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This is a follow-up to our 2013 paper “Categorifications of the extended
affine Hecke algebra and the affine quantum Schur algebra Ŝ(n, r) for
3≤ r < n” in which we categorified the affine q-Schur algebra Ŝ(n, r) for
2 < r < n using a quotient of the categorification of Uq(ŝln) of Khovanov
and Lauda (2009, 2010, 2011). In this paper we categorify Ŝ(n, n) for n ≥ 3
using an extension of the aforementioned quotient.
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1. Introduction

The affine q-Schur algebra Ŝ(n, r) was first defined and studied by Ginzburg and
Vasserot [1993] and later also studied by Green [1999] and Lusztig [1999]. Let us
assume that n, r ≥ 3. Then Ŝ(n, r) is a quotient of Uq(ŝln) and Uq(ĝln) if r < n.
In [Mackaay and Thiel 2013] we defined a quotient of Khovanov and Lauda’s
categorification U(ŝln), denoted Ŝ(n, r), and showed that the Grothendieck group
of its Karoubi envelope (idempotent completion) was exactly isomorphic to Ŝ(n, r)
for 2< r < n. In order to establish the isomorphism, we used Doty and Green’s
[2007] idempotented presentation of Ŝ(n, r) for 2< r < n.

In this paper we address the case n = r , which is slightly more complicated
because Ŝ(n, n) is not a quotient of Uq(ŝln) or Uq(ĝln) but of the strictly larger
algebra Ûq(ĝln) called the extended affine general linear quantum algebra [Green
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1999]. Therefore, we have to extend the Khovanov–Lauda calculus of the cor-
responding quotient of U(ŝln) by adding certain generating 1- and 2-morphisms
and relations. We denote that extended 2-category by Ŝ(n, n) and show that the
Grothendieck group of its Karoubi envelope is isomorphic to Ŝ(n, n) for n ≥ 3. For
that isomorphism we use Deng, Du and Fu’s presentation of Ŝ(n, n) [Deng et al.
2012], which extends Doty and Green’s.

A little warning should be made. The results in this paper are not sufficient to
categorify Ûq(ĝln) diagrammatically, because that would require a categorification
of Ŝ(n, r) for 2< n< r too. However, no presentation of Ŝ(n, r) of Drinfeld–Jimbo
type is known in that case, so even on the decategorified level there is an open
question that would need to be solved first. For more information on this problem,
see Question 4.3.2 in [Green 1999] and Chapter 5 in [Deng et al. 2012].

There is another technical detail that we should explain beforehand. In [Mackaay
and Thiel 2013], we introduced a new degree-2 variable y and a y-deformation of
the relations in Khovanov and Lauda’s U(ŝln), denoted U(ŝln)[y]. The correspond-
ing Schur quotients were denoted Ŝ(n, r)[y]. This y-deformation was introduced in
order to establish a precise relation between Ŝ(n, r)[y] and an extension of the affine
singular Soergel bimodules built from Soergel’s reflection faithful representation
of the affine Weyl group, which were defined and studied by Williamson [2011].
However, we also proved that the ideals generated by y are virtually nilpotent, so
that the Grothendieck groups of U(ŝln)[y] and Ŝ(n, r)[y] are isomorphic to those of
U(ŝln) and Ŝ(n, r). Furthermore, for y = 0, the 2-representations in [Mackaay and
Thiel 2013] give 2-functors from U(ŝln) to certain extensions of the affine Soergel
bimodules built from the geometric representation of the affine Weyl group, which is
not reflection faithful but still has some nice properties (for more information on this
topic, see Section 3.1 in [Elias and Williamson 2013] and the results in [Libedinsky
2008]). In order to keep the calculations simple in this paper, we put y = 0 here. It
would not be hard to give the y-deformed relations in the definition of Ŝ(n, n), which
would give a 2-category Ŝ(n, n)[y], but some of the subsequent calculations would be
much harder in the y-deformed setting, e.g., the ones in the proof of Proposition 3.5.

In general, it would be interesting to know more about the relation between
Ŝ(n, r), for n ≥ r , and its y-deformation and the 2-category of affine singular
Soergel bimodules.

Knowing more about this relation might also help to establish a connection with
the work by Lusztig [1999] and Ginzburg and Vasserot [1993] on perverse sheaves
and affine quantum gln .

2. Affine quantum algebras

In this section, we first recall the definition of the extended affine quantum general
linear algebra Ûq(ĝln) and its subalgebras Uq(ĝln) and Uq(ŝln). After that, we
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recall the definition of the affine quantum Schur algebras Ŝ(n, r), due to Green
[1999]. Furthermore, we recall an idempotented presentation of the affine quantum
Schur algebras, due to Doty and Green [2007] for n > r and to Deng, Du and
Fu [Deng et al. 2012] for n = r .

The (extended) affine quantum general and special linear algebras. For the rest
of this paper, let n ≥ 3.

Since in this paper we are only interested in the affine quantum general and special
linear algebras at level 0, i.e., the q-analogue of the loop algebras without central
extension, we can work with the normal gln-weight lattice, which is isomorphic
to Zn . Let εi = (0, . . . , 1, . . . , 0) ∈ Zn , with 1 being on the i-th coordinate, and
αi = εi − εi+1 ∈ Zn for i = 1, . . . , n, where the subscripts have to be understood
modulo n; e.g., αn = εn − ε1 = (−1, 0, . . . , 0, 1). We also define the Euclidean
inner product on Zn by 〈εi , ε j 〉 = δi, j .

Definition 2.1 [Green 1999]. The extended quantum general linear algebra Ûq(ĝln)

is the associative unital Q(q)-algebra generated by R±1, K±1
i and E±i for i =

1, . . . , n, subject to the relations

Ki K j = K j Ki , Ki K−1
i = K−1

i Ki = 1,(2-1)

Ei E− j − E− j Ei = δi, j
Ki K−1

i+1− K−1
i Ki+1

q − q−1 ,(2-2)

Ki E± j = q±〈εi ,α j 〉E± j Ki ,(2-3)

E2
±i E
± j − (q + q−1)E±i E± j E±i + E

± j E2
±i = 0 if |i − j | = 1 mod n,(2-4)

E±i E± j − E± j E±i = 0 else,(2-5)

R R−1
= R−1 R = 1,(2-6)

R X i R−1
= X i+1 for X i ∈ {E±i , K−1

i }.(2-7)

In all equations, the subscripts have to be read modulo n.

Definition 2.2. The affine quantum general linear algebra Uq(ĝln) ⊆ Ûq(ĝln) is
the unital Q(q)-subalgebra generated by E±i and K±1

i for i = 1, . . . , n.
The affine quantum special linear algebra Uq(ŝln) ⊆ Uq(ĝln) is the unital

Q(q)-subalgebra generated by E±i and Ki K−1
i+1 for i = 1, . . . , n.

Remark 2.3. A little warning about the notation is needed here. Our notation
follows that of [Doty and Green 2007; Green 1999], which differs from that of
[Deng et al. 2012]. What we call Uq(ĝln), Deng, Du and Fu call U1(n). In [Deng
et al. 2012, Remark 5.3.2] they define Û , which is equal to our Ûq(ĝln). Finally,
their U(ĝln) is the quantum loop algebra of gln (see their Definition 2.3.1), which
contains U1(n), i.e., our Uq(ĝln), as a proper subalgebra. In their notation, Û is
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not a subalgebra of U(ĝln) because R ∈ Û would have to be equal to an infinite
linear combination of generators of the latter.

We will also need the bialgebra structure on Ûq(ĝln).

Definition 2.4 [Green 1999]. Ûq(ĝln) is a bialgebra with counit ε : Ûq(ĝln)→Q(q)
defined by

ε(E±i )= 0, ε(R±1)= ε(K±1
i )= 1,

and coproduct 1 : Ûq(ĝln)→ Ûq(ĝln)⊗ Ûq(ĝln) defined by

1(1)= 1⊗ 1,(2-8)

1(Ei )= Ei ⊗ Ki K−1
i+1+ 1⊗ Ei ,(2-9)

1(E−i )= K−1
i Ki+1⊗ E−i + E−i ⊗ 1,(2-10)

1(K±1
i )= K±1

i ⊗ K±1
i ,(2-11)

1(R±1)= R±1
⊗ R±1.(2-12)

As a matter of fact, Ûq(ĝln) is even a Hopf algebra, but we do not need the
antipode in this paper. Note that 1 and ε can be restricted to Uq(ĝln) and Uq(ŝln),
which are bialgebras too.

At level 0, we can also work with the Uq(sln)-weight lattice, which is isomorphic
to Zn−1. Suppose that V is a Uq(ĝln)-weight representation with weights λ =
(λ1, . . . , λn) ∈ Zn; i.e.,

V ∼=
⊕
λ

Vλ

and Ki acts as multiplication by qλi on Vλ. Then V is also a Uq(ŝln)-weight
representation with weights λ̄= (λ̄1, . . . , λ̄n−1)∈Zn−1 such that λ̄ j = λ j−λ j+1 for
j = 1, . . . , n− 1. Conversely, given a Uq(ŝln)-weight representation with weights
µ= (µ1, . . . , µn−1), there is not a unique choice of Uq(ĝln)-action on V . We can
fix this by choosing the action of K1 · · · Kn . In terms of weights, this corresponds
to the observation that, for any r ∈ Z, the equations

λi − λi+1 = µi ,(2-13)
n∑

i=1

λi = r(2-14)

determine λ= (λ1, . . . , λn) uniquely, if there exists a solution to (2-13) and (2-14)
at all. To fix notation, we define the map ϕn,r : Zn−1

→ Zn
∪ {∗} by

(2-15) ϕn,r (µ)= λ

if (2-13) and (2-14) have a solution, and put ϕn,r (µ) = ∗ otherwise. This map
already appeared in [Mackaay and Thiel 2013] and [Mackaay et al. 2013].
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As far as weight representations are concerned, we can restrict our attention
to Beilinson, Lusztig, and MacPherson’s idempotented version of these quantum
groups [Beilinson et al. 1990], denoted ˙̂U(ĝln), U̇(ĝln) and U̇(ŝln) respectively. To
understand their definitions, recall that Ki acts as qλi on the λ-weight space of any
weight representation. For each λ ∈ Zn , adjoin an idempotent 1λ to Ûq(ĝln) and
add the relations

1λ1µ = δλ,µ1λ,

E±i 1λ = 1λ±αi E±i ,

Ki 1λ = qλi 1λ,

R1(λ1,...,λn) = 1(λn,λ1,...,λn−1)R.

Definition 2.5. The idempotented extended affine quantum general linear algebra
is defined by

˙̂U(ĝln)=
⊕
λ,µ∈Zn

1λÛq(ĝln)1µ.

Of course one defines U̇(ĝln)⊂
˙̂U(ĝln) as the idempotented subalgebra generated

by 1λ and E±i 1λ for i = 1, . . . , n and λ ∈ Zn . Similarly for Ûq(sln), adjoin an
idempotent 1λ for each λ ∈ Zn−1 and add the relations

1λ1µ = δλ,µ1λ,

E±i 1λ = 1λ±αi E±i ,

Ki K−1
i+11λ = qλi 1λ.

Definition 2.6. The idempotented quantum special linear algebra is defined by

U̇(ŝln)=
⊕

λ,µ∈Zn−1

1λUq(ŝln)1µ.

Just to fix notation for future use.

Notation 2.7. For i = (µ1i1, . . . , µmim), with µ j =±, define

E i := Eµ1i1 · · · Eµm im ,

and define i3 ∈ Zn to be the n-tuple such that

E i 1λ = 1λ+i3 E i .

Following Khovanov and Lauda [2009; 2010; 2011], we call i a signed sequence
and denote the set of signed sequences by SSeq.

The affine q-Schur algebra. As we did in [Mackaay and Thiel 2013], we first
copy some facts about the action of Ûq(ĝln) on tensor space from [Doty and Green
2007; Green 1999]. After that we define the quotient Ŝ(n, r), for n ≥ r , and
give a presentation of that algebra. Note that the case n = r was not considered
in [Mackaay and Thiel 2013].
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Tensor space. Let V be the Q(q)-vector space freely generated by {et | t ∈ Z}.

Definition 2.8 [Green 1999]. The following defines an action of Ûq(ĝln) on V :

Ei et+1 = et if i ≡ t mod n,(2-16)

Ei et+1 = 0 if i 6≡ t mod n,(2-17)

E−i et = et+1 if i ≡ t mod n,(2-18)

E−i et = 0 if i 6≡ t mod n,(2-19)

K±1
i et = q±1et if i ≡ t mod n,(2-20)

K±1
i et = et if i 6≡ t mod n,(2-21)

R±1et = et±1 for all t ∈ Z.(2-22)

Note that V is clearly a weight-representation of Ûq(ĝln), with et having weight
equal to εi for i ≡ t mod n. Therefore V is also a representation of ˙̂U(ĝln). Let r ∈
N>0 be arbitrary but fixed. As usual, one extends the above action to V⊗r using
the coproduct in Ûq(ĝln). Again, this is a weight-representation, and therefore
also a representation of ˙̂U(ĝln). There is also a right action of the extended affine
Hecke algebra Ĥ Âr−1

on V⊗r , whose precise definition is not relevant here, which
commutes with the left action of Ûq(ĝln).

Definition 2.9 [Green 1999]. The affine q-Schur algebra Ŝ(n, r) is by definition
the centralizing algebra

EndĤ Âr−1
(V⊗r ).

It turns out that the image of the representation ψn,r : Ûq(ĝln)→ End(V⊗r ) is
isomorphic to Ŝ(n, r). If n > r , then we can even restrict to Uq(ŝln)⊂ Ûq(ĝln), i.e.,

ψn,r (Uq(ŝln))∼= Ŝ(n, r).

If n = r , this is no longer true, as we will show below.

Presentation of Ŝ(n, r) for n>r . In this subsection, let n>r . As already mentioned,
the map

ψn,r : U̇(ĝln)→ End(V⊗r )→ Ŝ(n, r)

is surjective. This observation gives rise to the following presentation of Ŝ(n, r).
The proof can be found in [Doty and Green 2007, Theorem 2.6.1].

Theorem 2.10 [Doty and Green 2007]. For n > r , the Q(q)-algebra Ŝ(n, r) is
isomorphic to the associative unital Q(q)-algebra generated by 1λ and E±i for
λ ∈3(n, r) and i = 1, . . . , n, subject to the relations
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1λ1µ= δλ,µ1λ,(2-23)

E±i 1λ= 1λ±αi E±i ,(2-24)

(Ei E− j−E− j Ei )1λ= δi, j [λi−λi+1]1λ,(2-25) (
E2
±i E
± j−(q+q−1)E

±i E
± j E

±i+E
± j E2

±i
)
1λ= 0 if |i− j | = 1 mod n,(2-26)

(E±i E± j−E± j E±i )1λ= 0 else.(2-27)

In all equations the subscripts i, j have to be read modulo n, and the equations
hold for any λ ∈3(n, r). If λ±αi 6∈3(n, r), the corresponding idempotent is 0 by
convention.

We can restrict ψn,r even further and obtain a surjection ψn,r : U̇(ŝln)→ Ŝ(n, r),
which can be given explicitly on the generators. For any λ ∈ Zn−1, we have

ψn,r (E±i 1λ)= E±i 1ϕn,r (λ),

where ϕn,r : Zn−1
→3(n, r)∪{∗} is the map defined in (2-15). By convention, we

put 1∗ = 0.

Presentation of Ŝ(n, n). A presentation of Ŝ(n, n) of Drinfeld–Jimbo type is harder
to get, because

ψn,n(Uq(ŝln))= ψn,n(Uq(ĝln))

is a proper subalgebra of Ŝ(n, n). Therefore Green [1999] introduced Ûq(ĝln),
which contains the new invertible element R, and proved that Ŝ(n, n) is a quotient
of this extended algebra. As vector spaces, we get the Q(q)-linear isomorphism

Ŝ(n, n)∼= ψn,n(Uq(ŝln))⊕
⊕
t 6=0

Q[Rt , R−t
].

However, this is not an algebra isomorphism. In [Deng et al. 2012, Theorem 5.3.5],
the authors show which relations need to be added in order to get a presentation
of the algebra Ŝ(n, n). Let us first recall a slightly different presentation obtained
by adding two new elements, E±δ, instead of R±1. This presentation, also due to
Deng et al. [2012], turns out to be easier to categorify. As in [Mackaay and Thiel
2013], we write 1n := 1(1n). Recall that the divided powers are defined by

E (a)
±i :=

Ea
±i

[a]!
for i = 1, . . . , n.

Theorem 2.11 [Deng et al. 2012]. The Q(q)-algebra Ŝ(n, n) is generated by E±δ ,
E±i and 1λ, for i = 1, . . . , n and λ∈3(n, n), subject to the relations (2-23) through
(2-27) together with
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E±δ1λ = 1λE±δ = 0 for all λ 6= (1n),(i)

E±δ1n = 1n E±δ,(ii)

E+δE−δ1n = E−δE+δ1n = 1n,(iii)

Ei E+δ1n = E (2)i Ei−1 · · · E1 En · · · Ei+11n,(iv)

1n E+δEi = 1n Ei−1 · · · E1 En · · · Ei+1 E (2)i ,(v)

E−i E+δ1n = Ei−1 · · · E1 En · · · Ei+11n,(vi)

1n E+δE−i = 1n Ei−1 · · · E1 En · · · Ei+1,(vii)

E−i E−δ1n = E (2)
−i E

−(i+1) · · · E−n E−1 · · · E−(i−1)1n,(viii)

1n E−δE−i = 1n E−(i+1) · · · E−n E−1 · · · E−(i−1)E
(2)
−i ,(ix)

Ei E−δ1n = E−(i+1) · · · E−n E−1 · · · E−(i−1)1n,(x)

1n E−δEi = 1n E−(i+1) · · · E−n E−1 · · · E−(i−1)(xi)

for any i = 1, . . . , n.

To see that Theorem 2.11 really gives a presentation of Ŝ(n, n), recall the fol-
lowing definition given in [Deng et al. 2012, (5.3.1.1) and (5.3.1.2)]. (They use the
notation ρ where we use R):

Definition 2.12. Define

R−1
:= E+δ1n +

n∑
i=1

∑
(a1,...,an)∈3(n,n)

ai=0

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1(an,a1,...,an−1)

and

R := E−δ1n +

n∑
i=1

∑
(a1,...,an)∈3(n,n)

ai=0

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1(a1,...,an).

Then note that

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1(an,a1,...,an−1)

= 1(a1,...,an)E
(ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1
and

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1λ = 0

for all λ 6= (an, a1, . . . , an−1). Likewise, we have

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1(a1,...,an)

= 1(an,a1,...,an−1)E
(ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)
and

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1λ = 0
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for all λ 6= (a1, . . . , an). These remarks show that Proposition 5.3.3 and Corol-
lary 5.3.4 in [Deng et al. 2012] imply that the presentation of Ŝ(n, n) in Theo-
rem 5.3.5 in that paper is equivalent to the one we have given in Theorem 2.11. In
particular, the relations in Theorem 2.11 imply the following relations, which are
exactly the ones in [Deng et al. 2012, Theorem 5.3.5]:

Corollary 2.13. In Ŝ(n, n), we have

R R−1
= R−1 R = 1, RE±i R−1

= E±(i+1), R1λR−1
= 1(λn,λ1...,λn−1).

As usual, we read the indices modulo n.

Therefore, the surjective algebra homomorphism

ψn,n :
˙̂U(ĝln)→ Ŝ(n, n)

can be defined as

ψn,n(1λ)=
{

1λ if λ ∈3(n, n),
0 else,

and
ψn,n(E±i 1λ)= E±iψn,n(1λ), ψn,n(R±11λ)= R±1ψn,n(1λ).

In Lemma 3.2 and Corollary 5.6 in [Deng and Du 2013], the authors also show
that there exists an embedding

ιn : Ŝ(n, n)→ Ŝ(n+ 1, n),

which gives an isomorphism of algebras

Ŝ(n, n)∼=
⊕

λ,µ∈3(n,n)

1(λ,0) Ŝ(n+ 1, n)1(µ,0).

At that point of their paper they use a different presentation of the affine q-Schur
algebras, but by [Deng and Du 2013, Proposition 7.1] it is not hard to work out
the image under ιn of the generators of Ŝ(n, n) in Theorem 2.11. Note that we
have multiplied their images of E+n and E−n by −1, which is more convenient for
categorification and does not invalidate their results.

Proposition 2.14 [Deng and Du 2013]. The Q(q)-linear algebra homomorphism

ιn : Ŝ(n, n)→ Ŝ(n+ 1, n)

defined by

1λ 7→ 1(λ,0),

E±i 1λ 7→ E±i 1(λ,0),

En1λ 7→ En En+11(λ,0),
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E−n1λ 7→ E−(n+1)E−n1(λ,0),

E+δ1n 7→ En En−1 · · · E1 En+11(1n,0),

E−δ1n 7→ E−(n+1)E−1 · · · E−n1(1n,0)

for any 1≤ i ≤ n− 1 and λ ∈3(n, n), is an embedding and gives an isomorphism
of algebras

Ŝ(n, n)∼=
⊕

λ,µ∈3(n,n)

1(λ,0) Ŝ(n+ 1, n)1(µ,0).

3. A diagrammatic categorification of Ŝ(n, n)

Definition 3.1. The 2-category Ŝ(n, n) is defined as the quotient of U(ĝln) by the
ideal generated by all diagrams with regions whose labels are not contained in
3(n, n), just as in [Mackaay and Thiel 2013] (taking y = 0 in that paper), together
with the generating 1-morphisms

1nE+δ1n{t} and 1nE−δ1n{t},

for t ∈ Z, the following generating 2-morphisms of degree 0 (with notation in the
top row and the 2-morphisms below):

1E+δ1n{t} 1E−δ1n{t}
OO

δ

OO

δ
�� δ �� δ

OO

δ

δ

(1n)(1n) ��

δ

δ

(1n)(1n)
�� JJ

δ
(1n)

��TT

δ
(1n)

WW



δ (1n)
GG ��

δ (1n)

and the following generating 2-morphisms of degree 1 (again with notation in the
top row and 2-morphisms below):

δ,i δ,i

δ,i δ,i

i i−1 1 n i+2 i+1

δ

(1n)

������ ���� ��������

i i+1 n 1 i−2 i−1

δ

(1n)

������ ���� ��������

i i−1 1 n i+2 i+1

δ

(1n)

�������� ������������

i i+1 n 1 i−2 i−1

δ

(1n)

�������� ������������
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which are subject to the relations:

E+δ1n and E−δ1n are biadjoint inverses of each other,

OO �� OO

(1n)

(1n)

δ

= OO

(1n)(1n)

δ

and �� OO ��

(1n)

(1n)

δ

= ��

(1n)(1n)

δ

,(3-1)

OO��OO

(1n)

(1n)
δ

= OO (1n)(1n)

δ

and ��OO��

(1n)

(1n)
δ

= �� (1n)(1n)

δ

,(3-2)

��MM

δ

(1n)

=
QQ��

δ

(1n)

= 1,(3-3)

�� JJ

δ (1n)
WW



= ��

δ

OO (1n)

δ

and
��TT

δ (1n)
GG ��

= OO

δ

�� (1n)

δ

.(3-4)

We impose full cyclicity with respect to our generating 2-morphisms of degree 1;
for example, by using the adequate cups and caps we can rotate

δ,i
to obtain

δ,i+1
.

Furthermore, we impose the relations

������ ���� ��������

(1n)

i+1 i 1 n i+2

δ

=

•

i+1 i 1 n i+3 i+2

δ

(1n)

������ ���� ��������

−

•

i+1 i 1 n i+3 i+2

δ

(1n)

������ ���� ��������

,(3-5)

������ ���� ��������

(1n)

i−1 1 n i+1 i

δ

=

•

i−1 i−2 1 n i+1 i

δ

(1n)

������ ���� ��������

−

•

i−1 i−2 1 n i+1 i

δ

(1n)

������ ���� ��������

,(3-6)
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�������� ������������

(1n)

i+1 i 1 n i+2

δ

=

•

i+1 i 1 n i+3 i+2

δ

(1n)

�������� ������������

−

•

i+1 i 1 n i+3 i+2

δ

(1n)

�������� ������������

,(3-7)

�������� ������������

(1n)

i−1 1 n i+1 i

δ

=

•

i−1 i−2 1 n i+1 i

δ

(1n)

�������� ������������

−

•

i−1 i−2 1 n i+1 i

δ

(1n)

�������� ������������

,(3-8)

�
�
�
�
�
�
�
�
��
��
��
��(1n)

iδ

= OO

δ

(1n) ��

i

and �
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

= OO

δ

(1n)��

i

,(3-9)

������ ���� ��������

������ �� ����������

i i−1 1 n i+2 i+1

δ (1n)

i i−1 1 n i+2 i+1

= OO OO · · · OO OO · · · OO OO

i i−1 1 n i+2 i+1

(1n)

•

− OO OO · · · OO OO · · · OO OO

i i−1 1 n i+2 i+1

(1n)

•

,

(3-10)

������ ���� ��������

������ �� ����������

j j−1 1 n j+2 j+1

δ (1n)

i i−1 1 n i+2 i+1

=

@@ @@ @@__ __ __

· · · · · ·

· · · · · ·

i i−1 j+1 j i+2 i+1

j i+2 i+1 i i−1 j+1

(1n).(3-11)

Note that cyclicity implies the analogous relations with all orientations reversed.
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Before giving the following lemma, we recall that the Karoubi envelope (or
idempotent completion) of Khovanov and Lauda’s 2-categories, e.g., Kar U(sln)
and Kar U(gln), contain the categorified divided powers E (a)

±i , which satisfy

Ea
±i = (E

(a)
±i )
⊕[a]!.

In [Khovanov et al. 2012] the 2-morphisms in Kar U(sl2) between the divided
powers were worked out explicitly. Using the fact that Kar U(sl2) can be embedded
into Kar U(ŝln) for any choice of simple root, we can use the results in [loc. cit.].
We do not need much of that calculus in this paper, but we do have to recall the
splitters (see the definitions below Lemma 2.2.3 and see (2.63) in [loc. cit.])

: E (2)
+i → E2

+i

i

i i

and : E2
+i → E (2)

+i

i

i i

and the relations (see (2.36), (2.64) and (2.65) in [loc. cit.])

i i

i i

=

i i

i i

,

i

=0,

i

•
= OO

i

,

i

•
= − OO

i

for any i = 1, . . . , n. By cyclicity, we get similar splitters and relations for E (2)
−i ,

i = 1, . . . , n.

Lemma 3.2.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(1n)

i−1 i+1

i δ = OO OO · · · OO

i−1 i−2 i+1

(1n) and

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(1n)

i−1 i+1

δ i = OO OO · · · OO

i−1 i−2 i+1

(1n) ,

(3-12)
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�
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

= OO

δ

(1n)OO

i

and

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i−1 i+1i

δ = OO OO · · · OO

i i−1 i+1

(1n),

(3-13)

�
�
�
�
�
�
�
�
��
��
��
��(1n)

iδ

= OO

i

(1n) OO

δ

and

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i+1 ii−1

δ = OO OO· · · OO

i−1 i+1 i

(1n) .

(3-14)

By cyclicity, we get the analogous relations with all orientations reversed.

Proof. The equations in (3-12) follow directly from (3-10) and the relations (3.39)
and (3.40) in [Mackaay and Thiel 2013]. Note that one of the terms we get by
applying (3-10) has a bubble of degree −2, which is equal to 0, and the other term
has a bubble of degree 0 which is equal to −1 if it is counterclockwise and +1 if
it is clockwise.

We only prove the equations in (3-13). The equations in (3-14) can be proved
similarly. By the second relation in (3-9), curl removal and the evaluation of
degree-0 bubbles, we get

�
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

=

OO

OO

OO

��

i

OO

δ

(1n) = OO

δ

(1n)OO

i

.

By (3-10) and the relations in (2.64) in [Khovanov et al. 2012], we get

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i−1 i+1i

δ =

i

•

OO · · · OO

i−1 i+1

(1n)−

i

•

OO · · · OO

i−1 i+1

(1n) = OO OO · · · OO

i i−1 i+1

(1n).

�
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Lemma 3.3. We have

OO

δ

��MM

i

(1n) = �
�
�
�
�
�
�
�
��
��
��
�� (1n)

i i+1
= OO

δ

��MM

i+1

(1n).

Proof. The first equality is a direct consequence of the first relation in (3-9).
The second is a consequence of the first relation in (3-9) and the fact that

��MM

i+1

(1n) =
QQ��

i+1

(1n),

which follows from the infinite Grassmannian relation for bubbles. �

In order to formulate the following results, define

zm (1n) := −

(
QQ�� +

QQ�� + · · ·+
QQ��

i−1 i−2 m
)
(1n).

The sum of the bubbles is over the colors{
i − 1, i − 2, . . . ,m if 1≤ m ≤ i − 1,
i − 1, i − 2, . . . , 1, n, n− 1, . . .m if m ≥ i + 1.

These are exactly the colors of all the strands in the diagram on the left-hand side
of Lemma 3.4 between the strands i − 1 and m. By definition we take zi = 0 and
use the convention that 00

= 1.
Similarly, we define

ym (1n) := −

(
��MM
+ ��MM

+ · · ·+ ��MM
m m−1 i+2

)
(1n).

The sum of the bubbles is over the colors{
m,m− 1, . . . , i + 2 if i + 2≤ m ≤ n,
m,m− 1, . . . , 1, n, n− 1, . . . i + 2 if m ≤ i + 1.

These are exactly the colors of all the strands in the diagram on the left-hand side
of Lemma 3.4 between the strands m and i + 2. By definition we take yi+1 = 0
and use the convention that 00

= 1.
Note that

yi−1 = zi+2

by the infinite Grassmannian relation.
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Lemma 3.4. For any 1≤ m ≤ n and s, t ∈ N, we have

(3-15) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t s

=

s∑
j=0

( s
j

)
OO

δ

i
��MM

•
s+t− j

z j
m (1n).

On the left-hand side of (3-15), the t dots are on the i-th strand and the s dots are
on the m-th strand. Similarly, we have

(3-16) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• t s

=

t∑
j=0

( t
j

)
OO

δ

i+1
QQ��

•
s+t− j

y j
m (1n).

On the left-hand side of (3-15), the t dots are on the m-th strand and the s dots are
on the (i+1)-th strand.

Proof. We only prove the first equation. The second can be proved in a similar way.
The proof is by induction with respect to s. For s = 0 and any 1≤m ≤ n and t ∈N,
the result follows from (3-9).

Suppose s > 0, t ∈ N and m 6= i + 1. The case m = i follows from (3-9), so we
can assume that m 6= i . First note the following:

(3-17) 0= (1n)
i

m

δ

•
t

= − ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•

m

•
t

+
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
t

.

The first equality holds because the label of the region inside the curl does not
belong to 3(n, n); its (m+1)-th entry equals −1. The second equality follows
from resolving the curl. The minus sign is a consequence of our normalization of
degree-0 bubbles in [Mackaay and Thiel 2013], because the label λ of the region
just outside the bubble satisfies λm+1 = 0. Note that the bubble in the second term
has degree 2, since λm − λm+1 = 1 for any m 6= i, i + 1.
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Equation (3-17) implies

(3-18) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

m

•
s

•
t

=
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
s−1

•
t

.

Now slide the m-bubble to the left. Note that the strand directly to the left of the
bubble has color m+1 (the colors are still taken modulo n). Thus, by the bubble-slide
relations and the degree-0 bubble relations in [Mackaay and Thiel 2013], we get

(3-19)
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
s−1

•
t

= (1n)
i

δ

•
s−1
••

t

− (1n)
i

δ

s−1
•

m
•

t

.

The new bubble, in the second diagram on the right-hand side of (3-19), still has
color m of course. But now it is between the strands colored m + 2 and m + 1,
reading from left to right. The label, λ, of the region between these two strands
satisfies λm+1 = 1. Thus, by the degree-0 bubble relations in [Mackaay and Thiel
2013], the counterclockwise degree-0 m-bubble in that region is equal to 1, which
explains the positive sign of the first term on the right-hand side in (3-19). Note
that the label of the region containing the m-bubble in the second term satisfies
λm − λm+1 = 0, so the dotless m-bubble has degree 2, as it should.

Note that the m-bubble in the second term in (3-19) can be slid completely to the
left-hand side. After that, we can use (3-18) to eliminate the dot on the (m+1)-th
strand and slide the (m+1)-bubble completely to the left-hand side. Repeating this
for all strands between i − 1 and m, we get the following result:
(3-20)

��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t s

= ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t+1

s−1
− ��

��
��
��
��
��
��
��

�
�
�
�

i

δ

••
t

s−1

(
QQ�� +

QQ�� +· · ·+
QQ��

)
i−1 i−2 m

(1n).
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Induction then proves the result for m 6= i + 1.
For m = i+1, we have to adapt our reasoning above, because the region between

the (i+2)-th and the (i+1)-th strands has label λ= (1i , 2, 0, 1n−(i+2)). In particular
λi+1= 2, so the left (i+1)-curl has degree 4 this time, which prevents us from using
induction. Therefore, we use a slightly different argument involving a right curl.

We still assume that s > 0 holds. First note that, by the resolution of the curl
and the degree-0 bubble relations in [Mackaay and Thiel 2013], we have

(3-21) 0 = (1n)
i i+2

δ

•
t

•
s−1

= (1n)
i

δ

•

i+2

•
t

•
s−1

−
��
��
��

��
��
��

(1n)
i

δ

−1

•
t

•
s−1

.

because the region between the (i+2)-th and the (i+1)-th strands is labeled
λ = (1i , 2, 0, 1n−(i+2)). In particular, we have λi+2 − λi+3 = −1 and λi+3 = 1,
which explains the signs of the terms on the right-hand side of (3-21).

We now slide the (i+2)-bubble in the second term on the right-hand side of (3-21)
to the right:

(3-22)
��
��
��

��
��
��

(1n)
i

δ

−1

•
t

•
s−1

= (1n)
i

δ

•
s

•
t

+ (1n)
i

δ

i+2

•
t

•
s−1

.

The sign of the first term on the right-hand side of (3-22) follows from the degree-0
bubble relations in [Mackaay and Thiel 2013].

Putting (3-21) and (3-22) together, we get

(3-23) (1n)
i

δ

•
t

•
s

= (1n)
i

δ

•

i+2

•
t

•
s−1

− (1n)
i

δ

i+2

•
t

•
s−1

.
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We can exchange the (i+2)-bubble on the right-hand side for an (i+1)-bubble on the
left-hand side by Lemma 3.3, and invert its orientation by the infinite Grassmannian
relation.

By the same reasoning as above, we get
(3-24)

(1n)
i

δ

•

i+2

•
t

•
s−1

= (1n)
i

δ

•
t+1

•
s−1

− �
�
�
�
�
�
�
�
��
��
��
��

δ

•
t(

QQ�� +
QQ�� +· · ·+

QQ��

)
i−1 i−2 i+2

i

•
s−1

.

Putting (3-23) and (3-24) together, we obtain

(1n)
i

δ

•
t

•
s

= (1n)
i

δ

•
t+1

•
s−1

− �
�
�
�
�
�
�
�
��
��
��
��

δ

•
t(

QQ�� +
QQ�� +· · ·+

QQ��

)
i−1 i−2 i+1

i

•
s−1

.

As before, the result follows by induction. �

Proposition 3.5.

��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1 si+2

=

si−1∑
ji−1=0

si−2∑
ji−2=0

· · ·

si+1∑
ji+1=0

( si−1
ji−1

)
· · ·

( si+1
ji+1

)
z

ji−1
i−1 ···z

ji+1
i+1

OO

δ

i
��MM

•
si+···+si+1− ji−1−···− ji+1

(1n)

=

si∑
ji=0

si−1∑
ji−1=0

· · ·

si+2∑
ji+2=0

( si
ji

)
· · ·

( si+2
ji+2

)
y

ji
i ···y

ji+2
i+2

OO

δ

i+1
QQ��

•
si+···+si+1− ji−···− ji+2

(1n).
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Proof. We only prove the first equation. The second can be proved by similar
arguments.

We use induction with respect to the reverse lexicographical ordering of the dot
sequences (si , . . . , si+1). The base of the induction, si = · · · = si+1 = 0, has been
dealt with in Lemma 3.3.

The case si−1 = · · · = si+1 = 0 has been dealt with in Lemma 3.4. Suppose
there exists a j ∈ {i − 1, . . . , i + 1} with s j > 0. The argument below works for
arbitrary j , but let us assume that j = i − 1 for simplicity.

By the same arguments as used in the proof of Lemma 3.4, we get

(3-25) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1 si+2

= ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si+1 si+1

si−1−1 si+2

− ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1−1 si+2

QQ��

i−1

.

Induction on both terms on the right-hand side of (3-25) proves the proposition. �

Proposition 3.5 also allows us to derive two bubble-slide formulas. The other
two, for bubbles with the opposite orientation, can be obtained using the infinite
Grassmannian relation and induction. Since we do not need them in this paper, we
omit them.

Corollary 3.6. We have

(3-26)
s∑

j=0

( s
j

)
OO

δ

i
��MM

•
s− j

z j
i+1 (1n) = OO

δ

i+1
QQ��

•
s

(1n)

and

(3-27) OO

δ

(1n)

s∑
j=0

( s
j

)i+1
QQ��

•
s− j

y j
i = OO

δ

i
��MM

•
s

(1n) .
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Proof. These two bubble-slide relations follow immediately from Lemma 3.4.
For (3-26), apply (3-15) and (3-16) with t = 0,m = i + 1. For (3-27), apply (3-15)
and (3-16) with s = 0,m = i . �

4. Two useful 2-functors

Definition 4.1. Let the 2-functor 9n,n : U(ŝln)
∗
→ Ŝ(n, n)∗ be defined just as 9n,r

in Section 3.5.3 in [Mackaay and Thiel 2013]; i.e., on objects and 1-morphisms it
is determined by

µ 7→ ϕn,n(µ)=: λ,

Ei 1µ 7→ Ei 1λ.

By convention, we put 1∗ := 0. On 2-morphisms it is determined by sending any
diagram in U(ŝln) which is not a left cap or cup to the same diagram in Ŝ(n, n) and
applying ϕn,n to the labels of the regions in the diagram. The images of the left caps
and cups also have to be multiplied by certain signs. To be more precise, define

(4-1) �� i,µ 7→ (−1)λi+1+1
�� i,λ and OO

i,µ
7→ (−1)λi+1 OO

i,λ
.

We define any diagram in Ŝ(n, n) to be equal to 0 if it contains regions labeled ∗.

Note that, unlike 9n,r for n > r , 9n,n is not essentially surjective. However, it
still has the following useful property.

Lemma 4.2. The 2-functor 9n,n is full.

Proof. The proof follows from the following two observations, which show how
to remove δ-strands from diagrams in HOMŜ(n,n)(Ei 1λ, E j 1λ), for any signed se-
quences i and j :

• Closed δ-diagrams always consist of disjoint δ-circles. By Corollary 3.6 we can
move any closed i-diagram, which is always equivalent to a linear combination
of disjoint i-circles, from the interior to the exterior of a δ-circle. By (3-3), we
can then remove the δ-circles with empty interior.

• Any δ-strand which is not part of a δ-circle has to be part of a diagram
obtained by gluing

δ, j
on top of

δ,i
or

δ,i
on top of

δ, j
for certain

1 ≤ i, j ≤ n. In both cases we can remove the δ-strand by applying (3-10)
or (3-11). �

Definition 4.3. We define the 2-functor In : Ŝ(n, n)→ Ŝ(n+ 1, n) as follows:

• On objects and 1-morphisms, use the map in Proposition 2.14.

• On 2-morphisms, take the identity on all i-strands, for 1≤ i ≤ n− 1, map all
n-strands to two parallel strands labeled n and n+ 1, e.g.,
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OO

n

(λ) 7→ OO OO

n n+1

(λ, 0) and ��

n

(λ) 7→ �� ��

n+1 n

(λ, 0),

map dots on n-strands to dots on the corresponding pairs of parallel strands as
follows:

OO

n

(λ)

•

7→ OO OO

n n+1

(λ, 0)
•

= OO OO

n n+1

(λ, 0)
•

and ��

n

(λ)

•

7→ �� ��

n+1 n

(λ, 0)
•

= �� ��

n+1 n

(λ, 0)
•

,

and map the generators involving δ-strands as follows:

OO

δ

(1n) 7→
OO OO · · · OO OO

n n−1 1 n+1

(1n) and ��

δ

(1n) 7→ �� �� · · · �� ��

n+1 1 n−1 n

(1n),

i i−1 1 n i+2 i+1

δ

(1n)

������ ���� ��������

7→

n n−1 i+1 i 1 n+1

i 1 n n+1 n−1 i+1

(1n),

i i+1 n 1 i−2 i−1

δ

(1n)

������ ���� ��������

7→

n+1 1 i−1 i n−1 n

i n−1 n+1 n 1 i−1

(1n),

with the image of the other two δ-splitters being defined likewise using
cyclicity.

Note that the two images of the dotted n-strands which are shown, are indeed
equal in Ŝ(n + 1, n). This follows from the relevant Reidemeister-2 relations,
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because the diagrams with the crossings in those relations are equal to 0 (the last
entry of the labels of their middle regions is equal to −1).

Lemma 4.4. For any n ≥ 3, In is well-defined.

Proof. We only have to prove that In preserves the relations involving n and
δ-strands, because In clearly preserves all other relations.

First consider the nil-Hecke relations which only involve n-strands. By cyclicity,
we can assume that all strands are oriented upward. We give the proof of well-
definedness with respect to one nil-Hecke relation in detail. The image of the
left-hand side of

(4-2)

??__

•

n n

λ −

??__

n n
•

λ =
OO OO

n n

λ

is given by
??__

•
??__

n nn+1 n+1

(λ, 0) −

??__ ??__

n nn+1 n+1
•
(λ, 0).

By the nil-Hecke relation for the n-strands, this is equal to

n nn+1 n+1

(λ, 0) =

n nn+1 n+1

(λ, 0),

which is equal to the image of the right-hand side of (4-2). Note that in the last
equality, we have omitted one term which is equal to 0 because it contains a region
whose label has a negative entry.

Well-definedness with respect to the other two nil-Hecke relations for n-strands
can be proved by similar arguments.

As for the other relations involving only n-strands, the first one we should look
at is the infinite Grassmannian relation. The image of the n-bubbles is given by

n

λ
•
♦+a

7→

n+1
n

(λ, 0)
• •
♦+a ♦

and

n

λ
•
♦+a

7→

n
n+1

(λ, 0)
• •
♦+a ♦

for any a ∈ N and λ ∈3(n, n). The notation ♦ is defined by

i

λ
•
♦+b

:=

i

λ
•

−(λi−λi+1)−1+b

and
i

λ
•
♦+b

:=

i

λ
•

λi−λi+1−1+b

,

for any b ∈ N.
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For♦+a<0, the image of the fake n-bubbles above is a definition. For♦+a≥0,
we have to prove that the image of the n-bubbles above is equal to the image assigned
to them by In . This is immediate if the two nested bubbles in the image are real (since
the numbers of dots match), but one of them could be fake, in which case a proof
is required. Let us give this proof for the counterclockwise n-bubbles. Note that

(4-3)

n

λ
•
♦+a

=

n

λ
•

−(λn−λ1)−1+a

.

By the definition above, the image of the left-hand side of (4-3) is given by
n+1

n

(λ, 0)
• •
♦+a ♦

= −

∑
b+c=a

n+1

•
♦+b

n

(λ, 0)
•
♦+c

.

The equality is obtained by applying a bubble-slide relation. By the definition
of In , the image of the right-hand side of (4-3) is given by

n+1
n

(λ, 0)
•
a′

=−

∑
b′+c=a′+λn

n+1

•
b′

n

(λ, 0)
•
♦+c

=−

∑
b′+c=a′+λn

n+1

•
♦+b′−λ1+1

n

(λ, 0)
•
♦+c

=−

∑
b+c=a

n+1

•
♦+b

n

(λ, 0)
•
♦+c

,

with a′=−(λn−λ1)−1+a. The first equality is obtained by applying a bubble-
slide relation, and the other equalities are obtained by reindexing. This finishes the
proof that both definitions of the image of the counterclockwise nonfake n-bubbles
are equal. The proof for the clockwise n-bubbles is similar and is left to the reader.

We now show that with the definitions above, the images of the bubbles satisfy the
infinite Grassmannian relation. To be more precise, we have to show that the relation

(4-4)
b∑

a=0

n

•
♦+b−a

n

•
λ

♦+a

= −δb,0

is preserved, for any b ∈ N. For b = 0, the image of (4-4) is given by
n+1

n

• •
♦ ♦

n

n+1
(λ, 0)

• •
♦ ♦

= −1.
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The equality follows immediately from the degree-0 bubble relations. For b > 0,
the image of (4-4) is given by

b∑
a=0

n+1
n

• •
♦+b−a ♦

n

n+1
(λ, 0)

• •
♦+a ♦

=

b∑
a=0

a∑
k=0

n+1
n

• •
♦+b−a ♦

n+1

•
♦+k

n

(λ, 0)
•

♦+a−k

=−

b∑
a=0

a∑
k=0

a−k∑
`=0

n n
n+1

• •

•
♦+b−a ♦+a−k−`

♦+`

n+1

(λ, 0)
•
♦+k

=−

b∑
a=0

a∑
c=0

c∑
k=0

n n
n+1

• •

•
♦+b−a ♦+a−c

♦+c−k

n+1

(λ, 0)
•
♦+k

=−

b∑
c=0

c∑
k=0

b−c∑
m=0

n n
n+1

• •

•
♦+b−c−m ♦+m

♦+c−k

n+1

(λ, 0)
•
♦+k

= 0.

The first two equalities follow from bubble-slide relations. The next two equalities
follow from reindexing, as indicated. The last equality follows from the infinite
Grassmannian relation: for the n-bubbles, if b > c (with c fixed), and for the
(n+1)-bubbles if b = c.

Knowing the images of the fake bubbles allows us to prove the other relations
involving only n-strands very easily. Let us do just one example; the other relations
can be proved in a similar fashion. We show that In preserves the relation

(4-5)

n

λ = −

λ1−λn∑
f=0

• λ1−λn− f

n

n

λ
•
♦+ f

.



226 MARCO MACKAAY AND ANNE-LAURE THIEL

The image of the left-hand side of (4-5) is given by

n n+1

(λ, 0),

which is equal to

−

λ1−1∑
f=0

•
•

n n+1

n+1

λ1−1− f
♦+ f

(λ, 0) = −
λ1−1∑
f=0

• •

n n+1

n
n+1

λ1−1− f ♦+ f
(λ, 0)

= −

λ1−λn∑
f=0

• •

•

n n+1

n
n+1

λ1−λn− f ♦+ f
♦

(λ, 0).

The first summation is obtained by resolving the (n+1)-curl. The second summation
can then be obtained by applying a Reidemeister-3 relation to the strands colored
n, n+ 1 and n. Note that only the terms which are shown survive; the other ones
are 0 because they are given by diagrams which contain a region whose label has
a negative entry. The last summation is obtained by first reindexing. Then an
argument similar to the one we used below (4-3) ensures that the nested bubbles,
before and after the equality, match and that the first λn − 1 terms of the reindexed
summation vanish (indeed in those terms, bubbles of negative degree appear, and
those are always 0). This last expression is equal to the image of the right-hand
side of (4-5), which finishes our proof that In preserves (4-5).

Next let us have a look at the relations involving i-strands of more than one color.
We just do one example in detail, the other relations can be proved in a similar
fashion. Consider the relation

(4-6)

n 1

λ = −•

n 1

λ + •

n 1

λ
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in Ŝ(n, n). The image of the term on the left-hand side is given by

n n+1 1

(λ, 0) =

n n+1 1

(λ, 0) = − •

n n+1 1

(λ, 0) + •

n n+1 1

(λ, 0).

The first and the second equalities follow from the Reidemeister-2 relations in
Ŝ(n+1, n). The linear combination at the end is exactly the image of the right-hand
side in (4-6), which proves that (4-6) is preserved by In .

It remains to be proved that In preserves the relations involving δ-strands. For the
relations (3-1) and (3-2), the proof follows immediately from the zigzag relations
for i-strands with i = 1, . . . , n + 1. For the relations in (3-3), the proof follows
immediately from the degree-0 i-bubble relations for i =1, . . . , n+1. Let us explain
the first relation in (3-4) in more detail, the second being similar. The image of

��

δ

OO (1n)

δ

is given by

· · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0) = · · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0)

= · · · =

· · · · · ·

· · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0),

which is indeed equal to the image of

�� JJ

δ (1n)
WW



.

The equalities above are obtained by repeatedly applying Reidemeister-2 relations on
the pairs of i-strands with λi−λi+1=−1 for all i =1, . . . , n+1. Note that the terms
with two i-crossings are all equal to 0, because they contain a region whose label has
one negative entry, and all bubbles in the other terms are of degree 0 and equal to−1.

The fact that relations (3-5), (3-6), (3-7) and (3-8) are preserved follows easily
from applying Reidemeister-2 and -3 relations to the images of the terms on their
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left-hand side. The dots appear after applying the Reidemeister-2 relation involving
the i and (i+1)-strands.

We prove the left relation in (3-9) for 1 ≤ i < n. The proof for i = n and the
proof of the right relation in (3-9) are similar and are left to the reader. The image
on the left-hand side of the first relation in (3-9) is given by

(4-7)

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

We claim that this is equal to

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

which is indeed the image of the right-hand side of (3-9). This follows from first ap-
plying Reidemeister-2 relations to (4-7) in order to straighten all j -strands for j 6= i :

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

then a Reidemeister-2 relation to the i-strands in the middle (note that the re-
gion at the top and the bottom between the i and the (i−1)-strand is labeled
(1, . . . , 1, 0, 1, . . . , 1) with 0 on the i-th position):

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

and finally Reidemeister-2 relations in order to straighten the downward i-strand.
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Finally, the fact that In preserves the relations (3-10) and (3-11) can be easily
proved by applying Reidemeister-2 and -3 relations to the images of the diagrams
on the left-hand sides of those two relations. �

5. The Grothendieck group

In this section we prove that Ŝ(n, n) categorifies Ŝ(n, n) (Theorem 5.4). All the
hard work has been done already, we just have to put everything together. In
the following lemma, we show that all relations in Ŝ(n, n), which are listed in
Theorem 2.11, hold up to isomorphism in Ŝ(n, n).

Lemma 5.1. In Ŝ(n, n), we have

E±δ1λ ∼= 1λE±δ ∼= 0 for all λ 6= (1n),(i)

E±δ1n ∼= 1nE±δ,(ii)

E+δE−δ1n ∼= E−δE+δ1n ∼= 1n,(iii)

EiE+δ1n ∼= E (2)i Ei−1 . . . E1En · · · Ei+11n,(iv)

1nE+δEi ∼= 1nEi−1 . . . E1En · · · Ei+1E (2)i ,(v)

E−iE+δ1n ∼= Ei−1 · · · E1En · · · Ei+11n,(vi)

1nE+δE−i ∼= 1nEi−1 · · · E1En · · · Ei+1,(vii)

E−iE−δ1n ∼= E (2)
−i E−(i+1) · · · E−nE−1 · · · E−(i−1)1n,(viii)

1nE−δE−i ∼= 1nE−(i+1) · · · E−nE−1 · · · E−(i−1)E (2)−i ,(ix)

EiE−δ1n ∼= E−(i+1) · · · E−nE−1 · · · E−(i−1)1n,(x)

1nE−δEi ∼= 1nE−(i+1) · · · E−nE−1 · · · E−(i−1)(xi)

for any i = 1, . . . , n.

Proof. The isomorphisms in (i) and (ii) are immediate.
For (iii), consider the 2-morphisms

�� JJ

δ
(1n) : 1n→ E−δE+δ1n,

WW



δ

(1n) : E−δE+δ1n→ 1n,

��TT

δ
(1n) : 1n→ E+δE−δ1n,

GG ��

δ

(1n) : E+δE−δ1n→ 1n.

Relations (3-3) and (3-4) show that these 2-morphisms are 2-isomorphisms.
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Similarly, the isomorphisms in (iv) and (v) follow from the relations in (3-13)
and (3-14), and the isomorphisms in (vi) and (vii) follow from the relations in (3-9)
and (3-12).

The isomorphisms in (viii)–(xi) follow from the ones above by biadjointness. �

Recall that END(X) denotes the ring generated by all homogeneous 2-endomor-
phisms of a given 1-morphism X , whereas End(X)⊂ END(X) only contains the
ones of degree 0.

Lemma 5.2. For any t ∈ Z,

END(E t
+δ1n)∼= 1E t

+δ
END(1n)∼= END(1n)1E t

+δ
.

Proof. Note that for t = 0 there is nothing to prove. Let us now explain the proof
for t = 1. Given a diagram of the form

we can create a δ-bubble by (3-3) and apply (3-4) to obtain

=

This proves the lemma for t = 1. For t > 1, use the same trick repeatedly until you
are left with a closed diagram and t upward δ-strands. For t < 0, a similar trick can
be applied using the opposite orientation on the δ-strands. �

Let K0(Kar Ŝ(n, n)) be the split Grothendieck group of Kar Ŝ(n, n). This is a
Z[q, q−1

]-module, where the action of q is defined by

q[X ] := [X{1}].

Furthermore, let

K Q(q)
0 (Kar Ŝ(n, n)) := K0(Kar Ŝ(n, n))⊗Z[q,q−1]Q(q).
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Definition 5.3. Define the Q(q)-linear algebra homomorphism γn : Ŝ(n, n) →
K Q(q)

0 (Kar Ŝ(n, n)) by

γn(E i 1λ) := [Ei 1λ]⊗ 1 and γn(E t
+δ1n) := [E t

+δ1n]⊗ 1

for any signed sequence i , λ ∈3(n, n) and t ∈ Z.

Theorem 5.4. The homomorphism γn is well-defined and bijective.

Proof. Well-definedness follows from the corresponding statement for U(ŝln) by
Khovanov and Lauda [2010] and from Theorem 2.11 and Lemma 5.1.

Let us now show surjectivity. By Lemma 5.1, any indecomposable object in
Kar Ŝ(n, n) is isomorphic to an object of the form (X, e), where X is either of the
form E t

+δ for some t ∈Z or of the form Ei for some signed sequence i , and e is some
idempotent in End(X). By Lemmas 4.2 and 5.2, we see that End(E t

+δ)
∼= Q1E t

+δ
.

Therefore E t
+δ is indecomposable in Kar Ŝ(n, n). Note that its Grothendieck class

lies indeed in the image of γn . By Lemma 4.2 we know that EndŜ(n,n)(Ei ) is the
surjective image of the analogous endomorphism ring in U(ŝln) for any signed
sequence i . By [Khovanov and Lauda 2010, Theorem 1.1] and some general
arguments which were explained in detail in [Mackaay et al. 2013], and also used
in [Mackaay and Thiel 2013], this implies that the Grothendieck classes of all direct
summands of Ei in Kar Ŝ(n, n) are contained in the image of γn . This concludes
the proof that γn is surjective.

For injectivity, consider the following commutative diagram

Ŝ(n, n)

γn
��

ιn
// Ŝ(n+ 1, n)

γn+1
��

K Q(q)
0 (Kar Ŝ(n, n))

K0(In)⊗1
// K Q(q)

0 (Kar Ŝ(n+ 1, n))

where γn+1 is the isomorphism from [Mackaay and Thiel 2013, Theorem 6.4] and
In is defined in Definition 4.3. Since ιn and γn+1 are both injective, their composite
is also injective. The commutativity of the diagram above then implies that γn is
injective too. �
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