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We prove a new upper bound for the first eigenvalue of the Dirac operator
of a compact hypersurface in any Riemannian spin manifold carrying a non-
trivial twistor-spinor without zeros on the hypersurface. The upper bound
is expressed as the first eigenvalue of a drifting Schrödinger operator on the
hypersurface. Moreover, using a recent approach developed by O. Hijazi and
S. Montiel, we completely characterize the equality case when the ambient
manifold is the standard hyperbolic space.

1. Introduction

Let Mn ι
↪→ M̃n+1 be an oriented, compact (without boundary), connected hyper-

surface of an (n+ 1)-dimensional Riemannian manifold (M̃n+1, g) equipped with
the induced Riemannian metric, also denoted by g.

It is by now a well-known approach to use the min-max characterization of
eigenvalues to derive upper bounds for the spectrum of differential operators on M
in terms of extrinsic geometric data. For example, if we consider the first positive
eigenvalue λ1(1) of the Laplace operator 1 := − trg(Hessg), where Hessg denotes
the Hessian of M, a famous result of R.C. Reilly [1977] states that if M̃ is the
Euclidean space Rn+1, then

(1) λ1(1)≤
n

Vol(M)

∫
M

H 2 dvg,

where H denotes the normalized mean curvature of M. The proof of this result
uses, in an essential way, the Rayleigh characterization of λ1(1) by choosing
a modification of the coordinates functions as test functions. Moreover, it is a
straightforward observation to see that equality occurs if and only if M is a totally
umbilical round sphere. As observed in [El Soufi and Ilias 1992], this method
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directly applies for hypersurfaces in the unit sphere Sn+1, leading to the counterpart
of (1) in this situation:

(2) λ1(1)≤
n

Vol(M)

∫
M
(H 2
+ 1) dvg.

If the ambient manifold M̃ is the standard hyperbolic space, there is also an optimal
upper bound proved by A. El Soufi and S. Ilias [1992, Theorem 1] which improves
a previous result of E. Heintze [1988] and which states that

(3) λ1(1)≤
n

Vol(M)

∫
M
(H 2
− 1) dvg,

with equality if and only if M is a totally umbilical round sphere. All three estimates
above follow actually from a much more general one, valid for submanifolds of any
codimension [El Soufi and Ilias 1992], assuming solely that the ambient manifold
is conformally equivalent to an open subset of the sphere of the same dimension:
under that assumption,

(4) λ1(1)≤
n

Vol(M)

∫
M
(H 2
+ R(ι)) dvg,

[op. cit., Theorem 2], where R(ι) is the normalized trace of the ambient sectional
curvature on the tangent planes; see the precise definition after (15).

Now if we assume the existence of a spin structure on M̃ (which is the case for
most classical ambient spaces), it induces a spin structure on the hypersurface M,
and so we can define the spinor bundle 6M over M as well as the associated Dirac
operator DM (see Section 2 and the references therein). When the ambient space
M̃ is the space form of constant sectional curvature κ ∈ {0, 1,−1}, C. Bär [1998]
proved that

(5) λ1(D2
M)≤

n2

4 Vol(M)

∫
M
(H 2
+ κ) dvg

if κ = 0, 1 and

(6) λ1(D2
M)≤

1
4 n2 sup

M
(H 2
+ 1)

for κ =−1. Here λ1(D2
M) denotes the first nonnegative eigenvalue of the square of

the Dirac operator DM of (M, g). Those estimates are consequences of the min-max
characterization of λ1(D2

M) and the fact that the space forms Rn+1, Sn+1, and Hn+1

carry, respectively, parallel, real Killing, and imaginary Killing spinors. In fact,
taking the restriction of such a spinor field to the hypersurface as a test section in
the Rayleigh quotient of λ1(D2

M) gives the previous inequalities immediately. Note
that these upper bounds hold for more general ambient manifolds since the proof
only relies on the existence of one such particular field. For example, (5) with κ = 0
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holds for compact oriented hypersurfaces in Calabi–Yau manifolds, hyper-Kähler
and some other 7- and 8-dimensional special Riemannian manifolds. It also appears
that both inequalities in (5) are sharp since round geodesic spheres in the Euclidean
space Rn+1 and in the round sphere Sn+1 satisfy the equality case. O. Hijazi and
S. Montiel [2013] proved that when κ = 0 those are the only hypersurfaces for
which equality is achieved. The limiting case for hypersurfaces in the sphere seems
to be out of reach at this time and could be considered as a spinorial analogue of
the Yau conjecture about the first eigenvalue of the Laplace operator of minimal
hypersurfaces in the unit sphere. However, there are nonminimal hypersurfaces in
the sphere that satisfy the limiting case in (5); see, e.g., [Ginoux 2003a; Ginoux
2008].

Regarding the proof of (6), it is not difficult to observe that there are no hyper-
surfaces which satisfy the equality case. Modifying the computation of the Rayleigh
quotient for λ1(D2

M), this estimate can be improved [Ginoux 2003b, Theorem 1]
into

(7) λ1(D2
M)≤

1
4 n2 sup

M
(H 2
− 1),

where equality occurs for totally umbilical round spheres in Hn+1. As we will see in
Corollary 4.2, those are in fact the only hypersurfaces for which (7) is an equality.

In this paper, we prove a new upper bound for the first eigenvalue of the Dirac op-
erator of M when the ambient manifold M̃ carries a twistor-spinor; see Theorem 3.3.
This bound coincides with the first eigenvalue of an elliptic differential operator of
order two whose definition depends, among others, on the norm of the twistor-spinor
along the hypersurface — see (15) — and which belongs to a particular class of
operators: the drifting Schrödinger operators, that is, of the form drifting Laplacian
plus potential; see Remarks 3.2. It is important to note that this estimate contains
all the (up to date) known upper estimates à la Reilly; see Remarks 3.4. In a second
part, we adapt the approach developed by Hijazi and Montiel [2013] to prove that,
assuming the existence of imaginary Killing spinors for two opposite constants
on M̃, the only hypersurfaces satisfying the equality case in our previous estimate
are the totally umbilical ones; see Theorem 4.1. In particular, only the geodesic
hyperspheres satisfy that limiting case in the hyperbolic space; see Corollary 4.2.
We also examine the setting of pseudohyperbolic spaces; see Corollary 4.7.

2. Preliminaries and notation

In this section, we briefly introduce the geometric setting and fix the notation of
this paper. For more details on those preliminaries, see examples in [Lawson and
Michelsohn 1989], [Friedrich 2000], or [Ginoux 2009, Chapter 1].
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We consider Mn ι
↪→ M̃n+1 an oriented n-dimensional Riemannian hypersurface

with n ≥ 2, isometrically immersed into an (n+ 1)-dimensional Riemannian spin
manifold (M̃n+1, g) with a fixed spin structure. We denote by ν the unit inner
normal vector field induced by both orientations, that is, such that (E1, . . . , En, νx)

is an oriented basis of Tx M̃ |M if and only if (E1, . . . , En) is an oriented basis of
Tx M for x ∈ M. We endow M with the spin structure induced by the one on M̃ and
let 6M→ M denotes the associated spinor bundle. Setting

6 :=

{
6M if n is even,
6M ⊕6M if n is odd,

the bundles 6 and the restriction 6M̃ |M to M of the spinor bundle of M̃ can be
identified in such a way that:

• The natural Hermitian inner products — both of which we denote by 〈 · , · 〉—
coincide.

• Clifford multiplication “ · ” on M̃ and “ ·
M

” on M are related by

(8) X ·
6
:= X · ν · '

{
X ·

M
if n is even,

X ·
M
⊕−X ·

M
if n is odd,

for all X ∈ TM.

• The spin Levi–Civita connections ∇̂ on 6M̃ and ∇ on 6 are related by the
spin Gauss formula

(9) ∇̂Xϕ =∇Xϕ+
1
2 A(X) · ν ·ϕ,

for all X ∈ 0(TM) and ϕ ∈ 0(6). Here A := −∇̂ν denotes the Weingarten
map of the immersion.

The extrinsic Dirac operator of M is the first order elliptic differential operator
of order one acting on sections of 6 locally given by

D :=
n∑

j=1

e j · ν · ∇e j .

It is a well-known fact that it defines an essentially self-adjoint operator with respect
to the L2-scalar product on 6 so that if M is compact, its spectrum is an unbounded
sequence of real numbers. In this article, we adopt the convention that the spectrum
spec(P)with multiplicities of a given elliptic self-adjoint operator P will be denoted
by a sequence (λk(P))k≥1, with the convention that λ1(P) is the smallest eigenvalue
if spec(P) is bounded below and is the smallest nonnegative eigenvalue otherwise.

With respect to the previous identifications, the Dirac operator D is nothing but
the Dirac operator DM of (M, g) if n is even and DM ⊕−DM if n is odd, so that
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studying the spectrum of the intrinsic Dirac operator DM for the spin Riemannian
structure induced on the hypersurface M is equivalent to study the spectrum of the
extrinsic Dirac operator D on the hypersurface M. It is also relevant here to recall
that the commutator of D and D2 with functions are given by

(10) D( f ϕ)= f Dϕ+∇ f · ν ·ϕ

and

(11) D2( f ϕ)= f D2ϕ− 2∇∇ f ϕ+ (1 f )ϕ,

for all f ∈ C∞(M) and ϕ ∈ 0(6). Here H := 1
n tr(A) denotes the mean curvature

function of M in M̃.
Another operator of particular interest in this work is the Dirac–Witten operator

D̂ on M. It is also a first order elliptic operator acting on the restricted spinor bundle
6 and locally defined by D̂ :=

∑n
j=1 e j · ∇̂e j . It is related to the extrinsic Dirac

operator by the following formula

(12) Dϕ =−ν · D̂ϕ+ 1
2 nHϕ

and to its square by

(13) D2ϕ = D̂2ϕ+ 1
4 n2 H 2ϕ+ 1

2 n∇H · ν ·ϕ,

for every ϕ ∈ 0(6).

3. Upper bounds in terms of a Laplace-type operator

In this section, we prove a new upper bound for the smallest eigenvalue of the
squared Dirac operator D2 when the ambient manifold M̃ is endowed with a twistor-
spinor. Recall that a twistor-spinor on a Riemannian spin manifold (M̃n+1, g) is a
section ψ ∈ 0(6M̃) satisfying

(14) ∇̂Xψ =−
1

n+1 X ·
M̃

DM̃ψ

for all X ∈ 0(TM̃). Here DM̃ represents the Dirac operator of M̃. Nonzero twistor-
spinors have a discrete vanishing set and only exist for particular conformal classes;
see, for example, the standard reference [Baum et al. 1991] or, for a short account,
[Ginoux 2009, Appendix A]. It should also be pointed out that parallel spinors,
and real and imaginary Killing spinors are twistor-spinors which are, in addition,
eigensections for the Dirac operator DM̃ associated to the eigenvalue zero, or to real
or purely imaginary eigenvalues, respectively. They exist on each simply connected
complete space form of constant curvature. Assume now that such a spinor field
ψ is given on M̃ and also assume that it has no zero on the hypersurface M. We
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define the differential operator Lψ acting on smooth functions on M by

(15) Lψ f :=1 f − 2g(∇ ln|ψ |,∇ f )+ 1
4 n2(H 2

+ R(ι)) f.

for f ∈ C∞(M). Here

R(ι) := 1
n(n−1)(S̃− 2 r̃ic(ν, ν)),

S̃ and r̃ic are respectively the scalar curvature and the Ricci tensor (seen as a
symmetric 2-tensor) of the manifold M̃. Although this operator is not symmetric
with respect to the L2-scalar product on (Mn, g), we observe that it has the following
interesting analytic properties:

Proposition 3.1. The operator Lψ is elliptic, and if M is closed, it is self-adjoint
with respect to the L2-scalar product on (Mn, g), where g := |ψ |4/ng.

Proof. Since Lψ is of second order and its leading part is the scalar Laplacian,
it is clearly elliptic. Because g = |ψ |4/ng, we have dvg = |ψ |

2 dvg and for any
f, h ∈ C∞(M),∫

M
(Lψ f )h dvg =

∫
M

(
1 f − 2g(∇ ln|ψ |,∇ f )+ 1

4 n2(H 2
+ R(ι)) f

)
h|ψ |2 dvg.

Performing a partial integration, we have for the first term∫
M
(1 f )h|ψ |2 dvg =

∫
M

g(∇ f,∇h)|ψ |2+ g(∇ f,∇(|ψ |2))h dvg

=

∫
M

g(∇ f,∇h)|ψ |2+ 2g(∇ f,∇ ln|ψ |)h|ψ |2 dvg.

Therefore, the first-order term in ∇ ln|ψ | simplifies and we obtain∫
M
(Lψ f )h dvg =

∫
M

(
g(∇ f,∇h)+ 1

4 n2(H 2
+ R(ι)) f h

)
|ψ |2 dvg,

which is clearly symmetric in ( f, h). This implies that Lψ is formally self-adjoint
with respect to the metric g. Since M is closed, we conclude that Lψ is essentially
self-adjoint in L2(M). �

Remarks 3.2. (1) The operator Lψ defined in (15) is of the form drifting Laplacian
plus potential (the drifting Laplacian is also called Laplacian with drift, Bakry–
Émery Laplacian, weighted Laplacian, or Witten Laplacian in the literature); this is
the reason we refer to these operators as drifting Schrödinger operators. Indeed, a
drifting Laplacian is an operator of the form

C∞(M)
Lh
−→ C∞(M), f 7→1 f − g(∇h,∇ f )

for some function h ∈ C∞(M). It is elliptic and self-adjoint with respect to the
measure ehdµg. Actually, a drifting Laplacian is always unitarily equivalent to a
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Schrödinger operator: in the notation above, the operator Lh is unitarily equivalent
to 1− 1

21h+ 1
4 |∇h|2g; see, for example, [Setti 1998, p. 28].

(2) Note that if |ψ | is constant on M (which is the case if ψ is either a parallel or a
real Killing spinor on M̃), then the operator

Lψ =1+ 1
4 n2(H 2

+ R(ι))

does not depend on ψ .

Proposition 3.1 implies that the spectrum of Lψ is purely discrete. We will
denote by λ1(Lψ) its first eigenvalue, which satisfies the min-max characterization

(16) λ1(Lψ)= inf
f ∈C∞(M)r{0}

(∫
M f (Lψ f ) dvg∫

M f 2 dvg

)
.

We are now ready to give the precise statement of the first main result of this
paper, namely:

Theorem 3.3. Assume M is a closed oriented hypersurface isometrically immersed
in a Riemannian spin manifold (M̃n+1, g). If there exists a nontrivial twistor-spinor
ψ on M̃ with ψx 6= 0 for all x ∈ M, then

(17) λ1(D2
M)≤ λ1(Lψ).

Proof. We apply the min-max characterization of λ1(D2
M)= λ1(D2) using fψ as a

test section, where Lψ f = λ1(Lψ) f . The following computations rely on a large
extent on those in the proof of [Ginoux 2009, Theorem 5.2.3].

First, if f ∈ C∞(M) is an arbitrary smooth function on M, then using (11), (13),
and (9) and the fact that ψ is a twistor-spinor on M̃,

(18) D2( fψ)
(11)
= f D2ψ − 2∇∇ fψ + (1 f )ψ

(13)
= f

(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
− 2∇∇ fψ + (1 f )ψ

(9)
= f

(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
− 2

(
∇̂∇ fψ −

1
2 A(∇ f ) · ν ·ψ

)
+ (1 f )ψ

= f
(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
+

2
n+1∇ f · DM̃ψ

+ A(∇ f ) · ν ·ψ + (1 f )ψ.

Next we compute D̂2ψ, again using the fact thatψ is a twistor-spinor, which implies,
in particular, the following identity; see, e.g., [Ginoux 2009, Proposition A.2.1]:

(19) ∇̂X (DM̃ψ)=
n+1
n−1

(
−

1
2 R̃ic(X) ·ψ + 1

4n S̃X ·ψ
)
,
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for every X ∈ 0(TM̃) and where R̃ic denotes the Ricci tensor of (M̃n+1, g) (seen
as an endomorphism of the tangent bundle of M̃). Thus we have

(20) D̂2ψ = D̂
( n∑

j=1

e j · ∇̂e jψ

)
(14)
=

n
n+1 D̂(DM̃ψ)

(19)
=

n
n−1

n∑
j=1

(
−

1
2 e j · R̃ic(e j ) ·ψ +

1
4n S̃e j · e j ·ψ

)
=

n
n−1

( 1
2 S̃ψ + 1

2ν · R̃ic(ν) ·ψ − 1
4 S̃ψ

)
=

n
n−1

( n(n−1)
4 R(ι)ψ + 1

2ν · R̃ic(ν)> ·ψ
)

=
1
4 n2 R(ι)ψ + n

2(n−1)ν · R̃ic(ν)> ·ψ,

where R̃ic(ν)> :=
∑n

j=1 r̃ic(ν, e j )e j denotes the tangential projection of R̃ic(ν)
on TM. Combining (18) with (20), we deduce that

(21) D2( fψ)= 1
4 n2(H 2

+ R(ι)) fψ + 1
2 n f∇H · ν ·ψ + n

2(n−1) f ν · R̃ic(ν)> ·ψ

+
2

n+1∇ f · DM̃ψ + A(∇ f ) · ν ·ψ + (1 f )ψ.

Again, using the fact that ψ is a twistor-spinor on (M̃n+1, g), for every f ∈C∞(M),

Re〈D2( fψ), fψ〉
(21)
=

1
4 n2(H 2

+ R(ι)) f 2
|ψ |2+ 2

n+1 f Re〈∇ f · DM̃ψ,ψ〉

+ f (1 f )|ψ |2

=
1
4 n2(H 2

+ R(ι)) f 2
|ψ |2− g

(
f ∇ f,∇(|ψ |2)

)
+ f (1 f )|ψ |2

= f
(
1 f − 2g(∇ f,∇ ln|ψ |)+ 1

4 n2(H 2
+ R(ι)) f

)
|ψ |2

= f (Lψ f )|ψ |2.

The min-max principle for λ1(D2) implies that, for any f ∈ C∞(M)r {0},

λ1(D2)≤

∫
M Re〈D2( fψ), fψ〉 dvg∫

M | fψ |
2 dvg

=

∫
M f (Lψ f ) dvg∫

M f 2 dvg
;

therefore,

λ1(D2)≤ inf
f ∈C∞(M,R)r{0}

(∫
M f (Lψ f ) dvg∫

M f 2 dvg

)
,

which from (16) gives the inequality (17). �
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Remarks 3.4. (1) The estimate (17) contains all known upper estimates à la Reilly
for λ1(D2

M). Indeed, we observe that by taking f = 1 in the Rayleigh quotient
of Lψ ,

λ1(Lψ)≤
n2

4 Vol(M)

∫
M
(H 2
+ R(ι)) dvg

if |ψ | is constant, and

λ1(Lψ)≤ 1
4 n2 sup

M
(H 2
+ R(ι))

otherwise. Those give exactly the inequalities (5) in [Bär 1998] and (7) in [Ginoux
2003b]. On the other hand, for f = |ψ |−1 (with respect to the metric g defined
above), we deduce that

λ1(Lψ)≤
n2

4 Vol(M)

∫
M
(H 2
+ R(ι)) dvg +

1
Vol(M)

∫
M

∣∣d ln|ψ |
∣∣2 dvg,

which was proved in [Ginoux 2002, Theorem 1].

(2) It is interesting to compare (17) with (4). On the one hand, we do not obtain
in the spinorial setting the exact analogue of (4) for M̃ conformally equivalent
to an open subset of the sphere Sn+1. Of course, this must be expected since
otherwise in dimension 2 this would mean that the Willmore functional bounds
λ1(D2

M) ·Area(M2, g) from above; but there is no conformal upper bound for the
smallest positive Dirac eigenvalue on unit-area-metrics, as shown in [Ammann and
Jammes 2012, Theorem 1.1]. Note that this does not prevent the analogue of (3) to
possibly hold true for the Dirac operator, which is still an open question. On the
other hand, our assumption on M̃ in Theorem 3.3 is much more general since not
only open subsets of spheres with conformal metrics allow twistor-spinors. We refer
the reader to [Kühnel and Rademacher 1998] for the classification of Riemannian
spin manifolds with twistor-spinors.

We now look at the equality case of the previous estimate in the situation where
the twistor-spinor is also an eigenspinor for the Dirac operator of M̃. More precisely,
we prove:

Proposition 3.5. Under the same assumptions as in Theorem 3.3, assume moreover
that equality is achieved in (17).

(1) If ψ is a parallel spinor on M̃n+1, then

A(∇ ln| f |)=− 1
2 n∇H

for any eigenfunction f of Lψ associated with λ1(Lψ).
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(2) If ψ is a real Killing spinor on M̃ = Sn+1 or an imaginary Killing spinor on
M̃ = Hn+1, then the mean curvature H is constant and, in particular,

λ1(D2
M)=

1
4 n2(H 2

+ κ).

Proof. (1) If (17) is an equality and ψ is a parallel spinor, then the min-max
principle yields D2( fψ)= λ1(D2) fψ for any eigenfunction f of Lψ associated
with λ1(Lψ) = λ1(D2). But (21) together with R̃ic = 0 and DM̃ψ = 0 (both
provided by ∇̂ψ = 0) implies

λ1(D2) fψ = 1
4 n2 H 2 fψ + 1

2 n f∇H · ν ·ψ + A(∇ f ) · ν ·ψ + (1 f )ψ

= (Lψ f )ψ +
(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ.

With λ1(D2)= λ1(Lψ), we deduce that(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ = 0

which, since ψ 6= 0, gives A(∇ f )+ 1
2 n f∇H = 0. Since any eigenfunction for Lψ

associated with the eigenvalue λ1(Lψ) is either positive or negative, we easily reach
the conclusion.

(2) Assume first that M̃n+1 carries real Killing spinors and let ψ be a nonzero
(ε/2)-Killing spinor for some ε ∈ {±1}; that is, ∇̂Xψ =

ε
2 X ·ψ for all X ∈ 0(TM̃).

Again, one obtains D2( fψ) = λ1(D2) fψ for any eigenfunctions f ∈ C∞(M)
associated to λ1(Lψ). Fixing such an f , the identity (21) yields

λ1(D2) fψ = (Lψ f )ψ +
(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ − ε∇ f ·ψ.

With λ1(D2)= λ1(Lψ), we deduce that(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ − ε∇ f ·ψ = 0.

In particular, with the notation Yε := −ε∇ f and X := A(∇ f )+ 1
2 n f∇H , we have

(Yε + X ∧ ν) ·ψ = 0. At this point, we need the following claim:

Claim: Let α ∈
∧
∗

Rn+1
⊗C. If n is odd, then δn+1(α) = 0 if and only if α = 0.

If n is even, then the same equivalence holds for α ∈
∧
∗

Rn
⊗C.

Proof of Claim. Recall that the spinor representation δk : Clk −→ EndC(6k) of the
complex Clifford algebra in dimension k is a complex-linear isomorphism for k
even (but obviously not for k odd). So if n is odd, the claim follows directly from
this fact. If n is even and α ∈

∧
∗

Rn
⊗C, then 6n ∼=6n+1 and it is a simple trick

to rewrite δn+1(α) in the form δn(α̌) for a form α̌ ∈
∧
∗

Rn
⊗C having the same

coefficients as α in the canonical basis of
∧
∗

Rn
⊗C, up to sign and some power

of i . Namely, write

α =
∑

1≤ j1<···< jk≤n

αj1,..., jk e∗j1 ∧ · · · ∧ e∗jk ,
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where (e1, . . . , en, en+1) is the canonical basis of Rn+1. Let ωC
n denotes the complex

volume form on Rn as defined in the proof of Proposition 3.5, which acts on 6n

via δn(ω
C
n ) = Id6+n ⊕− Id6−n . Since, for all v ∈ Rn, δn+1(ien+1) = δn(ω

C
n ) and

δn(v)= δn+1(v) ◦ δn+1(en+1), after some calculation,

δn+1(α)=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk )

+ i
∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk ) ◦ δn(ω
C
n ).

Now it is an elementary computation to show that, for any β ∈
∧k

Rn,

δn(β) ◦ δn(e∗1 ∧ · · · ∧ e∗n)= (−1)k(k+1)/2δn(∗β),

where ∗ :
∧
∗

Rn
→

∧
∗

Rn is the Hodge-star operator. Therefore, we obtain

δn+1(α)=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk )

+ cn,k

∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk δn(∗(e∗j1 ∧ · · · ∧ e∗jk ))= δn(α̌),

where we let cn,k := in/2+1 (−1)k(k+1)/2 and

α̌ :=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk e∗j1 ∧· · ·∧ e∗jk + cn,k

∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk ∗(e
∗

j1 ∧· · ·∧ e∗jk ).

As a consequence, if δn+1(α)σ = 0 for all σ ∈6n+1 ∼=6n , then δn(α̌)= 0, and the
fact mentioned above implies α̌ = 0; since n is even, each form ∗(e∗j1 ∧ · · · ∧ e∗jk ) is
of odd degree when k is odd and therefore αj1,..., jk = 0 for all 1≤ j1 < · · ·< jk ≤ n;
that is, α = 0. This concludes the proof of the claim. �

If M̃n+1 is isometric to the standard round sphere Sn+1, then it carries a maximal
number (that is 2b

n+1
2 c) of linearly independent (ε/2)-Killing spinors. In that case,

(Yε+ X ∧ν) ·ψ = 0 holds pointwise for every ψ ∈6x M̃. If n is odd, then the claim
yields Yε + X ∧ ν = 0, which implies X = Yε = 0; that is, f and H are constant.
If n is even, then one may rewrite

Yε ·ψ + X · ν ·ψ = iYε · iν · ν ·ψ + X · ν ·ψ = (X − iYε yωC
M) · ν ·ψ,

where ωC
M := ib

n+1
2 ce∗1 ∧ · · · ∧ e∗n ∈ 0(

∧n T ∗M ⊗C) is the complex volume form
on M. Again, the claim yields X − iYε yωC

M = 0. If n > 2, then comparing the
degrees yields X = Yε = 0; that is, f and H are constant. If n = 2, then an
elementary computation gives Z y ωC

M = i J (Z) for every Z ∈ 0(TM), where J
is the Kähler structure associated to the metric and the orientation on (M2, g). In
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that case, one obtains X + J (Yε) = 0. However on the standard sphere S3, both
spaces of ± 1

2 -Killing spinors have maximal dimension 2, therefore X + J (Yε)= 0
for both ε ∈ {±1}, which implies X = Yε = 0 and hence that f and H are constant.

The case of imaginary Killing spinors is much the same up to replacing ε by iε.
One obtains at the end (iYε + X ∧ ν) ·ψ = 0 for all (iε/2)-Killing spinors ψ on
M̃n+1. The same arguments as above lead to X = Yε = 0. Notice that in the case
n = 2, one does not need the existence of maximal spaces of (iε/2)-Killing spinors
for both ε ∈ {±1} since X and Yε are real vector fields on M. �

Remark 3.6. It is quite surprising that in the case where ψ is a parallel spinor we
cannot conclude that the mean curvature of M must be constant. In fact, we are left
to prove that if there exists a smooth positive function f ∈ C∞(M) such that

1 f + 1
4 n2 H 2 f = λ1(D)2 f and A(∇ ln f )=− 1

2 n∇H,

then f (or, equivalently, H ) is constant on M.

4. The equality case in the presence of imaginary Killing spinors

In this section, we focus on the equality case of our estimate (17) when the ambient
manifold M̃ carries an imaginary Killing spinor. According to Proposition 3.5, it
also corresponds to the equality case of the inequality (7). It is obvious to check that
totally umbilical round spheres in the hyperbolic space Hn+1 satisfy the equality
in this estimate; however, it is still unknown if they are the only ones. In fact, if
the hypersurface is embedded, then this result easily follows from the Alexandrov
theorem in the hyperbolic space; see [Montiel 1999]. However, if the hypersurface
is only assumed to be immersed, then the question is still open. In order to settle
this problem, we adopt a method introduced in [Hijazi and Montiel 2013] which
relies on the fact that such hypersurfaces are critical points for some eigenvalue
functional associated to some Dirac-type operator on M. The main result of this
section concerns the case when M̃ =Hn+1 but actually we will prove the following
more general statement:

Theorem 4.1. Let Mn be an oriented, compact, connected hypersurface immersed
in a Riemannian spin manifold (M̃n+1, g). If M̃ carries an (iε/2)-Killing spinor
for some ε ∈ {±1}, then (7) (as well as (17)) holds and if equality holds then the
mean curvature H is constant. Moreover, if M̃ also carries a (−iε/2)-Killing
spinor, then equality holds if and only if M is totally umbilical with constant mean
curvature.

Since the standard hyperbolic space Hn+1 has both (i/2)- and (−i/2)-Killing
spinors (see, e.g., [Baum 1989a]), the previous result immediately implies the next:
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Corollary 4.2. The only oriented, compact, connected hypersurfaces immersed
into the hyperbolic space Hn+1 satisfying λ1(D2

M) =
1
4 n2(H 2

− 1) are the totally
umbilical round spheres.

In Section 4D, we will discuss the case of pseudohyperbolic spaces.

4A. The Hijazi–Montiel approach in the presence of imaginary Killing spinors.
Assume that the ambient manifold M̃ carries an (i/2)-Killing spinor 9 ∈ 0(6M̃).
After restriction to M, it is a straightforward computation to show that 9 satisfies
the modified Dirac equation

(22) D+9 = n
2 H9

where D+ is a zero order modification of the extrinsic Dirac operator defined by

(23) D+ϕ := Dϕ− n
2 iν ·ϕ

for ϕ ∈0(6). Note that we do not assume that the mean curvature H is constant for
the moment. Suppose however that H is positive everywhere on M, and consider
the metric conformally related to g on M, defined by g := H 2g. It is a well-known
fact [Hitchin 1974; Hijazi 1986] that under a conformal change of the metric, there
exists a bundle isometry ϕ 7→ ϕ, 6→6, between the two extrinsic spinor bundles
6 and 6 over (Mn, g) and (Mn, g). Under this identification, the extrinsic Dirac
operators D and DH associated to g and g and acting respectively on 6 and 6 are
related by

(24) DHϕ = H−(n+1)/2 D(H (n−1)/2ϕ)

for all ϕ ∈ 0(6). Now consider on 6 the zero order modification of the extrinsic
Dirac operator DH given by

DH
+
ϕ := DHϕ− n

2 H−1Iνϕ

where Iν is the Hermitian endomorphism of 6 defined by Iνϕ := iν ·ϕ for all
ϕ ∈ 0(6). Notice that DH

+
is an elliptic and self-adjoint differential operator of

order one which, since M is assumed to be compact, has a discrete spectrum. In the
following, we will denote by λ1(DH

+
) the first nonnegative eigenvalue of DH

+
. Now

for every ϕ ∈ 0(6), consider the spinor field ϕH := H−(n−1)/2ϕ ∈ 0(6) which is
easily seen to satisfy

DH
+
ϕH = H−(n+1)/2 D+ϕ,

using the conformal covariance (24) of D. Using (22) on the (i/2)-Killing spinor
9 ∈ 0(6M̃) in the previous identity gives DH

+
9H =

n
29H . This immediately

implies that λ1(DH
+
)≤ n

2 . Furthermore, if the mean curvature H is constant, it is
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an easy computation using {D, iν · } = 0 to show that

Spec((DH
+
)2)=

{
λk((DH

+
)2)=

H−2
(
λk(D)2+ 1

4 n2
)

λk(D)
∈ Spec(D)

}
,

so that λ1(DH
+
) = n

2 if and only if λ1(D2) = n2

4 (H
2
− 1). Thus, we have proved

this:

Proposition 4.3. Let M be an orientable, compact, connected hypersurface im-
mersed in a Riemannian spin manifold (M̃n+1, g) admitting a (i/2)-Killing spinor,
and suppose that the mean curvature of M, after a suitable choice of the unit normal,
satisfies H > 0. Then the first nonnegative eigenvalue of DH

+
satisfies λ1(DH

+
)≤ n

2 .
Moreover, if H is constant, equality occurs if and only if equality occurs in (7).

From this proposition, we deduce that any immersion for which (7) — or equiva-
lently (17) — is an equality realizes a maximum for the map

F+1 : Imm+(M, M̃)→ R, ι 7→ λ1(D
Hι
+ ),

where Imm+(M, M̃) denotes the space of isometric immersions of M in M̃ with
nonvanishing mean curvature Hι. This characterization of hypersurfaces satisfying
the equality case in (7) leads to the study of the critical points of the functional F+1 .

Remark 4.4. If the manifold M̃ carries a (−i/2)-Killing spinor, then Proposition 4.3
is true with the operators D+ and DH

+
replaced respectively by

D− := D+ n
2 iν · : 0(6)→ 0(6)

and

(25) DH
−
:= DH

+
n
2 H−1Iν : 0(6)→ 0(6).

In this situation, the corresponding functional is defined by

iF−1 : ι 7→ λ−1 (D
Hι
− )

where λ−1 (D
Hι
− ) is the first nonnegative eigenvalue of DHι

− .

4B. Derivatives of the functional F±
1 . As explained in the previous section we

are led to study the first derivatives of the functional F±1 at least in a particular
situation. As above, we start with an immersion ι= ι0 :M→ M̃ with positive mean
curvature (not necessarily constant) and such that λ1(DH

+
)= n

2 . Note that here we
do not assume the existence of imaginary Killing spinor fields on M̃ .

Now we deform the immersion ι along normal geodesics; that is, we consider, for
ε > 0 sufficiently small, the map F : ]−ε, ε[×M→ M̃, (t, x) 7→ expι(x)(tνx). Note
that, choosing ε > 0 sufficiently small, the map F is smooth and F(t, · ) : M→ M̃
is an immersion such that F(0, · )= ι. In fact, the map t 7→ F(t, x) is the geodesic
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starting from ι(x) with speed vector νx , and so it is analytic. For each t ∈ ]−ε, ε[,
we denote by gt := F(t, · )∗g the induced metric on M, by νt the unit normal field
inducing the orientation of M, by Ht :=−

1
n tr(∇̂νt) the mean curvature of F(t, · )—

which, up to making ε > 0 smaller, may be assumed to be positive on M for all
t ∈ ]−ε, ε[— and we set gt := H 2

t gt .
We also denote by DHt the Dirac operator associated to the metric gt and let

DHt
+ :=DHt−

n
2 H−1

t Iνt :0(6t)→0(6t), where Iνt is the Hermitian endomorphism
of 6t defined by Iνtϕ := iνt ·ϕ. Here 6t denotes the extrinsic spinor bundle over
M endowed with the spin structure induced by M̃ and the Riemannian metric gt .
Since we perturb the immersion analytically, the family (DHt

+ ) with t ∈]− ε, ε[
is an analytic family of unbounded closed self-adjoint operators with compact
resolvent, therefore the spectrum of DHt

+ can be written as a sequence (µ+k (t))k∈N,
where each eigenvalue µ+k (t) depends analytically on t and where corresponding
eigenvectors can be found to also depend analytically on t ; see [Kato 1995]. We
denote by λ+1 (t) any branch of that spectrum with λ+1 (0)= λ1(DH

+
), the smallest

nonnegative eigenvalue of DH
+
= DH0

+ . Following [Bär et al. 2005], we denote
by τ t

0 : 60 = 6 → 6t the parallel transport along the curves s 7→ (s, x) in the
so-called generalized cylinder

(
]−ε, ε[ × M, dt2

⊕ gt
)
, for all t ∈ ]−ε, ε[. Then

for any analytic family (8t)t of eigenvectors associated to λ+1 (t), differentiating
the identity

λ+1 (t)
∫

M
|8t |

2 dvgt =

∫
M

Re
〈
DHt
+ 8t ,8t

〉
dvgt

at t = 0 yields

dλ+1
dt
(0)

∫
M
|80|

2 dvg0 =

∫
M

Re
〈 d
dt

∣∣∣
t=0
(τ 0

t DHt
+ τ

t
080),80

〉
dvg0 .

Now we have τ 0
t DHt
+ τ

t
0 = τ

0
t DHt τ t

0−
n
2 H−1

t τ 0
t Iνt τ

t
0 and, since the variation of ι is a

geodesic normal one, the vector field νt =
∂
∂t is parallel along the curves s 7→ (s, x),

so that τ 0
t Iνt τ

t
0 = Iν0 = Iν for all t ∈ ]−ε, ε[. With the formula for the first variation

of the Dirac operator by J.-P. Bourguignon and P. Gauduchon [1992] (see also [Bär
et al. 2005]), we deduce that

dλ+1
dt
(0)

∫
M
|80|

2 dvg0

=−
1
2

∫
M

g0

(
T80

,
∂gt

∂t
(0)
)

dvg0 +
n
2

∫
M

H−2 ∂Ht

∂t

∣∣∣
t=0

Re
〈
Iν80,80

〉
dvg0,

where
T80

(X, Y ) := 1
2 Re

〈
X ·

6
∇Y80+ Y ·

6
∇X80,80

〉
is the so-called energy–momentum tensor associated to 80. Here ·

6
is the Clifford

multiplication on 6 defined by (8) and ∇ is the spin Levi–Civita connection with
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respect to the metric g0. Note that we kept the same notation for the Hermitian
scalar products on 6 and 6. Now fix an eigenvector 80 ∈ 0(6) for the Dirac-type
operator DH

+
associated with λ1(DH

+
) and let 90 := H (n−1)/280. We compute

dλ+1 /dt(0) in terms of 90 ∈ 0(6) and of geometric quantities attached to ι. First,
since ∂F/∂t(0, · )= ν, we have on the one hand (see [Montiel 1999])

∂gt
∂t
(0)= ∂

∂t

∣∣∣
t=0
(H 2

t gt)=
1
n 2H

(
|A|2+ r̃ic(ν, ν)

)
g− 2H 2g(A· , · ).

On the other hand, using the isomorphism6→6, we may write (see, e.g., [Ginoux
2009, Section 1.3])

T80
(X, Y )= H−n+2 T90(X, Y ),

for all X, Y ∈ 0(TM), where T90 is the energy–momentum tensor associated to 90

defined by

T90(X, Y ) := 1
2 Re

〈
X ·

6
∇Y90+ Y ·

6
∇X90, 90

〉
.

Therefore, assuming without loss of generality that
∫

M |80|
2 dvg0 = 1, we compute

dλ+1
dt
(0)= 1

n

∫
M

H−1(
|A|2+ r̃ic(ν, ν)

)(n
2 Re〈iν ·90, 90〉− g(T90, g)

)
dvg

+

∫
M

g(T90, A) dvg.

But since g(T90, g)= trg(T90)= Re〈D90, 90〉, we obtain

dλ+1
dt
(0)=−1

n

∫
M

H−1(|A|2+ r̃ic(ν, ν))Re〈D+90, 90〉 dvg +

∫
M

g(T90, A) dvg.

However, since 80 ∈0(6) is an eigenspinor for DH
+

associated with the eigenvalue
λ+1 (0)=

n
2 and from the equivalence

(26) DH
+
80 =

n
280 ⇐⇒ D+90 =

n
2 H90,

one concludes that

(27)
dλ+1
dt
(0)=−1

2

∫
M
(|A|2+ r̃ic(ν, ν))|90|

2 dvg +

∫
M

g(T90, A) dvg.

To compute the remaining term g(T90, A), we define a new covariant derivative by
∇̂
+

X := ∇̂X − (i/2)X · on 6. Then a lengthy but direct calculation using the spin
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Gauss formula (9) yields that for any ϕ ∈ 0(6),

|∇̂
+ϕ|2 :=

n∑
j=1

|∇̂
+

e j
ϕ|2

=

n∑
j=1

∣∣∇e jϕ+
1
2 A(e j ) · ν ·ϕ−

i
2 e j ·ϕ

∣∣2
= |∇ϕ|2+ 1

4(|A|
2
+ n)|ϕ|2− g(Tϕ, A)−Re

〈
iν · (Dϕ− 1

2 nHϕ), ϕ
〉
.

For ϕ =90, we deduce, using the right-hand side of (26), that

g(T90, A)= |∇90|
2
− |∇̂

+90|
2
+

1
4(|A|

2
− n)|90|

2.

Now integrating this identity over M with the help of the famous Schrödinger–
Lichnerowicz formula

D2
=∇

∗
∇ +

1
4 S

gives∫
M

g(T90, A) dvg

=

∫
M

(
Re〈D290, 90〉−

1
4 S|90|

2
− |∇̂

+90|
2
+

1
4(|A|

2
− n)|90|

2) dvg.

Here S stands for the scalar curvature of (Mn, g). On the other hand, from (10),
(26), and the anticommutativity rule {D, iν· } = 0+, we check that

D290 =
1
4 n2(H 2

− 1)90+
1
2 n∇H · ν ·90,

so that Re〈D290, 90〉 =
1
4 n2(H 2

− 1)|90|
2, and hence∫

M
g(T90, A) dvg =

∫
M

( 1
4(n

2(H 2
− 1)− S+ |A|2− n)|90|

2
− |∇̂

+90|
2) dvg.

The Gauss formula for the scalar curvature provides

S = S̃− 2r̃ic(ν, ν)+ n2 H 2
− |A|2,

from which∫
M

g(T90, A) dvg

=−

∫
M

(1
4(S̃+ n(n+ 1))− 1

2(|A|
2
+ r̃ic(ν, ν))

)
|90|

2 dvg −

∫
M
|∇̂
+90|

2 dvg

follows. Inserting this identity in (27), we finally deduce that

dλ+1
dt
(0)=−

∫
M

(
|∇̂
+90|

2
+

1
4(S̃+ n(n+ 1))|90|

2) dvg.
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It is worth noticing that this formula holds if we assume that it is the first nonnegative
eigenvalue λ1(DH

−
) of DH

−
which satisfies λ1(DH

−
) = n

2 instead of λ1(DH
+
); in

this situation, ∇̂+ has to be replaced with the covariant derivative defined by
∇̂
−

X := ∇̃X +
i
2 X · .

From this computation, it is now straightforward to give a necessary condition
for an immersion ι to be a critical point of F±1 :

Theorem 4.5. Let M be an oriented, compact, connected hypersurface isometri-
cally immersed in a Riemannian spin manifold (M̃n+1, g). Assume that the scalar
curvature S̃ of M̃ is greater or equal to −n(n+ 1) and that the mean curvature H
of M with respect to a suitable choice of the normal is positive. If λ1(DH

ε )=
n
2 for

some ε ∈ {±1} and it is critical for all the variations of the hypersurface M in M̃,
then S̃ = −n(n + 1) and ∇̃X9 =

iε
2 X ·9 for all X ∈ 0(TM) for all 9 ∈ 0(6)

satisfying
Dε9 =

n
2 H9.

4C. Proof of Theorem 4.1. If M̃ carries a (iε/2)-Killing spinor for some ε ∈ {±1},
then from Theorem 3.3 and Remarks 3.4, the inequalities (17) and (7) hold. More-
over, if equality holds in (17), then Proposition 3.5 implies that the mean curvature
is constant and then λ1(D)2 = 1

4 n2(H 2
− 1).

Assume now that M̃ carries an (i/2)- as well as a (−i/2)-Killing spinor. From
Proposition 4.3, we deduce that such an immersion is a maximum for the functional
F+1 and thus dλ+1 /dt(0)= 0. Let8 be a nonzero (−i/2)-Killing spinor on M̃ so that
D−8= n

2 H8. From this equation and since H is constant, a direct computation
shows that the spinor 8̃ := H8− iν ·8 satisfies D+8̃= n

2 H8̃. On the other hand,
since the existence of a (±i/2)-Killing spinor on M̃ implies that M̃ is an Einstein
manifold with scalar curvature S̃=−n(n+1) (see [Baum et al. 1991], for example),
Theorem 4.5 applies and we get that ∇̂X 8̃=

i
2 X · 8̃ for all X ∈ 0(TM); that is,

i
2 X · (H8− iν ·8)= ∇̂X (H8− iν ·8)

= H
(
−

i
2 X ·8

)
+ i A(X) ·8− iν ·

(
−

i
2 X ·8

)
= i A(X) ·8− i

2 H X ·8− i
2 X · iν ·8.

This implies that (A(X)− H X) ·8 = 0 for all X ∈ 0(TM), and since 8 has no
zero, M is totally umbilical. This concludes the proof of Theorem 4.1.

4D. The case of pseudohyperbolic spaces. In this section, we examine the case
of other complete ambient manifolds M̃ carrying imaginary Killing spinors. These
manifolds have been classified by H. Baum [1989b; 1989a] and are known as
pseudohyperbolic spaces. For the sake of completeness and since we need an
additional argument for our purpose, we recall the result of those references and
give a sketch of the proof:
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Proposition 4.6. Let (M̃n+1, g) be a complete Riemannian spin manifold admitting
a nonzero (iε/2)-Killing spinor for some ε ∈ {±1}. Then (M̃n+1, g) is isometric to
either the real hyperbolic space of constant sectional curvature−1 or to the warped
product (R× N , dt2

⊕ e2t gN ), where (N n, gN ) is a complete nonflat Riemannian
spin manifold carrying at least one nonzero parallel spinor. In the latter case, if n is
odd, denote by K0(N , gN ) the space of parallel spinors on (N n, gN ) for the induced
metric and spin structure, and if n is even, denote by Kε0(N , gN ) its projection onto
the half-spinors bundle 6εN. Then, the map{
Kε0(N , gN )→

{iε
2 -Killing spinors on M̃

}
, ϕ 7→ e

t
2ϕ if n is even,

K0(N , gN )→
{iε

2 -Killing spinors on M̃
}
, ϕ 7→ e

t
2
(
ϕ⊕ εi ∂

∂t ·ϕ
)

if n is odd,

is a well-defined monomorphism. Moreover, if N is compact, then this is actually
an isomorphism.

Proof. Let ϕ be a nonzero (iε/2)-Killing spinor on the manifold (M̃n+1, g). As
Baum showed (see [1989b] and references therein), if (M̃, g) is not isometric to
the hyperbolic space, then there must exist a unit smooth vector field ξ on M̃
with iξ ·ϕ = εϕ on M̃. From this relationship, the foliated structure of M̃ can be
deduced as follows. First note that ξ = (εV )/|V |, where g(V, X) := i〈X · ϕ, ϕ〉
for all X ∈ 0(TM̃), and, in particular, V = ε∇|ϕ|2 has no zeros on M̃. Since
∇̂X V = ε|ϕ|2 X (that is V is a closed conformal vector field on M̃), one deduces
that ∇̂Xξ = X−g(X, ξ)ξ for all X ∈0(TM̃), and as a consequence the flow of ξ —
which is well-defined and complete since (M̃, g) is complete — preserves the level
hypersurfaces of |ϕ|2 = |V |. On the other hand, the second fundamental form of
each such hypersurface with respect to ξ is − Id, the Lie derivative of the metric in
the direction of ξ is given by Lξg = 2g|ξ⊥×ξ⊥ , and hence, setting

N := {x ∈ M̃ : |ϕ|2(x)= 1} ⊂ M̃,

the flow of ξ provides a diffeomorphism R× N → M̃ identifying ξ with ∂
∂t and

pulling back the metric g onto dt2
⊕ e2t gN , where gN is the metric induced from g

onto N. This done, the spin Gauss formula (9) implies that, for any X ∈ 0(TN ),

iε
2 X ·ϕ = ∇̂Xϕ =∇

6N
X ϕ− 1

2 X · ξ ·ϕ =∇6N
X ϕ+ iε

2 X ·ϕ,

from which ∇6Nϕ|N = 0 follows: the restriction of ϕ onto any level hypersurface
of |ϕ|2 is a parallel spinor. Here ∇6N stands for the spin Levi–Civita connection
on 6 := 6M̃ |N . When n is even, the condition iξ · ϕ = εϕ actually implies that
ϕ ∈ 0(6εN ) since iξ · coincides with the Clifford action of the complex volume
form of (N, gN ). When n is odd, the spinor ϕ|N can be rewritten in the form
ϕ|N = ϕ0⊕ εi ∂∂t ·ϕ0, where ϕ0 ∈ 0(6N ) is parallel. The dependence on t of ϕ is
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easily computed thanks to

∂ϕ

∂t
= ∇̂ ∂

∂t
ϕ = iε

2
∂

∂t
·ϕ = 1

2ϕ,

from which ϕ(t, · )= e
t
2ϕ(0, · ) follows. This gives the formulas for the above map,

which is obviously a right inverse to the “restriction” map{{ iε
2 -Killing spinors on M̃

}
→ Kε0(N, gN ), ϕ 7→ ϕ|{0}×N if n is even,{ iε

2 -Killing spinors on M̃
}
→ K0(N, gN ), ϕ 7→ ϕ+|{0}×N if n is odd.

In case N is compact, this restriction map is surjective, a remark which is missing in
[Baum 1989a]. To establish this, let ψ be any further nonzero (iε/2)-Killing spinor
on (M̃n+1, g). Again, ψ splits (M̃n+1, g) as a warped product (R×Pn, ds2

⊕e2s g6),
where (Pn, gP) is complete, spin, and carries a nonzero parallel spinor. Now, using
[Montiel 1999], the latter splitting must “coincide” (in a sense that is made precise
below) with the former. Namely, for all t ∈ R, the hypersurface {t}× N is a totally
umbilical compact hypersurface of M̃ with constant mean curvature. Therefore, by
applying [op. cit., Lemma 4] to the foliation of M̃ induced by ψ (whose leaves are
not assumed to be compact), we easily conclude that for each t ∈ R, there exists an
s ∈R such that {t}×N ={s}×P ; in particular, P itself must be compact. The same
argument shows that, for each s ∈R, there exists a t ∈R with {s}×P ={t}×N. This
yields that, if 8 : R× P→ R× N, (s, x) 7→ (φ1(s, x), φN (s, x)), is the isometry
induced by both splittings, then the component map φ1 already only depends on s.
By 8∗(dt2

⊕ e2t gN ) = ds2
⊕ e2s gP and the existence of an inverse map for 8

of a similar form, one deduces on the one hand that ∂φN
∂s (s, x) = 0 and hence

(φ′1(s))
2
= 1 for all s ∈R, and on the other hand that e2s gP = e2φ1(s)(φN )

∗gN holds
for all s ∈ R. This in turn implies the existence of an s0 ∈ R with φ1(s) = s − s0

and gP = e−2s0(φN )
∗gN . Thus, up to homotheties on the metrics gP and gN , the

Riemannian manifolds (P, gP) and (N , gN ) are isometric and, up to translations
in s, the splittings R× P and R× N coincide. By the first part of the proof, ψ
must come from a parallel spinor on N and hence lie in the image of the map of
Proposition 4.6. This concludes the proof. �

From the previous result, we deduce a characterization of hypersurfaces for
which inequality (17) is an equality when M̃ is a pseudohyperbolic space in several
situations. In fact, as we will see, we are left with the case n is even, the manifold
(N n, gN ) has only positive (or only negative) nonzero parallel spinors, and M is
only immersed in M̃. Indeed:

Corollary 4.7. Let (M̃n+1, g) := (R×N , dt2
⊕e2t gN ), where (N n, gN ) is a closed

nonflat Riemannian spin manifold endowed with at least one nonzero parallel spinor
and assume that M̃ carries the induced spin structure (in particular, (M̃, g) admits
an imaginary Killing spinor for at least one of the constants ± i

2 ). Let Mn ↪→ M̃
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be any immersed closed orientable hypersurface carrying the induced metric and
spin structure and suppose that one of the following supplementary conditions is
fulfilled:

(a) n is odd.

(b) n is even and (N n, gN ) has nonzero positive and negative parallel spinors.

(c) n is even and Mn bounds a domain in M̃.

Then, M satisfies the equality case in (17) (and so in (7)) if and only if M = {t}× N
for some t ∈ R.

Proof. From Proposition 3.5, if Mn ↪→ M̃n+1 satisfies the equality case in (17),
then its mean curvature H must be constant. If either (a) or (b) is fulfilled, then
by Proposition 4.6, the manifold (M̃, g) admits nonzero imaginary Killing spinors
for both constants ± i

2 , therefore Proposition 3.5 implies that M is totally umbilical
which, combined with [Montiel 1999, Lemma 4], yields M = {t} × N for some
t ∈ R. If (c) is fulfilled, this time [Montiel 1999, Theorem 10] applies and yields
again M = {t}× N for some t ∈ R. This shows the “only if” part of the corollary.
The “if” part is easy to see since λ1(DM)= 0 because of parallel spinors on N, and
on the other hand |H | = 1 by the explicit form of the metric. �
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