action. A natural question is whether G yX is a growth tight action.
This action is not quasiconvex if the parabolic subgroups are infinite, as geodesics
in X will travel deeply into horoballs, and, indeed, an example of Dal’bo, Otal, and
Peigné [Dal’bo et al. 2000] shows G y X need not be growth tight.

To see how growth tightness can fail, consider the combinatorial horoball from
Definition 8.3. If X is, say, the Cayley graph of some group and we build the
combinatorial horoball with parameter a > 0 based on X, then the r-ball about a
basepoint o ∈ X in the horoball metric intersected with X ×{0} contains the ball
of radius C · exp(ar/2) in the X -metric, for a constant C depending only on a.
Thus, if the number of vertices of balls in X grows faster than polynomially in the
radius, then the growth exponent with respect to the horoball metric will be infinite.
Furthermore, even if growth in X is polynomial we can make the growth exponent in
the horoball be as large as we like by taking a to be sufficiently large. Dal’bo, Otal,
and Peigné construct non-growth-tight examples of relatively hyperbolic groups
with two cusps by taking one of the horoball parameters to be large enough so that
the corresponding parabolic subgroup dominates the growth of the group; that is,
the growth exponent of the parabolic subgroup is equal to the growth exponent
of the whole group. Quotienting by the second parabolic subgroup then does not
decrease the growth exponent, so this action is not growth tight.

Not only does this provide an example of a non-growth-tight action on a hy-
perbolic space, but since augmented spaces with different horoball parameters are
equivariantly quasi-isometric to each other, we have:

Observation 8.8. Growth tightness is not invariant among equivariantly quasi-
isometric G-spaces.

It is shown in [Dal’Bo et al. 2011, Theorem 1.4] that this is essentially the only



GROWTH TIGHT ACTIONS 35

way that growth tightness can fail for cusp uniform actions. Their proof is for
geometrically finite Kleinian groups, but our Theorem 6.3 generalizes this result.

Definition 8.9. Let G y X be a cusp uniform action on a hyperbolic space. Let P
be the collection of maximal parabolic subgroups of G. Then G y X satisfies the
parabolic gap condition if δP < δG for all P ∈ P.

Theorem 8.10. Let G be a finitely generated, nonelementary group. Let G y X
be a cusp uniform action on a hyperbolic space. Suppose that G y X satisfies the
parabolic gap condition. Then G y X is a growth tight action.

Proof. Let Q be the diameter of the quotient of the truncated space. Then the
Q-complementary growth exponent is the maximum of the parabolic growth ex-
ponents, which, by the parabolic gap condition, is strictly less than the growth
exponent of G. Apply Theorem 6.3. �

Theorem 8.11. Let G be a finitely generated group hyperbolic relative to a collec-
tion P of virtually nilpotent subgroups. Then there exists a hyperbolic G-space X
such that G y X is cusp uniform and growth tight.

Proof. Construct X as an augmented space by taking a Cayley graph for G and
attaching combinatorial horoballs to the cosets of the peripheral subgroups. Since
the peripheral groups are virtually nilpotent, they have polynomial growth in any
word metric [Gromov 1981]. It follows that the growth exponent of each parabolic
group with respect to the horoball metric is bounded by a multiple of the horoball
parameter. By choosing the horoball parameters small enough, we can ensure
G y X satisfies the parabolic gap condition, and apply Theorem 8.10. �

8D. Beyond relative hyperbolicity. In subsequent sections we provide further ex-
amples of growth tight actions. To show these are not redundant we will verify that
the groups are not relatively hyperbolic.

In this section we recall a technique for showing that a group is not relatively
hyperbolic, due to Anderson, Aramayona, and Shackleton [Anderson et al. 2007].
Another approach to the question, contemporaneous to and more general than the
one just cited, and also implying Theorem 8.13, was developed by Behrstock, Drut,u,
and Mosher [Behrstock et al. 2009].

Theorem 8.12 [Anderson et al. 2007, Theorem 2]. Let G be a finitely generated,
nonelementary group, and let S be a (possibly infinite) generating set consisting
of infinite order elements. Consider the “commutativity graph” with one vertex
for each element of S and an edge between vertices s and s ′ if some nontrivial
powers of s and s ′ commute. If this graph is connected and there is at least one pair
s, s ′ ∈ S such that 〈s, s ′〉 contains a rank 2 free abelian subgroup, then G is not
hyperbolic relative to any finite collection of proper finitely generated subgroups.
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To prove this theorem, one shows that the subgroup generated by S is contained
in one of the peripheral subgroups. Since S generates G this gives a contradiction,
because the peripheral subgroups are proper subgroups of G.

We will actually use a mild generalization of Theorem 8.12 to the case when S
generates a proper subgroup of G:

Theorem 8.13. Let G be a finitely generated, nonelementary group. Let S be a set
of infinite order elements whose commutativity graph is connected and such that
there is a pair s, s ′ ∈ S such that 〈s, s ′〉 contains a rank 2 free abelian subgroup.
Consider the “coset graph” whose vertices are cosets of 〈S〉, with an edge con-
necting g〈S〉 and h〈S〉 if g〈S〉g−1

∩ h〈S〉h−1 is infinite. If this graph is connected,
then G is not hyperbolic relative to any finite collection of proper finitely generated
subgroups.

Proof. Suppose G is hyperbolic relative to {P1, . . . , Pk}. As in the proof of
Theorem 8.12, 〈S〉 is contained in a conjugate of some Pi . We assume, without loss
of generality, that 〈S〉 ⊂ P1. Condition (1) of Definition 8.1 implies Pi ∩ g Pi g−1

is finite for g /∈ Pi . Thus, for g〈S〉 adjacent to 〈S〉 in the coset graph, g ∈ P1 and
g〈S〉g−1

⊂ P1. Connectivity of the coset graph implies that every element of G is
contained in P1, contradicting the hypothesis that P1 is a proper subgroup. �

We also note that Theorem 8.12 and Theorem 8.13 imply the, a priori, stronger
result that G has trivial Floyd boundary.

9. Rank 1 actions on CAT(0) spaces

A metric space is CAT(0) if every geodesic triangle is at least as thin as a triangle
in Euclidean space with the same side lengths. An isometry φ of a CAT(0) space
X is hyperbolic if infx∈X d(x, φ(x)) is positive and is attained. See, for example,
[Bridson and Haefliger 1999] for more background.

Let X be a CAT(0) G-space. Recall that our definition of “G-space” includes
the hypothesis that X is proper, so an element is strongly contracting if and only if
it acts as a rank 1 isometry:

Theorem 9.1 [Bestvina and Fujiwara 2009, Theorem 5.4]. Let h be a hyperbolic
isometry of a proper CAT(0) space X with axis A . Closest point projection to A
is strongly contracting if and only if A does not bound an isometrically embedded
half-flat in X.

Theorems 9.1 and 6.4 show:

Theorem 9.2. If G is a nonelementary, finitely generated group and X is a quasi-
convex, CAT(0) G-space such that G contains an element that acts as a rank 1
isometry on X, then G y X is a growth tight action.
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Recall from Section 0C that there are many interesting classes of CAT(0) spaces
that admit rank 1 isometries. In the remainder of this section we highlight a few
examples.

Let 2 be a simple graph. The right angled Artin group G(2) defined by 2 is
the group defined by the presentation

〈gv for v ∈ Vert(2) | gvgwg−1
v g−1

w = 1 for [v,w] ∈ Edge(2)〉.

The graph 2 also determines a cube complex constructed by taking a rose with
one loop for each vertex of 2, and then gluing in a k-cube to form a k-torus for
each complete k-vertex subgraph of 2. The resulting complex is called the Salvetti
complex, and its fundamental group is G(2). The universal cover of the Salvetti
complex turns out to be a CAT(0) cube complex. See [Charney 2007] for more
background on right angled Artin groups.

If 2 is a single vertex then G(2)∼= Z is elementary. If 2 is a join, that is, if it
is a complete bipartite graph, then G(2) is a direct product of right angled Artin
groups defined by the two parts. In all other cases, we find a growth tight action:

Theorem 9.3. Let 2 be a finite simple graph that is not a join and has more than
one vertex. The action of the right angled Artin group G(2) defined by 2 on the
universal cover X of the Salvetti complex associated to 2 is a growth tight action.

Proof. The universal cover X of the Salvetti complex of 2 is a cocompact, CAT(0)
G(2)-space. If 2 is not connected then X is hyperbolic relative to subcomplexes
defined by the components of 2, so G(2)y X is growth tight by Theorem 8.6. If
2 is connected then G(2) contains a rank 1 isometry by a theorem of Behrstock
and Charney [2012]. The result follows from Theorem 9.2. �

The defining graph of a right angled Artin group is a commutativity graph. If
this graph is connected then the group is not relatively hyperbolic by Theorem 8.12.

A flip-graph manifold is a compact three dimensional manifold M with boundary
obtained from a finite collection of Seifert fibered pieces that are each a product of
a circle with a compact oriented hyperbolic surface with boundary. These are glued
together along boundary tori by a map exchanging the fiber and base directions.
Such manifolds were studied by Kapovich and Leeb [1998], who show that the
universal cover of M admits a CAT(0) metric, and that an element of π1(M) that
acts hyperbolically is rank 1 if and only if it is not represented by a loop contained
in a single Seifert fibered piece. Thus, Theorem 9.2 implies the following:

Theorem 9.4. The action of the fundamental group of a flip-graph manifold by deck
transformations on its universal cover with its natural CAT(0) metric is a growth
tight action.
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To see that the fundamental group of a flip-graph manifold is not relatively
hyperbolic, apply Theorem 8.13 where S is the set of elliptic elements for the action
of G on the Bass–Serre tree of the defining graph of groups decomposition.

Theorems 9.3 and 9.4 give the first nontrivial examples of growth tight actions
on spaces that are not relatively hyperbolic.

The idea of the proof for flip-graph manifolds generalizes to other CAT(0) graphs
of groups via Theorem 1.14:

Theorem 9.5. Let G be a nonelementary, finitely generated group that splits non-
trivially as a graph of groups and is not an ascending HNN-extension. Suppose that
the corresponding action of G on the Bass–Serre tree of the splitting has two edges
whose stabilizers have finite intersection. Suppose there exists a cocompact, CAT(0)
G-space X. Then, G y X is a growth tight action.

Proof. By Theorem 1.14, G contains an infinite order element h such that E(h) is
hyperbolically embedded. A theorem of Sisto [2013] implies that any axis of h is a
Morse quasigeodesic. An element with an axis that bounds a half-flat is not Morse,
so h is rank 1, and the result follows by Theorem 9.2. �

10. Mapping class groups

Let S = Sg,p be a connected and oriented surface of genus g with p punctures. We
require S to have negative Euler characteristic.

Given two orientation preserving homeomorphisms φ,ψ : S → S, we will
consider φ and ψ to be equivalent if φ ◦ψ−1 is isotopic to the identity map on S.
Each equivalence class is called a mapping class of S, and the set Mod(S) of all
equivalence classes naturally forms a group called the mapping class group of S.

A mapping class f ∈Mod(S) is called reducible is there exists an f-invariant
curve system on S and irreducible otherwise. By the Nielsen–Thurston classification
of elements of Mod(S), a mapping class is irreducible and infinite order if and only
if it is pseudo-Anosov [Thurston 1998].

Let X be the Teichmüller space of marked hyperbolic structures on S, equipped
with the Teichmüller metric. See [Hubbard 2006; Papadopoulos 2007] for more
information.

Theorem 10.1 [Minsky 1996]. Each pseudo-Anosov element is strongly contracting
for Mod(S)y X.

For each ε > 0 there is a decomposition of X into a “thick part” X>ε and a “thin
part” X<ε according to whether the hyperbolic structure on S corresponding to the
point x ∈ X has any closed curves of length < ε. This decomposition is Mod(S)-
invariant, and Mod(S)yX>ε is cocompact; see [Mumford 1971; Farb and Margalit
2012]. Geodesics between points in the thick part can travel deeply into the thin
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part, so the action of Mod(S) on Teichmüller space is not quasiconvex. To prove
growth tightness, we need a bound on the complementary growth exponent. Such a
bound is provided by Eskin, Mirzakhani, and Rafi [Eskin et al. 2012, Theorem 1.7].

Theorem 10.2. The action of the mapping class group Mod(S) of S = Sg,p on its
Teichmüller space X with the Teichmüller metric is a growth tight action.

Proof. Let ζ = 6g−6+2p> 2. The growth exponent of Mod(S) with respect to its
action on X is ζ [Athreya et al. 2012]. (We remark that the result in that reference
is stated for closed surfaces, but their proof works in general. For our interest, it is
enough that the growth exponent of Mod(S) is bounded below by ζ . This can be
obtained from [Hamenstädt 2013; Eskin et al. 2012].)

Choose r0 and a maximal r0-separated set in the moduli space Mod(S)\X, and let
A be its full lift to X. Given r0 as above and δ = 1

2 , let ε be sufficiently small, as in
[Eskin et al. 2012, Theorem 1.7]. Let Q be the smallest number such that the ε-thick
part of X is contained in BQ(Mod(S) . o). Choose a finite subset {a1, . . . , an} ⊂A
such that

BQ(o) \BQ(Mod(S) . o)⊂
n⋃

i=1

Br0(ai ).

Suppose that g ∈ Mod(S) is such that there exists a geodesic [x, y] between
BQ(o) and BQ(g . o) whose interior stays in X \BQ(Mod(S) . o). Then there are
indices i and j such that x ∈ Br0(ai ) and y ∈ Br0(g . aj ). This means that every
element contributing to CompMod(S)

Q, r of Definition 6.2 also contributes to some
N1(Q1,ε, ai , aj , r) of [Eskin et al. 2012, Theorem 1.7]. The conclusion of that
theorem is that N1(Q1,ε, ai , aj , r)6 G(ai )G(aj ) exp(r · (ζ − 1

2)) for all sufficiently
large r , where G is a particular function on X. There are finitely many such sets,
and the function G is bounded on {a1, . . . , an}, so there is a constant C such
that CompMod(S)

Q, r 6 C · exp(r · (ζ − 1
2)) for all sufficiently large r . Thus, the Q-

complementary growth exponent is at most ζ − 1
2 < ζ . The theorem now follows

from Theorems 10.1 and 6.3. �

When the genus of S is at least 3 then there does not exist a cocompact, CAT(0)
Mod(S)-space [Bridson 2010]. The fact that such an Mod(S) is not relatively
hyperbolic (in fact, has trivial Floyd boundary) is an application of Theorem 8.12
appearing in [Anderson et al. 2007]. Therefore, Theorem 10.2 does not follow from
the results of the previous sections.

A natural question is whether the action of a mapping class group on its Cayley
graphs is growth tight. There is also a combinatorial model for the mapping
class group known as the marking complex. Finally, a mapping class group acts
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cocompactly on a thick part of the Teichmüller space. All of these spaces are quasi-
isometric, and Duchin and Rafi [2009] show that pseudo-Anosov elements are con-
tracting for the action of a mapping class group on any one of its Cayley graphs, but
we do not know whether one of these actions admits a strongly contracting element.

Question 3. Is the action of a mapping class group of a hyperbolic surface on one
of its Cayley graphs/marking complex/thick part of Teichmüller space growth tight?

The outer automorphism group of a finite rank nonabelian free group, Out(Fn) is
often studied in analogy with Mod(S). Algom-Kfir [2011] has proven an analogue
of Minsky’s theorem that says that a fully irreducible outer automorphism class
is strongly contracting for the action of Out(Fn) on its outer space, which is the
analogue of the Teichmüller space. However, we lack the analogue of the theorem
of Eskin, Mirzakhani, and Rafi that was used to control the complementary growth
exponent in the mapping class group case.

There is also an analogue of the thick part of Teichmüller space called the spine
of the outer space, on which Out(Fn) acts cocompactly.

Question 4. Is the action of Out(Fn) on one of its Cayley graphs/outer space/spine
of outer space growth tight?

11. Snowflake groups

Let

G := BB(1, r)= 〈a, b, s, t | aba−1b−1
= 1, s−1as = ar b, t−1at = ar b−1

〉

be a Brady–Bridson snowflake group with r > 3. Let L := 2r. These groups have
an interesting mixture of positive and negative curvature properties. G splits as an
amalgam of Z2

= 〈a, b〉 by two cyclic groups 〈ar b〉 and 〈ar b−1
〉, and the action

of G on the Bass–Serre tree T of this splitting satisfies Theorem 1.14, so G has
hyperbolically embedded subgroups. However, we can not automatically conclude
that such a hyperbolically embedded subgroup gives rise to a strongly contracting
element, as there does not exist a cocompact, CAT(0) G-space. If such a space
existed, then the Dehn function of G would be at most quadratic, but Brady and
Bridson [2000] have shown that the Dehn function of BB(1, r) is n2 log2 L > n2.

We will fix a G-space X and demonstrate two different elements of G that act
hyperbolically on T such that the pointwise stabilizer of any length 3 segment of
their axes is finite. One of these elements will be strongly contracting for the action
on X, and the other will not.

Theorem 11.1. G admits a cocompact growth tight action.

Observe that Theorem 8.13 with S := {a, b} shows that G is not relatively
hyperbolic.
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11A. The model space X . Let X be the Cayley graph for G with respect to the
generating set {a, ar b, ar b−1, s, t}, where the edges corresponding to ar b and ar b−1

have been rescaled to have length L := 2r. The point of scaling these edges is
that ar b, ar b−1, and a2r form an equilateral triangle of side length L , which will
facilitate finding geodesics in this particular model.

It is also useful to consider G as the fundamental group of the topological space
obtained from a torus by gluing on two annuli. Choose a basepoint for the torus and
for each boundary component of the annuli. For one annulus, the s-annulus, glue
the two boundary curves to the curves a and ar b in the torus, gluing basepoints
to the basepoint of the torus. For the other annulus, the t-annulus, glue the two
boundary curves to the curves a and ar b−1 of the torus. The resulting space is a
graph of spaces that Scott and Wall [1979] associated to the given graph of groups
decomposition of G.

The fundamental group of this space is G, which acts freely by deck transfor-
mations on the universal cover X ′. Choose the basepoint o of X ′ to be a lift of the
basepoint of the torus. The correspondence between a vertex g ∈ X and the point
g .o ∈X ′ inspires the following terminology: A plane is a coset g〈a, b〉 ∈G/〈a, b〉,
which corresponds to a lift of the torus at the point g .o ∈X ′. An s-wall is the set of
outgoing s-edges incident to a coset g〈a〉 ∈ G/〈a〉. This corresponds to a lift of the
s-annulus at the point g .o ∈X ′. A t-wall is the set of outgoing t-edges incident to a
coset g〈a〉 ∈G/〈a〉. This corresponds to a lift of the t-annulus at the point g .o∈X ′.
Each wall separates X (and X ′) into two complementary components. Notice that
the origins of consecutive edges in an s-wall are connected by a single a-edge of
length 1, while the termini of those edges are connected by a single ar b-edge of
length L . We say that crossing an s-wall in the positive direction scales distance by
a factor of L . The same is true for the t-walls.

11B. Geodesics between points in a plane. We will define a family of X-geodesics
joining 1 to every point of 〈a, b〉. This is similar to the argument of [Brady and
Bridson 2000].

From the fact that 〈a, b〉 is abelian, for every point ax by there is a geodesic from
1 to ax by of the form [1, (ar b)m]+ (ar b)m [1, (ar b−1)n]+ (ar b)m(ar b−1)n [1, a p

],
where [g, h] indicates a geodesic from g to h.

For a point of the form (ar b)m there is an ar b-edge path from 1 to (ar b)m of
length mL . This path is clearly inefficient, as it lies along the boundary of an
s−1-wall that scales distance by 1/L , so we can push the original edge path across
the wall to a path s−1ams of length 2+ m. We claim there is a geodesic from
1 to (ar b)m of the form [1, s−1

] + s−1
[1, am

] + s−1am
[s−1, 1]. We have already

exhibited a wall crossing path of length 2+m, which is shorter than any path from
1 to (ar b)m that stays in the plane 〈a, b〉. Thus, a geodesic must cross some walls.
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Every path from 1 to (ar b)m can, by rearranging subsegments and eliminating
backtracking, be replaced by a path of at most the same length and having the form
γs + γt + γ

′ where:
• γs = [1, s−1

] + s−1
[1, an

] + s−1an
[s−1, 1], if nontrivial;

• γt = s−1ans[1, t−1
] + s−1anst−1

[1, a p
] + s−1anst−1a p

[t−1, 1], if nontrivial;

• γ ′ = s−1anst−1a pt[1, aq
], if nontrivial.

The path γ = γs + γt + γ
′ is a path from 1 to

s−1anst−1a ptaq
= (ar b)n(ar b−1)paq

= ar(n+p)+qbn−p
= armbm,

so p = n−m and q =−Lp. Since p and q are proportional, γt and γ ′ are either
both trivial or both nontrivial. Suppose they are nontrivial. There is a symmetry
that exchanges γt with a path

γ ′t = s−1ans [1, s−1
] + s−1anss−1

[1, a−p
] + s−1anss−1a−p

[s−1, 1]

of the same length. However, γ ′t and γt + γ
′ have the same endpoints, and γ ′t is

shorter, so γ could not have been geodesic if γt and γ ′ are nontrivial. Thus, if γ is
geodesic then γ = γs . This reduces the problem of finding a geodesic from 1 to
(ar b)m to finding a geodesic from 1 to an.

A similar argument holds for geodesics from 1 to (ar b−1)m , so we can find
geodesics from 1 to any point in 〈a, b〉 if we know geodesics from 1 to powers of a.

For powers of a the idea is that amL , (ar b)m , and (ar b−1)m form an equilateral
triangle in the plane, but the latter two can be shortened by a factor of L by pushing
across a wall. Since L ≥ 6, the savings of a factor of L/2 in length outweighs the
added overhead from crossing walls.

For small powers of a we can find geodesics by inspection of the Cayley graph.
For 06 |p|6 L/2+ 3, the edge path a p from 1 to a p is a geodesic of length |p|.
For L/2+ 36 p 6 L the edge path s−1ast−1ata p−L is a geodesic from 1 to a p of
length 6+ L − p. We conclude that for m > 0 and −L/2+ 3≤ p ≤ L/2+ 3 there
is a geodesic from 1 to amL+p of the form

[1, s−1
] + s−1

[1, am
] + s−1am

[s−1, 1] + s−1ams [1, t−1
]

+ s−1amst−1
[1, am

] + s−1amst−1am
[t−1, 1] + s−1amst−1am t [1, a p

]

We can now find geodesics from 1 to powers of a by induction, and from these
we know a geodesic from 1 to any ax by. We see an example in Figure 5, where
trapezoids are walls and triangles are contained in planes. The top half boundary
and bottom half boundary of the figure each give geodesics of length 5 · 25

− 4
between 1 and aL5

. (This form of geodesic loop bears witness to the Dehn function
[Brady and Bridson 2000], and inspired the name “snowflake group” [Brady et al.
2009].)
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1 aL5

(ar b)L4

(ar b−1)L4

s−1

s−1aL4

t−1

t−1aL4

Figure 5. Snowflake: the boundary is a geodesic loop of length
2(5 · 25

− 4).

11C. Projections to geodesics in X . In this section we consider two different
geodesics: α(2n)= (s−1t)n and β(n)= s−n. These are geodesics since for each of
these paths, every edge crosses a distinct wall. Let T be the Bass–Serre tree of G,
and let o ∈ T be the vertex fixed by the subgroup 〈a, b〉. The orbit map g 7→ g . o
sends each of α and β isometrically to a geodesic in T . We will use πα to denote
closest point projection to α, both in X and in T , and similarly for β.

Both of these geodesics have the property that for any vertices at distance at least
three in the corresponding geodesic of the Bass–Serre tree, the pointwise stabilizers
of the pair of vertices is trivial. We might hope, in analogy to Theorem 9.5, that
these would be strongly contracting geodesics. As in Theorem 9.5, 〈s−1t〉 and 〈s〉
are hyperbolically embedded subgroups in G, but, of the two, we will see only s−1t
is strongly contracting.

Geodesic α. We claim that closest point projection πα : X → α is coarsely well
defined and strongly contracting. First, consider πα on 〈a, b〉. The geodesic α
enters 〈a, b〉 through the incoming t-wall V at 1, and exits through the outgoing
s−1-wall W at 1.

Lemma 11.2. For every v ∈ V and every w ∈ W there exists a geodesic from v

to w that includes the vertex 1.

Proof. The lemma follows from the discussion of geodesics in Section 11B. �
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Lemma 11.3. The orbit map X → T defined by g 7→ g . o coarsely commutes with
closest point projection to α. In particular, closest point projection to α in X is
coarsely well defined.

Proof. Suppose z ∈ X is some vertex that is separated from 1 by V, and suppose
there is an n > 0 such that α(n) ∈ πα(z). Let σ be a geodesic from z to α(n). Write
σ = σ1+σ2+σ3, where σ2 is the subsegment of σ from the first time σ crosses V
until the first time σ reaches W. By Lemma 11.2, we can replace σ2 by a geodesic
segment σ ′2+σ

′′

2 where the concatenation point is 1. This means that z is connected
to 1= α(0) by a path σ1+ σ

′

2. By hypothesis, the length of this path is at least the
length of σ, so σ ′′2 and σ3 are trivial and n = 0. It follows immediately that the orbit
map X → T commutes with πα up to an error of 4. (In fact, a little more work will
show the error is at most 2.) �

Lemma 11.4 (bounded geodesic image property for πα). For any geodesic σ in X,
if the diameter of πα(σ . o) is at least 5, then σ ∩α 6=∅.

Proof. Suppose α([−1, 3]).o⊂πα(σ.o). Then σ crosses the walls V, W, s−1tV, and
s−1tW. Write σ as a concatenation of geodesic subsegments σ1+σ2+σ3+σ4+σ5,
where σ1 is all of σ prior to the first V crossing, σ2 is the part of σ between the
first V crossing and the last W crossing, σ3 is the part between the last W crossing
and the first s−1tV crossing, which included edges labeled s−1 and t , σ4 is the part
from the first s−1tV crossing until the last s−1tW crossing, and σ5 is the remainder
of σ. We can apply Section 11B to replace σ2 by a geodesic σ ′2 + σ

′′

2 with the
same endpoints and concatenated at 1. Similarly, we can replace σ4 by a geodesic
σ ′4+σ

′′

4 with the same endpoints and concatenated at s−1t . But then we can replace
the subsegment σ2+ σ3+ σ4 of σ by the path σ ′′2 + [1, s−1t] + σ ′′4 with the same
endpoints. This path is strictly shorter unless σ ′′2 and σ ′′4 are trivial. This means that
[1, s−1t] ⊂ σ ∩α. �

By Proposition 2.9, this means the following:

Corollary 11.5. The element s−1t is strongly contracting for G y X.

Together with Theorem 6.4, this proves Theorem 11.1.

Geodesic β. Using out knowledge of geodesics from Section 11B, we see that the
closest point of the s−1-wall at 1 to the point aLk

is (ar b)Lk−1
, which is the midpoint

of a geodesic from 1 to aLk
. This geodesic coincides with β on the interval from 1

to s−k. It follows that πβ(aL j
)= β( j) for all j > 0.

For 0 < j < k there is a geodesic σj,k from aL j
to aLk

such that d(σj,k, β) =

d(aL j
, β); see Figure 6. Letting j and k − j grow large, the geodesics σj,k stay

outside large neighborhoods of β but have large projections to β. Therefore, πβ is not
strongly contracting, since it does not enjoy the bounded geodesic image property.
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β(0)= s0
= 1 aL3

aL5

s−3
s−5

Figure 6. Geodesics [aL3
, πβ(aL3

)] (dashed), [aL5
, πβ(aL5

)] (solid),
and σ3,5 = [aL3

, aL5
] (dash-dot).
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